1
|
Chen Q, Lu F, Chen C, Lin C, Wang J, Lin X, Weng Q. Surface engineering of 3D covalent organic frameworks via crystalline modulation for enhanced profiling of polychlorinated biphenyls. J Chromatogr A 2025; 1755:466051. [PMID: 40393261 DOI: 10.1016/j.chroma.2025.466051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 05/10/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025]
Abstract
Surface engineering of covalent organic frameworks (COFs) represents a highly promising strategy for achieving superior capture capacity towards environmental trace pollutants. Herein, the three-dimensional covalent organic frameworks (3D-COFs) with tunable crystallinity were synthesized and optimized via a simple solvent ratio adjustment, demonstrating an exceptional capture capacity of polychlorinated biphenyls (PCBs). By adjusting the ratio of solvents (1,4-dioxane and toluene), a functional 3D COF (dia-c5 TPA-TAM-COF) was discovered, providing an ideal approach to transform an amorphous compound into a functional platform with a significant increase in crystallinity, surface area and pore volume for PCBs capture. The adsorption features and analytical performance of PCBs were evaluated, and a good performance was achieved with high enrichment factors as 6973 ∼ 11,015. Optimization of solid phase microextraction (SPME) using the dia-c5 TPA-TAM-COF as the coating was investigated, and the method was verified for sensitive quantification of PCBs by using GC-MS, achieving the sensitive limits of detection (LODs) of 0.028 ∼ 0.0263 ng/L. Good reproducibility and robustness of the analytical performance of PCBs using dis-c5 was achieved, with the RSDs of intra-day (n = 3), inter-day (n = 6) and fiber-to-fiber (n = 3) of 0.7 ∼ 4.7 %, 1.8 ∼ 4.6 % and 2.0 ∼ 3.9 % respectively. The recoveries of PCBs in the soil fortified samples were obtained as 85.3 ∼ 101.9 % and 86.3 ∼ 108.8 %, respectively, as well as high thermal stability and long lifetime (keep on going more than 150 cycles). This study demonstrates that a simple protocol of adjusting the solvent content was capable of tailoring high crystallinity and suitable interpenetration degree of TPA-TAM-COFs for high performance target capture of PCBs in environmental soils.
Collapse
Affiliation(s)
- Qingai Chen
- College of Tourism and Leisure Management, Fujian Business University, Fuzhou, 350012, Fujian, China
| | - Feifei Lu
- Fujian Key Laboratory of Quality and Safety of Agri-Products, Institute of Agricultural Quality Standards and testing Technology Research, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China; Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Chenqun Chen
- College of Zhicheng, Fuzhou University, Fuzhou, 350002, China
| | - Chenchen Lin
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Jiabin Wang
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China
| | - Xucong Lin
- Engineering Technology Research Center on Reagent and Instrument for Rapid Detection of Product Quality and Food Safety in Fujian Province, College of Chemistry, Fuzhou University, Fuzhou, 350108, PR China; College of Zhicheng, Fuzhou University, Fuzhou, 350002, China.
| | - Qibiao Weng
- Fujian Provincial Key Laboratory of Eel Aquaculture and Processing, Fujian Provincial Engineering Research Center for Eel Processing Enterprise, Changle Juquan Food Co. Ltd., Fuzhou, 350200, China
| |
Collapse
|
2
|
Lv S, Sun C, Gao J, Yang X, Wang C, Wang Z. Development of a Novel SPME Coating for Efficient Extraction of Organochlorine Pesticides in Liquid Dairy Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20679-20689. [PMID: 39238315 DOI: 10.1021/acs.jafc.4c06215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
A sensitive and accurate analysis of organochlorine pesticide (OCP) residues in dairy products poses a significant challenge. Herein, a novel covalent organic polymer, Azo-COP-1, was synthesized for the enhanced extraction of OCPs in dairy products. The solid phase microextraction fiber coated with Azo-COP-1 demonstrated excellent extraction performance for the OCPs via hydrogen bonding, halogen bonding, π-π stacking, and electrostatic interactions. Coupled with gas chromatography-electron capture detection, we developed a facile and reliable method for detecting OCPs in six types of dairy products with low limits of detection (2.0-400 pg g-1) and high method recoveries (82.6-113%). Azo-COP-1 coatings exhibited good stability and durability. The results verified the feasibility of using Azo-COP-1-based SPME to extract OCP residues in dairy product samples, highlighting its potential for routine monitoring of pesticide residues and food safety assessments.
Collapse
Affiliation(s)
- Sijia Lv
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Cuihong Sun
- Shijiazhuang Key Laboratory of Low Carbon Energy Materials, Technology Innovation Center of Hebei for Heterocyclic Compounds, College of Chemical Engineering, Shijiazhuang University, Shijiazhuang 050035, China
| | - Jiamiao Gao
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Xiumin Yang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding 071001, China
| |
Collapse
|
3
|
Riboni N, Ribezzi E, Bianchi F, Careri M. Supramolecular Materials as Solid-Phase Microextraction Coatings in Environmental Analysis. Molecules 2024; 29:2802. [PMID: 38930867 PMCID: PMC11206577 DOI: 10.3390/molecules29122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
Solid-phase microextraction (SPME) has been widely proposed for the extraction, clean-up, and preconcentration of analytes of environmental concern. Enrichment capabilities, preconcentration efficiency, sample throughput, and selectivity in extracting target compounds greatly depend on the materials used as SPME coatings. Supramolecular materials have emerged as promising porous coatings to be used for the extraction of target compounds due to their unique selectivity, three-dimensional framework, flexible design, and possibility to promote the interaction between the analytes and the coating by means of multiple oriented functional groups. The present review will cover the state of the art of the last 5 years related to SPME coatings based on metal organic frameworks (MOFs), covalent organic frameworks (COFs), and supramolecular macrocycles used for environmental applications.
Collapse
Affiliation(s)
- Nicolò Riboni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | | - Federica Bianchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area Delle Scienze 17/A, 43124 Parma, Italy; (E.R.); (M.C.)
| | | |
Collapse
|
4
|
Zhang W, Yang Y, Mao J, Zhang Q, Fan W, Chai G, Shi Q, Zhu C, Zhang S, Xie J. Quinoline Bridging Hyperconjugated Covalent Organic Framework as Solid-Phase Microextraction Coating for Ultrasensitive Determination of Phthalate Esters in Water Samples. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17999-18009. [PMID: 37904272 DOI: 10.1021/acs.jafc.3c02859] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Phthalate esters (PAEs) are widely distributed in the environment, and this has caused serious health and safety concerns. Development of rapid and ultrasensitive identification and analysis methods for phthalate esters is urgent and highly desirable. In this work, a novel nitrogen-rich covalent organic framework (N-TTI) derived quinoline bridging covalent organic framework (N-QTTI) was fabricated and used as a solid-phase microextraction (SPME) coating for the ultrasensitive determination of phthalate esters in water samples. The physical and chemical properties of N-QTTI were investigated sufficiently. The N-QTTI-coated fiber demonstrates a superior enrichment performance than either the N-TTI-coated fiber or commercial fibers under the optimized SPME conditions. For the first time, we propose a semi-immersion strategy for the extraction of PAEs from water samples based on N-QTTI-coated SPME fibers. Combined with gas chromatography-mass spectrometry (GC-MS), the developed method N-QTTI-SPME-GC-MS exhibits a wide linear range with a satisfactory linearity (R2 ≥ 0.995). The limits of detection (LOD, S/N = 3) and the limits of quantification (LOQs, S/N = 10) were 0.17-1.70 and 0.57-5.60 ng L-1, respectively. The repeatability of the new method was examined using relative standard deviations (RSDs) between intraday and interday data, which were 0.38-7.98% and 1.22-6.60%, respectively. The spiked recoveries at three levels of 10, 100, and 1000 ng L-1 were in the range of 90.0-106.2% with RSDs of less than 7.48%. The enrichment factors ranged from 291 to 17180. When compared to previously published works, the LODs of the newly established method were improved 5-5400 times, and the enrichment factors were increased by at least 8 times. The absorption mechanism was investigated by X-ray photoelectron spectroscopy and noncovalent interaction force analysis. The technique was successfully employed for detecting PAEs in water samples.
Collapse
Affiliation(s)
- Wenfen Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Yuan Yang
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Jian Mao
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Qidong Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Wu Fan
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Guobi Chai
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Qingzhao Shi
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury and Henan Pediatric Clinical Research Center, Institute of Neuroscience and Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Shusheng Zhang
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| | - Jianping Xie
- Zhengzhou Tobacco Research Institute of CNTC, Fengyang Road, Zhengzhou, Henan 450001, People's Republic of China
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan 450001, People's Republic of China
| |
Collapse
|
5
|
Zeng T, Liu Y, Jiang Y, Zhang L, Zhang Y, Zhao L, Jiang X, Zhang Q. Advanced Materials Design for Adsorption of Toxic Substances in Cigarette Smoke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301834. [PMID: 37211707 PMCID: PMC10401148 DOI: 10.1002/advs.202301834] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/27/2023] [Indexed: 05/23/2023]
Abstract
Cigarettes, despite being economically important legal consumer products, are highly addictive and harmful, particularly to the respiratory system. Tobacco smoke is a complex mixture containing over 7000 chemical compounds, 86 of which are identified to have "sufficient evidence of carcinogenicity" in either animal or human tests. Thus, tobacco smoke poses a significant health risk to humans. This article focuses on materials that help reduce the levels of major carcinogens in cigarette smoke; these include nicotine, polycyclic aromatic hydrocarbons, tobacco-specific nitrosamines, hydrogen cyanide, carbon monoxide, and formaldehyde. Specifically, the research progress on adsorption effects and mechanisms of advanced materials such as cellulose, zeolite, activated carbon, graphene, and molecularly imprinted polymers are highlighted. The future trends and prospects in this field are also discussed. Notably, with advancements in supramolecular chemistry and materials engineering, the design of functionally oriented materials has become increasingly multidisciplinary. Certainly, several advanced materials can play a critical role in reducing the harmful effects of cigarette smoke. This review aims to serve as an insightful reference for the design of hybrid and functionally oriented advanced materials.
Collapse
Affiliation(s)
- Ting Zeng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Research Center, Chengdu Medical College, Chengdu, 610500, China
| | - Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yingfang Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lan Zhang
- Univ Lyon, CNRS, INSA-Lyon, Université Claude Bernard Lyon 1, CETHIL UMR5008, Villeurbanne, F-69621, France
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xiaoli Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qiang Zhang
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
6
|
Yu C, Zhang J, Luo X, Zhang J. Metal organic framework/covalent organic framework composite for solid-phase microextraction of polycyclic aromatic hydrocarbons in milk samples. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
7
|
Chang G, Zhao Y, Zhao B, Yang X, Zhang S, Wang C, Wang Z. A hydrophilic-lipophilic triazine based hyper-crosslinked polymer for efficient enrichment of nitrobenzene compounds. Anal Chim Acta 2022; 1238:340638. [DOI: 10.1016/j.aca.2022.340638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
|
8
|
Research Progress of Polycyclic Aromatic Hydrocarbons Pretreatment Methods and Application of Computer Simulation Technology for Prediction and Degradation of Electrochemical Concentration Detection. J CHEM-NY 2022. [DOI: 10.1155/2022/6288072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of organic compounds that are composed of aromatic rings containing only carbon and hydrogen atoms. They are one of the widespread environmental pollutants in the world. In recent years, many scholars have focused on the inhibition, formation mechanism, content of active components, and biodegradation effect of polycyclic aromatic hydrocarbons. They summarized the research progress of pretreatment methods for detection, but rarely discussed the experimental dataset for comprehensive analysis of pollution sources and the impact of different pretreatment technologies on the extraction of different substrates. What is more, computer simulation has not been mentioned. In this study, the pollution sources of polycyclic aromatic hydrocarbons (PAHs) are reviewed, and the related applications of various pretreatment methods such as gel permeation chromatography (GPC) are summarized. Finally, the computer simulation of the response surface method is introduced. The concentration of polycyclic aromatic hydrocarbons is tested or predicted by combining the neural network with the alternating trilinear decomposition (ATLD) algorithm, artificial population algorithm (ABC), and hierarchical genetic algorithm (HGA). Its future development trend is discussed and prospected, which provides a reference for solving the pollution problem. We look forward to providing help for the follow-up research of scholars in this field.
Collapse
|
9
|
ZHANG W, LIU G, MA W, FANG M, ZHANG L. [Application progress of covalent organic framework materials in extraction of toxic and harmful substances]. Se Pu 2022; 40:600-609. [PMID: 35791598 PMCID: PMC9404040 DOI: 10.3724/sp.j.1123.2021.12004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Indexed: 12/03/2022] Open
Abstract
Toxic and hazardous substances constitute a category of compounds that are potentially hazardous to humans, other organisms, and the environment. These substances include pesticides (benzoylureas, pyrethroids, neonicotinoids), persistent organic pollutants (polycyclic aromatic hydrocarbons, polychlorinated biphenyls, perfluorinated compounds), plasticizers (phthalate esters, phenolic endocrine disruptors), medicines (sulfonamides, non-steroid anti-inflammatory drugs, tetracyclines, fluoroquinone antibiotics), heterocyclic aromatic amines, algal toxins, and radioactive substances. Discharge of these toxic and harmful substances, as well as their possible persistence and bioaccumulation, pose a major risk to human health, often to the extent of being life-threatening. Therefore, it is important to analyze and detect toxic and hazardous substances in the environment, drinking water, food, and daily commodities. Sample pretreatment is an imperative step in most of the currently used analytical methods, especially in the analysis of trace toxic and harmful substances in complex samples. An efficient and fast sample pretreatment technology not only helps improve the sensitivity, selectivity, reproducibility, and accuracy of analytical methods, but also avoids contamination of the analytical instruments and even damages the performance and working life of instruments. Sample pretreatment techniques widely used in the extraction of toxic and hazardous substances include solid-phase extraction (SPE), solid-phase microextraction (SPME), and dispersed solid-phase extraction (DSPE). The adsorbent material plays a key role in these pretreatment techniques, thereby determining their selectivity and efficiency. In recent years, covalent organic frameworks (COFs) have attracted increasing attention in sample pretreatment. COFs represent an exciting new class of porous crystalline materials constructed via the strong covalent bonding of organic building units through a reversible condensation reaction. COFs present four advantages: (1) precise control over structure type and pore size by consideration of the target molecular structure based on the connectivity and shape of the building units; (2) post-synthetic modification for chemical optimization of the pore interior toward optimized interaction with the target; (3) straightforward scalable synthesis; (4) feasible formation of composites with magnetic nanoparticles, carbon nanotubes, graphene, silica, etc., which is beneficial to enhance the performance of COFs and meet the requirement of diverse pretreatment technologies. Because of the well-defined crystalline porous structures and tailored functionalities, COFs have excellent potential for use in target extraction. However, some issues need to be addressed for the application of COFs in the extraction of toxic and hazardous substances. (1) For the sample matrix, most of the reported COFs are highly hydrophobic, which limits their dispersibility in water-based samples, leading to poor extraction performance. COFs with good dispersibility in water-based samples are urgently required. (2) Besides, COFs rely on hydrophobic interaction, size repulsion, π-π stacking, and Van der Waals forces to extract target substances, but they are not effective for some polar targets. Thus, it is necessary to develop COFs with high affinity for polar toxic and hazardous substances. (3) Methods for the synthesis of COFs have evolved from solvothermal methods to room-temperature methods, mechanical grinding, microwave-assisted synthesis, ion thermal methods, etc. Most of the existing methods are time-consuming, laborious, and environmentally unfriendly. The starting materials are too expensive to prepare COFs in large quantities. More effort is required to improve the synthesis efficiency and overcome the obstacles in the application of COFs for extraction. This article summarizes and reviews the research progress in COFs toward the extraction of toxic and hazardous substances in recent years. Finally, the application prospects of COFs in this field are summarized, which serves as a reference for further research into pretreatment technologies based on COFs.
Collapse
|
10
|
Bagheri AR, Aramesh N, Liu Z, Chen C, Shen W, Tang S. Recent Advances in the Application of Covalent Organic Frameworks in Extraction: A Review. Crit Rev Anal Chem 2022; 54:565-598. [PMID: 35757859 DOI: 10.1080/10408347.2022.2089838] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Covalent organic frameworks (COFs) are a class of emerging materials that are synthesized based on the covalent bonds between different building blocks. COFs possess unique attributes in terms of high porosity, tunable structure, ordered channels, easy modification, large surface area, and great physical and chemical stability. Due to these features, COFs have been extensively applied as adsorbents in various extraction modes. Enhanced extraction performance could be reached with modified COFs, where COFs are presented as composites with other materials including nanomaterials, carbon and its derivatives, silica, metal-organic frameworks, molecularly imprinted polymers, etc. This review article describes the recent advances, developments, and applications of COF-based materials being utilized as adsorbents in the extraction methods. The COFs, their properties, their synthesis approaches as well as their composite structures are reviewed. Most importantly, suggested mechanisms for the extraction of analyte(s) by COF-based materials are also discussed. Finally, the current challenges and future prospects of COF-based materials in extraction methods are summarized and considered in order to provide more insights into this field.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Zhiqiang Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Chengbo Chen
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province, China
| |
Collapse
|
11
|
In-syringe solid-phase extraction of polycyclic aromatic hydrocarbons using an iron–carboxylate metal–organic framework and hypercrosslinked polymer composite gelatin cryogel–modified cellulose acetate adsorbent. Mikrochim Acta 2022; 189:164. [DOI: 10.1007/s00604-022-05276-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/11/2022] [Indexed: 11/30/2022]
|
12
|
Xu S, Liu H, Long A, Li H, Chen C, Feng S, Fan J. Carbon Dot-Decorated Graphite Carbon Nitride Composites for Enhanced Solid-Phase Microextraction of Chlorobenzenes from Water. NANOMATERIALS 2022; 12:nano12030335. [PMID: 35159684 PMCID: PMC8838722 DOI: 10.3390/nano12030335] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/25/2023]
Abstract
In this work, carbon dot-decorated graphite carbon nitride composites (CDs/g-C3N4) were synthesized and innovatively used as a SPME coating for the sensitive determination of chlorobenzenes (CBs) from water samples, coupled with gas chromatography-mass spectrometry. The CDs/g-C3N4 coating presented superior extraction performance in comparison to pristine g-C3N4, owing to the enhancement of active groups by CDs. The extraction capacities of as-prepared SPME coatings are higher than those of commercial coatings due to the functions of nitrogen-containing and oxygen-containing group binding, π-π stacking, and hydrophobic interactions. Under optimized conditions, the proposed method exhibits a wide linearity range (0.25-2500 ng L-1), extremely low detection of limits (0.002-0.086 ng L-1), and excellent precision, with relative standard deviations of 5.3-9.7% for a single fiber and 7.5-12.6% for five fibers. Finally, the proposed method was successfully applied for the analysis of CBs from real river water samples, with spiked recoveries ranging from 73.4 to 109.1%. This study developed a novel and efficient SPME coating material for extracting organic pollutants from environmental samples.
Collapse
Affiliation(s)
- Shengrui Xu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China;
- Correspondence: (S.X.); (S.F.)
| | - Hailin Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
| | - Anying Long
- 113 Geological Brigade, Guizhou Bureau of Geology and Mineral Resources, Liupanshui 553000, China;
| | - Huimin Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
| | - Changpo Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
| | - Suling Feng
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China; (H.L.); (H.L.); (C.C.)
- Correspondence: (S.X.); (S.F.)
| | - Jing Fan
- Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution and Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang 453007, China;
| |
Collapse
|
13
|
Erdem P, Tağaç AA, Bozkurt SS, Merdivan M. Chitosan and dicationic ionic liquid intercalated clay-coated solid-phase microextraction fiber for determination of sixteen polycyclic aromatic hydrocarbons in coffee and tea samples. Talanta 2021; 235:122764. [PMID: 34517625 DOI: 10.1016/j.talanta.2021.122764] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/18/2022]
Abstract
In the present study, solid-phase microextraction (SPME) fiber was prepared by coating clay (MMT)-chitosan (CH) and dicationic ionic liquid (DIL) onto the stainless-steel wire step by step. The characterization of fibers was performed by Fourier transform infrared spectroscopy, thermal analysis, x-ray diffraction analysis, and scanning electron microscopy. The prepared fibers were evaluated for separation and determination of 16 polycyclic aromatic hydrocarbons (PAHs) in coffee and tea samples in headspace- and direct immersion-SPME by coupling with gas chromatography/mass spectrometry. The analytical performance of MMT/CH/DIL fibers was carried out for the extraction of PAHs and compared with the performance of carboxen/polydimethylsiloxane (CAR/PDMS) and divinylbenzene/CAR/PDMS (DVB/CAR/PDMS) fibers under optimized conditions. The wider linear ranges between 0.001 and 25 μg L-1 with a coefficient of determination above 0.9962, low limits of detection between 0.0001 and 0.05 μg L-1 and good intra-day repeatability from 2.45 to 6.48 % and fiber-to-fiber reproducibility from 3.19 % to 8.82 % were obtained for all PAHs in both methods with MMT/CH/octyl (O)-DIL fiber. The extraction recoveries of coffee and tea samples ranged from 87.5 to 112 % using the MMT/CH/O-DIL fiber in both SPME methods.
Collapse
Affiliation(s)
- Pelin Erdem
- Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, 35390, Izmir, Turkey
| | - Aylin Altınışık Tağaç
- Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, 35390, Izmir, Turkey
| | - Serap Seyhan Bozkurt
- Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, 35390, Izmir, Turkey
| | - Melek Merdivan
- Chemistry Department, Dokuz Eylul University, Tınaztepe Campus, 35390, Izmir, Turkey.
| |
Collapse
|
14
|
Su L, Zhang N, Tang J, Zhang L, Wu X. In-situ fabrication of a chlorine-functionalized covalent organic framework coating for solid-phase microextraction of polychlorinated biphenyls in surface water. Anal Chim Acta 2021; 1186:339120. [PMID: 34756254 DOI: 10.1016/j.aca.2021.339120] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 09/21/2021] [Indexed: 01/20/2023]
Abstract
The functionalization of covalent organic frameworks (COFs) identifies significant potential for developing selective coating materials for solid-phase microextraction (SPME). Herein, a chlorine-functionalized covalent organic framework (CF-COF) was in-situ synthesized by employing triformylphloroglucinol (Tp) and 2,5-dichloro-1,4-phenylenediamine (2,5-DCA) as monomers on an amino-functionalized stainless steel wire. The obtained CF-COF coated fiber exhibited a higher enrichment capacity for polychlorinated biphenyls (PCBs) than commercial fibers and non-chlorinated COF fiber, owing to a more hydrophobic surface, size-matching effect, a large number of micropores and the π-π stacking interactions between COF coating and analytes. As a practical application, the CF-COF coated fiber was applied to the headspace extraction of 17 PCBs prior to their quantification by GC/MS. The established analytical method offered a good linearity in the range of 0.1-1000 ng L-1, low detection limits of 0.0015-0.0088 ng L-1, and satisfactory enhancement factors (EFs) of 699-4281. The repeatability for single fiber and the fiber-to-fiber reproducibility was lower than 9.26% and 9.33%, respectively. The proposed method was verified to be sensitive, selective, and applicable for the analysis of ultra-trace PCBs in environmental surface water samples with the recoveries ranged from 78.7% to 124.0%.
Collapse
Affiliation(s)
- Lishen Su
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Ning Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Jingpu Tang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Lan Zhang
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Xiaoping Wu
- Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
15
|
FENG J, JI X, LI C, SUN M, HAN S, FENG J, SUN H, FENG Y, SUN M. [Recent advance of new sample preparation materials in the analysis and detection of environmental pollutants]. Se Pu 2021; 39:781-801. [PMID: 34212580 PMCID: PMC9404022 DOI: 10.3724/sp.j.1123.2021.02030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Indexed: 11/25/2022] Open
Abstract
To successfully analyze complex samples and detect trace targets, sample pretreatment is essential. Efficient sample pretreatment techniques can remove or reduce interference from the sample matrix. It can also enrich analytes, thereby improving analytical accuracy and sensitivity. In recent years, various sample preparation techniques, including SPE, magnetic dispersion SPE, pipette tip SPE, stir bar extraction, fiber SPME, and in-tube SPME, have received increasing attention in environmental analysis and monitoring. The extraction efficiency mainly depends on the type of adsorbent material. Therefore, the development of efficient adsorbents is a crucial step toward sample preparation. This review summarizes and discusses the research advances in extraction materials over recent years. These extraction materials contain inorganic adsorbents, organic adsorbents, and inorganic-organic hybrid materials such as graphene, graphene oxide, carbon nanotubes, inorganic aerogels, organic aerogels, triazinyl-functionalized materials, triazine-based polymers, molecularly imprinted polymers, covalent organic frameworks, metal-organic frameworks, and their derivatives. These materials have been applied to extract different types of pollutants, including metal ions, polycyclic aromatic hydrocarbons, plasticizers, alkanes, phenols, chlorophenols, chlorobenzenes, polybrominated diphenyl ethers, perfluorosulfonic acids, perfluorocarboxylic acids, estrogens, drug residues, and pesticide residues, from environmental samples (such as water and soil samples). These sample preparation materials possess high surface areas, numerous adsorption sites, and allow extraction via various mechanisms, such as π-π, electrostatic, hydrophobic, and hydrophilic interactions, as well as hydrogen and halogen bond formation. Various sample pretreatment techniques based on these extraction materials have been combined with various detection methods, including chromatography, mass spectrometry, atomic absorption spectroscopy, fluorescence spectroscopy, and ion mobility spectroscopy, and have been extensively used for the determination of environmental pollutants. The existing challenges associated with the development of sample preparation techniques are proposed, and prospects for such extraction materials in environmental analysis and monitoring are discussed. Major trends in the field, including the development of efficient extraction materials with high enrichment ability, good selectivity, excellent thermal stability, and chemical stability, are discussed. Green sample pretreatment materials, environmentally friendly synthesis methods, and green sample pretreatment methods are also explored. Rapid sample pretreatment methods that can be conducted within minutes or seconds are of significant interest. Further, online sample pretreatment and automatic analysis methods have attracted increasing attention. Besides, real-time analysis and in situ detection have been important development directions, and are expected to be widely applicable in environmental analysis, biological detection, and other fields. Modern synthesis technology should be introduced to synthesize specific extraction materials. Controllable preparation methods for extraction materials, such as the in situ growth or in situ preparation of extraction coatings, will acquire importance in coming years. It will also be important to adopt high-performance materials from other fields for sample pretreatment. Organic-inorganic hybrid extraction materials can combine the advantages both organic materials and inorganic materials, and mutually compensate for any disadvantages. Extraction materials doped with nanomaterials are also promising. Although existing sample pretreatment techniques are relatively efficient, it is still imperative to develop novel sample preparation methods.
Collapse
Affiliation(s)
- Juanjuan FENG
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiangping JI
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Chunying LI
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingxia SUN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Sen HAN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Jiaqing FENG
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Haili SUN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yang FENG
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Min SUN
- 济南大学化学化工学院, 山东 济南 250022
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
16
|
Li Y, Dong G, Li J, Xiang J, Yuan J, Wang H, Wang X. A solid-phase microextraction fiber coating based on magnetic covalent organic framework for highly efficient extraction of triclosan and methyltriclosan in environmental water and human urine samples. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112319. [PMID: 33993090 DOI: 10.1016/j.ecoenv.2021.112319] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Herein, we synthesized a kind of magnetic covalent organic framework nanohybrids (NiFe2O4@COF), and integrated it with polydimethyl siloxane and silicone rubber curing agent for solid phase microextraction (SPME) fiber coating. The fiber coating demonstrated a porous and uniform surface with the BET specific surface of 169.7 m2 g-1. As for seven environmental analytes, the NiFe2O4@COF-based SPME fiber coating gave the higher extraction recoveries for triclosan (TCS) and methyltriclosn (MTCS) than those of fenpropathrin, bifenthrin, permethrin, fenvalerate and deltamethrin. Several operational parameters were rigorously optimized, such as extraction temperature, extraction time, thermal desorption time, solution pH and salt effect. Combined with the GC-ECD detection, the newly developed microextraction method supplied the wide linear range of 0.1-1000 µg L-1 with the correlation coefficients of > 0.9995. The limits of detection (LODs) and limits of quantitation (LOQs) reached as low as 1-7 ng L-1 and 3.3-23 ng L-1, respectively. The intra-day and inter-day precisions in six replicates (n = 6 ) were < 3.55% and < 5.06%, respectively, and the fiber-to-fiber reproducibility (n = 3) was < 7.64%. To evaluate its feasibility in real samples, the fortified recoveries for TCS and MTCS, at low (0.2 µg L-1), middle (2.0 µg L-1) and high (20.0 µg L-1) levels, varied between 81.9% and 119.1% in tap, river and barreled waters as well as male, female and children urine samples. Especially, it is worth mentioning that the NiFe2O4@COF-based SPME coating fiber can be recycled for at least 150 times with nearly unchanged extraction efficiency. Moreover, the extraction recoveries by the as-fabricated fiber coating were much higher than those by three commercial fibers (PDMS, PDMS/DVB and PDMS/DVB/CAR). Overall, the NiFe2O4@COF-based SPME is a convenient, sensitive, efficient and "green" pretreatment method, thereby possessing important application prospects in trace monitoring of TCS-like pollutants in complex liquid matrices.
Collapse
Affiliation(s)
- Yanyan Li
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Guozhong Dong
- School of Sports Science, Fujian Normal University, Fuzhou 350117, China
| | - Jianye Li
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jianxing Xiang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingrui Yuan
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Xuedong Wang
- Zhejiang Provincial Key Laboratory of Watershed Science and Health, Southern Zhejiang Water Research Institute, College of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
17
|
Wang Z, Zhang Y, Chang G, Li J, Yang X, Zhang S, Zang X, Wang C, Wang Z. Triazine-based covalent organic polymer: A promising coating for solid-phase microextraction. J Sep Sci 2021; 44:3608-3617. [PMID: 34329505 DOI: 10.1002/jssc.202100442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 11/08/2022]
Abstract
Advancement of novel coating materials for solid-phase microextraction is highly needed for sample pretreatment. Herein, a triazine-based covalent organic polymer was constructed from the monomers of cyanuric chloride and trans-stilbene via the Friedel-Crafts reaction and thereafter used as a solid-phase microextraction fiber coating for the extraction of polycyclic aromatic hydrocarbons and their nitrated and oxygenated derivatives. The newly-developed solid-phase microextraction method coupled with gas chromatography/flame ionization detection gives enhancement factors of 548-1236 and limits of detection of 0.40-2.81 ng/L for the determination of polycyclic aromatic hydrocarbons and their derivatives. The one fiber precision for five replicate determinations of the analytes and the fiber-to-fiber precision with three parallel prepared fibers, expressed as relative standard deviations, was in the range of 4.6-9.4% and 6.2-10.9%, respectively. The relative recoveries of the analytes for environmental water samples were in the range of 88.6-106.4% with the relative standard deviations ranging from 4.0 to 11.7% (n = 5).
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Ying Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Guifen Chang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Jinqiu Li
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Xiumin Yang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Shuaihua Zhang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Xiaohuan Zang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Chun Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| | - Zhi Wang
- Department of Chemistry, College of Science, Hebei Agricultural University, Baoding, 071001, P. R. China
| |
Collapse
|
18
|
Wu H, Li D, Zhao B, Guan S, Jing X, Ding Y, Fan G. Magnetic covalent organic framework nanocomposites as a new adsorbent for the determination of polycyclic aromatic hydrocarbons in water and food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2847-2856. [PMID: 34085678 DOI: 10.1039/d1ay00496d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A magnetic covalent organic framework nanocomposite (Fe3O4@COF(Tp-NDA)) was synthesized via a solvothermal method, used as a magnetic adsorbent for the extraction of polycyclic aromatic hydrocarbons (PAHs) from lake water, tea, coffee, and fried chicken, and detected using a high performance liquid chromatography-ultraviolet detector. The synthesized magnetic adsorbent was characterized via transmission electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, N2 adsorption-desorption isotherm analysis and vibrating sample magnetometry. Parameters that affected the extraction conditions and desorption conditions were optimized. Adsorption equilibrium could be attained within 3 min. The prepared magnetic material could be reused 10 times. The limits of detection and quantification were 0.05-0.25 μg L-1 and 0.17-0.83 μg L-1, respectively. The recovery was 74.6-101.8% with a relative standard deviation of below 4.2%. The method was successfully used to detect PAHs in various samples.
Collapse
Affiliation(s)
- Hao Wu
- School of Chemistry and Materials Science of Shanxi Normal University, Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Linfen 041004, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Song C, Shao Y, Yue Z, Hu Q, Zheng J, Yuan H, Yu A, Zhang W, Zhang S, Ouyang G. Sheathed in-situ room-temperature growth covalent organic framework solid-phase microextraction fiber for detecting ultratrace polybrominated diphenyl ethers from environmental samples. Anal Chim Acta 2021; 1176:338772. [PMID: 34399894 DOI: 10.1016/j.aca.2021.338772] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 01/08/2023]
Abstract
The extraction performance of solid-phase microextraction (SPME) fiber is significantly influenced by coating materials and fabricating process. It is urgently needed for fabricating robust SPME fiber with facile preparation methods. Herein, a novel polyimide (PI) @ covalent organic framework (COF) synthesized by 1,3,5-Tris (4-aminophenyl) benzene (TPB) and 2,5-dimethoxyterephthalaldehyde (DMTP) fiber, named PI@TPB-DMTP fiber, was successfully fabricated with facile method at room temperature. Firstly, a COF crystals TPB-DMTP was in situ grown on stainless steel fiber, where the COF crystals was synthesized by the Schiff-base reaction between TPB and DMTP. Subsequently, the COF coating was covered with an ultrathin layer of PI through a simple dip-coating method to improve the fiber stability. By coupled PI@TPB-DMTP SPME fiber with gas chromatography-negative chemical ion-mass spectrometry (GC-NCI-MS), a sensitive analytical method was established for the determination of ultratrace polybrominated diphenyl ethers (PBDEs) in water sample. To achieve the best efficiency and sensitivity for the analysis of PBDEs, six potential influencing factors in extraction step and desorption step were optimized. Under optimized conditions, the established method showed high enhancement factors of 1470-3555, wide linear range of 0.05-100 ng L-1, low detection limits of 0.0083-0.0190 ng L-1, good repeatability for intra-day in the range of 3.71%-7.62% and inter-day in the range of 5.12%-8.81%, good reproducibility in the range of 6.83%-9.21%. The satisfactory recovery was ranged from 79.2% to 117.3% in determining real water samples. The excellent experimental performance was mainly attributed to the large specific surface area of TPB-DMTP, as well as the high permeability of porous PI film. The results demonstrated that the COF-based fiber showed great potential for analysis of PBDEs in complex environmental samples.
Collapse
Affiliation(s)
- Chenchen Song
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Yuanyuan Shao
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Zeyi Yue
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Qingkun Hu
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, PR China
| | - Jiating Zheng
- KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, PR China
| | - Hang Yuan
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Ajuan Yu
- College of Chemistry, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Wenfen Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Shusheng Zhang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China
| | - Gangfeng Ouyang
- Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, PR China; KLGHEI of Environment and Energy Chemistry, School of Chemistry, Sun Yat- Sen University, Guangzhou, Guangdong, 510275, PR China.
| |
Collapse
|
20
|
Ji R, Wu Y, Bian Y, Song Y, Sun Q, Jiang X, Zhang L, Han J, Cheng H. Nitrogen-doped porous biochar derived from marine algae for efficient solid-phase microextraction of chlorobenzenes from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124785. [PMID: 33348203 DOI: 10.1016/j.jhazmat.2020.124785] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/06/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Nitrogen-doped porous biochar (NPB) with a large specific surface area, wide pore size distribution, graphitized structure, nitrogen doping, and hydrophobicity was fabricated by high-temperature modification of algal biochar with potassium carbonate. This NPB was then uniformly coated on stainless steel wire as a novel solid-phase microextraction (SPME) fiber. The extraction efficiency of NPB-coated fiber for seven chlorobenzenes (CBs) was excellent; it was 1.0-112.2 times higher than that of commercial SPME fibers. A trace determination method was developed for seven CBs in water with the optimized extraction conditions by NPB-coated fiber and gas chromatography-electron capture detector, which showed wide linear ranges (1-1000 ng L-1), low detection limits (0.007-0.079 ng L-1), great repeatability (2.5-6.5% for intra-day, and 3.1-6.8% for inter-day), and excellent reproducibility (3.5-6.3%, n = 5). The practicality of the developed method was evaluated using real water samples and showed great recoveries (89.55-105.19%). This study showed that low-cost biomass wastes could be converted to advanced biochar materials by a facile method, and displayed excellent performance in SPME applications.
Collapse
Affiliation(s)
- Rongting Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China; Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yarui Wu
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Qian Sun
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, PR China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Longjiang Zhang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, PR China
| | - Jiangang Han
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hu Cheng
- Co-Innovation Center for the Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100015, PR China.
| |
Collapse
|
21
|
Feng J, Feng J, Ji X, Li C, Han S, Sun H, Sun M. Recent advances of covalent organic frameworks for solid-phase microextraction. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116208] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
22
|
Hagghi A, Dalali N, Abolghasemi MM. Selectively Determination Trace Amounts of Polycyclic Aromatic Hydrocarbons from Water and Wastewater Matrices Using Graphitic Carbon Nitride/Layered Double Hydroxide Nanocomposite on Porous Anodized Aluminum Wire as SPME Fiber. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.1886122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Asghar Hagghi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Nasser Dalali
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | | |
Collapse
|
23
|
Jagirani MS, Soylak M. A review: Recent advances in solid phase microextraction of toxic pollutants using nanotechnology scenario. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105436] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
24
|
Shi Z, Pang W, Chen M, Wu Y, Zhang H. Polyaniline-Modified Magnetic Halloysite Nanotube-Based Magnetic Micro-Solid-Phase Extraction for the Analysis of Polycyclic Aromatic Hydrocarbons in Beer Samples by Gas Chromatography-Mass Spectrometry. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01917-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
25
|
Jarju JJ, Lavender AM, Espiña B, Romero V, Salonen LM. Covalent Organic Framework Composites: Synthesis and Analytical Applications. Molecules 2020; 25:E5404. [PMID: 33218211 PMCID: PMC7699276 DOI: 10.3390/molecules25225404] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/06/2020] [Accepted: 11/12/2020] [Indexed: 01/25/2023] Open
Abstract
In the recent years, composite materials containing covalent organic frameworks (COFs) have raised increasing interest for analytical applications. To date, various synthesis techniques have emerged that allow for the preparation of crystalline and porous COF composites with various materials. Herein, we summarize the most common methods used to gain access to crystalline COF composites with magnetic nanoparticles, other oxide materials, graphene and graphene oxide, and metal nanoparticles. Additionally, some examples of stainless steel, polymer, and metal-organic framework composites are presented. Thereafter, we discuss the use of these composites for chromatographic separation, environmental remediation, and sensing.
Collapse
Affiliation(s)
- Jenni J. Jarju
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Ana M. Lavender
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| | - Vanesa Romero
- Department of Food and Analytical Chemistry, Marine Research Center (CIM), University of Vigo, As Lagoas, Marcosende, 36310 Vigo, Spain
| | - Laura M. Salonen
- International Iberian Nanotechnology Laboratory (INL), Av. Mestre José Veiga, 4715-330 Braga, Portugal; (J.J.J.); (A.M.L.); (B.E.)
| |
Collapse
|
26
|
Ji W, Guo YS, Xie HM, Wang X, Jiang X, Guo DS. Rapid microwave synthesis of dioxin-linked covalent organic framework for efficient micro-extraction of perfluorinated alkyl substances from water. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122793. [PMID: 32361142 DOI: 10.1016/j.jhazmat.2020.122793] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/08/2020] [Accepted: 04/19/2020] [Indexed: 05/23/2023]
Abstract
To synthesize covalent organic framework (COF) via irreversible reactions is more challenging than by reversible ones. In this work, microwave-assisted synthesis is used to facilitate the nucleophilic substitution of 2,3,5,6-tetrafluoro-4-pyridinecarbonitrile with 2,3,6,7,10,11-hexahydroxy triphenylene. The dioxin-linked COF, named TH-COF, was efficiently synthesized with extraordinarily large surface area of 1254 m2 g-1. With its high crystallinity, excellent thermal and chemical stabilities, TH-COF is used as the coating for the solid-phase micro-extraction (SPME) of perfluorinated alkyl substances (PFASs). The adsorptive mechanism was evaluated with adsorption isotherm and kinetic adsorption. Adsorption energies are calculated based on the density functional theory. Following SPME with TH-COF-coated fibers, PFASs were eluted using 1 mL of 0.6% trifluoroacetic acid/methanol and analyzed through the ultra-performance liquid chromatography equipped with triple quadrupole mass spectrometer (UPLC-MS/MS). When applied to spiked real water samples, this method demonstrates good linearity (0.01-1000 ng L-1) with R2 ≥ 0.9945. The TH-COF-SPME-UPLC-MS/MS technique provides low limits of detection (0.0020-0.0045 ng L-1), excellent precision (≤ 7.9%), and good fiber-to-fiber reproducibility (≤ 7.1%). The TH-COF-coated fibers can be reused at least 20 times without the loss of extraction performance. In addition, the relative recoveries from spiked real water samples are 89.5%-105%.
Collapse
Affiliation(s)
- Wenhua Ji
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Yu-Shuang Guo
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Hui-Min Xie
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Xiao Wang
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China; School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China.
| | - Xin Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China
| | - Dian-Shun Guo
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
27
|
Modulated construction of imine-based covalent organic frameworks for efficient adsorption of polycyclic aromatic hydrocarbons from honey samples. Anal Chim Acta 2020; 1134:50-57. [DOI: 10.1016/j.aca.2020.07.072] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
|
28
|
Ji X, Feng J, Li C, Han S, Sun M, Feng J, Sun H, Fan J, Guo W. Application of biocharcoal aerogel sorbent for solid-phase microextraction of polycyclic aromatic hydrocarbons in water samples. J Sep Sci 2020; 43:4364-4373. [PMID: 32979006 DOI: 10.1002/jssc.202000910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 09/24/2020] [Indexed: 12/11/2022]
Abstract
A facile method was introduced for preparing a biocharcoal aerogel, which was derived from pomelo peel as the only raw material. The inner spongy layer of pomelo peel was freeze-dried for maintaining three-dimensional structure and then carbonized under high temperature and oxygen-limited conditions. The morphological structure and graphitization degree of biocharcoal aerogel were characterized using a scanning electron microscope and Raman spectrum. After sifting and grinding, the biocharcoal aerogel as an adsorbent was coated onto the surface of stainless steel wires. Through placing the wires into a polyetheretherketone tube, the in-tube solid-phase microextraction device was obtained. Coupled with high-performance liquid chromatography, it exhibited good extraction performance for polycyclic aromatic hydrocarbons, then an online analytical method was established with low limits of detection (0.005-0.050 ng/mL), wide linear ranges (0.017-15 ng/mL) with superior correlation coefficients higher than 0.9990, high enrichment factors (1128-3425), and acceptable intra- and inter-day repeatabilities (relative standard deviations ≤ 6.7%, n = 3). The method was applied to detect polycyclic aromatic hydrocarbons in bottled water samples, environmental water samples, and soft drinks with satisfactory recoveries (83.3-120.9%). This research not only developed a new carbon aerogel but also evaluated its adsorption performance in sample preparation.
Collapse
Affiliation(s)
- Xiangping Ji
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Juanjuan Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Chunying Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Sen Han
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Min Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Jiaqing Feng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Haili Sun
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| | - Jing Fan
- School of Pharmaceutical Sciences, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, P. R. China
| | - Wenjuan Guo
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, P. R. China
| |
Collapse
|
29
|
Jalili V, Barkhordari A, Ghiasvand A. Solid-phase microextraction technique for sampling and preconcentration of polycyclic aromatic hydrocarbons: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
30
|
Wu Q, Song Y, Wang Q, Liu W, Hao L, Wang Z, Wang C. Combination of magnetic solid-phase extraction and HPLC-UV for simultaneous determination of four phthalate esters in plastic bottled juice. Food Chem 2020; 339:127855. [PMID: 32858384 DOI: 10.1016/j.foodchem.2020.127855] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 11/18/2022]
Abstract
A magnetic o-hydroxyazobenzene (M-HAzo) porous organic polymer was facilely prepared by a green azo coupling reaction in aqueous solution. The prepared M-HAzo was applied as a new adsorbent for the first time to pre-concentrate phthalate esters (PAEs) from plastic bottled juice, followed by their determination with high performance liquid chromatography-ultraviolet detection. The effects of various parameters, i.e., the mass ratio of the Fe3O4@SiO2 to HAzo, extraction time, ionic strength, pH of the sample, desorption conditions were optimized. Under the optimized conditions, the M-HAzo based method exhibited good performance in terms of linear range (0.3-50.0 μg L-1), detection limit (0.08-0.50 μg L-1), accuracy (recovery of 78.0-115.0%) and repeatability (relative standard deviation of 2.9-7.8%). This work provides a sensitive method for analysis of PAEs at trace levels in drinks, which is featured with high sensitivity, simple operation and environmentally-friendly merit and will have a promising potential in analysis of other organic pollutants.
Collapse
Affiliation(s)
- Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Yuhong Song
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Weihua Liu
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
31
|
Ma R, Wang W, Wang Z, Zhang S, Li Z, Li J, Zang X, Wang C, Wang Z. Mesoporous covalent organic polymer nanospheres for the preconcentration of polycyclic aromatic hydrocarbons and their derivatives. J Chromatogr A 2020; 1624:461217. [DOI: 10.1016/j.chroma.2020.461217] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 11/16/2022]
|
32
|
Determination of Benzo[a]pyrene in Roast Meat by In Situ Growth of Covalent Organic Framework on Titanium Wire for Solid-Phase Microextraction Coupled with GC-FID. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01812-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
33
|
Sun X, Ji W, Hou S, Wang X. Facile synthesis of trifluoromethyl covalent organic framework for the efficient microextraction of per-and polyfluorinated alkyl substances from milk products. J Chromatogr A 2020; 1623:461197. [DOI: 10.1016/j.chroma.2020.461197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/27/2022]
|
34
|
Martínez-Pérez-Cejuela H, Guiñez M, Simó-Alfonso EF, Amorós P, El Haskouri J, Herrero-Martínez JM. In situ growth of metal-organic framework HKUST-1 in an organic polymer as sorbent for nitrated and oxygenated polycyclic aromatic hydrocarbon in environmental water samples prior to quantitation by HPLC-UV. Mikrochim Acta 2020; 187:301. [DOI: 10.1007/s00604-020-04265-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/09/2020] [Indexed: 12/22/2022]
|
35
|
Li J, Xiao Z, Wang W, Zhang S, Wu Q, Wang C, Wang Z. Rational integration of porous organic polymer and multiwall carbon nanotube for the microextraction of polycyclic aromatic hydrocarbons. Mikrochim Acta 2020; 187:284. [PMID: 32323029 DOI: 10.1007/s00604-020-04261-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
By integration of benzene-constructed porous organic polymer (KBF) and multiwalled carbon nanotube (MWCNT), a MWCNT-KBF hybrid material was constructed through in situ knitting benzene with formaldehyde dimethyl acetal in the presence of MWCNTs to form a network. MWCNT-KBF was then adopted as a novel solid-phase microextraction (SPME) fiber coating. Coupled to gas chromatography-flame ionization detection, the MWCNT-KBF-assisted SPME method showed large enhancement factors (483-2066), low limits of detection (0.04-0.12 μg L-1), good linearity (0.13-50 μg L-1), and acceptable reproducibility (4.2-10.2%) for the determination of polycyclic aromatic hydrocarbons (PAHs). The method recoveries of seven PAHs were in the range 80.1-116.3%, with relative standard deviations (RSDs) ranging from 3.5 to 11.9%. The SPME method was successfully applied to the determination of PAHs in river, pond, rain, and waste water, providing a good alternative for monitoring trace level of PAHs in environmental water. Graphical abstract Schematic representation of the rational integration of porous organic polymer (KBF) and multiwalled carbon nanotube (MWCNT) to form a MWCNT-KBF hybrid material through in situ knitting benzene with formaldehyde dimethyl acetal at the presence of MWCNT.
Collapse
Affiliation(s)
- Jinqiu Li
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Zhichang Xiao
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Wenjin Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Shuaihua Zhang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding, 071001, Hebei, China
| |
Collapse
|
36
|
Molybdenum disulfide–hypercrosslinked polymer composite as an adsorbent for determination of polycyclic aromatic hydrocarbons in environmental water coupled with HPLC–FLD. Mikrochim Acta 2020; 187:242. [DOI: 10.1007/s00604-020-4220-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 03/07/2020] [Indexed: 12/21/2022]
|
37
|
Graphene oxide/polydimethylsiloxane-coated stainless steel mesh for use in solid-phase extraction cartridges and extraction of polycyclic aromatic hydrocarbons. Mikrochim Acta 2020; 187:213. [DOI: 10.1007/s00604-020-4193-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/24/2020] [Indexed: 11/26/2022]
|
38
|
Ghaemmaghami M, Yamini Y, Mousavi KZ. Accordion-like Ti3C2Tx MXene nanosheets as a high-performance solid phase microextraction adsorbent for determination of polycyclic aromatic hydrocarbons using GC-MS. Mikrochim Acta 2020; 187:151. [DOI: 10.1007/s00604-020-4123-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/12/2020] [Indexed: 02/07/2023]
|
39
|
Si R, Han Y, Wu D, Qiao F, Bai L, Wang Z, Yan H. Ionic liquid-organic-functionalized ordered mesoporous silica-integrated dispersive solid-phase extraction for determination of plant growth regulators in fresh Panax ginseng. Talanta 2020; 207:120247. [DOI: 10.1016/j.talanta.2019.120247] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 02/08/2023]
|
40
|
He M, Ou X, Wang Y, Chen Z, Li D, Chen B, Hu B. Porous organic frameworks-based (micro)extraction. J Chromatogr A 2020; 1609:460477. [DOI: 10.1016/j.chroma.2019.460477] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/20/2022]
|
41
|
Chen Y, Xia L, Liang R, Lu Z, Li L, Huo B, Li G, Hu Y. Advanced materials for sample preparation in recent decade. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.115652] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
A porous aromatic framework as a versatile fiber coating for solid-phase microextraction of polar and nonpolar aromatic organic compounds. Mikrochim Acta 2019; 186:535. [PMID: 31317278 DOI: 10.1007/s00604-019-3669-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/06/2019] [Indexed: 12/28/2022]
Abstract
A porous aromatic framework (PAF) derived from triphenylamine (type PAF-41) was prepared and is shown to be a viable coating for fibrous solid-phase microextraction (SPME). PAF-41 can be easily synthesized and has a high surface area, a rich π-electron structure, and electron-rich nitrogen atoms in its framework. The PAF-41-coated fibrous SPME extractor was combined with a gas chromatographic separation and flame ionization detection. The method was applied to the quantitation of some aromatic organic compounds (AOCs), including polar amphetamine and methamphetamine and nonpolar ethylbenzene, o-, m- and p-xylenes, and styrene. The method was optimized after which a linear response is found for the 10-500 ng·mL-1 amphetamine and methamphetamine concentration ranges. The limits of detection are 1.0 and 0.5 ng·mL-1; and relative standard deviations for six repeated extractions with a single fiber are 5.3 and 6.7%. The method was applied for the determination of amphetamine and methamphetamine in spiked urine samples without any pretreatment except for dilution with water. The PAF-41 modified fiber also was applied to the extraction of styrene, xylenes and ethylbenzene. The enrichment capacities of the extractor for these AOCs were superior to those of commercial SPME extractors. Graphical abstract (a) Schemetic of the PAF-41-coated solid-phase microextraction (SPME) fiber. (b) Scanning electron microscope images of the PAF-41 fiber.
Collapse
|
43
|
Ma TT, Shen XF, Yang C, Qian HL, Pang YH, Yan XP. Covalent immobilization of covalent organic framework on stainless steel wire for solid-phase microextraction GC-MS/MS determination of sixteen polycyclic aromatic hydrocarbons in grilled meat samples. Talanta 2019; 201:413-418. [PMID: 31122443 DOI: 10.1016/j.talanta.2019.04.031] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 01/01/2023]
Abstract
Covalent organic framework TpBD was grafted on stainless steel wire with polydopamine as a linker. The fabricated TpBD bonded stainless steel wire was used as the solid-phase microextraction fiber to extract sixteen polycyclic aromatic hydrocarbons (PAHs) for subsequent GC-MS/MS determination in grilled meat samples. The developed method gave the limits of detection (S/N = 3) from 0.02 (pyrene)-1.66 (naphthalene) ng L-1 and enhancement factors from 1069 (naphthalene)-10879 (benz(a)anthracene). The relative standard deviations (RSDs) for intra-day and inter-day study are in the range of 2.6%-8.5% and 4.5%-9.4%, respectively. The fiber-to-fiber RSDs for three parallel prepared fibers were 5.3%-10.0%. One TpBD bonded fiber can stand at least 200 cycles without significant loss of extraction efficiency. The developed method was successfully applied for the determination of trace PAHs in grilled meat samples with recoveries from 85.1% to 102.8%.
Collapse
Affiliation(s)
- Tian-Tian Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiao-Fang Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Yue-Hong Pang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|