1
|
Cano M, del Valle M. The Personal Glucose Meter as the Measurement Principle in Point-of-Care Applications. BIOSENSORS 2025; 15:121. [PMID: 39997023 PMCID: PMC11852977 DOI: 10.3390/bios15020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/03/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
A personal glucose meter (PGM) is a medical device that measures blood glucose levels and can be found worldwide. Owing to their sensitivity, simplicity, portability, and low cost, PGMs stand as one of the most frequently utilized analytical methods. This work reviews the different applied methodologies for detecting analytes other than glucose employing a PGM and how it can be incorporated for point-of-care diagnosis needs. To visualize the variants, first, a classification is made according to the biorecognition elements used (aptamers, antibodies, etc.), and where the determination of different analytes is done through the glucose signal using different glucose-generating enzymes such as invertase or glucosidase. Transduction can also be based on the use of nanocarriers that generally encapsulate glucose, although it is also possible to find a combination of the two aforementioned strategies. The PGM can also be used for the direct detection of interfering substances of the biosensor, such as NADH or paracetamol. Lastly, we discuss how a PGM might have been implemented to detect COVID-19 and how it could be used on a massive scale for the point-of-care diagnosis of a pandemic.
Collapse
Affiliation(s)
| | - Manel del Valle
- Sensors and Biosensors Group, Department of Chemistry, Universitat Autònoma de Barcelona (UAB), Edifici Cn, Bellaterra, 08193 Barcelona, Spain;
| |
Collapse
|
2
|
He F, Li T, Wang H, Du P, Wang W, Tan T, Liu Y, Wang S, Ma Y, Wang Y, Hu P, Abd El-Aty AM. Glucometer-based biosensor for the determination of ractopamine in animal-derived foods using rolling circle amplification. Mikrochim Acta 2023; 190:121. [PMID: 36890258 DOI: 10.1007/s00604-023-05715-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/21/2023] [Indexed: 03/10/2023]
Abstract
Screening for persistent organic pollutants (POPs) in food is a complex and challenging process, as POPs can be present in very low levels and can be difficult to detect. Herein, we developed an ultrasensitive biosensor based on a rolling circle amplification (RCA) platform using a glucometer to determine POP. The biosensor was constructed using gold nanoparticle probes modified with antibodies and dozens of primers, magnetic microparticle probes conjugated with haptens, and targets. After competition, RCA reactions are triggered, numerous RCA products hybridize with the ssDNA-invertase, and the target is successfully transformed into glucose. Using ractopamine as a model analyte, this strategy obtained a linear detection range of 0.038-5.00 ng mL-1 and a detection limit of 0.0158 ng mL-1, which was preliminarily verified by screening in real samples. Compared with conventional immunoassays, this biosensor utilizes the high efficiency of RCA and the portable properties of a glucometer, which effectively improves the sensitivity and simplifies the procedures using magnetic separation technology. Moreover, it has been successfully applied to ractopamine determination in animal-derived foods, revealing its potential as a promising tool for POP screening.
Collapse
Affiliation(s)
- Feng He
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Tengfei Li
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Haijie Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Pengfei Du
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Weiting Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Tianyu Tan
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, 056038, China
| | - Yaobo Liu
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Shoujing Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yanli Ma
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yuanshang Wang
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peng Hu
- Institute of Food & Nutrition Science and Technology, Shandong Provincial Key Laboratory of Agro-Products Processing Technology, Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - A M Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240, Erzurum, Turkey
| |
Collapse
|
3
|
He F, Wang H, Du P, Li T, Wang W, Tan T, Liu Y, Ma Y, Wang Y, El-Aty A. Personal Glucose Meters Coupled with Signal Amplification Technologies for Quantitative Detection of Non-Glucose Targets: Recent Progress and Challenges in Food Safety Hazards Analysis. J Pharm Anal 2023; 13:223-238. [PMID: 37102109 PMCID: PMC10123950 DOI: 10.1016/j.jpha.2023.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Ensuring food safety is paramount worldwide. Developing effective detection methods to ensure food safety can be challenging owing to trace hazards, long detection time, and resource-poor sites, in addition to the matrix effects of food. Personal glucose meter (PGM), a classic point-of-care testing device, possesses unique application advantages, demonstrating promise in food safety. Currently, many studies have used PGM-based biosensors and signal amplification technologies to achieve sensitive and specific detection of food hazards. Signal amplification technologies have the potential to greatly improve the analytical performance and integration of PGMs with biosensors, which is crucial for solving the challenges associated with the use of PGMs for food safety analysis. This review introduces the basic detection principle of a PGM-based sensing strategy, which consists of three key factors: target recognition, signal transduction, and signal output. Representative studies of existing PGM-based sensing strategies combined with various signal amplification technologies (nanomaterial-loaded multienzyme labeling, nucleic acid reaction, DNAzyme catalysis, responsive nanomaterial encapsulation, and others) in the field of food safety detection are reviewed. Future perspectives and potential opportunities and challenges associated with PGMs in the field of food safety are discussed. Despite the need for complex sample preparation and the lack of standardization in the field, using PGMs in combination with signal amplification technology shows promise as a rapid and cost-effective method for food safety hazard analysis.
Collapse
|
4
|
Nsuamani ML, Zolotovskaya S, Abdolvand A, Daeid NN, Adegoke O. Thiolated gamma-cyclodextrin-polymer-functionalized CeFe 3O 4 magnetic nanocomposite as an intrinsic nanocatalyst for the selective and ultrasensitive colorimetric detection of triacetone triperoxide. CHEMOSPHERE 2022; 307:136108. [PMID: 35995197 DOI: 10.1016/j.chemosphere.2022.136108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Explosives are powerful destructive weapons used by criminals and terrorists across the globe and their use within military installation sites poses serious environmental health problems. Existing colorimetric sensors for triacetone triperoxide (TATP) relies on detecting its hydrolysed H2O2 form. However, such detection strategy limits the practicability for on-site TATP sensing. In this work, we have developed a novel peroxidase mimic catalytic colorimetric sensor for direct recognition of TATP. Ceria (Ce)-doped Fe3O4 nanoparticles (CeFe3O4) were synthesized via the hot-injection organic synthetic route in the presence of metal precursors and organic ligands. Thereafter, the organic-capped CeFe3O4 nanoparticles were surface-functionalized with amphiphilic polymers (Amp-poly) to render the nanoparticle stable, compact and biocompatible. Thiolated γ-cyclodextrin (γ-CD) was adsorbed on the Amp-poly-CeFe3O4 nanocomposite (NC) surface to form a γ-CD-Amp-poly-CeFe3O4 NC. γ-CD served both as a receptor and as a catalytic enhancer for TATP. Hemin (H), used as a catalytic signal amplifier was adsorbed on the γ-CD-Amp-poly-CeFe3O4 NC surface to form a γ-CD-Amp-poly-CeFe3O4-H NC that served as a functional nanozyme for the enhanced catalytic colorimetric detection of TATP. Under optimum experimental reaction conditions, TATP prepared in BIS-TRIS-Trisma Ac-KAc-NAc buffer, pH 3, was selectively and ultrasensitively detected without the need for acid hydrolysis based on the catalytic oxidation of 3,3',5,5'-tetramethylbenzidine by H2O2 in the presence of the γ-CD-Amp-poly-CeFe3O4-H hybrid nanozyme. The obtained limit of detection of ∼0.05 μg/mL when compared with other published probes demonstrated superior sensitivity. The developed peroxidase mimic γ-CD-Amp-poly-CeFe3O4-H catalytic colorimetric sensor was successfully applied to detect TATP in soil, river water and tap water samples.
Collapse
Affiliation(s)
- M Laura Nsuamani
- Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee, DD1 4HN, UK
| | - Svetlana Zolotovskaya
- Materials Science & Engineering Research Cluster, School of Science & Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Amin Abdolvand
- Materials Science & Engineering Research Cluster, School of Science & Engineering, University of Dundee, Dundee, DD1 4HN, UK
| | - Niamh Nic Daeid
- Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee, DD1 4HN, UK
| | - Oluwasesan Adegoke
- Leverhulme Research Centre for Forensic Science, University of Dundee, Dundee, DD1 4HN, UK.
| |
Collapse
|
5
|
Mohandoss S, Palanisamy S, You S, Lee YR. Synthesis of cyclodextrin functionalized photoluminescent metal nanoclusters for chemoselective Fe3+ ion detection in aqueous medium and its applications of paper sensors and cell imaging. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
6
|
Xing X, Yao L, Yan C, Xu Z, Xu J, Liu G, Yao B, Chen W. Recent progress of personal glucose meters integrated methods in food safety hazards detection. Crit Rev Food Sci Nutr 2021; 62:7413-7426. [PMID: 34047213 DOI: 10.1080/10408398.2021.1913990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Development of personal glucose meters (PGMs) for blood glucose monitoring and management by the diabetic patients has been a long history since its first invention in 1968 and commercial application in 1975. The main reasons for its wide acceptance and popularity can be attributed mainly to the easy operation, test-to-result model, low cost, and small volume of sample required for blood glucose concentration test. During past decades, advances in analytical techniques have repurposed the use of PGMs into a general point-of-care testing platform for a variety of non-glucose targets, especially the food hazards. In this review, we summarized the recent published research using PGMs to detect the food safety hazards of mycotoxins, illegal additives, pathogen bacteria, and pesticide and veterinary drug residues detection with PGMs. The progress on PGM-based detection achieved in food safety have been carefully compared and analyzed. Furthermore, the current bottlenecks and challenges for practical applications of PGM for hazards detection in food safety have also been proposed.
Collapse
Affiliation(s)
- Xiuguang Xing
- Engineering Research Center of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Li Yao
- Engineering Research Center of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chao Yan
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang, China.,Anhui Province Institute of Product Quality Supervision & Inspection, Hefei, China
| | - Zhenlin Xu
- Guangdong Provincial Key Lab of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jianguo Xu
- Engineering Research Center of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Guodong Liu
- Research Center for Biomedical and Health Science, School of Life and Health, Anhui Science & Technology University, Fengyang, China
| | - Bangben Yao
- Engineering Research Center of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,Anhui Province Institute of Product Quality Supervision & Inspection, Hefei, China
| | - Wei Chen
- Engineering Research Center of Bio-Process, MOE, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
7
|
Mahmoud AM, Mahnashi MH, Alhazzani K, Az A, Algahtani MM, Alaseem A, Alyami BA, AlQarni AO, El-Wekil MM. Nitrogen doped graphene quantum dots based on host guest interaction for selective dual readout of dopamine. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 252:119516. [PMID: 33561682 DOI: 10.1016/j.saa.2021.119516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/10/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Herein, yellow emissive nitrogen doped graphene quantum dots (N@GQDs) were prepared by a novel advanced thermal driven oxidation. The N@GQDs was functionalized with β-cyclodextrin (β-CD) to improve its catalytic performance towards dopamine (DA) detection. The β-CD/N@GQDs exhibited strong fluorescence at λem. = 550 nm after excitation at 460 nm with a quantum yield of 38.6%. The β-CD/N@GQDs showed good peroxidase like activity via catalyzing the oxidation of tetramethylbenzidine (TMB) in presence of H2O2 to form blue colored product at λmax = 652 nm. In the colorimetric assay of DA, the detection based on the oxidation of TMB by H2O2 in presence of β-CD/N@GQDs as a catalyst. Then, the color of the blue oxidized TMB (oxTMB) product was reduced by addition of DA. While the fluorometric detection of DA based on the "inner filter effect" of the overlapped emission spectrum of β-CD/N@GQDs with the absorption spectrum of oxTMB, where, addition of DA reduces oxTMB to TMB and restores the fluorescence intensity of β-CD/N@GQDs. Under the optimized conditions, the colorimetric method achieved linearity range of 0.12-7.5 µM and LOD (S/N = 3) of 0.04 µM, while the fluorometric method achieved linearity range of 0.028-1.5 µM and LOD (S/N = 3) of 0.009 µM. The peroxidase like activity of β-CD/N@GQDs was used to detect DA in human plasma and serum samples with good % recoveries. The colorimetric and fluorometric methods exhibited good sensitivity and selectivity toward DA detection.
Collapse
Affiliation(s)
- Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Khalid Alhazzani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alanazi Az
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Algahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali Alaseem
- Pharmacology Department, College of Medicine, Al Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Bandar A Alyami
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O AlQarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
8
|
Zhang S, Luan Y, Xiong M, Zhang J, Lake R, Lu Y. DNAzyme Amplified Aptasensing Platform for Ochratoxin A Detection Using a Personal Glucose Meter. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9472-9481. [PMID: 33550797 PMCID: PMC9168673 DOI: 10.1021/acsami.0c20417] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Aptamer-based sensors have emerged as a major platform for detecting small-molecular targets, because aptamers can be selected to bind these small molecules with higher affinity and selectivity than other receptors such as antibodies. However, portable, accurate, sensitive, and affordable detection of these targets remains a challenge. In this work, we developed an aptasensing platform incorporating magnetic beads and a DNAzyme for signal amplification, resulting in high sensitivity. The biosensing platform was constructed by conjugating a biotin-labeled aptamer probe of small-molecular targets such as toxins and a biotin-labeled substrate strand on magnetic beads, and the DNAzyme strand hybridized with the aptamer probe to block the substrate cleavage activity. The specific binding of the small-molecular target by the aptamer probe can replace the DNAzyme strand and then induce the hybridization between the DNAzyme strand and substrate strand, and the iterative signal amplification reaction of hydrolysis and cleavage of the substrate chain occurs in the presence of a metal ion cofactor. Using invertase to label the substrate strand, the detection of small molecules of the toxin is successfully transformed into the measurement of glucose, and the sensitive analysis of small molecules such as toxins can be realized by using the household portable glucose meter as a readout. This platform is shown to detect ochratoxin, a common toxin in food, with a linear detection range of 5 orders of magnitude, a low detection limit of 0.88 pg/mL, and good selectivity. The platform is easy to operate and can be used as a potential choice for quantitative analysis of small molecules, at home or under point-of-care settings. Moreover, by changing and designing the aptamer probe and the arm of DNAzyme strand, it can be used for the analysis of other analytes.
Collapse
Affiliation(s)
- Songbai Zhang
- Hunan Provincial Key Laboratory of Water Treatment Functional Materials, Hunan Province Engineering Research Center of Electroplating Wastewater Reuse Technology, Hunan Province Cooperative Innovation Center for The Construction & Development of Dongting Lake Ecological Economic Zone, College of Chemistry and Chemical Engineering, Hunan University of Arts and Science, Changde 415000, P. R. China
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yunxia Luan
- Beijing Research Center for Agricultural Standards and Testing, Agricultural Product Quality and Safety Risk Assessment Laboratory of the Department of Agriculture, Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing 100097, P. R. China
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mengyi Xiong
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jingjing Zhang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ryan Lake
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Li F, Hu Y, Zhao A, Xi Y, Li Z, He J. β-Cyclodextrin coated porous
Pd@Au nanostructures with enhanced peroxidase-like activity for colorimetric and
paper-based determination of glucose. Mikrochim Acta 2020; 187:425. [DOI: 10.1007/s00604-020-04410-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/23/2020] [Indexed: 12/18/2022]
|
10
|
Sonaimuthu M, Nerthigan Y, Swaminathan N, Sharma N, Wu HF. Photoluminescent hydrophilic cyclodextrin-stabilized cysteine-protected copper nanoclusters for detecting lysozyme. Anal Bioanal Chem 2020; 412:7141-7154. [PMID: 32876723 DOI: 10.1007/s00216-020-02847-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023]
Abstract
Lysozyme (LYZ) sensors have attracted increased attention because rapid and sensitive detection of LYZ is highly desirable for various diseases associated with humans. In this research, we designed L-cysteine-protected ultra small photoluminescent (PL) copper nanoclusters (CuNCs) conjugated with β-cyclodextrin (β-CD) for rapid detection of LYZ in human serum samples at room temperature. The proposed β-CD-CuNCs exhibited excellent water solubility, ultrafine size, good dispersion, bright photoluminescence, and good photostability. The β-CD-CuNCs exhibit an excitation and emission maximum at 370 nm and 492 nm, respectively, with an absolute quantum yield (QY) of 54.6%. β-CD-CuNCs showed a fluorescence lifetime of 12.7 ns. The addition of LYZ would result in PL quenching from β-CD-CuNCs. The lowest detectable LYZ concentration was 50 nM for the naked eye and the limit of detection (LOD) and limit of quantification (LOQ) were 0.36 nM and 1.21 nM, respectively, by emission measurement observed in the LYZ concentration range from 30 to 100 nM. It is important to note that the PL β-CD-CuNC strategy possessed great selectivity toward LYZ relative to other biomolecules. The proposed nanosensor was efficiently applied to determine the LYZ level in human serum sample average recoveries from 96.15 to 104.05% and relative standard deviation (RSD) values lower than 3.0%. Moreover, the proposed sensing system showed many advantages, including high speed, high sensitivity, high selectivity, low cost, and simple preparation.
Collapse
Affiliation(s)
- Mohandoss Sonaimuthu
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan
| | - Yowan Nerthigan
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan
| | - Nandini Swaminathan
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan
| | - Nallin Sharma
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan
| | - Hui-Fen Wu
- Department of Chemistry, National Sun Yat-Sen University, 70, Lien-Hai Road, Kaohsiung, 80424, Taiwan. .,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. .,International PhD program for Science, National Sun Yat-sen University, 70 Lien-hai Road, Kaohsiung, 80424, Taiwan. .,Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
11
|
Ma X, Lv H, Zhu Q, Chen M, Wang Y, Li F. A novel sensitive electrochemical method for the detection of ractopamine in meat food via polycitrulline-modified electrode. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2020; 37:1459-1466. [DOI: 10.1080/19440049.2020.1769867] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Xinying Ma
- College of Chemistry and Chemical Engineering, Heze University, Heze, China
| | - Huiping Lv
- College of Chemistry and Chemical Engineering, Heze University, Heze, China
| | - Qi Zhu
- College of Chemistry and Chemical Engineering, Heze University, Heze, China
| | - Meifeng Chen
- College of Chemistry and Chemical Engineering, Heze University, Heze, China
| | - Yilei Wang
- College of Agricultural and Biological Engineering, Heze University, Heze, China
| | - Fenghai Li
- College of Chemistry and Chemical Engineering, Heze University, Heze, China
| |
Collapse
|
12
|
Zhang J, Lan T, Lu Y. Translating in vitro diagnostics from centralized laboratories to point-of-care locations using commercially-available handheld meters. Trends Analyt Chem 2020; 124:115782. [PMID: 32194293 PMCID: PMC7081941 DOI: 10.1016/j.trac.2019.115782] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is a growing demand for high-performance point-of-care (POC) diagnostic technologies where in vitro diagnostics (IVD) is fundamental for prevention, identification, and treatment of many diseases. Over the past decade, a shift of IVDs from the centralized laboratories to POC settings is emerging. In this review, we summarize recent progress in translating IVDs from centralized labs to POC settings using commercially available handheld meters. After introducing typical workflows for IVDs and highlight innovative technologies in this area, we discuss advantages of using commercially available handheld meters for translating IVDs from centralized labs to POC settings. We then provide comprehensive coverage of different signal transduction strategies to repurpose the commercially-available handheld meters, including personal glucose meter, pH meter, thermometer and pressure meter, for detecting a wide range of targets by integrating biochemical assays with the meters for POC testing. Finally, we identify remaining challenges and offer future outlook in this area.
Collapse
Affiliation(s)
- JingJing Zhang
- State Key Laboratory of Analytical Chemistry for Life
Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing
210023, China
| | - Tian Lan
- GlucoSentient, Inc., 2100 S. Oak Street, Suite 101,
Champaign, IL 61820, USA
| | - Yi Lu
- Department of Chemistry, University of Illinois at
Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
13
|
Lisi F, Peterson JR, Gooding JJ. The application of personal glucose meters as universal point-of-care diagnostic tools. Biosens Bioelectron 2020; 148:111835. [DOI: 10.1016/j.bios.2019.111835] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/28/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
|
14
|
Pastucha M, Farka Z, Lacina K, Mikušová Z, Skládal P. Magnetic nanoparticles for smart electrochemical immunoassays: a review on recent developments. Mikrochim Acta 2019; 186:312. [PMID: 31037494 DOI: 10.1007/s00604-019-3410-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/03/2019] [Indexed: 02/07/2023]
Abstract
This review (with 129 refs) summarizes the progress in electrochemical immunoassays combined with magnetic particles that was made in the past 5 years. The specifity of antibodies linked to electrochemical transduction (by amperometry, voltammetry, impedimetry or electrochemiluminescence) gains further attractive features by introducing magnetic nanoparticles (MNPs). This enables fairly easy preconcentration of analytes, minimizes matrix effects, and introduces an appropriate label. Following an introduction into the fundamentals of electrochemical immunoassays and on nanomaterials for respective uses, a large chapter addresses method for magnetic capture and preconcentration of analytes. A next chapter discusses commonly used labels such as dots, enzymes, metal and metal oxide nanoparticles and combined clusters. The large field of hybrid nanomaterials for use in such immunoassays is discussed next, with a focus on MNPs composites with various kinds of graphene variants, polydopamine, noble metal nanoparticles or nanotubes. Typical applications address clinical markers (mainly blood and urine parameters), diagnosis of cancer (markers and cells), detection of pathogens (with subsections on viruses and bacteria), and environmental and food contaminants as toxic agents and pesticides. A concluding section summarizes the present status, current challenges, and highlights future trends. Graphical abstract Magnetic nanoparticles (MNP) with antibodies (Ab) capture and preconcentrate analyte from sample (a) and afterwards become magnetically (b) or immunospecifically (c) bound at an electrode. Signal either increases due to the presence of alabel (b) or decreases as the redox probe is blocked (c).
Collapse
Affiliation(s)
- Matěj Pastucha
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zdeněk Farka
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Karel Lacina
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Zuzana Mikušová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
15
|
Jia H, Tian Q, Xu J, Lu L, Ma X, Yu Y. Aerogels prepared from polymeric β-cyclodextrin and graphene aerogels as a novel host-guest system for immobilization of antibodies: a voltammetric immunosensor for the tumor marker CA 15–3. Mikrochim Acta 2018; 185:517. [DOI: 10.1007/s00604-018-3056-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/18/2018] [Indexed: 12/28/2022]
|
16
|
Zhang L, Gu C, Ma H, Zhu L, Wen J, Xu H, Liu H, Li L. Portable glucose meter: trends in techniques and its potential application in analysis. Anal Bioanal Chem 2018; 411:21-36. [DOI: 10.1007/s00216-018-1361-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/07/2018] [Accepted: 09/04/2018] [Indexed: 12/18/2022]
|
17
|
Niu X, Mo Z, Yang X, Sun M, Zhao P, Li Z, Ouyang M, Liu Z, Gao H, Guo R, Liu N. Advances in the use of functional composites of β-cyclodextrin in electrochemical sensors. Mikrochim Acta 2018; 185:328. [DOI: 10.1007/s00604-018-2859-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/01/2018] [Indexed: 12/20/2022]
|
18
|
Pan M, Li R, Xu L, Yang J, Cui X, Wang S. Reproducible Molecularly Imprinted Piezoelectric Sensor for Accurate and Sensitive Detection of Ractopamine in Swine and Feed Products. SENSORS (BASEL, SWITZERLAND) 2018; 18:E1870. [PMID: 29880768 PMCID: PMC6022169 DOI: 10.3390/s18061870] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/01/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022]
Abstract
This paper describes the development of a reproducible molecularly imprinted piezoelectric sensor for the accurate and sensitive detection of ractopamine (RAC) in swine and feed products. The synthesized molecularly imprinted polymer (MIP) was directly immobilized on the surface of a quartz crystal microbalance (QCM) Au chip as the recognition element. The experimental parameters in the fabrication, measurement and regeneration process were evaluated in detail to produce an MIP-based piezoelectric sensor with high sensing capability. The developed piezoelectric sensor was verified to perform favorably in the RAC analysis of swine and feed products, with acceptable accuracy (recovery: 75.9⁻93.3%), precision [relative standard deviation (n = 3): 2.3⁻6.4%], and sensitivity [limit of detection: 0.46 ng g-1 (swine) and 0.38 ng g-1 (feed)]. This portable MIP-based chip for the piezoelectric sensing of RAC could be reused for at least 30 cycles and easily stored for a long time. These results demonstrated that the developed MIP-based piezoelectric sensor presents an accurate, sensitive and cost-effective method for the quantitative detection of RAC in complex samples. This research offers a promising strategy for the development of novel effective devices used for use in food safety analysis.
Collapse
Affiliation(s)
- Mingfei Pan
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Rui Li
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Leling Xu
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jingying Yang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiaoyuan Cui
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
19
|
Gold nanoparticle-based colorimetric ELISA for quantification of ractopamine. Mikrochim Acta 2018; 185:210. [DOI: 10.1007/s00604-018-2736-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/16/2018] [Indexed: 01/21/2023]
|
20
|
Switched voltammetric determination of ractopamine by using a temperature-responsive sensing film. Mikrochim Acta 2018; 185:155. [PMID: 29594543 DOI: 10.1007/s00604-018-2680-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/15/2018] [Indexed: 01/18/2023]
|
21
|
Ye L, Zhao G, Dou W. An electrochemical immunoassay for Escherichia coli O157:H7 using double functionalized Au@Pt/SiO 2 nanocomposites and immune magnetic nanoparticles. Talanta 2018; 182:354-362. [PMID: 29501164 DOI: 10.1016/j.talanta.2018.01.095] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 01/23/2023]
Abstract
A sensitive Point-of-Care Testing (POCT) with Au-Pt bimetallic nanoparticles (Au@Pt) functionalized silica nanoparticle (SiO2 NPs) and Fe3O4 magnetic nanoparticles (Fe3O4 NPs) was designed for the quantitative detection of Escherichia coli O157:H7 (E. coli O157:H7). The poly-(4-styrenesulfonic acid-co-maleic acid) (PSSMA) as a negatively charged polyelectrolyte can be easily coated on surface of the amino group modified SiO2 NPs via electrostatic force. PSSMA is also a good stabilizer for water-soluble bimetallic nanostructures. The PSSMA is first time used as a "bridge" to connect the negative charge Au@Pt NPs to the SiO2 NPs, forming Au@Pt/SiO2 NPs. Antibody and invertase conjugated Au@Pt/SiO2 NPs (denoted as Ab/invertase-Au@Pt/SiO2 NPs) were used as signal labels. Monoclonal antibody against E. coli O157:H7 (Ab) functionalized magnetic nanoparticles (denoted as Ab-Fe3O4@SiO2 NPs) were used to enrich and capture the E. coli O157:H7 in positive sample. The immunosensing platform also composed of a personal glucometer (PGM) using for signal readout. Based on this sandwich-type immunoassay, the invertase in the final formed sandwich immunocomplex catalyzed the hydrolysis of sucrose to produce a large amount of glucose for quantitative readout by the PGM. Under optimal conditions, a linear relationship between the glucose concentration and the logarithm of E. coli O157:H7 concentration was obtained in the concentration range from 3.5 × 102 to 3.5 × 108 CFU mL-1 with a detection limit of 1.83 × 102 CFU mL-1 (3σ). This method was used to detect E. coli O157:H7 in spiked milk samples, indicating its potential practical application. This protocol can be applied in various fields of study.
Collapse
Affiliation(s)
- Lingxian Ye
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Guangying Zhao
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Wenchao Dou
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
22
|
Tan Q, Zhang R, Kong R, Kong W, Zhao W, Qu F. Detection of glutathione based on MnO 2 nanosheet-gated mesoporous silica nanoparticles and target induced release of glucose measured with a portable glucose meter. Mikrochim Acta 2017; 185:44. [PMID: 29594599 DOI: 10.1007/s00604-017-2603-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/01/2017] [Indexed: 12/31/2022]
Abstract
The authors describe a novel method for the determination of glutathione (GSH). Detection is based on target induced release of glucose from MnO2 nanosheet-gated aminated mesoporous silica nanoparticles (MSNs). In detail, glucose is loaded into the pores of MSNs. Negatively charged MnO2 nanosheets are assembled on the MSNs through electrostatic interactions. The nanosheets are reduced by GSH, and this results in the release of glucose which is quantified by using a commercial electrochemical glucose meter. GSH can be quantified by this method in the 100 nM to 10 μM concentration range, with a 34 nM limit of detection. Graphical abstract Glucose is loaded into the pores of mesoporous silica nanoparticles (MSNs). MnO2 nanosheets are assembled on MSNs through electrostatic interactions. Glutathione (GSH) can reduce the nanosheets, and this results in the release of glucose which is quantified by using a commercial glucose meter.
Collapse
Affiliation(s)
- Qingqing Tan
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Ruirui Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Rongmei Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Weisu Kong
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Wenzhi Zhao
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong, 273165, People's Republic of China.
| |
Collapse
|
23
|
Mao M, Tian T, He Y, Ge Y, Zhou J, Song G. Inner filter effect based fluorometric determination of the activity of alkaline phosphatase by using carbon dots codoped with boron and nitrogen. Mikrochim Acta 2017; 185:17. [PMID: 29594532 DOI: 10.1007/s00604-017-2541-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
Abstract
Boron and nitrogen codoped carbon dots functionalized with cyclodextrin (β-CD-N/B-C-dots) were obtained from β-cyclodextrin. The material displays strong fluorescence (with excitation/emission peak wavelengths of 400/500 nm) and was characterized by UV-vis, transmission electron microscopy and FTIR. If the substrate p-nitrophenylphosphate is enzymatically cleaved by alkaline phosphatase (ALP), a yellow product is formed whose absorption overlaps the excitation spectrum of the β-CD-N/B-C-dots. Hence, fluorescence is reduced due to an inner filter effect. In additon, the β-CD cavity offers a pocket for substrate recognition. The findings were used to design a method for the determination of the activity of ALP. It has a working range that extends from 0.003 to 5.5 U·L-1, with a 0.3 mU·L-1 detection limit. The method is fast, simple, inexpensive, and highly sensitive and selective. Graphical abstract Schematic of an inner filter effect based probe for alkaline phosphatase based on the use boron and nitrogen co-doped carbon dots (N/B-C-dots) modified with β-cyclodextrin (β-CD). PNPP: p-Nitrophenylphosphate; PNP: p-Nitrophenol anion.
Collapse
Affiliation(s)
- Mi Mao
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan, 430062, China
| | - Tian Tian
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan, 430062, China
| | - Yu He
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan, 430062, China. .,Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China. .,Hubei Province Key Laboratory of Regional Development and Environment Response, Wuhan, 430062, China.
| | - Yili Ge
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan, 430062, China.,Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Jiangang Zhou
- Hubei Province Key Laboratory of Regional Development and Environment Response, Wuhan, 430062, China
| | - Gongwu Song
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Wuhan, 430062, China.,Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| |
Collapse
|
24
|
He L, Guo C, Song Y, Zhang S, Wang M, Peng D, Fang S, Zhang Z, Liu CS. Chitosan stabilized gold nanoparticle based electrochemical ractopamine immunoassay. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2315-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Wang S, Zhao S, Wei X, Zhang S, Liu J, Dong Y. An Improved Label-Free Indirect Competitive SPR Immunosensor and Its Comparison with Conventional ELISA for Ractopamine Detection in Swine Urine. SENSORS (BASEL, SWITZERLAND) 2017; 17:E604. [PMID: 28300766 PMCID: PMC5375890 DOI: 10.3390/s17030604] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/08/2017] [Accepted: 02/22/2017] [Indexed: 11/25/2022]
Abstract
Ractopamine (RCT) is banned for use in animals in many countries, and it is urgent to develop efficient methods for specific and sensitive RCT detection. A label-free indirect competitive surface plasmon resonance (SPR) immunosensor was first developed with a primary antibody herein and then improved by a secondary antibody for the detection of RCT residue in swine urine. Meanwhile, a pre-incubation process of RCT and the primary antibody was performed to further improve the sensitivity. With all the key parameters optimized, the improved immunosenor can attain a linear range of 0.3-32 ng/mL and a limit of detection (LOD) of 0.09 ng/mL for RCT detection with high specificity. Furthermore, the improved label-free SPR immunosenor was compared thoroughly with a conventional enzyme-linked immunosorbent assay (ELISA). The SPR immunosensor showed advantages over the ELISA in terms of LOD, reagent consumption, analysis time, experiment automation, and so on. The SPR immunosensor can be used as potential method for real-time monitoring and screening of RCT residue in swine urine or other samples. In addition, the design using antibody pairs for biosensor development can be further referred to for other small molecule detection.
Collapse
Affiliation(s)
- Sai Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shuai Zhao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiao Wei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Shan Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiahui Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yiyang Dong
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
26
|
Aptamer based ultrasensitive determination of the β-adrenergic agonist ractopamine using PicoGreen as a fluorescent DNA probe. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-2032-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Wu D, Du D, Lin Y. Recent progress on nanomaterial-based biosensors for veterinary drug residues in animal-derived food. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
28
|
An aptamer based assay for the β-adrenergic agonist ractopamine based on aggregation of gold nanoparticles in combination with a molecularly imprinted polymer. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1913-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
29
|
Exploring a monothiolated β-cyclodextrin as the template to synthesize copper nanoclusters with exceptionally increased peroxidase-like activity. Mikrochim Acta 2016. [DOI: 10.1007/s00604-016-1915-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Peng G, Hou X, Liu B, Chen H, Luo R. Stabilized enzyme immobilization on micron-size PSt–GMA microspheres: different methods to improve the carriers' surface biocompatibility. RSC Adv 2016. [DOI: 10.1039/c6ra18126k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stabilized immobilization of biomacromolecules on carriers with appropriate orientation and minimum conformational changes is very important in the biochemical and biomedical fields.
Collapse
Affiliation(s)
- Gang Peng
- Department of Chemistry and Material Science
- Hengyang Normal University
- Hengyang 421008
- China
- Key Laboratory of Functional Organometallic Materials of Hunan Province College
| | - Xiaohui Hou
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Bailing Liu
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Hualin Chen
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Rong Luo
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| |
Collapse
|