1
|
Zhang Y, Zhang Q, Li Z, Zhou X, Liu C, Zha H, Zhang X, Zhao H, Lü G, Li J, Li X. In vitro diagnosis based on SERS-LFIA: research hotspots, increase sensitivities, combined detection, multimodal detection and related patents. J Mater Chem B 2025; 13:5746-5761. [PMID: 40292513 DOI: 10.1039/d4tb02721c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
In recent years, the SERS-LFIA platform has gained significant traction in in vitro diagnostics. However, a comprehensive review of its advancements and applications is still lacking. This review first employing a bibliometric approach to analyze research trends. It then outlines strategies to enhance sensitivity, focusing on Raman reporter molecules, SERS tags, coupling methods, detection instruments. Additionally, the review explores the use of SERS-LFIA for diagnosing multiple disease biomarkers, highlighting its potential to improve diagnostic accuracy. The review also synthesizes the application of multimodal SERS-LFIA technology, integrating signals such as colorimetric, magnetic, photothermal, fluorescent, and catalytic modalities. This approach enhances detection versatility and broadens diagnostic capabilities. Furthermore, it examines the current patent landscape, providing insights into the technology's commercial and technological progress. Lastly, the review discusses ongoing challenges, including stability and reproducibility and quantitative detection, while suggesting directions for future research. In summary, this review consolidates the latest advancements in SERS-LFIA technology for in vitro diagnostics over the past decade. Anticipated to furnish a robust scientific foundation and theoretical underpinning for the advancement of SERS-LFIA technology, this endeavor aims to enhance its efficacy in clinical diagnostics.
Collapse
Affiliation(s)
- Yongwei Zhang
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, China.
| | - Qian Zhang
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, China.
| | - Ziyue Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, China.
| | - Xuelei Zhou
- Xinjiang Xingyi Bio-Science Co., Ltd, Urumqi, 830011, China
| | - Chunyan Liu
- Department of Clinical Laboratory, Hospital of Xinjiang Production and Construction Corps, No. 232, Qingnian Road, Tianshan District, Urumqi, 830002, China
| | - Hefei Zha
- Department of Clinical Laboratory, Hospital of Xinjiang Production and Construction Corps, No. 232, Qingnian Road, Tianshan District, Urumqi, 830002, China
| | - Xin Zhang
- Department of Clinical Laboratory, Hospital of Xinjiang Production and Construction Corps, No. 232, Qingnian Road, Tianshan District, Urumqi, 830002, China
| | - Hui Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Guodong Lü
- State Key Laboratory of Pathogenesis, Prevention, and Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Jiutong Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, China.
- Xinjiang Xingyi Bio-Science Co., Ltd, Urumqi, 830011, China
| | - Xinxia Li
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830054, China.
- Key Laboratory of High Incidence Disease Research in Xingjiang (Xinjiang Medical University), Ministry of Education, Urumqi, 830054, China
- Xinjiang Key Laboratory of Biopharmaceuticals and Medical Devices, Urumqi, 830013, China
| |
Collapse
|
2
|
Zhang L, Li C, Shao S, Zhang Z, Chen D. Influenza viruses and SARS-CoV-2 diagnosis via sensitive testing methods in clinical application. Heliyon 2024; 10:e36410. [PMID: 39381246 PMCID: PMC11458974 DOI: 10.1016/j.heliyon.2024.e36410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/02/2024] [Accepted: 08/14/2024] [Indexed: 10/10/2024] Open
Abstract
The identification of influenza viruses and SARS-CoV-2 has garnered increasing attention due of their longstanding global menace to human life and health. The point-of-care test is a potential approach for identifying influenza viruses and SARS-CoV-2 in clinical settings, leading to timely discovery, documentation, and treatment. The primary difficulties encountered with conventional detection techniques for influenza viruses and SARS-CoV-2 are the limited or inadequate ability to identify the presence of the viruses, the lack of speed, precision, accuracy, sensitivity, and specificity, often resulting in a failure to promptly notify disease control authorities. Recently, point-of-care test methods, along with nucleic acid amplification, optics, electrochemistry, lateral/vertical flow, and minimization, have been demonstrated the characteristics of reliability, sensitivity, specificity, stability, and portability. A point-of-care test offers promising findings in the early detection of influenza viruses and SARS-CoV-2 in both scientific research and practical use. In this review, we will go over the principles, advantages, limitations, and real-world applications of point-of-care diagnostics. The significance of constraints of detection, throughput, sensitivity, and specificity in the analysis of clinical samples in settings with restricted resources is underscored. This discussion concludes with their prospects and challenges.
Collapse
Affiliation(s)
- Le Zhang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Chunwen Li
- Department of Emergency Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - ShaSha Shao
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhaowei Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Bioengineering and Health, Wuhan Textile University, Wuhan, 430200, China
| | - Di Chen
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Nan X, Yao X, Yang L, Cui Y. Lateral flow assay of pathogenic viruses and bacteria in healthcare. Analyst 2023; 148:4573-4590. [PMID: 37655501 DOI: 10.1039/d3an00719g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Healthcare-associated pathogenic viruses and bacteria can have a serious impact on human health and have attracted widespread global attention. The lateral flow assay is a unidirectional detection based on the binding of a target analyte and a bioreceptor on the device via lateral flow. With incredible advantages over traditional chromatographic methods, such as rapid detection, ease of manufacture and cost effectiveness, these test strips are increasingly considered the ideal form for point-of-care applications. This review explores lateral flow assays for pathogenic viruses and bacteria, with a particular focus on methodologies, device components, construction methods, and applications. We anticipate that this review could provide exciting opportunities for developing new lateral flow devices for pathogens and advance related healthcare applications.
Collapse
Affiliation(s)
- Xuanxu Nan
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| | - Xuesong Yao
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| | - Li Yang
- Peking University First Hospital; Peking University Institute of Nephrology, Beijing 100034, P. R. China.
| | - Yue Cui
- School of Materials Science and Engineering, Peking University; First Hospital Interdisciplinary Research Center, Peking University, Beijing 100871, P.R. China.
| |
Collapse
|
4
|
Hong D, Jo EJ, Bang D, Jung C, Lee YE, Noh YS, Shin MG, Kim MG. Plasmonic Approach to Fluorescence Enhancement of Mesoporous Silica-Coated Gold Nanorods for Highly Sensitive Influenza A Virus Detection Using Lateral Flow Immunosensor. ACS NANO 2023; 17:16607-16619. [PMID: 37595106 DOI: 10.1021/acsnano.3c02651] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
Abstract
Rapid diagnostic tests based on the lateral flow immunoassay (LFI) enable early identification of viral infection, owing to simple interpretation, short turnaround time, and timely isolation of patients to minimize viral transmission among communities. However, the LFI system requires improvement in the detection sensitivity to match the accuracy of nucleic acid amplification tests. Fluorescence-based LFIs are more sensitive and specific than absorption-based LFIs, but their performance is significantly affected by fundamental issues related to the quantum yield and photobleaching of fluorophores. Metal-enhanced fluorescence (MEF), which is a plasmonic effect in the vicinity of metallic nanoparticles, can be an effective strategy to improve the detection sensitivity of fluorescence-based LFIs. The key factors for obtaining a strong plasmonic effect include the distance and spectral overlap of the metal and fluorophore in the MEF system. In this study, MEF probes were designed based on core-shell nanostructures employing a gold nanorod core, mesoporous silica shell, and cyanine 5 fluorophore. To optimize the efficiency of MEF probes incorporated on the LFI platform (MEF-LFI), we experimentally and theoretically investigated the distance dependence of plasmonic coupling between cyanine 5 and gold nanorods by adjusting the shell thickness, resulting in significant fluorescence enhancement. The proposed MEF-LFI enabled highly sensitive detection of influenza A virus (IAV) nucleocapsid protein with a detection limit of 0.52 pg mL-1 within 20 min and showed high specificity and accuracy for determining IAV clinical samples. Overall, our findings demonstrate the potential of this method as an effective tool for molecular diagnosis under emergency conditions.
Collapse
Affiliation(s)
- Donggu Hong
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| | - Eun-Jung Jo
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| | - Doyeon Bang
- College of AI Convergence, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, Republic of Korea
- Korea Institute of Medical Microrobotics, 208 Cheomdangwagi-ro, Gwangju 61011, Republic of Korea
| | - Chaewon Jung
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| | - Young Eun Lee
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do 58128, Republic of Korea
| | - Yu-Seon Noh
- Nano Bio Research Center JBF, 123, Nanosandan-ro, Nam-Myun, Jangseong-gun, Jeollanam-do 57248, Republic of Korea
| | - Myung Geun Shin
- Department of Laboratory Medicine, Chonnam National University Medical School and Chonnam National University Hwasun Hospital, 322 Seoyang-ro, Hwasun-eup, Hwasun-gun, Jeollanam-do 58128, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science & Technology (GIST), 123 Cheomdangwagi-ro, Gwangju 61005, Republic of Korea
| |
Collapse
|
5
|
Sheng W, Guo J, Liu C, Ma Y, Liu J, Zhang H. Quantitative determination of four mycotoxins in cereal by fluorescent microsphere based immunochromatographic assay. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4017-4024. [PMID: 36440754 DOI: 10.1002/jsfa.12360] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 11/08/2022] [Accepted: 11/28/2022] [Indexed: 05/03/2023]
Abstract
BACKGROUND Mycotoxins are secondary metabolites produced by fungi, which have serious effects on humans and animals. In this study, we selected the monodispersed polystyrene fluorescent microspheres with good luminescence performance and strong stability as markers to conjugate with four mycotoxins antibodies for preparing fluorescent probes. We have developed a fluorescent microsphere based immunochromatographic assay (FMICA) to detect sensitively and quickly zearalenone (ZEN), aflatoxin B1 (AFB1 ), fumonisin B1 (FB1 ), and ochratoxin A (OTA) in cereal. RESULTS Under optimal experimental conditions, the procedure of this method can be completed within 10 min. The limit of detection (LOD) of FMICA for ZEN, AFB1 , FB1 , and OTA is 0.072, 0.093, 0.32, and 0.19 μg L-1 , respectively. And FMICA has good specificity and no cross-reactivity with other mycotoxins. Four mycotoxins in naturally contaminated cereal samples (corn, rice, and oat) are detected by this method, and the results are highly consistent with that of ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). CONCLUSION The developed FMICA has good accuracy, high sensitivity, simplicity, convenience, rapidity, and low cost, and it could be employed for sensitive and quantitative detecting of mycotoxins in cereal on-site. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Sheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Jing Guo
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Chenchen Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Yueru Ma
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Junli Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Haoyu Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
6
|
Kim J, Shin MS, Shin J, Kim HM, Pham XH, Park SM, Kim DE, Kim YJ, Jun BH. Recent Trends in Lateral Flow Immunoassays with Optical Nanoparticles. Int J Mol Sci 2023; 24:ijms24119600. [PMID: 37298550 DOI: 10.3390/ijms24119600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Rapid, accurate, and convenient diagnosis is essential for effective disease management. Various detection methods, such as enzyme-linked immunosorbent assay, have been extensively used, with lateral flow immunoassay (LFIA) recently emerging as a major diagnostic tool. Nanoparticles (NPs) with characteristic optical properties are used as probes for LFIA, and researchers have presented various types of optical NPs with modified optical properties. Herein, we review the literature on LFIA with optical NPs for the detection of specific targets in the context of diagnostics.
Collapse
Affiliation(s)
- Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Min-Sup Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Jonghyun Shin
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyung-Mo Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Xuan-Hung Pham
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Seung-Min Park
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Young Jun Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
7
|
Trinh KTL, Do HDK, Lee NY. Recent Advances in Molecular and Immunological Diagnostic Platform for Virus Detection: A Review. BIOSENSORS 2023; 13:490. [PMID: 37185566 PMCID: PMC10137144 DOI: 10.3390/bios13040490] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused an ongoing coronavirus disease (COVID-19) outbreak and a rising demand for the development of accurate, timely, and cost-effective diagnostic tests for SARS-CoV-2 as well as other viral infections in general. Currently, traditional virus screening methods such as plate culturing and real-time PCR are considered the gold standard with accurate and sensitive results. However, these methods still require sophisticated equipment, trained personnel, and a long analysis time. Alternatively, with the integration of microfluidic and biosensor technologies, microfluidic-based biosensors offer the ability to perform sample preparation and simultaneous detection of many analyses in one platform. High sensitivity, accuracy, portability, low cost, high throughput, and real-time detection can be achieved using a single platform. This review presents recent advances in microfluidic-based biosensors from many works to demonstrate the advantages of merging the two technologies for sensing viruses. Different platforms for virus detection are classified into two main sections: immunoassays and molecular assays. Moreover, available commercial sensing tests are analyzed.
Collapse
Affiliation(s)
- Kieu The Loan Trinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Hoang Dang Khoa Do
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ward 13, District 04, Ho Chi Minh City 70000, Vietnam
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| |
Collapse
|
8
|
Wang Y, Deng C, Qian S, Li H, Fu P, Zhou H, Zheng J. An ultrasensitive lateral flow immunoassay platform for foodborne biotoxins and pathogenic bacteria based on carbon-dots embedded mesoporous silicon nanoparticles fluorescent reporter probes. Food Chem 2023; 399:133970. [DOI: 10.1016/j.foodchem.2022.133970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 08/14/2022] [Indexed: 12/01/2022]
|
9
|
Nuntawong P, Horikawa T, Tanaka H, Morimoto S, Sakamoto S. Activated Carbon-Based Immunochromatographic Strip Test for the Rapid Qualitative Analysis of Swertiamarin and Sweroside. J AOAC Int 2022; 105:1460-1467. [DOI: 10.1093/jaoacint/qsac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/04/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022]
Abstract
Abstract
Background
Swertia japonica (S. japonica) is a medicinal plant that belongs to the Gentianaceae family. Several reports confirm the biological effects of the S. japonica extract. This plant is used mainly as a digestive stimulant, appetite stimulant, and gastrointestinal disease remedy in Japan. Secoiridoid glycosides are a group of compounds related to the beneficial effects of this plant.
Objective
We developed an immunochromatographic strip test for major secoiridoid glycosides, such as swertiamarin (SM) and sweroside (SS) detection.
Methods
We fabricated an immunoprobe using activated carbon as a reporter molecule and a monoclonal antibody against SM and SS (MAb D2) as a detection molecule. The test and control zones of the strip test contained SM-cBSA and Goat pAb anti-mouse IgM HRP conjugate, respectively. The immunoprobe reacted competitively with free SM and/or SS and immobilized SM-cBSA. The results were read and interpreted by the black spot intensity in the test zone.
Results
We succeeded in developing a strip test system with a detection limit (LOD) of 12.5 µg/mL. The selectivity and reliability evaluation revealed that the strip test is suitable for detecting SM and SS in S. japonica. The result was ready to be read in 30 min.
Conclusions
This method can be a useful tool for the screening of biologically active S. japonica samples for further preparation of traditional medicine.
Highlights
To the best of our knowledge, this is the first immunochromatographic strip test developed for the detection of SM and SS in S. japonica samples.
Collapse
Affiliation(s)
- Poomraphie Nuntawong
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Taiki Horikawa
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Hiroyuki Tanaka
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Satoshi Morimoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Seiichi Sakamoto
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Kyushu University , 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Wu Y, Guo Y, Yang Q, Li F, Sun X. The Effects of Different Antigen-Antibody Pairs on the Results of 20 Min ELISA and 8 Min Chromatographic Paper Test for Quantitative Detection of Acetamiprid in Vegetables. BIOSENSORS 2022; 12:730. [PMID: 36140115 PMCID: PMC9496632 DOI: 10.3390/bios12090730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
To establish rapid, high-sensitive, quantitative detection of ACP residues in vegetables. A 1G2 cell clone was selected as the most sensitive for anti-ACP antibody production following secondary immunization, cell fusion, and screening. The affinity of the 1G2 antibody to each of the four coating agents (imidacloprid−bovine serum albumin [BSA], thiacloprid−BSA, imidaclothiz−BSA, and ACP-BSA) was determined using a 20 min enzyme-linked immunosorbent assay (ELISA). The half maximal inhibitory concentration (IC50) was 0.51−0.62 ng/mL, showing no significant difference in affinity to different antigens. However, we obtained IC50 values of 0.58 and 1.40 ng/mL on the linear regression lines for 1G2 anti-ACP antibody/imidacloprid−BSA and 1G2 anti-ACP antibody/thiacloprid−BSA, respectively, via quantum dot (QD)-based immunochromatography. That is, the 1G2 antibody/imidacloprid−BSA pair (the best combination) was about three times more sensitive than the 1G2 antibody/thiacloprid−BSA pair in immunochromatographic detection. The best combination was used for the development of an 8 min chromatographic paper test. With simple and convenient sample pretreatment, we achieved an average recovery of 75−117%. The coefficient of variation (CoV) was <25% for all concentrations tested, the false−positive rate was <5%, the false−negative rate was 0%, and the linear range of the method was 50−1800 μg/kg. These performance metrics met the ACP detection standards in China, the European Union (EU), and the United States (US). In summary, in this study, we established an 8 min QD-based immunochromatographic stripe for the rapid and accurate quantitative determination of ACP residues in vegetables.
Collapse
Affiliation(s)
- Yuxiang Wu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo 255049, China
| | - Qingqing Yang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255049, China
- Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, Zibo 255049, China
| |
Collapse
|
11
|
Pan Y, Mao K, Hui Q, Wang B, Cooper J, Yang Z. Paper-based devices for rapid diagnosis and wastewater surveillance. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Mousavi SM, Hashemi SA, Yari Kalashgrani M, Omidifar N, Lai CW, Vijayakameswara Rao N, Gholami A, Chiang WH. The Pivotal Role of Quantum Dots-Based Biomarkers Integrated with Ultra-Sensitive Probes for Multiplex Detection of Human Viral Infections. Pharmaceuticals (Basel) 2022; 15:880. [PMID: 35890178 PMCID: PMC9319763 DOI: 10.3390/ph15070880] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/11/2022] Open
Abstract
The spread of viral diseases has caused global concern in recent years. Detecting viral infections has become challenging in medical research due to their high infectivity and mutation. A rapid and accurate detection method in biomedical and healthcare segments is essential for the effective treatment of pathogenic viruses and early detection of these viruses. Biosensors are used worldwide to detect viral infections associated with the molecular detection of biomarkers. Thus, detecting viruses based on quantum dots biomarkers is inexpensive and has great potential. To detect the ultrasensitive biomarkers of viral infections, QDs appear to be a promising option as biological probes, while physiological components have been used directly to detect multiple biomarkers simultaneously. The simultaneous measurement of numerous clinical parameters of the same sample volume is possible through multiplex detection of human viral infections, which reduces the time and cost required to record any data point. The purpose of this paper is to review recent studies on the effectiveness of the quantum dot as a detection tool for human pandemic viruses. In this review study, different types of quantum dots and their valuable properties in the structure of biomarkers were investigated. Finally, a vision for recent advances in quantum dot-based biomarkers was presented, whereby they can be integrated into super-sensitive probes for the multiplex detection of human viral infections.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| | - Seyyed Alireza Hashemi
- Nanomaterials and Polymer Nanocomposites Laboratory, School of Engineering, University of British Columbia, Kelowna, BC V1V 1V7, Canada;
| | | | - Navid Omidifar
- Department of Pathology, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Chin Wei Lai
- Nanotechnology and Catalysis Research Centre (NANOCAT), Level 3, Block A, Institute for Advanced Studies (IAS), Universiti Malaya (UM), Kuala Lumpur 50603, Malaysia;
| | - Neralla Vijayakameswara Rao
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| | - Ahmad Gholami
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz 71468-64685, Iran;
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City 106335, Taiwan; (S.M.M.); (N.V.R.)
| |
Collapse
|
13
|
Mirica AC, Stan D, Chelcea IC, Mihailescu CM, Ofiteru A, Bocancia-Mateescu LA. Latest Trends in Lateral Flow Immunoassay (LFIA) Detection Labels and Conjugation Process. Front Bioeng Biotechnol 2022; 10:922772. [PMID: 35774059 PMCID: PMC9237331 DOI: 10.3389/fbioe.2022.922772] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/19/2022] [Indexed: 01/11/2023] Open
Abstract
LFIA is one of the most successful analytical methods for various target molecules detection. As a recent example, LFIA tests have played an important role in mitigating the effects of the global pandemic with SARS-COV-2, due to their ability to rapidly detect infected individuals and stop further spreading of the virus. For this reason, researchers around the world have done tremendous efforts to improve their sensibility and specificity. The development of LFIA has many sensitive steps, but some of the most important ones are choosing the proper labeling probes, the functionalization method and the conjugation process. There are a series of labeling probes described in the specialized literature, such as gold nanoparticles (GNP), latex particles (LP), magnetic nanoparticles (MNP), quantum dots (QDs) and more recently carbon, silica and europium nanoparticles. The current review aims to present some of the most recent and promising methods for the functionalization of the labeling probes and the conjugation with biomolecules, such as antibodies and antigens. The last chapter is dedicated to a selection of conjugation protocols, applicable to various types of nanoparticles (GNPs, QDs, magnetic nanoparticles, carbon nanoparticles, silica and europium nanoparticles).
Collapse
Affiliation(s)
- Andreea-Cristina Mirica
- R&D Department, DDS Diagnostic, Bucharest, Romania
- Advanced Polymer Materials Group, University POLITEHNICA of Bucharest, Bucharest, Romania
| | - Dana Stan
- R&D Department, DDS Diagnostic, Bucharest, Romania
| | | | - Carmen Marinela Mihailescu
- Microsystems in Biomedical and Environmental Applications, National Institute for Research and Development in Microtechnologies, Bucharest, Romania
- Pharmaceutical Faculty, Titu Maiorescu University, Bucharest, Romania
| | | | | |
Collapse
|
14
|
Wu Y, Liu J, Yu J, Zhuang J, Ma F, Tan J, Shen Z. A monoclonal antibody for identifying capsaicin congeners in illegal cooking oil and its applications. Talanta 2022; 250:123686. [PMID: 35763952 DOI: 10.1016/j.talanta.2022.123686] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022]
Abstract
In this work, we studied the preparation of a high-affinity antibody and its immunochromatographic applications to simultaneously identify capsaicin(LJJ), dihydrocapsaicin(HLJ), nordihydrocapsaicin, homodihydrocapsaicin, and other congeners in illegal cooking oil. We used dihydrocapsaicin hapten-conjugated carrier protein BSA as the immunogen according to the formaldehyde method, and conjugated capsaicin and OVA as the coated detection antigen according to the formaldehyde method. We subsequently screened and cloned a hybridoma cell line 2B3 with the highest affinity, which could stably secrete monoclonal antibodies against compounds in the capsaicin family. We then established a capsaicin indirect ELISA standard curve, which was fitted using the linear regression equation R = 0.9987, curve y = -2.3x + 0.2, and IC50 = 0.2 ng/mL. The cross-reaction rate for capsaicin was 100%, 116% for dihydrocapsaicin, 88% for homodihydrocapsaicin, and 94% for nordihydrocapsaicin. In the second application, we established a simple and accurate sample pretreatment method and a quantum dot-labeled test strip to quickly and quantitatively detect capsaicin family compounds in illegal cooking oil in 8 min. The average recovery rates for each spiked concentration were between 75% and 107.8%, and the coefficient of variation values for each spiked concentration were less than 15%. The high-affinity antibody we identified could simultaneously identify capsaicin, dihydrocapsaicin, nordihydrocapsaicin, homodihydrocapsaicin, and other congeners in illegal cooking oil, and the antibody could be quickly and accurately applied for the qualitative and quantitative detection of capsaicin family residues in illegal cooking oil.
Collapse
Affiliation(s)
- Yuxiang Wu
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, 255049, Shandong Province, China.
| | - Jie Liu
- Shandong Lvdu Biotechnology Co., Ltd., Shandong, 256600, China
| | - Jinzhi Yu
- Shandong Lvdu Biotechnology Co., Ltd., Shandong, 256600, China
| | - Jinqiu Zhuang
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou, Shandong Province, 256600, China
| | - Fengyun Ma
- Shandong Lvdu Biotechnology Co., Ltd., Shandong, 256600, China
| | - Jing Tan
- Shandong Lvdu Biotechnology Co., Ltd., Shandong, 256600, China
| | - Zhiqiang Shen
- Shandong Binzhou Animal Science & Veterinary Medicine Academy, Binzhou, Shandong Province, 256600, China; Shandong Lvdu Biotechnology Co., Ltd., Shandong, 256600, China.
| |
Collapse
|
15
|
Nuntawong P, Putalun W, Tanaka H, Morimoto S, Sakamoto S. Lateral flow immunoassay for small-molecules detection in phytoproducts: a review. J Nat Med 2022; 76:521-545. [PMID: 35171397 PMCID: PMC9165253 DOI: 10.1007/s11418-022-01605-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/29/2022] [Indexed: 11/10/2022]
Abstract
Phytoproducts are involved in various fields of industry. Small-molecule (Mw < 900 Da) organic compounds can be used to indicate the quality of plant samples in the perspective of efficacy by measuring the necessary secondary metabolites and in the perspective of safety by measuring the adulterant level of toxic compounds. The development of reliable detection methods for these compounds in such a complicated matrix is challenging. The lateral flow immunoassay (LFA) is one of the immunoassays well-known for its simplicity, portability, and rapidity. In this review, the general principle, components, format, and application of the LFA for phytoproducts are discussed.
Collapse
Affiliation(s)
- Poomraphie Nuntawong
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Waraporn Putalun
- Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Pharmaceutical Activities of Natural Products Using Pharmaceutical Biotechnology (PANPB), National Research University-Khon Kaen, Khon Kaen, Thailand
| | - Hiroyuki Tanaka
- School of Pharmacy, Sanyo-Onoda City University, 1-1-1 Daigakudouri, Sanyo-onoda-shi, Yamaguchi, 756-0884, Japan
| | - Satoshi Morimoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Seiichi Sakamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
16
|
Wu KH, Huang WC, Chang SC, Shyu RH. Colloidal silver-based lateral flow immunoassay for detection of profenofos pesticide residue in vegetables. RSC Adv 2022; 12:13035-13044. [PMID: 35497005 PMCID: PMC9052933 DOI: 10.1039/d2ra01654k] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/18/2022] [Indexed: 12/14/2022] Open
Abstract
A colloidal silver nanoparticle (AgNP)-based lateral flow immunoassay (LFIA) was evaluated in terms of the rapid detection of profenofos (PEO) pesticide residue in vegetables. Colloidal AgNPs, of a diameter of approximately 20 nm, were surface-modified with trisodium citrate dehydrate (TSC) in order to improve their stability and dispersion. An anti-profenofos polyclonal antibody (pAb) was successfully immobilized on the surface of the AgNPs by ionic interaction and characterized using UV-vis, SEM, TEM, FTIR and XPS analyses. Surface modification of Ag-pAb conjugates of varying pH, pAb content and cross-reactivity was employed to design and prepare labels for use in an LFIA to examine whether these factors affect the performance of the assay. The visible detection limit and optical detection limit of the PEO test strip were 0.20 and 0.01 ppm, respectively, in PEO standard solution. This assay showed no cross-reaction with omethoate, methamidophos or pyraclofos. Finally, the PEO test strip was effectively applied for the detection of PEO in liquid vegetables A and B, with optical detection limits of 0.09 and 0.075 ppm, respectively.
Collapse
Affiliation(s)
- Kuo-Hui Wu
- Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University Taoyuan 33551 Taiwan
| | - Wen-Chien Huang
- Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University Taoyuan 33551 Taiwan
| | - Shu-Chen Chang
- Applied Zoology Division, Taiwan Agricultural Research Institute Taichung 41362 Taiwan
| | - Rong-Hwa Shyu
- Institute of Preventive Medicine, National Defense Medical Center 90048 Taipei Taiwan
| |
Collapse
|
17
|
Harun-Ur-Rashid M, Foyez T, Jahan I, Pal K, Imran AB. Rapid diagnosis of COVID-19 via nano-biosensor-implemented biomedical utilization: a systematic review. RSC Adv 2022; 12:9445-9465. [PMID: 35424900 PMCID: PMC8959446 DOI: 10.1039/d2ra01293f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 12/14/2022] Open
Abstract
The novel human coronavirus pandemic is one of the most significant occurrences in human civilization. The rapid proliferation and mutation of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2) have created an exceedingly challenging situation throughout the world's healthcare systems ranging from underdeveloped countries to super-developed countries. The disease is generally recognized as coronavirus disease 2019 (COVID-19), and it is caused by a new human CoV, which has put mankind in jeopardy. COVID-19 is death-dealing and affects people of all ages, including the elderly and middle-aged people, children, infants, persons with co-morbidities, and immunocompromised patients. Moreover, multiple SARS-CoV-2 variants have evolved as a result of genetic alteration. Some variants cause severe symptoms in patients, while others cause an unusually high infection rate, and yet others cause extremely severe symptoms as well as a high infection rate. Contrasting with a previous epidemic, COVID-19 is more contagious since the spike protein of SARS-CoV-2 demonstrates profuse affection to angiotensin-converting enzyme II (ACE2) that is copiously expressed on the surface of human lung cells. Since the estimation and tracking of viral loads are essential for determining the infection stage and recovery duration, a quick, accurate, easy, cheap, and versatile diagnostic tool is critical for managing COVID-19, as well as for outbreak control. Currently, Reverse Transcription Polymerase Chain Reaction (RT-PCR) testing is the most often utilized approach for COVID-19 diagnosis, while Computed Tomography (CT) scans of the chest are used to assess the disease's stages. However, the RT-PCR method is non-portable, tedious, and laborious, and the latter is not capable of detecting the preliminary stage of infection. In these circumstances, nano-biosensors can play an important role to deliver point-of-care diagnosis for a variety of disorders including a wide variety of viral infections rapidly, economically, precisely, and accurately. New technologies are being developed to overcome the drawbacks of the current methods. Nano-biosensors comprise bioreceptors with electrochemical, optical, or FET-based transduction for the specific detection of biomarkers. Different types of organic-inorganic nanomaterials have been incorporated for designing, fabricating, and improving the performance and analytical ability of sensors by increasing sensitivity, adsorption, and biocompatibility. The particular focus of this review is to carry out a systematic study of the status and perspectives of synthetic routes for nano-biosensors, including their background, composition, fabrication processes, and prospective applications in the diagnosis of COVID-19.
Collapse
Affiliation(s)
- Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology Dhaka 1230 Bangladesh
| | - Tahmina Foyez
- Department of Pharmaceutical Sciences, School of Health and Life Sciences, North South University Dhaka 1229 Bangladesh
| | - Israt Jahan
- Department of Cell Physiology, Graduate School of Medicine, Nagoya University Nagoya Japan
| | - Kaushik Pal
- University Centre for Research and Development (UCRD), Department of Physics, Chandigarh University Punjab 140413 India
| | - Abu Bin Imran
- Department of Chemistry, Bangladesh University of Engineering and Technology Dhaka 1000 Bangladesh
| |
Collapse
|
18
|
Ukhurebor KE, Onyancha RB, Aigbe UO, UK-Eghonghon G, Kerry RG, Kusuma HS, Darmokoesoemo H, Osibote OA, Balogun VA. A Methodical Review on the Applications and Potentialities of Using Nanobiosensors for Disease Diagnosis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1682502. [PMID: 35103234 PMCID: PMC8799955 DOI: 10.1155/2022/1682502] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/23/2021] [Accepted: 01/08/2022] [Indexed: 12/11/2022]
Abstract
Presently, with the introduction of nanotechnology, the evolutions and applications of biosensors and/or nanobiosensors are becoming prevalent in various scientific domains such as environmental and agricultural sciences as well as biomedical, clinical, and healthcare sciences. Trends in these aspects have led to the discovery of various biosensors/nanobiosensors with their tremendous benefits to mankind. The characteristics of the various biosensors/nanobiosensors are primarily based on the nature of nanomaterials/nanoparticles employed in the sensing mechanisms. In the last few years, the identification, as well as the detection of biological markers linked with any form of diseases (communicable or noncommunicable), has been accomplished by several sensing procedures using nanotechnology vis-à-vis biosensors/nanobiosensors. Hence, this study employs a systematic approach in reviewing some contemporary developed exceedingly sensitive nanobiosensors alongside their biomedical, clinical, or/and healthcare applications as well as their potentialities, specifically for the detection of some deadly diseases drawn from some of the recent publications. Ways forward in the form of future trends that will advance creative innovations of the potentialities of nanobiosensors for biomedical, clinical, or/and healthcare applications particularly for disease diagnosis are also highlighted.
Collapse
Affiliation(s)
- Kingsley Eghonghon Ukhurebor
- Department of Physics, Faculty of Science, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| | - Robert Birundu Onyancha
- Department of Physics and Space Science, School of Physical Sciences and Technology, Technical University of Kenya, P.O. Box 52428, 00200 Nairobi, Kenya
| | - Uyiosa Osagie Aigbe
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Gladys UK-Eghonghon
- Nursing Services Department, University of Benin Teaching Hospital, P.M.B. 1111, Benin City, Nigeria
| | - Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Heri Septya Kusuma
- Department of Chemical Engineering, Faculty of Industrial Technology, Universitas Pembangunan Nasional “Veteran”, Yogyakarta, Indonesia
| | - Handoko Darmokoesoemo
- Department of Chemistry, Faculty of Science and Technology, Airlangga University, Mulyorejo, Surabaya 60115, Indonesia
| | - Otolorin Adelaja Osibote
- Department of Mathematics and Physics, Faculty of Applied Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Cape Town, South Africa
| | - Vincent Aizebeoje Balogun
- Department of Mechanical Engineering, Faculty of Engineering, Edo State University Uzairue, P.M.B. 04, Auchi, 312101 Edo State, Nigeria
| |
Collapse
|
19
|
Lateral flow assays (LFA) as an alternative medical diagnosis method for detection of virus species: The intertwine of nanotechnology with sensing strategies. Trends Analyt Chem 2021; 145:116460. [PMID: 34697511 PMCID: PMC8529554 DOI: 10.1016/j.trac.2021.116460] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Viruses are responsible for multiple infections in humans that impose huge health burdens on individuals and populations worldwide. Therefore, numerous diagnostic methods and strategies have been developed for prevention, management, and decreasing the burden of viral diseases, each having its advantages and limitations. Viral infections are commonly detected using serological and nucleic acid-based methods. However, these conventional and clinical approaches have some limitations that can be resolved by implementing other detector devices. Therefore, the search for sensitive, selective, portable, and costless approaches as efficient alternative clinical methods for point of care testing (POCT) analysis has gained much attention in recent years. POCT is one of the ultimate goals in virus detection, and thus, the tests need to be rapid, specific, sensitive, accessible, and user-friendly. In this review, after a brief overview of viruses and their characteristics, the conventional viral detection methods, the clinical approaches, and their advantages and shortcomings are firstly explained. Then, LFA systems working principles, benefits, classification are discussed. Furthermore, the studies regarding designing and employing LFAs in diagnosing different types of viruses, especially SARS-CoV-2 as a main concern worldwide and innovations in the LFAs' approaches and designs, are comprehensively discussed here. Furthermore, several strategies addressed in some studies for overcoming LFA limitations like low sensitivity are reviewed. Numerous techniques are adopted to increase sensitivity and perform quantitative detection. Employing several visualization methods, using different labeling reporters, integrating LFAs with other detection methods to benefit from both LFA and the integrated detection device advantages, and designing unique membranes to increase reagent reactivity, are some of the approaches that are highlighted.
Collapse
|
20
|
Kim E, Lim EK, Park G, Park C, Lim JW, Lee H, Na W, Yeom M, Kim J, Song D, Haam S. Advanced Nanomaterials for Preparedness Against (Re-)Emerging Viral Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005927. [PMID: 33586180 DOI: 10.1002/adma.202005927] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/08/2020] [Indexed: 05/24/2023]
Abstract
While the coronavirus disease (COVID-19) accounts for the current global pandemic, the emergence of other unknown pathogens, named "Disease X," remains a serious concern in the future. Emerging or re-emerging pathogens continue to pose significant challenges to global public health. In response, the scientific community has been urged to create advanced platform technologies to meet the ever-increasing needs presented by these devastating diseases with pandemic potential. This review aims to bring new insights to allow for the application of advanced nanomaterials in future diagnostics, vaccines, and antiviral therapies, thereby addressing the challenges associated with the current preparedness strategies in clinical settings against viruses. The application of nanomaterials has advanced medicine and provided cutting-edge solutions for unmet needs. Herein, an overview of the currently available nanotechnologies is presented, highlighting the significant features that enable them to control infectious diseases, and identifying the challenges that remain to be addressed for the commercial production of nano-based products is presented. Finally, to conclude, the development of a nanomaterial-based system using a "One Health" approach is suggested. This strategy would require a transdisciplinary collaboration and communication between all stakeholders throughout the entire process spanning across research and development, as well as the preclinical, clinical, and manufacturing phases.
Collapse
Affiliation(s)
- Eunjung Kim
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Eun-Kyung Lim
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Nanobiotechnology, KRIBB School of Biotechnology, UST, Daejeon, 34113, Republic of Korea
| | - Geunseon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Chaewon Park
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Jong-Woo Lim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Hyo Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Woonsung Na
- College of Veterinary Medicine, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Minjoo Yeom
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Jinyoung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| | - Daesub Song
- College of Pharmacy, Korea University, Sejong-ro, Sejong, 30019, Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seoul, 03722, Republic of Korea
| |
Collapse
|
21
|
Misra R, Acharya S, Sushmitha N. Nanobiosensor-based diagnostic tools in viral infections: Special emphasis on Covid-19. Rev Med Virol 2021; 32:e2267. [PMID: 34164867 PMCID: PMC8420101 DOI: 10.1002/rmv.2267] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/10/2021] [Indexed: 01/09/2023]
Abstract
The rapid propagation of novel human coronavirus 2019 and its emergence as a pandemic raising morbidity calls for taking more appropriate measures for rapid improvement of present diagnostic techniques which are time‐consuming, labour‐intensive and non‐portable. In this scenario, biosensors can be considered as a means to outmatch customary techniques and deliver point‐of‐care diagnostics for many diseases in a much better way owing to their speed, cost‐effectiveness, accuracy, sensitivity and selectivity. Besides this, these biosensors have been aptly used to detect a wide spectrum of viruses thus facilitating timely delivery of correct therapy. The present review is an attempt to analyse such different kinds of biosensors that have been implemented for virus detection. Recently, the field of nanotechnology has given a great push to diagnostic techniques by the development of smart and miniaturised nanobiosensors which have enhanced the diagnostic procedure and taken it to a new level. The portability, hardiness and affordability of nanobiosensor make them an apt diagnostic agent for different kinds of viruses including SARS‐CoV‐2. The role of such novel nanobiosensors in the diagnosis of SARS‐CoV‐2 has also been addressed comprehensively in the present review. Along with this, the challenges and future position of developing such ultrasensitive nanobiosensors which should be taken into consideration before declaring these nano‐weapons as the ideal futuristic gold standard of diagnosis has also been accounted for here.
Collapse
Affiliation(s)
- Ranjita Misra
- Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Sarbari Acharya
- Department of Life Science, School of Applied Sciences, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Nehru Sushmitha
- Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
22
|
Kalkal A, Allawadhi P, Pradhan R, Khurana A, Bharani KK, Packirisamy G. Allium sativum derived carbon dots as a potential theranostic agent to combat the COVID-19 crisis. SENSORS INTERNATIONAL 2021; 2:100102. [PMID: 34766058 PMCID: PMC8164516 DOI: 10.1016/j.sintl.2021.100102] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is one of the worst pandemics to have hit the humanity. The manifestations are quite varied, ranging from severe lung infections to being asymptomatic. Hence, there is an urgent need to champion new tools to accelerate the end of this pandemic. Compromised immunity is a primary feature of COVID-19. Allium sativum (AS) is an effective dietary supplement known for its immune-modulatory, antibacterial, anti-inflammatory, anticancer, antifungal, and anti-viral properties. In this paper, it is hypothesized that carbon dots (CDs) derived from AS (AS-CDs) may possess the potential to downregulate the expression of pro-inflammatory cytokines and revert the immunological aberrations to normal in case of COVID-19. CDs have already been explored in the world of nanobiomedicine as a promising theranostic candidates for bioimaging and drug/gene delivery. The antifibrotic and antioxidant effects of AS are elaborated, as demonstrated in several studies. It is found that the most active constituent of AS, allicin has a highly potent antioxidant and reactive oxygen species (ROS) scavenging effect. The antibacterial, antifungal, and anti-viral effects along with their capability of negating inflammatory effects and cytokine storm are discussed. The synthesis of theranostic CDs from AS may provide a novel weapon in the therapeutic armamentarium for the management of COVID-19 infection and, at the same time, could act as a diagnostic agent for COVID-19.
Collapse
Affiliation(s)
- Ashish Kalkal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
| | - Prince Allawadhi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
| | - Rangadhar Pradhan
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
| | - Amit Khurana
- Centre for Biomedical Engineering (CBME), Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110016, India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Rajendranagar, Hyderabad, 500030, P. V. Narasimha Rao Telangana Veterinary University (PVNRTVU), Telangana India
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, P. V. Narasimha Rao Telangana Veterinary University (PVNRTVU), Telangana, India
| | - Kala Kumar Bharani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Science (CVSc), Warangal, 506166, P. V. Narasimha Rao Telangana Veterinary University (PVNRTVU), Telangana, India
- Department of Aquatic Animal Health Management, College of Fishery Science, Pebbair, Wanaparthy, 509104, P. V. Narasimha Rao Telangana Veterinary University (PVNRTVU), Telangana, India
| | - Gopinath Packirisamy
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee- 247667, Uttarakhand, India
| |
Collapse
|
23
|
George Kerry R, Ukhurebor KE, Kumari S, Maurya GK, Patra S, Panigrahi B, Majhi S, Rout JR, Rodriguez-Torres MDP, Das G, Shin HS, Patra JK. A comprehensive review on the applications of nano-biosensor-based approaches for non-communicable and communicable disease detection. Biomater Sci 2021; 9:3576-3602. [PMID: 34008586 DOI: 10.1039/d0bm02164d] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The outstretched applications of biosensors in diverse domains has become the reason for their attraction for scientific communities. Because they are analytical devices, they can detect both quantitative and qualitative biological components through the generation of detectable signals. In the recent past, biosensors witnessed significant changes and developments in their design as well as features. Nanotechnology has revolutionized sensing phenomena by increasing biodiagnostic capacity in terms of specificity, size, and cost, resulting in exceptional sensitivity and flexibility. The steep increase of non-communicable diseases across the world has emerged as a matter of concern. In parallel, the abrupt outbreak of communicable diseases poses a serious threat to mankind. For decreasing the morbidity and mortality associated with various communicable and non-communicable diseases, early detection and subsequent treatment are indispensable. Detection of different biological markers generates quantifiable signals that can be electrochemical, mass-based, optical, thermal, or piezoelectric. Speculating on the incumbent applicability and versatility of nano-biosensors in large disciplines, this review highlights different types of biosensors along with their components and detection mechanisms. Moreover, it deals with the current advancements made in biosensors and the applications of nano-biosensors in detection of various non-communicable and communicable diseases, as well as future prospects of nano-biosensors for diagnostics.
Collapse
Affiliation(s)
- Rout George Kerry
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | - Kingsley Eghonghon Ukhurebor
- Climatic/Environmental/Telecommunication Unit, Department of Physics, Edo University Iyamho, P.B.M. 04, Auchi, 312101, Edo State, Nigeria
| | - Swati Kumari
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India
| | - Ganesh Kumar Maurya
- Zoology Section, Mahila MahaVidyalya, Banaras Hindu University, Varanasi-221005, India
| | - Sushmita Patra
- Department of Biotechnology, North Odissa University, Takatpur, Baripada, Odisha 757003, India
| | - Bijayananda Panigrahi
- Biopioneer Private limited, Bhubaneswar, Odisha 751024, India and School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha 751024, India
| | - Sanatan Majhi
- Department of Biotechnology, Utkal University, Vani Vihar, Bhubaneswar, Odisha 751004, India
| | | | - María Del Pilar Rodriguez-Torres
- Departamento de Ingeniería Molecular de Materiales, Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Blvd Juriquilla 3001, 76230, Querétaro, Mexico
| | - Gitishree Das
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| | - Han-Seung Shin
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Goyangsi, Republic of Korea
| | - Jayanta Kumar Patra
- Research Institute of Biotechnology & Medical Converged Science, Dongguk University-Seoul, Goyangsi, Republic of Korea.
| |
Collapse
|
24
|
Cassedy A, Parle-McDermott A, O’Kennedy R. Virus Detection: A Review of the Current and Emerging Molecular and Immunological Methods. Front Mol Biosci 2021; 8:637559. [PMID: 33959631 PMCID: PMC8093571 DOI: 10.3389/fmolb.2021.637559] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Viruses are ubiquitous in the environment. While many impart no deleterious effects on their hosts, several are major pathogens. This risk of pathogenicity, alongside the fact that many viruses can rapidly mutate highlights the need for suitable, rapid diagnostic measures. This review provides a critical analysis of widely used methods and examines their advantages and limitations. Currently, nucleic-acid detection and immunoassay methods are among the most popular means for quickly identifying viral infection directly from source. Nucleic acid-based detection generally offers high sensitivity, but can be time-consuming, costly, and require trained staff. The use of isothermal-based amplification systems for detection could aid in the reduction of results turnaround and equipment-associated costs, making them appealing for point-of-use applications, or when high volume/fast turnaround testing is required. Alternatively, immunoassays offer robustness and reduced costs. Furthermore, some immunoassay formats, such as those using lateral-flow technology, can generate results very rapidly. However, immunoassays typically cannot achieve comparable sensitivity to nucleic acid-based detection methods. Alongside these methods, the application of next-generation sequencing can provide highly specific results. In addition, the ability to sequence large numbers of viral genomes would provide researchers with enhanced information and assist in tracing infections.
Collapse
Affiliation(s)
- A. Cassedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | - R. O’Kennedy
- School of Biotechnology, Dublin City University, Dublin, Ireland
- Hamad Bin Khalifa University, Doha, Qatar
- Qatar Foundation, Doha, Qatar
| |
Collapse
|
25
|
Wang B, Li B, Huang H, Yang S, Jian D, Liu J, Yan K, Shan Y, Wang S, Liu F. Sensitive antibody fluorescence immunosorbent assay (SAFIA) for rapid on-site detection on avian influenza virus H9N2 antibody. Anal Chim Acta 2021; 1164:338524. [PMID: 33992218 DOI: 10.1016/j.aca.2021.338524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022]
Abstract
Avian influenza virus (AIV) is a serious zoonotic disease causing severe damages to both poultry industry and human health. To rapidly detect AIV on-site with high sensitivity and accuracy, we design sensitive antibody fluorescence immunosorbent assay (SAFIA) on AIV H9N2 antibody. In SAFIA, hemagglutinin (HA1) protein coated sample chamber specifically binds targets but remarkably reduces non-specific absorption; Protein L coated polystyrene microsphere captures target through secondary antibody to significantly amplify the fluorescence signal; and a portable fluorescence counter automatically measures the fluorescence spot density for AIV H9N2 antibody detection. Proved by practical applications, SAFIA could probe AIV H9N2 antibody in high sensitivity and selectivity, and distinguish positive and negative serum samples in high accuracy. Additionally, SAFIA can rapidly detect AIV H9N2 antibody at room temperature only requiring simple operations as well as cost-effective and compact devices. Therefore, SAFIA is a potential new-generation tool in rapid on-site testing for agricultures.
Collapse
Affiliation(s)
- Bin Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Baojie Li
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Huachuan Huang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, 621010, China
| | - Shuwei Yang
- Advanced Institute of Micro-Nano Intelligent Sensing (AIMNIS), School of Electronic Information Engineering, Xi'an Technological University, Xi'an, Shaanxi, 710032, China
| | - Dan Jian
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Computational Optics Laboratory, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jing Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Keding Yan
- Advanced Institute of Micro-Nano Intelligent Sensing (AIMNIS), School of Electronic Information Engineering, Xi'an Technological University, Xi'an, Shaanxi, 710032, China
| | - Yanke Shan
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| | - Shouyu Wang
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China; Computational Optics Laboratory, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Fei Liu
- Joint International Research Laboratory of Animal Health and Food Safety of Ministry of Education & Single Molecule Nanometry Laboratory (Sinmolab), Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
26
|
Wiriyachaiporn N, Sirikaew S, Bamrungsap S, Limcharoen T, Polkankosit P, Roeksrungruang P, Ponlamuangdee K. A simple fluorescence-based lateral flow test platform for rapid influenza B virus screening. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1687-1694. [PMID: 33861235 DOI: 10.1039/d0ay01988g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple fluorescence-based lateral flow test platform for rapid influenza B virus screening as a model target molecule was successfully developed. In this work, Cy5-loaded silica nanoparticles were directly conjugated to monoclonal antibodies, specific to the influenza B nucleoprotein, via a direct physisorption method and used as detector probes. Using this approach, the signal response to the detection was further determined using a fluorescent signal intensity measurement method via a portable reader, in combination with fluorescence imaging analysis. The degree to which the fluorescence signal response is detected is proportional to the amount of the target virus protein present in the system, reflected by the accumulation of the formed particle-antibody conjugates within the test system. Under optimized conditions, the system is capable of detecting the influenza B virus protein at a level of 0.55 μg per test within 30 min, using small sample volumes as low as 100 μL (R2 = 0.9544). In addition to its simplicity, further application of the system in detecting the influenza B virus protein was demonstrated using the viral transport media as specimen matrices. It was also shown that the system can perform the detection without cross-reactivity to other closely related respiratory viruses.
Collapse
Affiliation(s)
- Natpapas Wiriyachaiporn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand.
| | | | | | | | | | | | | |
Collapse
|
27
|
Ye M, Lin L, Yang W, Gopinath SCB. Enhancing erythrocyte-influenza virus specificity by glycan-conjugated gold nanoparticle: Validation of hemagglutination by aptamer and neuraminidases. Biotechnol Appl Biochem 2021; 69:798-807. [PMID: 33769582 DOI: 10.1002/bab.2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/18/2021] [Indexed: 11/11/2022]
Abstract
This study demonstrated the terminated sialo-sugar chains (Neu5Acα2,6Gal and Neu5Acα2,3Gal)-mediated specificity enhancement of influenza virus and chicken red blood cell (RBC) by hemagglutination assay. These glycan chains were immobilized on the gold nanoparticle (GNP) to withhold the higher numbers. With the preliminary optimization, a clear button formation with 0.5% RBC was visualized. On the other hand, intact B/Tokio/53/99 with 750 nM hemagglutinin (HA) displayed a nice hemagglutination. The interference on the specificity of RBC and influenza virus was observed by anti-influenza aptamer at the concentration 31 nM; however, there is no hemagglutination prevention was noticed in the presence of complementary aptamer sequences. Spiking GNP-conjugated Neu5Acα2,6Gal or Neu5Acα2,3Gal or a mixture of these two to the reaction promoted the hemagglutination to 63-folds higher with 12 nM virus, whereas under the same condition the heat-inactivated viruses were lost the hemagglutination. Neuraminidases from Clostridium perfringens and Arthrobacter ureafaciens at 0.0025 neuraminidase units are able to abolish the hemagglutination. Other enzymes, Glycopeptidase F (Elizabethkingia meningoseptica) and Endoglycosidase H (Streptomyces plicatus) did not show the changes with agglutination. Obviously, sialyl-Gal-terminated glycan-conjugated GNP amendment has enhanced the specificity of erythrocyte-influenza virus and able to be controlled by aptamer or neuraminidases.
Collapse
Affiliation(s)
- Meiyi Ye
- Department of Medical Laboratory, Dayi County People's Hospital, Chengdu, Sichuan Province, China
| | - Lei Lin
- Department of Medical Laboratory, Dayi County People's Hospital, Chengdu, Sichuan Province, China
| | - Wei Yang
- Department of Medical Laboratory, Dayi County People's Hospital, Chengdu, Sichuan Province, China
| | - Subash C B Gopinath
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia.,Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| |
Collapse
|
28
|
Mahmoudi T, Pourhassan-Moghaddam M, Shirdel B, Baradaran B, Morales-Narváez E, Golmohammadi H. (Nano)tag-antibody conjugates in rapid tests. J Mater Chem B 2021; 9:5414-5438. [PMID: 34143173 DOI: 10.1039/d1tb00571e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antibodies (Abs) are naturally derived materials with favorable affinity, selectivity, and fast binding kinetics to the respective antigens, which enables their application as promising recognition elements in the development of various types of biosensors/bioassays, especially in rapid tests. These tests are low-cost and easy-to-use biosensing devices with broad applications including medical or veterinary diagnostics, environmental monitoring and industrial usages such as safety and quality analysis in food, providing on-site quick monitoring of various analytes, making it possible to save analysis costs and time. To reach such features, the conjugation of Abs with various nanomaterials (NMs) as tags is necessary, which range from conventional gold nanoparticles to other nanoparticles recently introduced, where magnetic, plasmonic, photoluminescent, or multi-modal properties play a critical role in the overall performance of the analytical device. In this context, to preserve the Ab affinity and provide a rapid response with long-term storage capability, the use of efficient bio-conjugation techniques is critical. Thanks to their prominent role in rapid tests, many studies have been devoted to the design and development of Abs-NMs conjugates with various chemistries including passive adsorption, covalent coupling, and affinity interactions. In this review, we present the state-of-the-art techniques allowing various Ab-NM conjugates with a special focus on the efficiency of the developed probes to be employed in in vitro rapid tests. Challenges and future perspectives on the development of Ab-conjugated nanotags in rapid diagnostic tests are highlighted along with a survey of the progress in commercially available Ab-NM conjugates.
Collapse
Affiliation(s)
- Tohid Mahmoudi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Pourhassan-Moghaddam
- ARC Research Hub for Integrated Device for End-user Analysis at Low-levels (IDEAL), Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Behnaz Shirdel
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Eden Morales-Narváez
- Biophotonic Nanosensors Laboratory, Centro de Investigaciones en Óptica, A. C. Loma del Bosque 115, Lomas del Campestre, 37150 León, Guanajuato, Mexico.
| | - Hamed Golmohammadi
- Nanosensors Bioplatforms Laboratory, Chemistry and Chemical Engineering Research Center of Iran, 14335-186, Tehran, Iran.
| |
Collapse
|
29
|
Paper-Based Biosensors with Lateral/Vertical Flow Assay. Bioanalysis 2021. [DOI: 10.1007/978-981-15-8723-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Serebrennikova KV, Hendrickson OD, Zvereva EA, Popravko DS, Zherdev AV, Xu C, Dzantiev BB. A Comparative Study of Approaches to Improve the Sensitivity of Lateral Flow Immunoassay of the Antibiotic Lincomycin. BIOSENSORS 2020; 10:E198. [PMID: 33287157 PMCID: PMC7761767 DOI: 10.3390/bios10120198] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/26/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
This study provides a comparative assessment of the various nanodispersed markers and related detection techniques used in the immunochromatographic detection of an antibiotic lincomycin (LIN). Improving the sensitivity of the competitive lateral flow immunoassay is important, given the increasing demands for the monitoring of chemical contaminants in food. Gold nanoparticles (AuNPs) and CdSe/ZnS quantum dots (QDs) were used for the development and comparison of three approaches for the lateral flow immunoassay (LFIA) of LIN, namely, colorimetric, fluorescence, and surface-enhanced Raman spectroscopy (SERS)-based LFIAs. It was demonstrated that, for colorimetric and fluorescence analysis, the detection limits were comparable at 0.4 and 0.2 ng/mL, respectively. A SERS-based method allowed achieving the gain of five orders of magnitude in the assay sensitivity (1.4 fg/mL) compared to conventional LFIAs. Therefore, an integration of a SERS reporter into the LFIA is a promising tool for extremely sensitive quantitative detection of target analytes. However, implementation of this time-consuming technique requires expensive equipment and skilled personnel. In contrast, conventional AuNP- and QD-based LFIAs can provide simple, rapid, and inexpensive point-of-care testing for practical use.
Collapse
Affiliation(s)
- Kseniya V. Serebrennikova
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| | - Olga D. Hendrickson
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| | - Elena A. Zvereva
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| | - Demid S. Popravko
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| | - Anatoly V. Zherdev
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| | - Chuanlai Xu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Boris B. Dzantiev
- Research Center of Biotechnology of the Russian Academy of Sciences, A.N. Bach Institute of Biochemistry, Leninsky Prospect 33, 119071 Moscow, Russia; (K.V.S.); (O.D.H.); (E.A.Z.); (D.S.P.); (A.V.Z.)
| |
Collapse
|
31
|
Augustine R, Das S, Hasan A, S A, Abdul Salam S, Augustine P, Dalvi YB, Varghese R, Primavera R, Yassine HM, Thakor AS, Kevadiya BD. Rapid Antibody-Based COVID-19 Mass Surveillance: Relevance, Challenges, and Prospects in a Pandemic and Post-Pandemic World. J Clin Med 2020; 9:E3372. [PMID: 33096742 PMCID: PMC7589650 DOI: 10.3390/jcm9103372] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/09/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
The aggressive outbreak of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) as COVID-19 (coronavirus disease-2019) pandemic demands rapid and simplified testing tools for its effective management. Increased mass testing and surveillance are crucial for controlling the disease spread, obtaining better pandemic statistics, and developing realistic epidemiological models. Despite the advantages of nucleic acid- and antigen-based tests such as accuracy, specificity, and non-invasive approaches of sample collection, they can only detect active infections. Antibodies (immunoglobulins) are produced by the host immune system within a few days after infection and persist in the blood for at least several weeks after infection resolution. Antibody-based tests have provided a substitute and effective method of ultra-rapid detection for multiple contagious disease outbreaks in the past, including viral diseases such as SARS (severe acute respiratory syndrome) and MERS (Middle East respiratory syndrome). Thus, although not highly suitable for early diagnosis, antibody-based methods can be utilized to detect past infections hidden in the population, including asymptomatic ones. In an active community spread scenario of a disease that can provide a bigger window for mass detections and a practical approach for continuous surveillance. These factors encouraged researchers to investigate means of improving antibody-based rapid tests and employ them as reliable, reproducible, sensitive, specific, and economic tools for COVID-19 mass testing and surveillance. The development and integration of such immunoglobulin-based tests can transform the pandemic diagnosis by moving the same out of the clinics and laboratories into community testing sites and homes. This review discusses the principle, technology, and strategies being used in antibody-based testing at present. It also underlines the immense prospect of immunoglobulin-based testing and the efficacy of repeated planned deployment in pandemic management and post-pandemic sustainable screenings globally.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha PO Box 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha PO Box 2713, Qatar;
| | - Suvarthi Das
- Department of Medicine, Stanford University Medical Center, Palo Alto, CA 94304, USA;
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha PO Box 2713, Qatar;
- Biomedical Research Center (BRC), Qatar University, Doha PO Box 2713, Qatar;
| | - Abhilash S
- Department of Microbiology, Majlis Arts and Science College, Puramannur, Malappuram, Kerala 676552, India;
| | - Shaheen Abdul Salam
- Department of Biosciences, MES College Marampally, Aluva, Ernakulam, Kerala 683107, India;
| | - Priya Augustine
- Department of Zoology, Providence Women’s College, Kozhikode, Kerala 673009, India;
| | - Yogesh Bharat Dalvi
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Science & Research, Tiruvalla, Kerala 689101, India; (Y.B.D.); (R.V.)
| | - Ruby Varghese
- Pushpagiri Research Centre, Pushpagiri Institute of Medical Science & Research, Tiruvalla, Kerala 689101, India; (Y.B.D.); (R.V.)
| | - Rosita Primavera
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (A.S.T.); (B.D.K.)
| | | | - Avnesh S. Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (A.S.T.); (B.D.K.)
| | - Bhavesh D. Kevadiya
- Interventional Regenerative Medicine and Imaging Laboratory, Department of Radiology, School of Medicine, Stanford University, Palo Alto, CA 94304, USA; (R.P.); (A.S.T.); (B.D.K.)
| |
Collapse
|
32
|
Wu KH, Huang WC, Shyu RH, Chang SC. Silver nanoparticle-base lateral flow immunoassay for rapid detection of Staphylococcal enterotoxin B in milk and honey. J Inorg Biochem 2020; 210:111163. [PMID: 32622212 DOI: 10.1016/j.jinorgbio.2020.111163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/23/2022]
Abstract
A silver nanoparticle (AgNP)-based sandwich-type lateral flow immunoassay (LFIA) was evaluated for rapid detection of Staphylococcal enterotoxin B (SEB) in milk and honey. The role of trisodium citrate dihydrate (TSC) in the formation of Ag/TSC nanoparticles was established using UV-Vis spectroscopy. The association of silver with TSC in Ag/TSC nanoparticles was studied by the decrease in the intensity of anodic peak potential at 0.47 V and shift to 0.30 V in cyclic voltammetry (CV). The morphological, compositional and interaction studies of the AgNPs conjugated with the anti-SEB polyclonal antibody (Ag-sAb) was established using transmission electron microscopy (TEM) and X-ray photo electron spectroscopy (XPS) measurements. The visible detection limit and optical detection limit of the SEB test strip were 0.5 and 0.125 ppm, respectively, in SEB standard solution. This assay showed no cross-reaction with Staphylococcal enterotoxin A, Staphylococcal enterotoxin C or Salmonella typhi. Finally, the SEB test strip was effectively applied for the detection of SEB in spiked liquid milk and viscous honey, with optical detection limits of 0.25 and 0.5 ppm, respectively.
Collapse
Affiliation(s)
- Kuo-Hui Wu
- Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan 33551, Taiwan.
| | - Wen-Chien Huang
- Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan 33551, Taiwan
| | - Rong-Hwa Shyu
- Institute of Preventive Medicine, National Defense Medical Center, 90048 Taipei, Taiwan
| | - Shu-Chen Chang
- Applied Zoology Division, Taiwan Agricultural Research Institute, Taichung 41362, Taiwan
| |
Collapse
|
33
|
Yao J, Li S, Zhang L, Yang Y, Gopinath SC, Lakshmipriya T, Zhou Y. Aptamer-antibody dual probes on single-walled carbon nanotube bridged dielectrode: Comparative analysis on human blood clotting factor. Int J Biol Macromol 2020; 151:1133-1138. [DOI: 10.1016/j.ijbiomac.2019.10.156] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/01/2019] [Accepted: 10/17/2019] [Indexed: 12/19/2022]
|
34
|
Liu X, Yang J, Li Q, Wang Y, Wang Y, Li G, Shi J, Ding P, Guo J, Deng R, Zhang G. A strip test for the optical determination of influenza virus H3 subtype using gold nanoparticle coated polystyrene latex microspheres. Mikrochim Acta 2020; 187:306. [PMID: 32356232 DOI: 10.1007/s00604-020-04255-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
A strip test is described for the optical determination of influenza virus H3 subtype. It utilizes gold nanoparticle (AuNP) coated polystyrene latex microspheres (PS) as the label and a sandwich format. The AuNP and PS particles were linked using monoclonal antibodies against influenza virus as the bridge. Under the optimal conditions, the visual detection limit of the AuNP-PS-based strip test was as low as 1/16 hemagglutination unit (HAU). It was 64 times higher than that of 10 nm (4 HAU) AuNP-based strip tests. Quantitative analysis showed that the detection limit of the AuNP-PS-based strip is 0.016 HAU. The AuNP-PS-based strip test showed no cross-reactivity to the other subtypes (H1, H5, H7, or H9) of influenza viruses. Graphical abstract .
Collapse
Affiliation(s)
- Xiao Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- Department of Medicine, Henan Medical College, Zhengzhou, 451191, China
| | - Jifei Yang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Qingmei Li
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Yinbiao Wang
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yanhong Wang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Ge Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianzhou Shi
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Peiyang Ding
- School of Life Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Junqing Guo
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Ruiguang Deng
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Gaiping Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450002, China.
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
| |
Collapse
|
35
|
Huang Y, Xu T, Wang W, Wen Y, Li K, Qian L, Zhang X, Liu G. Lateral flow biosensors based on the use of micro- and nanomaterials: a review on recent developments. Mikrochim Acta 2019; 187:70. [PMID: 31853644 DOI: 10.1007/s00604-019-3822-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/12/2019] [Indexed: 12/25/2022]
Abstract
This review (with 187 refs.) summarizes the progress that has been made in the design of lateral flow biosensors (LFBs) based on the use of micro- and nano-materials. Following a short introduction into the field, a first section covers features related to the design of LFBs, with subsections on strip-based, cotton thread-based and vertical flow- and syringe-based LFBs. The next chapter summarizes methods for sample pretreatment, from simple method to membrane-based methods, pretreatment by magnetic methods to device-integrated sample preparation. Advances in flow control are treated next, with subsections on cross-flow strategies, delayed and controlled release and various other strategies. Detection conditionst and mathematical modelling are briefly introduced in the following chapter. A further chapter covers methods for reliability improvement, for example by adding other validation lines or adopting different detection methods. Signal readouts are summarized next, with subsections on color-based, luminescent, smartphone-based and SERS-based methods. A concluding section summarizes the current status and addresses challenges in future perspectives. Graphical abstractRecent development and breakthrough points of lateral flow biosensors.
Collapse
Affiliation(s)
- Yan Huang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China.,Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China.,Department of Chemistry and biochemistry, North Dakota State University, Fargo, ND, 58105, USA
| | - Tailin Xu
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Wenqian Wang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yongqiang Wen
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China
| | - Kun Li
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China
| | - Lisheng Qian
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China.
| | - Xueji Zhang
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, Beijing, 100083, People's Republic of China. .,Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China. .,School of Biomedical Engineering, Shenzhen University Healthy Science Center, Shenzhen, Guangdong, 518060, People's Republic of China.
| | - Guodong Liu
- Institute of Biomedical and Health, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, People's Republic of China. .,Department of Chemistry and biochemistry, North Dakota State University, Fargo, ND, 58105, USA.
| |
Collapse
|
36
|
Xu LD, Zhang Q, Ding SN, Xu JJ, Chen HY. Ultrasensitive Detection of Severe Fever with Thrombocytopenia Syndrome Virus Based on Immunofluorescent Carbon Dots/SiO 2 Nanosphere-Based Lateral Flow Assay. ACS OMEGA 2019; 4:21431-21438. [PMID: 31867538 PMCID: PMC6921636 DOI: 10.1021/acsomega.9b03130] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/14/2019] [Indexed: 05/21/2023]
Abstract
Sensitive detection of severe fever with thrombocytopenia syndrome virus (SFTSV) by a point-of-care assay is of great significance for promoting clinical diagnosis. In this work, ultrasensitive detection of SFTSV was achieved by using fluorescent carbon dots/SiO2 nanospheres (CSNs) as reporters for a lateral flow assay. The prepared CSNs were resistant to extreme environments and had strong stability. The uniform CSNs with the size of about 200 nm were obtained by differential centrifugation. Their absolute quantum yields in the aqueous and solid phases are 56.3 and 36.6%, respectively. The excellent fluorescent properties of CSNs make the test strips more sensitive and have a longer assay lifetime. Thus, the visual detection limit of the lateral flow test strip based on immunofluorescent CSN (iCSN) was as low as 10 pg/mL SFTSV nucleoprotein. The sensitivity of this assay is 2 orders of magnitude higher than that of the colloidal gold-based lateral flow test strip. Besides, the assay owns good reproducibility and high specificity. Then, iCSN-based lateral flow test strips were evaluated in real samples of human serum of patients with satisfactory results. Furthermore, this assay has a general prospect for other fluorescent immunochromatography applications.
Collapse
Affiliation(s)
- Lai-Di Xu
- Jiangsu
Province Hi-Tech Key Laboratory for Bio-medical Research, School of
Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| | - Qing Zhang
- Chinese
Academy of Inspection and Quarantine, Beijing 100176, China
| | - Shou-Nian Ding
- Jiangsu
Province Hi-Tech Key Laboratory for Bio-medical Research, School of
Chemistry and Chemical Engineering, Southeast
University, Nanjing 211189, China
| | - Jing-Juan Xu
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Sciences, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Hong-Yuan Chen
- State
Key Laboratory of Analytical Chemistry for Life Science and Collaborative
Innovation Center of Chemistry for Life Sciences, School of Chemistry
and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
37
|
You X, Gopinath SCB, Lakshmipriya T, Li D. High-Affinity Detection of Alpha-Synuclein by Aptamer-Gold Conjugates on an Amine-Modified Dielectric Surface. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2019; 2019:6526850. [PMID: 31886023 PMCID: PMC6915026 DOI: 10.1155/2019/6526850] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/14/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Parkinson's disease (PD) is a progressive health issue and influences an increasingly larger number of people, especially at older ages, affecting the central nervous system (CNS). Alpha-synuclein is a biomarker closely correlated with the CNS and PD. The loss of neuronal cells in the substantia nigra leads to the aggregation of alpha-synuclein in the form of Lewy bodies, and Lewy neuritis is a neuropathological hallmark. The therapeutic approach of PD focuses on alpha-synuclein as an important substrate of PD pathology. So far, research has focused on antialpha-synuclein to minimize the burden of extracellular alpha-synuclein in the brain, and as a consequence, it ameliorates inflammation. Interdigitated electrode (IDE) biosensors are efficient tools for detecting various analytes and were chosen in this study to detect alpha-synuclein on amine-modified surfaces by using antiaptamer-alpha-synuclein as the probe. In addition, a gold nanoparticle-conjugated aptamer was used to enhance the detection limit. The limit of detection for the binding between alpha-synuclein and aptamer was found to be 10 pM. Control experiments were performed with two closely related proteins, amyloid-beta and tau, to reveal the specificity; the results show that the aptamer only recognized alpha-synuclein. The proposed strategy helps to identify the binding of aptamer and alpha-synuclein and provides a possible method to lower alpha-synuclein levels and inflammation in PD patients.
Collapse
Affiliation(s)
- Xuemei You
- Department of Neurology, The Fourth People's Hospital of Shaanxi Province, No. 512 Xianning East Road, Xincheng District, Xi'an, Shaanxi 710043, China
| | - Subash C. B. Gopinath
- School of Bioprocess Engineering, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - Thangavel Lakshmipriya
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis, Malaysia
| | - Dingan Li
- Department of Neurology, Hanzhong Central Hospital, 22 Kangfu Road, Hanzhong, Shaanxi 723000, China
| |
Collapse
|
38
|
Wang C, Wang C, Wang X, Wang K, Zhu Y, Rong Z, Wang W, Xiao R, Wang S. Magnetic SERS Strip for Sensitive and Simultaneous Detection of Respiratory Viruses. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19495-19505. [PMID: 31058488 DOI: 10.1021/acsami.9b03920] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Rapid and early diagnosis of respiratory viruses is key to preventing infections from spreading and guiding treatments. Here, we developed a sensitive and quantitative surface-enhanced Raman scattering-based lateral flow immunoassay (SERS-based LFIA) strip for simultaneous detection of influenza A H1N1 virus and human adenovirus (HAdV) by using Fe3O4@Ag nanoparticles as magnetic SERS nanotags. The new type of Fe3O4@Ag magnetic tags, which were conjugated with dual-layer Raman dye molecules and target virus-capture antibodies, performs the following functions: specific recognition and magnetic enrichment of target viruses in the solution and SERS detection of the viruses on the strip. Based on this strategy, the magnetic SERS strip can directly be used for real biological samples without any sample pretreatment steps. The limits of detection for H1N1 and HAdV were 50 and 10 pfu/mL, respectively, which were 2000 times more sensitive than those from the standard colloidal gold strip method. Moreover, the proposed strip is easy to operate, rapid, stable, and can achieve high throughput and is thus a potential tool for early detection of virus infection.
Collapse
Affiliation(s)
- Chongwen Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Chaoguang Wang
- College of Mechatronics Engineering and Automation , National University of Defense Technology , Changsha 410073 , P. R. China
| | - Xiaolong Wang
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research , Shandong University of Traditional Chinese Medicine , Jinan 250355 , P. R. China
| | - Keli Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Yanhui Zhu
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Zhen Rong
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | | | - Rui Xiao
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
| | - Shengqi Wang
- Beijing Key Laboratory of New Molecular Diagnosis Technologies for Infectious Disease , Beijing Institute of Radiation Medicine , Beijing 100850 , P. R. China
- Shandong Provincial Key Laboratory of Traditional Chinese Medicine for Basic research , Shandong University of Traditional Chinese Medicine , Jinan 250355 , P. R. China
| |
Collapse
|
39
|
Xie S, Wen K, Wang S, Wang J, Peng T, Mari GM, Li J, Wang Z, Yu X, Jiang H. Quantitative and rapid detection of amantadine and chloramphenicol based on various quantum dots with the same excitations. Anal Bioanal Chem 2019; 411:2131-2140. [PMID: 30719563 DOI: 10.1007/s00216-019-01643-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/05/2019] [Accepted: 01/24/2019] [Indexed: 11/25/2022]
Abstract
Herein, we developed a sensitive and quantitative flow assay for simultaneous detection of amantadine (AMD) and chloramphenicol (CAP) in chicken samples based on different CdSe/ZnS quantum dots (QDs). In contrast to other reports, the QDs could be excited by the same excitations that lowered the requirements for the matching instruments. Under the optimal conditions, the strategy permitted sensitive detection of AMD and CAP in a linear range of 0.23 to 1.02 ng/g and 0.02 to 0.66 ng/g. The limits of detection were 0.18 ng/g and 0.016 ng/g, respectively. Moreover, the whole detection process could be completed within 20 min with no additional sophisticated instruments and complicated operations. Spiked samples were analyzed using both QD-based lateral flow immunoassay (QD-LFIA) and commercial ELISA kits with good correlation (R2 = 0.96). Moreover, this study laid the foundation and simplified the development of the requisite instrument. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Sanlei Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Kai Wen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Sihan Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Jianyi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Tao Peng
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Ghulam Mujtaba Mari
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Jiancheng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Zhanhui Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Xuezhi Yu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China. .,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| | - Haiyang Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China. .,Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, Beijing Laboratory for Food Quality and Safety, No.2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
40
|
Self-enzyme chemiluminescence immunoassay capable of rapidly diagnosing the infection of influenza A (H1N1) virus. Talanta 2019; 192:189-196. [DOI: 10.1016/j.talanta.2018.09.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 11/21/2022]
|
41
|
Dziąbowska K, Czaczyk E, Nidzworski D. Detection Methods of Human and Animal Influenza Virus-Current Trends. BIOSENSORS-BASEL 2018; 8:bios8040094. [PMID: 30340339 PMCID: PMC6315519 DOI: 10.3390/bios8040094] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/03/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
The basic affairs connected to the influenza virus were reviewed in the article, highlighting the newest trends in its diagnostic methods. Awareness of the threat of influenza arises from its ability to spread and cause a pandemic. The undiagnosed and untreated viral infection can have a fatal effect on humans. Thus, the early detection seems pivotal for an accurate treatment, when vaccines and other contemporary prevention methods are not faultless. Public health is being attacked with influenza containing new genes from a genetic assortment between animals and humankind. Unfortunately, the population does not have immunity for mutant genes and is attacked in every viral outbreak season. For these reasons, fast and accurate devices are in high demand. As currently used methods like Rapid Influenza Diagnostic Tests lack specificity, time and cost-savings, new methods are being developed. In the article, various novel detection methods, such as electrical and optical were compared. Different viral elements used as detection targets and analysis parameters, such as sensitivity and specificity, were presented and discussed.
Collapse
Affiliation(s)
- Karolina Dziąbowska
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| | - Elżbieta Czaczyk
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| | - Dawid Nidzworski
- Institute of Biotechnology and Molecular Medicine, 3 Trzy Lipy St., 80-172 Gdansk, Poland.
- SensDx SA, 14b Postepu St., 02-676 Warsaw, Poland.
| |
Collapse
|
42
|
|
43
|
Khramtsov P, Kropaneva M, Kalashnikova T, Bochkova M, Timganova V, Zamorina S, Rayev M. Highly Stable Conjugates of Carbon Nanoparticles with DNA Aptamers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:10321-10332. [PMID: 30089209 DOI: 10.1021/acs.langmuir.8b01255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Conjugates of carbon nanoparticles and aptamers have great potential in many areas of biomedicine. In order to be implemented in practice, such conjugates should keep their properties throughout long storage period in commonly available conditions. In this work, we prepared conjugates of carbon nanoparticles (CNP) with DNA aptamers using streptavidin-biotin reaction. Obtained conjugates possess superior stability and kept their physical-chemical and functional properties during 30 days at +4 °C and -20 °C. Proposed approach to conjugation allows loading of about 100-120 pM of biotinylated aptamer per 1 mg of streptavidin-coated CNP (CNP-Str). Aptamer-functionalized CNP-Str have zeta potential of -34 mV at pH 7, mean diameter of 168-177 nm, and polydispersity index of 0.080-0.140. High reproducibility of functionalization was confirmed by preparation of several batches of CNP-aptamer with the same size distribution and aptamer loading using independently synthesized parent CNP-Str nanoparticles. Stability of CNP-aptamer conjugates was significantly enhanced by postsynthesis addition of EDTA that prevents nuclease degradation of immobilized aptamers. Obtained nanoparticles were stable at pH ranging from 6 to 10. Optical properties of CNP-aptamer nanoparticles were also studied and their ability to quench fluorescence via Förster resonance energy transfer was shown. Taking into account properties of CNP-aptamer conjugates, we suppose they may be used in both homo- and heterogeneous colorimetric, fluorescent, and aggregation-based assays.
Collapse
Affiliation(s)
- Pavel Khramtsov
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Maria Kropaneva
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Tatyana Kalashnikova
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
| | - Maria Bochkova
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Valeria Timganova
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Svetlana Zamorina
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| | - Mikhail Rayev
- Department of Microbiology and Immunology, Biology Faculty , Perm State National Research University , 614000 , 15 Bukireva Street , Perm , Russia
- Laboratory of Ecological Immunology, Institute of Ecology and Genetics of Microorganisms of the Ural Branch of the Russian Academy of Sciences - branch of PSRC UB RAS, 614081 , 13 Goleva Street , Perm , Russia
| |
Collapse
|
44
|
Sheng W, Chang Q, Shi Y, Duan W, Zhang Y, Wang S. Visual and fluorometric lateral flow immunoassay combined with a dual-functional test mode for rapid determination of tetracycline antibiotics. Mikrochim Acta 2018; 185:404. [PMID: 30088104 DOI: 10.1007/s00604-018-2945-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/02/2018] [Indexed: 01/11/2023]
Abstract
A fluorometric immunochromatographic assay (FICA) is described where ZnCdSe/ZnS quantum dots (QDs) act as fluorescent label and gold nanoparticles (AuNPs) act as quencher. The assay works in the "turn-on" mode, i.e. the fluorescent signal (best measured at excitation/emission wavelengths of 302/525 nm) increases with the increase of analyte concentration. This assay can detect tetracycline antibiotics including tetracycline, oxytetracycline, chlortetracycline, and doxycycline. It is not interfered by other veterinary drugs. The visual limits of detection (LODs) for the tetracycline antibiotics are 2 μg·L-1 in buffer, 20 μg·L-1 in milk, and 40 μg·kg-1 in animal muscle tissue. The assay (including sample treatment) can be performed within 30 min. The FICA based on "turn on" mode is more sensitive than the colloidal gold-based immunochromatographic assay (CGICA) and quantum dot-based immunochromatographic assay (QDICA) based on "turn off" mode using either AuNPs or QDs as signal labels. One strip can simultaneously provide the fluorescent test results in the "turn on" mode on the basis of QD luminescence quenching under UV light. The colorimetric test is of the "turn off" mode based on the formation of a red coloration due to the use of AuNPs under natural light. The use of such a dual-functional test mode allows for rapid semi-quantitative determination of tetracycline antibiotics in milk and tissue samples. Graphical abstract Schematoc of a fluorometric immunochromatographic assay (FICA) based on fluorescence quenching of quantum dot (QD) by gold nanoparticle (AuNP) combined with a dual-functional test mode under UV light (turn on mode) and natural light (turn off mode) to visually detect tetracycline antibiotics.
Collapse
Affiliation(s)
- Wei Sheng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China.
| | - Qing Chang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yingjie Shi
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Wenxia Duan
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Yan Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education of China, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
45
|
Three kinds of lateral flow immunochromatographic assays based on the use of nanoparticle labels for fluorometric determination of zearalenone. Mikrochim Acta 2018; 185:238. [PMID: 29594745 DOI: 10.1007/s00604-018-2778-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/16/2018] [Indexed: 12/23/2022]
Abstract
Colloidal gold, quantum dots and polystyrene microspheres were used as labels in three kinds of lateral flow immunochromatographic assays (ICAs) for the detection of zearalenone (ZEN) in cereal samples. The assays allow ZEN to be quantified within 20 min. The LODs are 10 μg·L-1 of ZEN for the colloidal gold-based ICA, and 1 μg·L-1 for both the quantum dot and polystyrene microsphere based ICAs. The respective data are 60 μg·kg-1, 6 μg·kg-1 and 6 μg·kg-1, respectively, for spiked samples and cereals. Only minor cross-sensitivity occurred between ZEN and fusarium toxins, and no cross-sensitivity if found for aflatoxin B1, T-2 mycotoxin, ochratoxin A, deoxynivalenol, and fumonisin B1. LODs of the three assays are lower than the maximum limits of ZEN set by most standardization agencies. Graphical abstract Schematic presentation of three lateral flow immunochromatographic assays (ICAs) based on the use of (a) colloidal gold (CG), (b) fluorescent quantum dots (QD), and
Collapse
|
46
|
A dextran mediated multicolor immunochromatographic rapid test strip for visual and instrumental simultaneous detection of Vibrio cholera O1 (Ogawa) and Clostridium botulinum toxin A. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2527-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
47
|
Aptamer-based fluorometric determination of norovirus using a paper-based microfluidic device. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2467-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
48
|
Sheng W, Li S, Liu Y, Wang J, Zhang Y, Wang S. Visual and rapid lateral flow immunochromatographic assay for enrofloxacin using dyed polymer microspheres and quantum dots. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2474-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|