1
|
Jiang D, Wu S, Li Y, Qi R, Liu J. Cobalt Phthalocyanine-Modified Magnetic Metal-Organic Frameworks for Specific Enrichment of Phosphopeptides. ACS Biomater Sci Eng 2024; 10:3739-3746. [PMID: 38814242 DOI: 10.1021/acsbiomaterials.4c00509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
For mass spectrometry (MS)-based phosphoproteomics studies, sample pretreatment is an essential step for efficient identification of low-abundance phosphopeptides. Herein, a cobalt phthalocyanine-modified magnetic metal-organic framework (MOF) (Fe3O4@MIL-101-CoPc) was prepared and applied to enrich phosphopeptides before MS analysis. Fe3O4@MIL-101-CoPc exhibited an excellent magnetic response (74.98 emu g-1) and good hydrophilicity (7.75°), which were favorable for the enrichment. Fe3O4@MIL-101-CoPc showed good enrichment performance with high selectivity (1:1:5000), sensitivity (0.1 fmol), reusability (10 circles), and recovery (91.3%). Additionally, the Fe3O4@MIL-101-CoPc-based MS method was able to successfully detect 827 phosphopeptides from the A549 cell lysate, demonstrating a high enrichment efficiency (89.3%). This study promotes the application of postfunctionalized MOFs for phosphoproteomics analysis.
Collapse
Affiliation(s)
- Dandan Jiang
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, P. R. China
| | - Siyu Wu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, P. R. China
| | - Yangyang Li
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, P. R. China
| | - Ruixue Qi
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, P. R. China
| | - Jinghai Liu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), Inner Mongolia Minzu University, Tongliao 028000, P. R. China
| |
Collapse
|
2
|
Wu W, Tang R, Li Z, Shen Y, Ma S, Ou J. Fabrication of hydrophilic titanium (IV)-immobilized polydispersed microspheres via inverse suspension polymerization for enrichment of phosphopeptides in milk. Food Chem 2022; 395:133608. [DOI: 10.1016/j.foodchem.2022.133608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
|
3
|
Zhang X, Feng Q, Xie Z, Xu F, Yan Y, Ding C. A Ti/Nb-functionalized COF material based on IMAC strategy for efficient separation of phosphopeptides and phosphorylated exosomes. Anal Bioanal Chem 2022; 414:7885-7895. [PMID: 36136112 DOI: 10.1007/s00216-022-04323-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 11/01/2022]
Abstract
In this work, on the basis of an immobilized metal ion affinity chromatography enrichment strategy, a new kind of covalent organic framework (COF) material for enrichment of phosphorylated peptides and exosomes was successfully prepared in a facile method, and Ti4+ and Nb5+ were used as dual-functional ions (denoted as COF-S-S-COOH-Ti4+/Nb5+). With the advantage of unbiased enrichment towards phosphopeptides, COF-S-S-COOH-Ti4+/Nb5+ shows ultra-high selectivity (maximum molar ratio of β-casein: BSA is 1:20,000) and low limit of detection (0.2 fmol). In addition, the material has an excellent phosphopeptide loading capacity (100 μg/mg) and reusability (at least seven times). Furthermore, applying the material to the actual sample, 4 phosphopeptides were selectively extracted from the serum of renal carcinoma patients. At the same time, exosomes with an intact structure in the serum of renal carcinoma patients were successfully isolated rapidly using this strategy. All experiments have shown that COF-S-S-COOH-Ti4+/Nb5+ exhibits exciting potential in practical applications.
Collapse
Affiliation(s)
- Xiaoya Zhang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Zehu Xie
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Fuxing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Chuanfan Ding
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| |
Collapse
|
4
|
Zhang N, Huang T, Xie P, Yang Z, Zhang L, Wu X, Cai Z. Epitaxial Growth of Guanidyl-Functionalized Magnetic Metal-Organic Frameworks with Multiaffinity Sites for Selective Capture of Global Phosphopeptides. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39364-39374. [PMID: 35993677 DOI: 10.1021/acsami.2c10353] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The flexible and controlled synthesis of metal-organic framework (MOF)-derived hybrid nanostructures is of great significance in fine tuning of their enrichment performance in large-scale and in-depth phosphoproteome analysis. Herein, a magnetic guanidyl-functionalized MOF hybrid coating with multiaffinity sites, denoted as Fe3O4@G-ZIF-8, was fast fabricated via a one-pot epitaxial growth strategy for the first time and applied for selective and highly efficient enrichment of global phosphopeptides. The intrinsic unsaturated metal sites of ZIF-8 endow the surface-mounted MOF coatings with immobilized metal ion affinity chromatography interaction with multiphosphorylated peptides. The oriented anchoring of bifunctional guanidineacetic acid on the magnetic MOF nanospheres provides additional affinity sites (guanidyl groups) for specific recognition of phosphopeptides by "salt bridge" interaction, as well as active site carboxyl groups for the coordination with the metal ions. The as-prepared Fe3O4@G-ZIF-8 exhibits large surface area (382.5 m2 g-1), good superparamagnetic property (41.6 emu g-1) and stability, and size-exclusion effect (1.73 nm), which can serve as a specific adsorbent for global phosphopeptide analysis with satisfactory selectivity, great detection sensitivity (1 fmol), and rapid magnetic separation. Moreover, the successful application of Fe3O4@G-ZIF-8 for selective capture of both multi- and mono-phosphopeptides from human saliva and serum demonstrated the great potential of magnetic surface-mounted MOF coatings in effective identification of low-abundance phosphopeptides by matrix-assisted laser desorption ionization time-of-flight mass spectrometry from complicated biological matrices.
Collapse
Affiliation(s)
- Ning Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
- Institute of Environmental and Analytical Science, School of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, Henan, P. R. China
| | - Ting Huang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Peisi Xie
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, SAR, China
| | - Zhu Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, SAR, China
| | - Lan Zhang
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xiaoping Wu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology; College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Kowloon 999077, Hong Kong, SAR, China
| |
Collapse
|
5
|
Zeng H, Hajizadeh S, Yu X, Wan J, Ye L, Cao X. Synthesis of Core@Brush microspheres by atom transfer radical polymerization for capturing phosphoprotein β-casein utilizing iron ion chelation and Schiff base bio-conjugation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Li F, Wang M, Zhou J, Yang M, Wang T. Nanocomposites of boronic acid-functionalized magnetic multi-walled carbon nanotubes with flexible branched polymers as a novel desorption/ionization matrix for the capture and direct detection of cis-diol-flavonoid compounds coupled with MALDI-TOF-MS. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128055. [PMID: 35236020 DOI: 10.1016/j.jhazmat.2021.128055] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Novel boronic acid-functionalized magnetic multi-walled carbon nanotubes with flexible branched polymer (Fe3O4@MWCNTs@ε-PL@BA) nanocomposites were fabricated and applied as the desorption/ionization matrix for the MALDI-TOF-MS determination of low molecular weight flavonoids. The prepared nanocomposite was systematically characterized by various techniques. Compared to the traditional organic matrix, the proposed Fe3O4@MWCNTs@ε-PL@BA matrix has excellent ionization efficiency and low-background noise interference due to the MWCNTs unique electron-phonon interaction and the high introduction density of boronic acid functional groups. Good sensitivity and ultra-high salt tolerance of the Fe3O4@MWCNTs@ε-PL@BA-assisted MALDI-TOF-MS were permitted for the determination and quantification of flavonoids in actual samples. Noticeably, the limits of detection (LODs) for the target flavonoids were in the range 17-33 nM. The relative standard deviations (RSDs) of spot-to-spot and sample-to-sample (n = 10) were ≤ 9.8% and ≤ 10.1%, respectively. Furthermore, the wide linear ranges (0.1 - 500 µg/mL) and satisfactory calibration plot coefficients (R2 > 0.99) of flavonoids were achieved by MALDI-TOF-MS with the Fe3O4@MWCNTs@ε-PL@BA matrix. Good recoveries (92-105.5%) were achieved for the target flavonoids in practical food samples. Hence, the prepared Fe3O4@MWCNTs@ε-PL@BA nanocomposites have applications in the selective and efficient capture of target flavonoids active biomolecules coupled with MALDI-TOF-MS determination in actual samples.
Collapse
Affiliation(s)
- FuKai Li
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - Min Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - Jian Zhou
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| | - MengRui Yang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China.
| | - TongTong Wang
- Institute of Quality Standard and Testing Technology for Agro-products, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, PR China; Key Laboratory of Agro-food Safety and Quality, Ministry of Agriculture and Rural Affairs, Beijing 100081, PR China
| |
Collapse
|
7
|
Qi H, Li Z, Zheng H, Jia Q. Carnosine functionalized magnetic metal-organic framework nanocomposites for synergistic enrichment of phosphopeptides. Anal Chim Acta 2021; 1157:338383. [PMID: 33832591 DOI: 10.1016/j.aca.2021.338383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 10/21/2022]
Abstract
Protein phosphorylation regulates the conformations and function of proteins, which plays an important part in organisms. However, systematic and in-depth analysis of phosphorylation often hinders on account of the low abundance and suppressed ionization of phosphopeptides. Various materials based on single enrichment mechanism show potential in phosphopeptides enrichment, but the enrichment performance is typically not satisfactory. Herein, we developed a carnosine (Car) functionalized magnetic metal organic framework designed as Fe3O4@NH2@ZIF-90@Car. Benefiting from the multiple recognition groups of Car and massive metal ions site of ZIF-90, the as-fabricated Fe3O4@NH2@ZIF-90@Car was utilized as a multifunctional material with synergistic effect for phosphopeptides enrichment. On the basis of combined immobilized metal ion affinity chromatography (IMAC) and amine-based affinity enrichment mechanism, Fe3O4@NH2@ZIF-90@Car exhibited higher enrichment performance of phosphopeptides compared with Fe3O4@NH2@ZIF-90 (single IMAC mechanism). Besides, the feasibility of Fe3O4@NH2@ZIF-90@Car nanocomposites in complicated samples was further verified by enriching phosphopeptides from nonfat milk, human fluids such as serum and saliva, demonstrating its bright application prospects in phosphoproteomics analysis.
Collapse
Affiliation(s)
- He Qi
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zheng Li
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Haijiao Zheng
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun, 130012, China; Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, College of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
8
|
Ti 4+-immobilized hierarchically porous zirconium-organic frameworks for highly efficient enrichment of phosphopeptides. Mikrochim Acta 2021; 188:150. [PMID: 33813605 DOI: 10.1007/s00604-021-04760-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/16/2021] [Indexed: 10/21/2022]
Abstract
Ti4+-immobilized hierarchically porous zirconium-organic frameworks (denoted as THZr-MOFs) was prepared for phosphopeptide enrichment. The THZr-MOFs showed high specific surface area of 185.28 m2 g-1, wide pore-size distribution of 3 ~ 20 nm, good chemical stability and excellent hydrophilicity. Introduction of hierarchical pores in MOFs not only facilitated the accessibility of phosphopeptides to the internal metal affinity sites and reduce their mass transfer resistance, but also increased the exposure sites of metal affinity interaction and binding energies of Zr and Ti elements. Benefited from these advantages, the THZr-MOFs showed high adsorption capacity (79.8 μg mg-1) towards standard phosphopeptide. A low detection limit (0.05 fmol μL-1) and high enrichment selectivity (β-casein/BSA with a molar ratio of 1:5000) were also obtained by MALDI-TOF MS. The THZr-MOFs were applied to analyze complex samples including nonfat milk, human serum, and HeLa cell lysate. In total, 1432 phosphopeptides derived from 762 phosphoproteins were identified from human HeLa cell lysate. Schematic representation of the application of Ti4+-immobilized hierarchically porous zirconium-organic frameworks (denoted as THZr-MOFs) in high-efficiency and selective enrichment of low-abundance phosphopeptides from the tryptic digest of human HeLa cell lysate.
Collapse
|
9
|
Zhong H, Li Y, Huang Y, Zhao R. Metal-organic frameworks as advanced materials for sample preparation of bioactive peptides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:862-873. [PMID: 33543184 DOI: 10.1039/d0ay02193h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Development of novel affinity materials and separation techniques is crucial for the progress of modern proteomics and peptidomics. Detection of peptides and proteins from complex matrices still remains a challenging task due to the highly complicated biological composition, low abundance of target molecules, and large dynamic range of proteins. As an emerging area of analytical science, metal-organic framework (MOF)-based separation of proteins and peptides is attracting growing interest. This minireview summarizes the recent advances in MOF-based affinity materials for the sample preparation of proteins and peptides. Some newly emerging MOF nanoreactors for the degradation of peptides and proteins are introduced. An update of MOF-based affinity materials for the isolation of glycopeptides, phosphopeptides and low-abundance endogenous peptides in the last two years is focused on. The separation mechanism is discussed along with the chemical structures of MOFs. Finally, the remaining challenges and future development of MOFs in analyzing peptides and proteins in complicated biological samples are discussed.
Collapse
Affiliation(s)
- Huifei Zhong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | | | |
Collapse
|
10
|
Kip C, Hamaloğlu KÖ, Demir C, Tuncel A. Recent trends in sorbents for bioaffinity chromatography. J Sep Sci 2021; 44:1273-1291. [PMID: 33370505 DOI: 10.1002/jssc.202001117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/24/2022]
Abstract
Isolation or enrichment of biological molecules from complex biological samples is mostly a prerequisite in proteomics, genomics, and glycomics. Different techniques have been used to advance the efficiency of the purification of biological molecules. Bioaffinity chromatography is one of the most powerful technique that plays an important role in the isolation of target biological molecules by the specific interactions with ligands that are immobilized on different support materials. This review examines the recent developments in bioaffinity chromatography particularly over the past 5 years in the literature. Also properties of supports, immobilization techniques, types of binding agents, and methods used in bioaffinity chromatography applications are summarized.
Collapse
Affiliation(s)
- Cigdem Kip
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| | | | - Cihan Demir
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey.,Nanotechnology and Nanomedicine Division, Hacettepe University, Ankara, Turkey
| | - Ali Tuncel
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
Liu B, Wang B, Yan Y, Tang K, Ding CF. Efficient separation of phosphopeptides employing a Ti/Nb-functionalized core-shell structure solid-phase extraction nanosphere. Mikrochim Acta 2021; 188:32. [PMID: 33415462 DOI: 10.1007/s00604-020-04652-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 01/04/2023]
Abstract
A strategy for effectively enriching global phosphopeptides was successfully developed by using ammonia methyl phosphate (APA) as a novel chelating ligand and Ti4+ and Nb5+ as double functional ions (referred to as Fe3O4@mSiO2@APA@Ti4+/Nb5+). With the advantage of large specific surface area (151.1 m2/g), preeminent immobilized ability for metal ions (about 8% of total atoms), and unbiased enrichment towards phosphopeptides, Fe3O4@mSiO2@APA@Ti4+/Nb5+ displays high selectivity (maximum mass ratio β-casein to BSA is 1:1500), low limit of detection (LOD, as low as 0.05 fmol), good relative standard deviation (RSD, lower than 7%), recovery rate of 87% (18O isotope labeling method), outstanding phosphopeptide loading capacity (330 μg/mg), and at least five times re-use abilities. In the examination of the actual sample, 24 phosphopeptides were successfully detected in saliva and 4 phosphopeptides were also selectively extracted from human serum. All experiments have shown that Fe3O4@mSiO2@APA@Ti4+/Nb5+ exhibits exciting potential in view of the challenge of low abundance of phosphopeptides. Graphical abstract.
Collapse
Affiliation(s)
- Bin Liu
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Baichun Wang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yinghua Yan
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China.
| | - Keqi Tang
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Chuan-Fan Ding
- Zhejiang Provincial Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, Zhejiang, China
| |
Collapse
|
12
|
Hu X, Wu Y, Deng C. Recognition of urinary N-linked glycopeptides in kidney cancer patients by hydrophilic carbohydrate functionalized magnetic metal organic framework combined with LC-MS/MS. Mikrochim Acta 2020; 187:616. [PMID: 33073321 DOI: 10.1007/s00604-020-04595-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022]
Abstract
A hydrophilic carbohydrate functionalized magnetic metal organic framework (Mag Zr-MOF@G6P) was synthesized via a facile one-step modification strategy for selective glycopeptide capture in virtue of hydrophilic interaction chromatography technique. The inherently hydrophilic Zr-MOF layer not only provides selective size-sieving pore structures but also offers large specific surface area to afford abundant affinity sites. Hydroxyl-rich glucose-6-phosphate was immobilized onto the Zr-MOF via a straightforward coordination manner to regulate its surface property, for the purpose of enhancing its hydrophilicity. Benefitting from the merits of Zr-MOF and glucose-6-phosphate, the as-designed composite exhibits good selectivity (the mass ratio of HRP digests to BSA digests was up to1:200) and low limit of detection (0.1 fmol μL-1) towards the recognition of glycopeptides from standard samples. More excitingly, glycopeptides in urine of healthy people and patients with kidney cancer were successfully enriched and identified by the combined liquid chromatography-mass spectrometry/mass spectrometry technology (LC-MS/MS). Further gene ontology analysis of molecular function and biological process revealed that 13 original glycoproteins of the identified glycopeptides from urine of patients significantly participate in diverse cancer-associated events, including collagen binding, immunoglobulin receptor binding, antigen binding, and complement activation process. Graphical abstract.
Collapse
Affiliation(s)
- Xufang Hu
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, 200433, Shanghai, China
| | - Yonglei Wu
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, 200433, Shanghai, China
| | - Chunhui Deng
- Department of Chemistry, Department of Gastroenterology and Hepatology, Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, 200433, Shanghai, China.
| |
Collapse
|
13
|
Zheng H, Guan S, Wang X, Zhao J, Gao M, Zhang X. Deconstruction of Heterogeneity of Size-Dependent Exosome Subpopulations from Human Urine by Profiling N-Glycoproteomics and Phosphoproteomics Simultaneously. Anal Chem 2020; 92:9239-9246. [PMID: 32495629 DOI: 10.1021/acs.analchem.0c01572] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The heterogeneous populations of exosomes with distinct nanosize have impeded our understanding of their corresponding function as intercellular communication agents. Profiling signaling proteins packaged in each size-dependent subtype can disclose this heterogeneity of exosomes. Herein, new strategy was developed for deconstructing heterogeneity of distinct-size urine exosome subpopulations by profiling N-glycoproteomics and phosphoproteomics simultaneously. Two-dimension size exclusion liquid chromatography (SEC) was utilized to isolate large exosomes (L-Exo), medium exosomes (M-Exo), and small exosomes (S-Exo) from human urine samples. Then, hydrophilic carbonyl-functionalized magnetic zirconium-organic framework (CFMZOF) was developed as probe for capturing the two kinds of post-translational modification (PTM) peptides simultaneously. Finally, liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with database search was used to characterize PTM protein contents. We identified 144 glycoproteins and 44 phosphoproteins from L-Exo, 156 glycoproteins, and 46 phosphoproteins from M-Exo and 134 glycoproteins and 10 phosphoproteins from S-Exo. The ratio of the proteins with simultaneous glycosylation and phosphorylation is 11%, 9%, and 3% in L-Exo, M-Exo, and S-Exo, respectively. Based on label-free quantification intensity results, both principal component analysis and Pearson's correlation coefficients indicate that distinct-size exosome subpopulations exist significant differences in PTM protein contents. Analysis of high abundance PTM proteins in each exosome subset reveals that the preferentially packaged PTM proteins in L-Exo, M-Exo, and S-Exo are associated with immune response, biological metabolism, and molecule transport processes, respectively. Our PTM proteomics study based on size-dependent exosome subtypes opens a new avenue for deconstructing the heterogeneity of exosomes.
Collapse
Affiliation(s)
- Haoyang Zheng
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Sheng Guan
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Xuantang Wang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Jiandong Zhao
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|