1
|
Wang C, Yin X, Zhang L, Ye N, Xiang Y. Synthesis of polyadenine-aptamer-stabilized gold nanoclusters and application to the detection of tobramycin in real samples based on their peroxidase-like activity. Food Chem 2025; 474:143194. [PMID: 39919421 DOI: 10.1016/j.foodchem.2025.143194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/09/2025]
Abstract
Tobramycin (TOB) is a widely used aminoglycoside antibiotic for treating human and animal diseases. However, its overuse poses a threat to human health, necessitating the development of a rapid and simple detection method. In this study, polyadenine-aptamer-stabilized gold nanoclusters (Ax-Apt-AuNCs) were synthesized, to investigate the impact of different polyadenine lengths on their properties. A20-Apt-AuNCs demonstrated efficient catalytic activity in the oxidation of o-phenylenediamine to 2,3-diaminophenazine (DAP) in the presence of hydrogen peroxide, resulting in yellow fluorescence emission. Upon binding specifically to the TOB aptamer on A20-Apt-AuNCs, TOB enhanced both their peroxidase-like activity and the fluorescence intensity of DAP. Based on this mechanism, a fluorescence-enhanced aptasensor was developed for TOB detection. The aptasensor exhibited a linear detection range of 10.0 nM to 1.0 μM, with a detection limit of 2.63 nM. Furthermore, its application in real sample analysis produced satisfactory results.
Collapse
Affiliation(s)
- Chumeng Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xinyue Yin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
2
|
Liu Q, Hu X, Dong X, Liu P, Zhang N, Gao Z, Wang W, Li H, Wang S, Liu X, Tang Y. A reliable fluorescence "turn-on" aptasensor based on dual-emitting europium metal-organic frameworks for ultrasensitive and selective detection of sulfamethazine. Food Chem 2024; 454:139756. [PMID: 38797097 DOI: 10.1016/j.foodchem.2024.139756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/02/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
A high-performance fluorescent "turn-on" aptasensor (Eu-MOFs@SMZ-Apt) for sulfamethazine (SMZ) determination was designed using dual-emitting europium metal-organic frameworks (Eu-MOFs) as a signal transducer and an amplifier. Eu-MOFs featuring dual emission peaks (430 nm and 620 nm) were first prepared via a facile self-assembly strategy employing Eu (III) ions and 2-aminoterephthalic acid as precursors. The high-affinity aptamer was bonded with Eu-MOFs to form Eu-MOFs@SMZ-Apt through the amidation reaction. Benefiting from the integration of inherent virtues from Eu-MOFs and aptamer, the Eu-MOFs@SMZ-Apt-based sensor allowed sensitive and selective determination of SMZ with good linear relationships in a range of 1.4-40 ng mL-1 and a low detection line (0.379 ng mL-1). This sensor was successfully applied to the determination of trace SMZ in real samples with satisfactory recoveries (86.47-113.52%) and a relative standard deviation (<6.51). Consequently, the Eu-MOFs@SMZ-Apt ratiometric fluorescence sensor furnishes new possibilities for the accurate detection of various pollutants in food.
Collapse
Affiliation(s)
- Qingxiang Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xuelian Hu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Xiaoxiao Dong
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Peng Liu
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Ning Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Zhe Gao
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Wenxiu Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Huiling Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Shuo Wang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China; Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiuying Liu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430028, China
| | - Yiwei Tang
- College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
3
|
Liu Z, Zhou J, Wang X, Zhao J, Zhao P, Ma Y, Zhang S, Huo D, Hou C, Ren K. Graphene oxide mediated CdSe quantum dots fluorescent aptasensor for high sensitivity detection of fluoroquinolones. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 305:123497. [PMID: 37813087 DOI: 10.1016/j.saa.2023.123497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
In view of the urgent need for fluoroquinolones contamination detection in the fields of food safety, a novel aptasensor based on the fluorescence quenching property of graphene oxide (GO) and the fluorescence characteristic of cadmium selenide quantum dots (CdSe QDs) was developed for fluoroquinolones highly sensitive detection in this work. The CdSe QDs with carboxyl-rich surface were synthesized successfully and fluoresced at 525 nm under the optimal excitation light of 366 nm. Based on the hydrophobic and π-π stacking between GO and aptamer, aptamer labeled by CdSe QDs fluorescence (CdSe QDs-apt) were adsorbed by GO and the fluorescence of CdSe QDs was quenched. After the aptamer combined specifically with fluoroquinolones, greater specific force lead to the desorption of CdSe QDs-apt from GO and fluorescence recovery. Represented by Ciprofloxacin (CIP), a member of fluoroquinolones, the fluorescence emission increased with the increasing of CIP concentrations from 8 nM to 500 nM, and the detection limit was 0.42 nM. The spiked recoveries in real samples of honey and milk were 91.5-96.9 % and 90.3-95.2 %, respectively, indicating that the aptasensor was reliable. Moreover, the fluorescence responses of multiple members of fluoroquinolones were found to be consistent, denoting that the fluorescence aptasensor can be used to detect the total amount of multiple members of fluoroquinolones. These results showed that the aptasensor can be used as a promising platform for fluoroquinolones detection.
Collapse
Affiliation(s)
- Zhenping Liu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Chongqing Vocational Institute of Safety Technology, Chongqing 404000, PR China; Sichuan 'DingDianEr' Food Development Co., Ltd, Chengdu 611732, PR China
| | - Jun Zhou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou 646000, PR China
| | - Xianfeng Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Jinsong Zhao
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China
| | - Peng Zhao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China.
| | - Suyi Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; National Engineering Research Center of Solid-State Brewing, Luzhou Laojiao Group Co. Ltd., Luzhou 646000, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
| | - Changjun Hou
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China; Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yibin 644000, PR China.
| | - Kang Ren
- Sichuan 'DingDianEr' Food Development Co., Ltd, Chengdu 611732, PR China
| |
Collapse
|
4
|
Lunelli L, Germanis M, Vanzetti L, Potrich C. Different Strategies for the Microfluidic Purification of Antibiotics from Food: A Comparative Study. BIOSENSORS 2023; 13:325. [PMID: 36979536 PMCID: PMC10046095 DOI: 10.3390/bios13030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The presence of residual antibiotics in food is increasingly emerging as a worrying risk for human health both for the possible direct toxicity and for the development of antibiotic-resistant bacteria. In the context of food safety, new methods based on microfluidics could offer better performance, providing improved rapidity, portability and sustainability, being more cost effective and easy to use. Here, a microfluidic method based on the use of magnetic microbeads specifically functionalized and inserted in polymeric microchambers is proposed. The microbeads are functionalized either with aptamers, antibodies or small functional groups able to interact with specific antibiotics. The setup of these different strategies as well as the performance of the different functionalizations are carefully evaluated and compared. The most promising results are obtained employing the functionalization with aptamers, which are able not only to capture and release almost all tetracycline present in the initial sample but also to deliver an enriched and simplified solution of antibiotic. These solutions of purified antibiotics are particularly suitable for further analyses, for example, with innovative methods, such as label-free detection. On the contrary, the on-chip process based on antibodies could capture only partially the antibiotics, as well as the protocol based on beads functionalized with small groups specific for sulfonamides. Therefore, the on-chip purification with aptamers combined with new portable detection systems opens new possibilities for the development of sensors in the field of food safety.
Collapse
Affiliation(s)
- Lorenzo Lunelli
- Bruno Kessler Foundation, Center for Sensors & Devices, Via Sommarive 18, 38123 Trento, Italy
- National Research Council, Institute of Biophysics, Via alla Cascata 56/C, 38123 Trento, Italy
| | - Martina Germanis
- Bruno Kessler Foundation, Center for Sensors & Devices, Via Sommarive 18, 38123 Trento, Italy
- FTH Srl (Femtorays), Via Solteri 38, 38121 Trento, Italy
| | - Lia Vanzetti
- Bruno Kessler Foundation, Center for Sensors & Devices, Via Sommarive 18, 38123 Trento, Italy
| | - Cristina Potrich
- Bruno Kessler Foundation, Center for Sensors & Devices, Via Sommarive 18, 38123 Trento, Italy
- National Research Council, Institute of Biophysics, Via alla Cascata 56/C, 38123 Trento, Italy
| |
Collapse
|
5
|
Barati F, Avatefi M, Moghadam NB, Asghari S, Ekrami E, Mahmoudifard M. A review of graphene quantum dots and their potential biomedical applications. J Biomater Appl 2023; 37:1137-1158. [PMID: 36066191 DOI: 10.1177/08853282221125311] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Today, nanobiotechnology is a pioneering technology in biomedicine. Every day, new nanomaterials are synthesized with elevated physiochemical properties for better diagnosis and treatment of diseases. One advancing class of materials is the Graphene family. Among different kinds of graphene derivatives, graphene quantum dots (GQDs) show fantastic optical, electrical, and electrochemical features originating from their unique quantum confinement effect. Due to the distinct properties of GQD, including large surface-to-volume ratio, low cytotoxicity, and easy functionalization, this nanomaterial has gone popular in biomedical field. Herein, a short overview of different strategies developed for GQD synthesis and functionalization is discussed. In the following, the most recent progress of GQD based nanomaterials in different biomedical fields, including bio-imaging, drug/gene delivery, antimicrobial, tissue engineering, and biosensors, are reviewed.
Collapse
Affiliation(s)
- Fatemeh Barati
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Manizheh Avatefi
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Negin Borzooee Moghadam
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sahar Asghari
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Elena Ekrami
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Matin Mahmoudifard
- Department of Industrial and Environmental Biotechnology, 48482National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
6
|
Tong X, Lin X, Duan N, Wang Z, Wu S. Laser-Printed Paper-Based Microfluidic Chip Based on a Multicolor Fluorescence Carbon Dot Biosensor for Visual Determination of Multiantibiotics in Aquatic Products. ACS Sens 2022; 7:3947-3955. [PMID: 36454704 DOI: 10.1021/acssensors.2c02008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Excessive use of antibiotics in aquaculture severely endangers human health and ecosystems, which has raised significant concerns in recent years. However, conventional laboratory-based approaches regularly required time or skilled manpower. Herein, we propose a point-of-care-testing (POCT) biosensor detection device for the simultaneous determination of multiantibiotics without complex equipment or professional operators. A laser-printed paper-based microfluidic chip loaded with multicolor fluorescence nanoprobes (mCD-μPAD) was developed to rapidly detect sulfamethazine (SMZ), oxytetracycline (OTC), and chloramphenicol (CAP) on-site. These "fluorescence off" detection probes composed of carbon dots (CDs) conjugated with aptamers (donor) and MoS2 nanosheets (acceptor) (CD-apt-MoS2) were based on Förster resonance energy transfer. Upon the addition of target antibiotics, the significantly recovered fluorescence signal on the μPAD can be sensitively perceived by employing a 3D-printed portable detection box through a smartphone. Under optimal conditions, this μPAD allowed for a rapid response of 15 min toward SMZ, OTC, and CAP with considerable sensitivities of 0.47, 0.48, and 0.34 ng/mL, respectively. In shrimp samples, the recoveries were 95.2-101.2, 96.4-105, and 96.7-106.1% with RSD below 6%. This paper-based sensor opens an avenue for on-site, high-throughput, and rapid detection methods and can be widely used in POCT in food safety.
Collapse
Affiliation(s)
- Xinyu Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi214122, China
| | - Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi214122, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi214122, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi214122, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi214122, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou510642, China
| |
Collapse
|
7
|
Li P, Luo C, Chen X, Huang C. An off-on fluorescence aptasensor for trace thrombin detection based on FRET between CdS QDs and AuNPs. RSC Adv 2022; 12:35763-35769. [PMID: 36545096 PMCID: PMC9749934 DOI: 10.1039/d2ra06891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022] Open
Abstract
An off-on fluorescence aptasensor was developed for trace thrombin detection based on fluorescence resonance energy transfer (FRET) between CdS QDs and gold nanoparticles (AuNPs). Using DNA pairwise hybridization of the aptamer to the complementary DNA (cDNA), the CdS QDs (energy donor) were tightly coupled to the AuNPs (energy acceptor), resulting in the occurrence of FRET and there was a dramatic fluorescence quenching of CdS QDs (turn off). When the thrombin was added to the fluorescence aptasensor, the specific binding of the aptamer to the target formed a G-quadruplex that caused the AuNPs receptor to detach and the DNA duplex to be disassembled. The process would inhibit the FRET which contribute to the recovery of fluorescence (turn on) and an "off-on" fluorescence aptasensor for thrombin detection was constructed accordingly. Under optimal conditions, the fluorescence recovery showed good linearity with the concentration of thrombin in the range of 1.35-54.0 nmol L-1, and the detection limit was 0.38 nmol L-1 (S/N = 3, n = 9). Importantly, the fluorescence aptasensor presented excellent specificity for thrombin, and was successfully applied to the quantitative determination of thrombin in real serum with satisfactory recoveries of 98.60-102.2%.
Collapse
Affiliation(s)
- Pu Li
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Chen Luo
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Xiaoxiao Chen
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| | - Chaobiao Huang
- Xingzhi College, Zhejiang Normal University Lanxi 321100 China
- College of Chemistry and Life Science, Zhejiang Normal University Jinhua 321004 China
| |
Collapse
|
8
|
Evolution of a natural dihydropteroate synthase and development of a signal amplified fluorescence method for detection of 44 sulfonamides in milk. Anal Chim Acta 2022; 1234:340481. [DOI: 10.1016/j.aca.2022.340481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/12/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022]
|
9
|
Liu Y, Deng Y, Li S, Wang-Ngai Chow F, Liu M, He N. Monitoring and detection of antibiotic residues in animal derived foods: Solutions using aptamers. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Afsharipour R, Haji Shabani AM, Dadfarnia S. A selective off–on fluorescent aptasensor for alpha-fetoprotein determination based on N-carbon quantum dots and oxidized nanocellulose. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
11
|
A Short Review on Detection of Antibiotics in Milk Using Nanomaterial-Based Biosensor. FOOD ANAL METHOD 2022. [DOI: 10.1007/s12161-022-02291-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
12
|
Sabzehmeidani MM, Kazemzad M. Quantum dots based sensitive nanosensors for detection of antibiotics in natural products: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151997. [PMID: 34848263 DOI: 10.1016/j.scitotenv.2021.151997] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 05/18/2023]
Abstract
Residual antibiotics in food products originated from administration of the antibiotics to animals may be accumulated through food metabolism in the human body and endanger safety and health. Thus, developing a prompt and accurate way for detection of antibiotics is a crucial issue. The zero-dimensional fluorescent probes including metals based, carbon and graphene quantum dots (QDs), are highly sensitive materials to use for the detection of a wide range of antibiotics in natural products. These QDs demonstrate unique optical properties like tunable photoluminescence (PL) and excitation-wavelength dependent emission. This study investigates the trends related to carbon and metal based QDs preparation and modification, and their diverse detection application. We discuss the performance of QDs based sensors application in various detection systems such as photoluminescence, photoelectrochemical, chemiluminescence, electrochemiluminescence, colorimetric, as well as describing their working principles in several samples. The detecting mechanism of a QDs-based sensor is dependent on its properties and specific interactions with particular antibiotics. This review also tries to describe environmental application and future perspective of QDs for antibiotics detection.
Collapse
Affiliation(s)
| | - Mahmood Kazemzad
- Department of Energy, Materials and Energy Research Center, Tehran 14155-477, Iran.
| |
Collapse
|
13
|
Zhao X, Zhang X, Qin M, Song Y, Zhang J, Xia X, Cui X, Gao K, Han Q. Determination of carbendazim by aptamer-based fluorescence resonance energy transfer (FRET). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1849250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Xinyue Zhao
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Xiaomeng Zhang
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Mingwei Qin
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Yuzhu Song
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Jinyang Zhang
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Xueshan Xia
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Xiuming Cui
- Yunnan Research Center for Genuine Medicinal Materials, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Kai Gao
- College of Architecture and Urban Planning, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| | - Qinqin Han
- Engineering Research Center for Molecular Diagnosis, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, People’s Republic of China
| |
Collapse
|
14
|
Electrochemical determination of sulfamethazine using a gold electrode modified with multi-walled carbon nanotubes, graphene oxide nanoribbons and branched aptamers. Mikrochim Acta 2020; 187:274. [DOI: 10.1007/s00604-020-04244-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
|
15
|
Hu C, Yang Z, Song Z, Xiao L, He Y. A strategy for preparing non-fluorescent graphene oxide quantum dots as fluorescence quenchers in quantitative real-time PCR. RSC Adv 2020; 10:14944-14952. [PMID: 35497124 PMCID: PMC9052102 DOI: 10.1039/d0ra00142b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
In recent years, graphene oxide quantum dots (GOQDs) have emerged as novel nanomaterials for optical sensing, bioimaging, clinical testing, and environmental testing. However, GOQDs demonstrate unique photoluminescence properties, with GOQDs having quantum limitations and edge effects that often affect the accuracy of the test results in the sensory field. Herein, GOQDs with a large content of hydroxyl groups and low fluorescence intensity were first prepared via an improved Fenton reaction in this study, which introduces a large amount of epoxy groups to break the C-C bonds. The synthesized GOQDs show no significant variation in the fluorescence intensity upon ultraviolet and visible light excitations. We further utilized the GOQDs as fluorescence quenchers for different fluorescent dyes in real-time fluorescence quantitative polymerase chain reaction (qRT-PCR), and verified that the addition of GOQDs (5.3 μg ml-1) into a qRT-PCR system could reduce the background fluorescence intensity of the reaction by fluorescence resonance energy transfer (FRET) during its initial stage and its non-specific amplification, and improve its specificity. In addition, the qRT-PCR method could detect two different lengths of DNA sequences with a high specificity in the 104 to 1010 copies per μl range. It is of paramount importance to carry out further investigations to establish an efficient, sensitive, and specific RT-PCR method based on the use of GOQD nanomaterials as fluorescence quenchers.
Collapse
Affiliation(s)
- Chenyan Hu
- College of Medical Technology, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Zhongzhu Yang
- College of Medical Technology, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Zhen Song
- College of Medical Technology, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| | - Linghui Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine Chengdu 610075 China
| | - Yang He
- College of Medical Technology, State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Chengdu University of Traditional Chinese Medicine Chengdu 611137 China
| |
Collapse
|
16
|
Chen CX, Li YH, Zhou YL, Zhang JH, Wei QZ, Dai T, Wang L. Rapidly detecting antibiotics with magnetic nanoparticle coated CdTe quantum dots. RSC Adv 2020; 10:1966-1970. [PMID: 35494568 PMCID: PMC9048212 DOI: 10.1039/c9ra09894a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022] Open
Abstract
A reusable magnetic-quantum dot material (MNP-SiO2-QD) with good magnetic properties and high fluorescence retention was successfully fabricated from linked magnetic nanoparticles and quantum dots. The resulting material can qualitatively and quantitatively detect four kinds of antibiotics and maintain high recovery rates.
Collapse
Affiliation(s)
- Chao-Xi Chen
- College of Life Science & Technology, Southwest Minzu University Chengdu 61004 China
| | - Yu-Han Li
- College of Life Science & Technology, Southwest Minzu University Chengdu 61004 China
| | - Yun-Lu Zhou
- College of Life Science & Technology, Southwest Minzu University Chengdu 61004 China
| | - Jun-Hao Zhang
- College of Life Science & Technology, Southwest Minzu University Chengdu 61004 China
| | - Qi-Zhuang Wei
- College of Life Science & Technology, Southwest Minzu University Chengdu 61004 China
| | - Tao Dai
- College of Chemistry & Environmental Protection Engineering, Southwest Minzu University 610041 China
| | - Lu Wang
- College of Life Science & Technology, Southwest Minzu University Chengdu 61004 China
| |
Collapse
|
17
|
A novel fluorescent "turn-on" aptasensor based on nitrogen-doped graphene quantum dots and hexagonal cobalt oxyhydroxide nanoflakes to detect tetracycline. Anal Bioanal Chem 2020; 412:1343-1351. [PMID: 31901961 DOI: 10.1007/s00216-019-02361-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/18/2019] [Accepted: 12/17/2019] [Indexed: 12/22/2022]
Abstract
In this study, a novel fluorescent "turn-on" aptasensor was developed for sensitive and rapid detection of tetracycline (TC) in animal-derived food. It is based on aptamer-functionalized nitrogen-doped graphene quantum dots (N-GQDs-aptamer) coupled with cobalt oxyhydroxide (CoOOH) nanoflakes. The CoOOH nanoflakes are efficient fluorescence quenchers in homogeneous solutions, and this is due to their advantages of excellent optical properties, superior flexibility, and water dispersibility. The proposed method's mechanism is driven by quenching based on the fluorescence resonance energy transfer (FRET) between the donor (N-GQDs) and the acceptor (CoOOH nanoflakes). On the other hand, fluorescence recovery is caused by the structure switching behavior of the aptamer. Compared with previous methods, our developed method exhibits better behavior in terms of being easy to fabricate and being simple in detection procedure and maintains the detection limit low enough in TC determination: a linear range from 1 to 100 ng mL-1 and a detection limit of 0.95 ng mL-1 (S/N = 3). Furthermore, the proposed method was applied to five animal-derived food samples (milk, honey, fish, eggs, and chicken muscle) and demonstrated practical applicability. As well, the method has the advantages of simplicity in pre-treatment and convenience in instruments, saves times, and is cost-effective. Finally, the proposed method demonstrates significant potential for sensitive and rapid detection of specific components in real samples. Graphical abstract.
Collapse
|
18
|
Selective fluorometric determination of sulfadiazine based on the growth of silver nanoparticles on graphene quantum dots. Mikrochim Acta 2019; 187:54. [DOI: 10.1007/s00604-019-4001-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/03/2019] [Indexed: 11/26/2022]
|
19
|
Kazemi E, Bagheri H, Norouzian D. A turn-on graphene quantum dot and graphene oxide based fluorometric aptasensor for the determination of telomerase activity. Mikrochim Acta 2019; 186:785. [PMID: 31732800 DOI: 10.1007/s00604-019-3956-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 10/17/2019] [Indexed: 11/29/2022]
Abstract
A turn-on fluorometric assay is described for determination of the activity of enzyme telomerase. For this purpose, graphene quantum dots (GQDs) were first modified with the telomeric sequence (5'-amino-AATCCGTCGAGCAGAGTT-3') via a condensation reaction. Injection of graphene oxide causes instant quenching of the blue fluorescence of the GQDs. Addition of cell extract containing telomerase, triggers the extension of telomer via addition of specific sequence (TTAGGG)n to its 3' end. Fluorescence, best measured at excitation/emission wavelengths of 390/446 nm, is subsequently restored due to folding of the extended telomeric sequence into G-quadruplex structure. The method was applied to the determination of telomerase activity in crude cell extracts of as little as 10 HeLa cells. The linear dynamic range extends from 10 to 6500 cells. Graphical abstractIn this study, a new turn-on graphene quantum dotm and graphene oxide based fluorometric assay is developed for the determination of telomerase activity.
Collapse
Affiliation(s)
- Elahe Kazemi
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
| | - Habib Bagheri
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| | - Dariush Norouzian
- Pilot Nanobiotechnology Department, Pasteur Institute of Iran, P.O. Box 13169-43551, Tehran, Iran
| |
Collapse
|
20
|
Ren J, Liang G, Man Y, Li A, Jin X, Liu Q, Pan L. Aptamer-based fluorometric determination of Salmonella Typhimurium using Fe3O4 magnetic separation and CdTe quantum dots. PLoS One 2019; 14:e0218325. [PMID: 31216306 PMCID: PMC6584018 DOI: 10.1371/journal.pone.0218325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/30/2019] [Indexed: 01/15/2023] Open
Abstract
Based on the high sensitivity and stable fluorescence of CdTe quantum dots (QDs) in conjunction with a specific DNA aptamer, the authors describe an aptamer-based fluorescence assay for the determination of Salmonella Typhimurium. The fluorescence detection and quantification of S. Typhimurium is based on a magnetic separation system, a combination of aptamer-coated Fe3O4 magnetic particles (Apt-MNPs) and QD-labeled ssDNA2 (complementary strand of the aptamer). Apt-MNPs are employed for the specific capture of S. Typhimurium. CdTe QD-labeled ssDNA2 was used as a signaling probe. Simply, the as-prepared CdTe QD-labeled ssDNA2 was first incubated with the Apt-MNPs to form the aptamer-ssDNA2 duplex. After the addition of S. Typhimurium, they could specifically bind the DNA aptamer, leading to cleavage of the aptamer-ssDNA2 duplex, accompanied by the release of CdTe QD-labeled DNA. Thus, an increased fluorescence signal can be achieved after magnetic removal of the Apt-MNPs. The fluorescence of CdTe QDs (λexc/em = 327/612 nm) increases linearly in the concentration range of 10 to 1010 cfu•mL-1, and the limit of detection is determined to be 1 cfu•mL-1. The detection process can be performed within 2 h and is successfully applied to the analysis of spiked food samples with good recoveries from 90% to 105%.
Collapse
Affiliation(s)
- Junan Ren
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - Gang Liang
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - Yan Man
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - An Li
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - Xinxin Jin
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - Qingju Liu
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
| | - Ligang Pan
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijjing, PR China
- Risk Assessment Lab for Agro-products (Beijing), Ministry of Agriculture, Beijing, PR China
- Beijing Municipal Key Laboratory of Agriculture Environment Monitoring, Beijing, PR China
- * E-mail:
| |
Collapse
|
21
|
Copper nanoclusters/polydopamine nanospheres based fluorescence aptasensor for protein kinase activity determination. Anal Chim Acta 2018; 1035:184-191. [PMID: 30224138 DOI: 10.1016/j.aca.2018.06.043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 11/22/2022]
Abstract
A fluorescence aptasensor was constructed for protein kinase (PKA) activity detection by utilizing copper nanoclusters (CuNCs) and polydopamine nanospheres (PDANS). Through the π-π stacking interactions between adenosine triphosphate (ATP) aptamer and PDANS, the ATP aptamer modified CuNCs (apt-CuNCs) were absorbed onto PDANS surface, thus the fluorescence of apt-CuNCs were quenched through fluorescence resonance energy transfer (FRET) from apt-CuNCs to PDANS. In the presence of ATP, ATP specifically bound to aptamer, causing the dissociation of apt-CuNCs from PDANS surface and restoring the fluorescence of apt-CuNCs. However, PKA translated ATP into adenosine diphosphate (ADP), and ADP had no competence to combine with ATP aptamer, thus, apt-CuNCs were released and absorbed onto the PDANS surface to cause the fluorescence quenching of apt-CuNCs again. Therefore, PKA activity was conveniently detected via the fluorescence signal change. Under the optimal conditions, PKA activity was detected in the range of 0.05-4.5 U mL-1 with a detection limit of 0.021 U mL-1. Furthermore, the feasibility of the aptasensor for kinase inhibitor screening was explored via assessment of kinase inhibitor H-89 as one model. This aptasensor was also performed for PKA activity determination in HepG2 cell lysates with satisfactory results.
Collapse
|