1
|
Cao X, Luo Y, Liu X, Shang C, Lu J, Song G, Deng C. Aptamer-thrombin loaded magnetic microspheres for bio-specific extraction and precise detection of hirudin. Talanta 2024; 267:125244. [PMID: 37757694 DOI: 10.1016/j.talanta.2023.125244] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Hirudin, that is naturally occurring in leeches (Hirudo medicinalis) and known as the most potent natural inhibitor of thrombin, exerts double-edged effects in clinic application. It can be used as a therapeutic ingredient for cardiovascular disease, while it can be regarded as a toxic polypeptide with bleeding risk. Effective detection of hirudin in biological samples contributes greatly to reasonable therapy. In this study, we proposed a smart adsorbent based on affinity magnetic microspheres, where thrombin was immobilized for capturing hirudin in the animal serum. Aptamer was introduced as a ligand for linking the magnetic agarose microspheres and thrombin, thereby avoiding loss of biological activity of the enzyme to hirudin. Taken recombinant hirudin variant 2-Lys47 (rHV2) as a model, we established a rapid and bio-specific extraction method coupled with liquid chromatography and quadrupole-time-of-flight mass spectrometry (LC-QTOF/MS) for determination of hirudin in the serum. Owing to this strategy, a low limit of detection (LOD) of rHV2 (0.5 nM), a good linearity with correlation coefficient of 0.9975, an acceptable precision with relative standard deviation (RSD) below 3.6% (n = 6) and acceptable recoveries ranging from 85.7% to 90.2% were achieved. Moreover, the functionalized magnetic composite could be reused for at least nine cycles. Our work combined the merits of affinity separation and advanced instrument analysis for hirudin, providing a new vision to precise determination of hirudin in medical and pharmaceutical fields.
Collapse
Affiliation(s)
- Xiujun Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China; Research Center of Analysis and Measurement, Fudan University, 2005 Songhu Road, Shanghai, 200438, PR China
| | - Yuan Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Xueli Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Chunqing Shang
- Enriching Biotechnology (Shanghai) Co. Ltd, 1688 North Guoquan Road, Shanghai, 200438, PR China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China.
| | - Guoxin Song
- Research Center of Analysis and Measurement, Fudan University, 2005 Songhu Road, Shanghai, 200438, PR China.
| | - Chunhui Deng
- Department of Chemistry, Institutes of Biomedical Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, PR China.
| |
Collapse
|
2
|
Altalbawy FMA, Ali E, N Fenjan M, Fakri Mustafa Y, Mansouri S, D O B, Gulnikhol Idiyevna S, Misra N, Alawadi AH, Alsalamy A. Aptamer-Magnetic Nanoparticle Complexes for Powerful Biosensing: A Comprehensive Review. Crit Rev Anal Chem 2024; 55:502-515. [PMID: 38165810 DOI: 10.1080/10408347.2023.2298328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The selective and sensitive diagnosis of diseases is a significant matter in the early stages of the cure of illnesses. To elaborate, although several types of probes have been broadly applied in clinics, magnetic nanomaterials-aptamers, as new-generation probes, are becoming more and more attractive. The presence of magnetic nanomaterials brings about quantification, purification, and quantitative analysis of biomedical, especially in complex samples. Elaborately, the superparamagnetic properties and numerous functionalized groups of magnetic nanomaterials are considered two main matters for providing separation ability and immobilization substrate, respectively. In addition, the selectivity and stability of aptamer can present a high potential recognition element. Importantly, the integration of aptamer and magnetic nanomaterials benefits can boost the performance of biosensors for biomedical analysis by introducing efficient and compact probes that need low patient samples and fast diagnosis, user-friendly application, and high repeatability in the quantification of biomolecules. The primary aim of this review is to suggest a summary of the effect of the employed other types of nanomaterials in the fabrication of novel aptasensors-based magnetic nanomaterials and to carefully explore various applications of these probes in the quantification of bioagents. Furthermore, the application of these versatile and high-potential probes in terms of the detection of cancer cells and biomarkers, proteins, drugs, bacteria, and nucleoside were discussed. Besides, research gaps and restrictions in the field of biomedical analysis by magnetic nanomaterials-aptamers will be discussed.
Collapse
Affiliation(s)
- Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
- National Institute of Laser Enhanced Sciences (NILES), University of Cairo, Giza, Egypt
| | - Eyhab Ali
- College of Chemistry, Al-Zahraa University for Women, Karbala, Iraq
| | - Mohammed N Fenjan
- College of Health and Medical Technology, Al-Ayen University, Nasiriyah, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Bokov D O
- Institute of Pharmacy, Sechenov First Moscow State Medical University, Moscow, Russia
- Laboratory of Food Chemistry, Federal Research Center of Nutrition, Biotechnology and Food Safety, Moscow, Russia
| | | | - Neeti Misra
- Department of Management, Uttaranchal Institute of Management, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- Chemistry Department, The Islamic University, Najaf, Iraq
- Chemistry Department, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Chemistry Department, The Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsalamy
- Chemistry Department, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
3
|
Nano-Nutraceuticals for Health: Principles and Applications. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2023; 33:73-88. [PMID: 36466145 PMCID: PMC9684775 DOI: 10.1007/s43450-022-00338-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
Abstract
The use of nanotechnological products is increasing steadily. In this scenario, the application of nanotechnology in food science and as a technological platform is a reality. Among the several applications, the main use of this technology is for the development of foods and nutraceuticals with higher bioavailability, lower toxicity, and better sustainability. In the health field, nano-nutraceuticals are being used as supplementary products to treat an increasing number of diseases. This review summarizes the main concepts and applications of nano-nutraceuticals for health, with special focus on treating cancer and inflammation. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43450-022-00338-7.
Collapse
|
4
|
Ng SS, Lee HL, Pandian BR, Doong RA. Recent developments on nanomaterial-based optical biosensor as potential Point-of-Care Testing (PoCT) probe in carcinoembryonic antigen detection: A review. Chem Asian J 2022; 17:e202200287. [PMID: 35471591 DOI: 10.1002/asia.202200287] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/25/2022] [Indexed: 11/09/2022]
Abstract
For the past decades, several cancer biomarkers have been exploited for rapid and accurate prognosis or diagnosis purposes. In this review, the optical biosensor is targeted for carcinoembryonic antigen (CEA) detection. The CEA level is a prominent parameter currently used in clinical cases for the prognosis of cancer-related diseases. Many nanomaterial-based biosensors are invented as alternatives for the commonly used enzyme-linked immunosorbent assays (ELISA) immunoassay method in CEA detection as the traditional approach but they possess certain drawbacks such as tedious procedure, high technical demand, and costly. Nevertheless, the effort appears to be wasted as none of them are being actualised. Generally, the sensor function was carried out by converting bio-signals generated upon the interface of the receptor into light signals. These sensors were popular due to specific advantages such as sensitivity, being free from chemical and electromagnetic interferences, wide dynamic range, and being easy to be monitored. The features of PoC diagnostics are discussed and associated with the various applications of colorimetric-based and chemiluminescent-based biosensors. The roles of nanomaterials in each application were also summarised by comparing the modification, incubation period, lowest detection limit (LOD) and linear range of detection amount. The challenges and future perspectives were highlighted at the end of the review.
Collapse
Affiliation(s)
- Siew Suan Ng
- National Tsing Hua University, Department of Analytical and Environmental Science, TAIWAN
| | - Hooi Ling Lee
- Universiti Sains Malaysia, School of Chemical Sciences, School of Chemical Sciences,, Universiti Sains Malaysia,, 11800, USM, MALAYSIA
| | | | - Ruey-An Doong
- National Tsing Hua University, Department of Analytical and Environmental Science, TAIWAN
| |
Collapse
|
5
|
Tran HV, Ngo NM, Medhi R, Srinoi P, Liu T, Rittikulsittichai S, Lee TR. Multifunctional Iron Oxide Magnetic Nanoparticles for Biomedical Applications: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:503. [PMID: 35057223 PMCID: PMC8779542 DOI: 10.3390/ma15020503] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 01/02/2023]
Abstract
Due to their good magnetic properties, excellent biocompatibility, and low price, magnetic iron oxide nanoparticles (IONPs) are the most commonly used magnetic nanomaterials and have been extensively explored in biomedical applications. Although magnetic IONPs can be used for a variety of applications in biomedicine, most practical applications require IONP-based platforms that can perform several tasks in parallel. Thus, appropriate engineering and integration of magnetic IONPs with different classes of organic and inorganic materials can produce multifunctional nanoplatforms that can perform several functions simultaneously, allowing their application in a broad spectrum of biomedical fields. This review article summarizes the fabrication of current composite nanoplatforms based on integration of magnetic IONPs with organic dyes, biomolecules (e.g., lipids, DNAs, aptamers, and antibodies), quantum dots, noble metal NPs, and stimuli-responsive polymers. We also highlight the recent technological advances achieved from such integrated multifunctional platforms and their potential use in biomedical applications, including dual-mode imaging for biomolecule detection, targeted drug delivery, photodynamic therapy, chemotherapy, and magnetic hyperthermia therapy.
Collapse
Affiliation(s)
- Hung-Vu Tran
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Nhat M. Ngo
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Riddhiman Medhi
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Pannaree Srinoi
- Department of Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand;
| | - Tingting Liu
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - Supparesk Rittikulsittichai
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| | - T. Randall Lee
- Department of Chemistry and the Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, TX 77204-5003, USA; (H.-V.T.); (N.M.N.); (R.M.); (T.L.); (S.R.)
| |
Collapse
|
6
|
Ma H, Lu S, Xie Q, Wang T, Lu H, Yu L. A stable liquid crystals sensing platform decorated with cationic surfactant for detecting thrombin. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Bezuneh TT, Fereja TH, Addisu Kitte S, Li H, Jin Y. Enzyme-free signal amplified Au nanoparticle fluorescence detection of thrombin via target-triggered catalytic hairpin assembly. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105649] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
A fluorometric assay of thrombin using magnetic nanoparticles and enzyme-free hybridization chain reaction. Mikrochim Acta 2020; 187:295. [PMID: 32347383 DOI: 10.1007/s00604-020-04279-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 04/13/2020] [Indexed: 10/24/2022]
Abstract
A fluorescence method based on functionalized magnetic nanoparticles (FMNPs) and hybridization chain reaction (HCR) is developed for the enzyme-free amplified determination of thrombin. In the proposed design, aptamer against thrombin was hybridized with the capture DNA-modified magnetic nanoparticles to yield the FMNPs. In the presence of thrombin, aptamers are released due to the specific and high-affinity binding between thrombin and its aptamer. The exposed capture DNA subsequently hybridized with the partial sequence of helper DNA, and the vacant sequence of helper DNA further hybridized with HCR products which is pre-formed by the alternate hybridization of single-stranded DNAs (H1 and H2). The immobilized HCR products were then labeled with YOYO-1 for fluorescence measurement. Fluorescence signal intensity of labeled YOYO-1 was measured at an emission wavelength of 519 nm (excitation under 488 nm) and used for calibration. By taking advantage of HCR amplification, this direct assay strategy showed a linear response in the 20- to 200-pM concentration range, and the limit of detection is 9.2 pM which is about 3-orders of magnitude lower than the serum thrombin concentration (10 nM) that triggers blood clotting. This developed method can efficiently differentiate the target protein from a protein matrix, and it is verified by determination of thrombin in spiked serum samples with recoveries in the range of 94.5-103.3%. Graphical abstract A fluorometry method for thrombin detection using magnetic nanoparticles and enzyme-free hybridization chain reaction.
Collapse
|
9
|
Xu H, Zhang T, Gu Y, Yan X, Lu N, Liu H, Xu Z, Xing Y, Song Y, Zhang Z, Yang M. An electrochemical thrombin aptasensor based on the use of graphite-like C3N4 modified with silver nanoparticles. Mikrochim Acta 2020; 187:163. [DOI: 10.1007/s00604-020-4111-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/01/2020] [Indexed: 02/02/2023]
|
10
|
Naqvi STR, Rasheed T, Hussain D, Najam ul Haq M, Majeed S, shafi S, Ahmed N, Nawaz R. Modification strategies for improving the solubility/dispersion of carbon nanotubes. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111919] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Tong YJ, Song AM, Yu LD, Liang RP, Qiu JD. Aggregation-induced fluorescence of the luminol-terbium(III) complex in polymer nanoparticles for sensitive determination of thrombin. Mikrochim Acta 2019; 187:53. [DOI: 10.1007/s00604-019-4043-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 11/20/2019] [Indexed: 10/25/2022]
|
12
|
Isildak I, Navaeipour F, Afsharan H, Kanberoglu GS, Agir I, Ozer T, Annabi N, Totu EE, Khalilzadeh B. Electrochemiluminescence methods using CdS quantum dots in aptamer-based thrombin biosensors: a comparative study. Mikrochim Acta 2019; 187:25. [PMID: 31811449 DOI: 10.1007/s00604-019-3882-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 09/29/2019] [Indexed: 11/25/2022]
Abstract
The detection of thrombin by using CdS nanocrystals (CdS NCs), gold nanoparticles (AuNPs) and luminol is investigated in this work. Thrombin is detected by three methods. One is called the quenching method. It is based on the quenching effect of AuNPs on the yellow fluorescence of CdS NCs (with excitation/emission wavelengths of 355/550 nm) when placed adjacent to CdS NCs. The second method (called amplification method) is based on an amplification mechanism in which the plasmonics on the AuNPs enhance the emission of CdS NCs through distance related Förster resonance energy transfer (FRET). The third method is ratiometric and based on the emission by two luminophores, viz. CdS NCs and luminol. In this method, by increasing the concentration of thrombin, the intensity of CdS NCs decreases, while that of luminol increases. The results showed that ratiometric method was most sensitive (with an LOD of 500 fg.mL-1), followed by the amplification method (6.5 pg.mL-1) and the quenching method (92 pg.mL-1). Hence, the latter is less useful. Graphical abstract Schematic representation of three different methods (quenching, amplification and ratiometric) were applied for detection of thrombin via aptasensor. The CdS nanocrystals, streptavidin (Str) coated AuNPs and also Str-luminol coated AuNPs were used for the construction steps of the electrochemiluminescence (ECL)-based biosensor.
Collapse
Affiliation(s)
- Ibrahim Isildak
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, 34220, Istanbul, Turkey.
| | - Farzaneh Navaeipour
- Faculty of Physics, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Hadi Afsharan
- Faculty of Physics, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | | | - Ismail Agir
- Bioengineering Department, Istanbul Medeniyet University, Goztepe, 34700, Istanbul, Turkey
| | - Tugba Ozer
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Nasim Annabi
- Chemical and Biomolecular Engineering Department, University of California, Los Angeles, CA, 90095, USA
| | - Eugenia Eftimie Totu
- Faculty of Applied Chemistry and Material Science, University Politehnica of Bucharest, 11061, Bucharest, Romania
| | - Balal Khalilzadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, 51664-14766, Iran.
- Biosensors and Bioelectronics Research Center, Ardabil University of Medical Sciences, Ardabil, 56189-85991, Iran.
| |
Collapse
|
13
|
McConnell EM, Cozma I, Morrison D, Li Y. Biosensors Made of Synthetic Functional Nucleic Acids Toward Better Human Health. Anal Chem 2019; 92:327-344. [PMID: 31656066 DOI: 10.1021/acs.analchem.9b04868] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Ioana Cozma
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1.,Department of Surgery, Division of General Surgery , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Devon Morrison
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences , McMaster University , Hamilton , Ontario , Canada , L8S 4K1
| |
Collapse
|
14
|
Jiang N, Zhu T, Hu Y. Competitive aptasensor with gold nanoparticle dimers and magnetite nanoparticles for SERS-based determination of thrombin. Mikrochim Acta 2019; 186:747. [PMID: 31691866 DOI: 10.1007/s00604-019-3787-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/27/2019] [Indexed: 12/20/2022]
Abstract
It is known that the intensity of surface-enhanced Raman scattering (SERS) of monomeric gold nanoparticles (GNPs) is insufficient for ultrasensitive analysis. The authors describe dimeric GNPs for use in a competitive SERS and aptamer based assay for thrombin. The reagent 1,2-bis(4-pyridyl) ethylene serves as both the coupling agent and the Raman reporter on the GNP dimers. In the presence of thrombin, the hybridization of two aptamers, one attached to the GNP dimers, the other to magnetic nanoparticles, is competitively prevented. This method takes advantage of the unique "hot spots" of the GNP dimers to amplify the Raman signal. This results in an ultra-sensitive thrombin assay when compared to assays using GNP monomers. The limit of detection is as low as 1 fM of thrombin. The Raman intensity, best measured at 1612 cm-1, increases linearly in the 1 fM to 10 nM thrombin concentration range. The method was applied to the determinaiton of thrombin in spiked simulated body fluid and human serum. Graphical abstract This method takes advantage of the unique "hot spots" of the gold nanoparticle dimers to amplify the Raman signal. The dimers are linked to the magnetic nanoparticles via an aptamer. The use of both competitive displacement and magnetic separation greatly improves the sensitivity of the thrombin assay.
Collapse
Affiliation(s)
- Ningjing Jiang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of spectral analysis and functional probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Tingfeng Zhu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of spectral analysis and functional probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, People's Republic of China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, Guangzhou Key Laboratory of spectral analysis and functional probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, People's Republic of China.
| |
Collapse
|
15
|
Kong H, Liu WW, Zhang W, Zhang Q, Wang CH, Khan MI, Wang YX, Fan LY, Cao CX. Facile, Rapid, and Low-Cost Electrophoresis Titration of Thrombin by Aptamer-Linked Magnetic Nanoparticles and a Redox Boundary Chip. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29549-29556. [PMID: 31259516 DOI: 10.1021/acsami.9b09598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
An aptamer-linked assay of a target biomarker (e.g., thrombin) is facing the challenges of long-term run, complex performance, and expensive instrument, unfitting clinical diagnosis in resource-limited areas. Herein, a facile chip electrophoresis titration (ET) model was proposed for rapid, portable, and low-cost assay of thrombin via aptamer-linked magnetic nanoparticles (MNPs), redox boundary (RB), and horseradish peroxidase (HRP). In the electrophoresis titration-redox boundary (ET-RB) model, thrombin was chosen as a model biomarker, which could be captured within 15 min by MNP-aptamer 1 and HRP-aptamer 2, forming a sandwich complex of (MNP-aptamer 1)-thrombin-(HRP-aptamer 2). After MNP separation and chromogenic reaction of 3,3',5,5'-tetramethylbenzidine (TMB) within 10 min, an ET-RB run could be completed within 5 min based on the reaction between a 3,3',5,5'-tetramethylbenzidine radical cation (TMB•+) and l-ascorbic acid in the ET channel. The systemic experiments based on the ET-RB method revealed that the sandwich complex could be formed and the thrombin content could be assayed via an ET-RB chip, demonstrating the developed model and method. In particular, the ET-RB method had the evident merits of simplicity, rapidity (less than 30 min), and low cost as well as portability and visuality, in contrast to the currently used thrombin assay. In addition, the developed method had high selectivity, sensitivity (limit of detection of 0.04 nM), and stability (intraday: 3.26%, interday: 6.07%) as well as good recovery (urine: 97-102%, serum: 94-103%). The developed model and method have potential to the development of a point-of-care testing assay in resource-constrained conditions.
Collapse
Affiliation(s)
- Hao Kong
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
| | - Wei-Wen Liu
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering , §State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology , ∥School of Physics and Astronomy , and ⊥Student Innovation Center , Shanghai Jiao Tong University , Shanghai 200240 , China
| | | | - Qiang Zhang
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering , §State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology , ∥School of Physics and Astronomy , and ⊥Student Innovation Center , Shanghai Jiao Tong University , Shanghai 200240 , China
| | - Cun-Huai Wang
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
| | - Muhammad Idrees Khan
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
| | | | | | - Cheng-Xi Cao
- Shanghai Sixth Peoples' Hospital East , Shanghai Jiao Tong University Medical School , Shanghai 201306 , China
- Department of Instrument Science and Engineering, School of Electronic Information & Electrical Engineering , §State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology , ∥School of Physics and Astronomy , and ⊥Student Innovation Center , Shanghai Jiao Tong University , Shanghai 200240 , China
| |
Collapse
|
16
|
Li X, Wu Y, Niu J, Jiang D, Xiao D, Zhou C. One-step sensitive thrombin detection based on a nanofibrous sensing platform. J Mater Chem B 2019; 7:5161-5169. [PMID: 31384858 DOI: 10.1039/c9tb01098j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Convenient and time-saving one-step strategies for detecting ultralow concentrations of protein biomarkers play key roles in rapid disease diagnosis. In this study, we report a one-step detection method based on a nanofibrous sensing platform via the combination of proximity-induced DNA strand displacement (PiDSD), catalytic hairpin assembly (CHA) amplification and thioflavin T (ThT) binding. The interface behaviors on the nanofibrous membrane were studied to promote interface reaction kinetics and thermodynamics. Thrombin was used as a model biomarker, and the nanofibrous sensing platform achieved a limit of detection as low as 1.0 pM, a wide linear range of 50 pM to 5 nM, excellent specificity and good long-term stability. Compared with previous one-step thrombin detection methods, our one-step detection method is label-free, convenient and much more sensitive; it has potential applications for protein detection in point-to-care testing (POCT) and early diagnosis.
Collapse
Affiliation(s)
- Xiaoling Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yuyang Wu
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Jingjing Niu
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Dagang Jiang
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Dan Xiao
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Cuisong Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
17
|
Xin Y, Wan B. A label-free quantification method for measuring graphene oxide in biological samples. Anal Chim Acta 2019; 1079:103-110. [PMID: 31387700 DOI: 10.1016/j.aca.2019.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 01/12/2023]
Abstract
Characterization of carbonaceous nanomaterials (CNMs) exposure is a key step and of great importance towards a better understanding of their toxicity and underlying mechanisms. However, it has been bottlenecked for lack of valid methods capable of quantifying cell-associated CNMs. Here, we developed a new economical and convenient method based on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) that could accumulate graphene oxide (GO) at the interface between the loading well and the gel. The sharp black band formed there can be digitalized and the intensity quantified, which was proportional to the amount of GO loaded onto the gel. The method has a detection limit of 84.1 ng. We showed that the amount of GO in three different cell models, mouse macrophage cells (Raw264.7), human epithelial cells (A549) and mouse mesenchymal stem cells (MSC), could be accurately quantified by this assay, with the uptake rates decreasing in the order of MSC > Raw264.7 > A549. The results were consistent with the fluorescent imaging on cells exposed to fluorescence-labeled GO and TEM examination on ultrathin cell sections. The surprisingly highest uptake rate of MSC might be due to their abundant intracellular vesicles, which deserves further investigation. The novel method provides a complementary quantitative tool to the use of radioactive markers and fluorescent labeling of carbon nanomaterials and may facilitate the toxicological studies on carbon nanomaterials.
Collapse
Affiliation(s)
- Yan Xin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Bin Wan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
18
|
Magnetic nanospheres for convenient and efficient capture and release of hepatitis B virus DNA. Talanta 2019; 197:605-611. [PMID: 30771983 DOI: 10.1016/j.talanta.2019.01.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/20/2019] [Accepted: 01/24/2019] [Indexed: 11/21/2022]
Abstract
Nucleic acid isolation and purification are essential steps in molecular biology. Currently-used isolation methods focus on the extraction of all the nucleic acids from crude samples, yet ignore the specific nucleic acids of interest, which may induce the loss of the specific nucleic acids and hinder their analyses. Herein, a magnetic nanospheres (MNs)-based strategy for efficient capture and release of specific nucleic acids is developed. The DNA sequence of hepatitis B virus (HBV) is taken as a model to validate this method. The MNs are modified with the complementary strand of HBV DNA for specific capture based on hybridization reaction. Then, by melting at high temperature, the captured DNAs are detached from the MNs to achieve release. The capture and release process are performed conveniently with magnetic separation. High capture efficiency (over 80%) and nearly 100% release efficiency for HBV DNA are achieved respectively via 40 min and 5 min interaction. While non-target DNAs are hardly captured, indicative of good selectivity. Moreover, after releasing DNAs, the MNs are directly regenerated and can be reused without degrading performance, which greatly reduces the operation costs. Finally, this method is applied to serum samples without any pretreatment, which exhibits similar capture and release capacity with those in the ideal samples, indicating its great application potential in practice.
Collapse
|
19
|
Low-fouling and highly sensitive fluorescence immunoassay of protein in serum based on the antifouling magnetic beads. Bioanalysis 2019; 11:825-935. [DOI: 10.4155/bio-2018-0300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: A low-fouling and highly sensitive fluorescence immunoassay for protein detection in serum was proposed, and IgG was used as a model protein. Materials & methods: SH-PEG-NH2 serving as antifouling coating was conjugated with carboxyl Fe3O4 nanoparticles, and then, the thiol groups were conjugated with antibody via the covalent binding. IgG was captured through magnetic immunoreaction. Highly fluorescent quantum dots modified with streptavidin (SA-QDs) were united with biotin modified IgG antibody to form the sandwich structure. Results & conclusion: The fluorescence immunoassay was able to detect IgG with a detection limit of 3.89 ng/ml in buffer and 5.0 ng/ml in serum with satisfying selectivity and acceptable reproducibility, which demonstrated its potential application in quantitative analysis of real patient serum samples.
Collapse
|
20
|
Cheng T, Li X, Huang P, Wang H, Wang M, Yang W. Colorimetric and electrochemical (dual) thrombin assay based on the use of a platinum nanoparticle modified metal-organic framework (type Fe-MIL-88) acting as a peroxidase mimic. Mikrochim Acta 2019; 186:94. [PMID: 30631938 DOI: 10.1007/s00604-018-3209-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/23/2018] [Indexed: 12/17/2022]
Abstract
An electrochemical and colorimetric dual-readout method is described for the determination of thrombin. A platinum nanoparticle (Pt NP) modified metal organic framework (MOF) acts as a peroxidase (POx) mimic that causes the formation of a blue product from 3,3',5,5'-tetramethylbenzidine (TMB) and hydrogen peroxide, with an absorption maximum at 650 nm. In addition, gold nanoparticles enrich initiators that trigger the hybridization chain reaction for dual signal amplification to generate an electrochemical current typically measured at 0.31 V (from -0.5 to -0.1 V) and allow quantitation of thrombin with high sensitivity and over a wide detection range. The colorimetric and electrochemical (dual) thrombin assay produces two kinds of signals which warrants accuracy, diversity, and an option for visual inspection. The dual-channel sensor allows for the quantitative determination of thrombin with a low detection limit (0.33 fM) for the electrochemical method and 0.17 pM for the colorimetric method) and over a wide detection range (1 fM to 10 nM for electrochemical method and 0.5 pM to 1 nM for colorimetric method). The electrochemical detection limit is lower than that of colorimetry, and the linear range is wider, which is more suitable for further quantitative analysis of the target. Graphical abstract Schematic representation of a colorimetric and electrochemical (dual) thrombin assay based on the use of a platinum nanoparticle modified metal-organic framework for color development and hybridization chain reaction for electrochemical signal. C-TBA: complementary sequences of thrombin aptamer, TBA: thrombin aptamer, I-Au NPs: initiators enriched by gold nanoparticles, S-AuE: sensing gold electrode, RS-AuE: reacted sensing gold electrode, TB: thrombin, MB: Methylene Blue, HCR: hybridization chain reaction.
Collapse
Affiliation(s)
- Ting Cheng
- Graduate Department, Anhui University of Traditional Chinese Medicine, Heifei, 230000, China
| | - Xiang Li
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of traditional Chinese Medicine, Heifei, 230000, China
| | - Peng Huang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of traditional Chinese Medicine, Heifei, 230000, China
| | - Han Wang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of traditional Chinese Medicine, Heifei, 230000, China
| | - Meixia Wang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of traditional Chinese Medicine, Heifei, 230000, China
| | - Wenming Yang
- Encephalopathy Center, The First Affiliated Hospital of Anhui University of traditional Chinese Medicine, Heifei, 230000, China.
| |
Collapse
|
21
|
Urbanová V, Jayaramulu K, Schneemann A, Kment Š, Fischer RA, Zbořil R. Hierarchical Porous Fluorinated Graphene Oxide@Metal-Organic Gel Composite: Label-Free Electrochemical Aptasensor for Selective Detection of Thrombin. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41089-41097. [PMID: 30412371 DOI: 10.1021/acsami.8b14344] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Current research effort aims at developing and designing new sensing platform architectures for effectively assaying biological targets that are significantly important for human healthcare and medical diagnosis. Here, we proposed a novel nanostructured sensor based on the combination of fluorinated graphene oxide and iron-based metal-organic gel (FGO@Fe-MOG). The unique properties including hierarchical porosity along with excellent electron transfer behavior make it an ideal candidate for electrochemical sensing of thrombin with superior detection limits compared to other (electrochemical, fluorescence, and colorimetric) strategies. Specifically, thrombin-binding aptamer was immobilized onto FGO@Fe-MOG through strong electrostatic interaction without any special modification or labeling, and the electrochemical impedance spectroscopy was used as the analyzing tool. The introduced aptasensor revealed high selectivity and reproducibility toward thrombin with the detection limit of 58 pM. The effectiveness, reliability, and real applicability of the proposed FGO@Fe-MOG nanohybrid were also confirmed by the determination of thrombin in a complex biological matrix represented by human serum. Taking into account the superior detection limit, high selectivity, reproducibility, and precision, the developed scalable and label-free aptasensor meets the essential requirements for clinical diagnosis of thrombin.
Collapse
Affiliation(s)
- Veronika Urbanová
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacký University Olomouc , Šlechtitelů 27 , 783 71 Olomouc , Czech Republic
| | - Kolleboyina Jayaramulu
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacký University Olomouc , Šlechtitelů 27 , 783 71 Olomouc , Czech Republic
- Department of Chemistry and Catalysis Research Centre , Technical University of Munich , Ernst-Otto-Fischer-Straße 1 , 85748 Garching , Germany
| | - Andreas Schneemann
- Department of Chemistry and Catalysis Research Centre , Technical University of Munich , Ernst-Otto-Fischer-Straße 1 , 85748 Garching , Germany
| | - Štěpán Kment
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacký University Olomouc , Šlechtitelů 27 , 783 71 Olomouc , Czech Republic
| | - Roland A Fischer
- Department of Chemistry and Catalysis Research Centre , Technical University of Munich , Ernst-Otto-Fischer-Straße 1 , 85748 Garching , Germany
| | - Radek Zbořil
- Regional Centre of Advanced Technologies and Materials, Faculty of Science , Palacký University Olomouc , Šlechtitelů 27 , 783 71 Olomouc , Czech Republic
| |
Collapse
|
22
|
Electrochemiluminescent aptasensor for thrombin using nitrogen-doped graphene quantum dots. Mikrochim Acta 2018; 185:430. [PMID: 30143874 DOI: 10.1007/s00604-018-2942-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 08/02/2018] [Indexed: 10/28/2022]
Abstract
An electrochemiluminescent (ECL) aptamer based method is described for the determination of thrombin. Three-dimensional nitrogen-doped graphene oxide (3D-NGO) was placed on a glassy carbon electrode (GCE) to provide an electrode surface that displays excellent electrical conductivity and acts as a strong emitter of ECL. The modified electrode was further coated with chitosan via electrodeposition. Finally, the amino-modified aptamer was immobilized on the modified GCE. The interaction between thrombin and aptamer results in a decrease in ECL. The assay has a linear response in the 1 fM to 1 nM thrombin concentration range and a 0.25 fM lower detection limit (at an S/N ratio of 3). The method was applied to the determination of thrombin in spiked human plasma samples, and recoveries ranged between 94 and 105% (with RSDs of <3.6%). The calibration plot was recorded at potential and wavelength of fluorescence emission (wavelength: 445 nm; potential: 0 to -2 V). Graphical abstract A bare glassy carbon electrode (GCE) does not display electrochemiluminescence (ECL). If, however, nitrogen-doped graphene quantum dots, chitosan, and three-dimensional nitrogen-doped graphene oxide (NGQD-chitosan/3D-NGO) are electrodeposited on the GCE, strong ECL can be observed. The ECL intensity decreased after aptamer and bovine serum albumin (BSA) were dropped onto the electrode (curve a). However, the ECL further decreases after addition of thrombin (TB; curve b).
Collapse
|
23
|
He B. Sandwich electrochemical thrombin assay using a glassy carbon electrode modified with nitrogen- and sulfur-doped graphene oxide and gold nanoparticles. Mikrochim Acta 2018; 185:344. [DOI: 10.1007/s00604-018-2872-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/15/2018] [Indexed: 01/23/2023]
|