1
|
Wang YC, Lin YT, Hsieh PH, Lai CW, Chen SF, Chen MH, Tung FI, Liu TY. On-site delivery of bioactive nanospheres utilizing lanthanides as crosslinkers and metastasis-inhibiting agents for breast cancer therapy. J Control Release 2025; 382:113671. [PMID: 40158810 DOI: 10.1016/j.jconrel.2025.113671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Postoperative breast cancer patients face a critical 2-3-week window during which residual tumor cells are highly prone to metastasis, yet systemic therapies are often ineffective due to impaired vascularization and limited drug transport. To address this challenge, we developed an injectable nanosphere formulation based on hyaluronic acid (HyA) crosslinked with lanthanide ions-europium (Eu) or lanthanum (La) ions-that act dually as physical crosslinkers and therapeutic agents. This dual-function design ensures structural stability without chemical crosslinkers, while actively inhibiting cancer cell migration, invasion, and colonization. The small ionic size of lanthanides facilitates deep interstitial transport, overcoming diffusion barriers in poorly perfused tissues. Upon injection, the nanospheres swell to sub-micrometer dimensions, achieving prolonged retention at the tumor site and sustained ion release for up to 21 days. In vitro and in vivo studies revealed distinct anti-metastatic profiles: HyA-Eu nanospheres effectively suppressed migration and distant metastasis, whereas HyA-La nanospheres inhibited colony formation and primary tumor growth. These results demonstrate a novel lanthanide ion-mediated strategy for post-surgical cancer therapy, integrating local retention with controlled ion release to bridge the treatment gap during recovery.
Collapse
Affiliation(s)
- Yu-Chi Wang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yan-Ting Lin
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Ping-Hsun Hsieh
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chen-Wei Lai
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Shuo-Fu Chen
- Department of Heavy Particles & Radiation Oncology, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Ming-Hong Chen
- Division of Neurosurgery, Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 220216, Taiwan; Department of Electrical Engineering, Yuan Ze University, Taoyuan City 320315, Taiwan
| | - Fu-I Tung
- Department of Orthopaedics, Yang-Ming Branch, Taipei City Hospital, Taipei 111024, Taiwan; Department of Health and Welfare, College of City Management, University of Taipei, Taipei 111036, Taiwan.
| | - Tse-Ying Liu
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan.
| |
Collapse
|
2
|
Zhou X, Zhang D, Han M, Ma Y, Li W, Yu N. Carbohydrate polymer-functionalized metal nanoparticles in cancer therapy: A review. Int J Biol Macromol 2025; 306:141235. [PMID: 39986501 DOI: 10.1016/j.ijbiomac.2025.141235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Metal nanoparticles have been emerged as promising candidates in cancer therapy because of their large surface area, optical properties and ROS generation. Therefore, these nanoparticles are able to mediate cell death through hyperthermia, photothermal therapy and ROS-triggered apoptosis. The various metal nanoparticles including gold, silver and iron oxide nanostructures have been exploited for the theranostic application. Moreover, precision oncology and off-targeting features can be improved by metal nanoparticles. The modification of metal nanoparticles with carbohydrate polymers including chitosan, hyaluronic acid, cellulose, agarose, starch and pectin, among others can significantly improve their anti-cancer activities. Carbohydrate polymers have been idea for the purpose of drug delivery due to their biocompatibility, biodegradability and increasing nanoparticle stability. In addition, carbohydrate polymers are able to improve drug delivery, cellular uptake and sustained release of cargo. Such nanoparticles are capable of responding to the specific stimuli in the tumor microenvironment including pH and light. Furthermore, the carbohydrate polymer-modified metal nanoparticles can be utilized for the combination of chemotherapy, phototherapy and immunotherapy. Since the biocompatibility and long-term safety are critical factors for the clinical translation of nanoparticles, the modification of metal nanoparticles with carbohydrate polymers can improve this way to the application in clinic.
Collapse
Affiliation(s)
- Xi Zhou
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Dongbin Zhang
- Department of Anesthesiology, Affiliated Hospital Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Mingming Han
- Department of Pharmacy and Medical Devices, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China
| | - Yanhong Ma
- Department of Rehabilitation, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Wentao Li
- Department of Traditional Chinese Medicine, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| | - Ning Yu
- Department of Occupational Pulmonology, Shandong Academy of Occupational Health and Occupational Medicine, Occupational Disease Hospital of Shandong First Medical University (Shandong Province Hospital Occupational Disease Hospital), Jinan, Shandong, China.
| |
Collapse
|
3
|
Qiu X, Wang F, Gao X, Zhang H, Wu H, Gong X, Lin J. Detection of hyaluronidase in urine using hyaluronic acid-coated silver nanoparticles-based surface-enhanced Raman spectroscopy for the diagnosis of bladder cancer. Talanta 2025; 294:128139. [PMID: 40262342 DOI: 10.1016/j.talanta.2025.128139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/24/2025]
Abstract
Bladder cancer, a malignancy of the urinary tract, has shown a rising incidence rate in recent years. Current diagnostic methods often suffer from issues such as invasiveness, high costs, or insufficient sensitivity, creating an urgent need for a fast, simple, and non-invasive diagnostic approach. In this study, a novel diagnostic method for bladder cancer is proposed, using hyaluronic acid-coated silver nanoparticles (HA-AgNPs) as the substrate for surface-enhanced Raman scattering (SERS) to detect hyaluronidase (HAase), a biomarker for bladder cancer, in urine. This method is based on the hydrolysis of hyaluronic acid on HA-AgNPs by HAase, which generates oligomers and causes the breakdown of HA-AgNPs into smaller nanoparticles. The formation of oligomers enhances the surface shielding effect of the silver nanoparticles, promoting aggregation between particles and significantly weakening the SERS signal. By detecting changes in the SERS signal using Rhodamine (R6G), HAase was quantified. The experimental results show that there is a good linear relationship (R2 = 0.9991) between the SERS signal and the HAase concentration in the range of 3 × 10-4 U/mL to 3 × 101 U/mL. The method demonstrates high sensitivity and can effectively detect HAase concentration in urine. Combining principal component analysis (PCA) with linear discriminant analysis (LDA), effective classification of SERS spectra from 42 normal and 40 bladder cancer urine samples was achieved. Experimental results show that the sensitivity and specificity of this algorithm in distinguishing between the normal and bladder cancer groups reached 95.2 % and 95 %, respectively.
Collapse
Affiliation(s)
- Xinhao Qiu
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian, China
| | - Fuqiang Wang
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Xiamen, 361004, Fujian, China
| | - Xingen Gao
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian, China
| | - Hongyi Zhang
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian, China
| | - Haochen Wu
- Department of Hepatobiliary Surgery, Xiamen Hospital, Beijing University of Chinese Medicine, Xiamen, Fujian, China; Department of Hepatobiliary Surgery, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian, China
| | - Xianqiong Gong
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Xiamen, 361004, Fujian, China
| | - Juqiang Lin
- School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, Fujian, China.
| |
Collapse
|
4
|
Ainiwaer A, Sun S, Bohetiyaer A, Liu Y, Jiang Y, Zhang W, Zhang J, Xu T, Chen H, Yao X, Jia C, Yan Y. Application of raman spectroscopy in the non-invasive diagnosis of urological diseases via urine. Photodiagnosis Photodyn Ther 2025; 52:104477. [PMID: 39814328 DOI: 10.1016/j.pdpdt.2025.104477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
OBJECTIVES The objective of this review is to provide a comprehensive overview of the utilization of Raman spectroscopy in urinary system diseases, highlighting its potential in non-invasive diagnostic methodologies for early diagnosis and prognostic assessment of urinary ailments. METHODS We searched PubMed, Web of Science, and Google Scholar using 'raman,' 'bladder,' 'kidney,' 'prostate,' 'cancer,' 'infection,' 'stone or urinary calculi,' and 'urine or urinary,' along with 'AND' and 'OR' to refine our search. We excluded irrelevant articles and screened potential ones based on titles and abstracts before assessing the full texts for relevance and quality. FINDINGS The findings indicate that RS can furnish data on biomolecules in urine, which is significant for non-invasive diagnostic approaches. It has shown potential within non-invasive diagnostic methodologies and is expected to play a pivotal role in the early diagnosis and prognostic assessment of urinary system diseases, such as malignancies, urinary tract infections, kidney diseases, urolithiasis, and other urinary conditions. CONCLUSIONS Raman spectroscopy has demonstrated significant potential in providing precise and rapid diagnostic approaches for clinical use in the context of urinary system diseases. Its ability to analyze biomolecules non-invasively positions it as an increasingly important tool in the early diagnosis and prognostic assessment of these conditions.
Collapse
Affiliation(s)
- Ailiyaer Ainiwaer
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China; Department of Urology, Kashgar Prefecture Second People's Hospital, Kashgar, Xinjiang Uyghur, PR China
| | - ShuWen Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
| | - Ayinuer Bohetiyaer
- Department of Nephrology, Kashgar Prefecture First People's Hospital, Kashgar, Xinjiang Uyghur, PR China
| | - Yuchao Liu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China
| | - Yufeng Jiang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China
| | - Wentao Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China
| | - JingCheng Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China
| | - Tianyuan Xu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China
| | - Hanyang Chen
- Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China.
| | - Chengyou Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, PR China; Institute of Nuclear Medicine, Tongji University School of Medicine, Shanghai, 200072, PR China.
| | - Yang Yan
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, PR China; Urologic Cancer Institute, School of Medicine, Tongji University, Shanghai, PR China.
| |
Collapse
|
5
|
Çimen D, Ünal S, Denizli A. Nanoparticle-assisted plasmonic sensors: Recent developments in clinical applications. Anal Biochem 2025; 698:115753. [PMID: 39719190 DOI: 10.1016/j.ab.2024.115753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/08/2024] [Accepted: 12/21/2024] [Indexed: 12/26/2024]
Abstract
Nanotechnology is an important science that finds a wide range of applications from energy production to industrial production processes and biomedical applications. Nanoparti-cles, which are the most frequently preferred nanomaterials that form the basis of nanotechnolo-gy, are prepared with different composition, size, shape and surface chemistry to provide new techniques in applications in many different fields. The use of nanoparticles in the preparation of plasmonic sensors has increased the interest in plasmonic sensors such as surface plasmon resonance, electrochemical sensors, surface enhanced raman scattering and colorimetric sensors due to their increased sensing capacity on sensor surfaces. Plasmonic sensors are an important option in many different fields, such as medicine, environmental agriculture and food safety, thanks to their ability to solve a multitude of challenges. Because, plasmonic sensors are defined as sensing devices with important features such as sensitive and fast detection, no need for labels, real-time analysis, portability. In this review, the information about nanoparticles and their types and working principles of plasmonic sensors is given. Then, examples in clinical applications using different plasmonic sensors prepared with plasmonic nanoparticles are discussed in detail.
Collapse
Affiliation(s)
- Duygu Çimen
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Serhat Ünal
- Department of Infectious Disease and Clinical Microbiology, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
6
|
Keum C, Yeom H, Noh TI, Yi SY, Jin S, Kim C, Shim JS, Yoon SG, Kim H, Lee KH, Kang SH, Jeong Y. Diagnosis of early-stage bladder cancer via unprocessed urine samples at the point of care. Nat Biomed Eng 2024:10.1038/s41551-024-01298-0. [PMID: 39609560 DOI: 10.1038/s41551-024-01298-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/30/2024] [Indexed: 11/30/2024]
Abstract
Diagnostic kits for the optical detection of bladder cancer in urine can facilitate effective screening and surveillance. However, the heterogeneity of urine samples, owing to patients with bladder cancer often presenting with haematuria, interfere with the transduction of the optical signal. Here we describe the development and point-of-care performance of a device for the detection of bladder cancer that obviates the need for sample processing. The device leverages the enzymatic release of organogel particles carrying solvatochromic fluorophores in the presence of urinary hyaluronidases-a bladder cancer biomarker. Owing to buoyancy, the particles transfer from the urine sample into the organic phase, where the change in fluorescence can be measured via a smartphone without interference from blood proteins. In a double-blind study with 80 unprocessed urine samples from patients with bladder cancer (including samples with haematuria) or other genitourinary diseases and with 25 samples from healthy participants, our system distinguished the cancerous samples, including those with early-stage bladder cancer, with accuracies of about 90%. Obviating the need for sample pretreatment may facilitate the at-home detection of bladder cancer.
Collapse
Affiliation(s)
- Changjoon Keum
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Haejin Yeom
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Republic of Korea
| | - Tae Il Noh
- Department of Urology, Korea University School of Medicine, Seoul, Republic of Korea
| | - Seung Yong Yi
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Republic of Korea
| | - Soyeong Jin
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
- Department of Chemistry, Hanyang University, Seoul, Republic of Korea
| | - Chaekyu Kim
- Fusion Biotechnology, Inc., Ulsan, Republic of Korea
| | - Ji Sung Shim
- Department of Urology, Korea University School of Medicine, Seoul, Republic of Korea
| | - Sung Goo Yoon
- Department of Urology, Korea University School of Medicine, Seoul, Republic of Korea
| | - Hojun Kim
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Kwan Hyi Lee
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.
| | - Seok Ho Kang
- Department of Urology, Korea University School of Medicine, Seoul, Republic of Korea.
| | - Youngdo Jeong
- Center for Advanced Biomolecular Recognition, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|
7
|
Liu K, Ullah AKMA, Juhong A, Yang C, Yao C, Li X, Bumpers HL, Qiu Z, Huang X. Robust Synthesis of Targeting Glyco-nanoparticles for Surface Enhanced Resonance Raman Based Image-Guided Tumor Surgery. SMALL SCIENCE 2024; 4:2300154. [PMID: 39185268 PMCID: PMC11340905 DOI: 10.1002/smsc.202300154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/30/2024] [Indexed: 08/27/2024] Open
Abstract
Surface Enhanced Resonance Raman (SERS) is a powerful optical technique, which can help enhance the sensitivity of Raman spectroscopy aided by noble metal nanoparticles (NPs). However, current SERS-NPs are often suboptimal, which can aggregate under physiological conditions with much reduced SERS enhancement. Herein, a robust one-pot method has been developed to synthesize SERS-NPs with more uniform core diameters of 50 nm, which is applicable to both non-resonant and resonant Raman dyes. The resulting SERS-NPs are colloidally stable and bright, enabling NP detection with low-femtomolar sensitivity. An algorithm has been established, which can accurately unmix multiple types of SERS-NPs enabling potential multiplex detection. Furthermore, a new liposome-based approach has been developed to install a targeting carbohydrate ligand, i.e., hyaluronan, onto the SERS-NPs bestowing significantly enhanced binding affinity to its biological receptor CD44 overexpressed on tumor cell surface. The liposomal HA-SERS-NPs enabled visualization of spontaneously developed breast cancer in mice in real time guiding complete surgical removal of the tumor, highlighting the translational potential of these new glyco-SERS-NPs.
Collapse
Affiliation(s)
- Kunli Liu
- Department of ChemistryMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI48824USA
| | - A. K. M. Atique Ullah
- Department of ChemistryMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Aniwat Juhong
- Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI48824USA
- Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Chia‐Wei Yang
- Department of ChemistryMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Cheng‐You Yao
- Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI48824USA
- Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Xiaoyan Li
- Department of Civil and Environmental EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Harvey L. Bumpers
- Department of SurgeryMichigan State UniversityEast LansingMI48824USA
| | - Zhen Qiu
- Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI48824USA
- Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingMI48824USA
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
| | - Xuefei Huang
- Department of ChemistryMichigan State UniversityEast LansingMI48824USA
- Institute for Quantitative Health Science and EngineeringMichigan State UniversityEast LansingMI48824USA
- Department of Biomedical EngineeringMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
8
|
Michałowska A, Kudelski A. Plasmonic substrates for biochemical applications of surface-enhanced Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123786. [PMID: 38128327 DOI: 10.1016/j.saa.2023.123786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Due to its great practical importance, the detection and determination of many biomolecules in body fluids and other samples is carried out in a large number of laboratories around the world. One of the most promising analytical techniques now being widely introduced into medical analysis is surface-enhanced Raman scattering (SERS) spectroscopy. SERS is one of the most sensitive analytical methods, and in some cases, a good quality SERS spectrum dominated by the contribution of even a single molecule can be obtained. Highly sensitive SERS measurements can only be carried out on substrates generating a very high SERS enhancement factor and a low Raman spectral background, and so using of right nanomaterials is a key element in the success of SERS biochemical analysis. In this review article, we present progress that has been made in the preparation of nanomaterials used in SERS spectroscopy for detecting various kinds of biomolecules. We describe four groups of nanomaterials used in such measurements: nanoparticles of plasmonic metals and deposits of plasmonic nanoparticles on macroscopic substrates, nanocomposites containing plasmonic and non-plasmonic parts, nanostructured macroscopic plasmonic metals, and nanostructured macroscopic non-plasmonic materials covered by plasmonic films. We also describe selected SERS biochemical analyses that utilize the nanomaterials presented. We hope that this review will be useful for researchers starting work in this fascinating field of science and technology.
Collapse
Affiliation(s)
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., PL 02-093 Warsaw, Poland.
| |
Collapse
|
9
|
Liu H, Zhang M, Meng F, Su C, Li J. Polysaccharide-based gold nanomaterials: Synthesis mechanism, polysaccharide structure-effect, and anticancer activity. Carbohydr Polym 2023; 321:121284. [PMID: 37739497 DOI: 10.1016/j.carbpol.2023.121284] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/24/2023]
Abstract
Polysaccharide-based gold nanomaterials have attracted great interest in biomedical fields such as cancer therapy and immunomodulation due to their prolonged residence time in vivo and enhanced immune response. This review aims to provide an up-to-date and comprehensive summary of polysaccharide-based Au NMs synthesis, including mechanisms, polysaccharide structure-effects, and anticancer activity. Firstly, research progress on the synthesis mechanism of polysaccharide-based Au NMs was addressed, which included three types based on the variety of polysaccharides and reaction environment: breaking of glycosidic bonds via Au (III) or base-mediated production of highly reduced intermediates, reduction of free hydroxyl groups in polysaccharide molecules, and reduction of free amino groups in polysaccharide molecules. Then, the potential effects of polysaccharide structure characteristics (molecular weight, composition of monosaccharides, functional groups, glycosidic bonds, and chain conformation) and reaction conditions (the reaction temperature, reaction time, pH, concentration of gold precursor and polysaccharides) on the size and shape of Au NMs were explored. Finally, the current status of polysaccharide-based Au NMs cancer therapy was summarized before reaching our conclusions and perspectives.
Collapse
Affiliation(s)
- Haoqiang Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Minwei Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Fanxing Meng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Chenyi Su
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
10
|
Multicolor biosensor for hyaluronidase based on target-responsive hydrogel and etching of gold nanorods by H 2O 2. Talanta 2023; 257:124367. [PMID: 36841016 DOI: 10.1016/j.talanta.2023.124367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/08/2022] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
Hyaluronidase (HAase) is a potential tumor biomarker for diseases of the digestive tract and nervous system, the development of simple and sensitive techniques for HAase determination is urgent needed. Gold nanorods (Au NRs) can be etched by H2O2 with high efficiency and display color changing. In this work, a HAase-responsive hydrogel system had been designed and the amount of H2O2 spilled from the system had a close relationship with the amount of HAase, then the spilled H2O2 had been applied to etch Au NRs. The color change of the solution was used to realize semi-quantitative determination of HAase. Furthermore, the longitudinal peak shift of Au NRs had a linear correlation with the concentration of HAase in the range of 10-60 U/mL (within 40 min) and the limit of detection (LOD) was 3.8 U/mL (S/N = 3), which can be used to realize accurate quantitative analysis of HAase. The proposed method has been applied to monitor HAase in serum of pancreatic cancer patients with satisfied results.
Collapse
|
11
|
Kim HM, Park JH, Choi YJ, Oh JM, Park J. Hyaluronic acid-coated gold nanoparticles as a controlled drug delivery system for poorly water-soluble drugs. RSC Adv 2023; 13:5529-5537. [PMID: 36798609 PMCID: PMC9926166 DOI: 10.1039/d2ra07276a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Hyaluronic acid (HA) is a natural linear polysaccharide which has been widely used in cosmetics and pharmaceuticals including drug delivery systems because of its excellent biocompatibility. In this study, we investigated the one-pot synthesis of HA-coated gold nanoparticles (AuNP-HA) as a drug delivery carrier. The HAs with different molecular weights were produced by e-beam irradiation and employed as coating materials for AuNPs. Sulfasalazine (SSZ), a poorly water-soluble drug, was used to demonstrate the efficiency of drug delivery and the controlled release behaviour of the AuNP-HA. As the molecular weight of the HA decreased, the drug encapsulation efficiency of the SSZ increased up to 94%, while drug loading capacity of the SSZ was maintained at the level of about 70%. The prepared AuNP-HA-SSZ exhibited slow release of the SSZ over a short time and excellent sensitivity to different pHs and physiological conditions. The SSZ release rate was the lowest in simulated gastric conditions and the highest in simulated intestinal conditions. In this case, the AuNP-HA protects the SSZ from release under the acidic pH conditions in the stomach; on the other hand, the drug release was facilitated in the basic environment of the small intestine and colon. The SSZ was released under simulated intestinal conditions through anomalous drug transport and followed the Korsmeyer-Peppas model. Therefore, this study suggests that AuNP-HA is a promising orally-administered and intestine-targeted drug delivery system with controlled release characteristics.
Collapse
Affiliation(s)
- Hyoung-Mi Kim
- Biomedical Manufacturing Technology Center (BMTC), Korea Institute of Industrial Technology (KITECH) Yeongcheon-si Gyeongsangbuk-do 38822 Republic of Korea
| | - Jae Hong Park
- Biomedical Manufacturing Technology Center (BMTC), Korea Institute of Industrial Technology (KITECH) Yeongcheon-si Gyeongsangbuk-do 38822 Republic of Korea
| | - You Jin Choi
- Biomedical Manufacturing Technology Center (BMTC), Korea Institute of Industrial Technology (KITECH) Yeongcheon-si Gyeongsangbuk-do 38822 Republic of Korea
| | - Jae-Min Oh
- Department of Energy and Materials Engineering, Dongguk University-SeoulSeoul 04620Republic of Korea
| | - Junghun Park
- Biomedical Manufacturing Technology Center (BMTC), Korea Institute of Industrial Technology (KITECH) Yeongcheon-si Gyeongsangbuk-do 38822 Republic of Korea
| |
Collapse
|
12
|
Huang W, Zhang Y, Li Z, Li M, Li F, Mortimer M, Guo LH. Silver and Hyaluronic Acid-Coated Gold Nanoparticles Modulate the Metabolism of a Model Human Gut Bacterium Lactobacillus casei. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3377. [PMID: 36234503 PMCID: PMC9565723 DOI: 10.3390/nano12193377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/11/2022] [Accepted: 09/23/2022] [Indexed: 05/19/2023]
Abstract
Medical applications of nanotechnology are promising in creating efficient and targeted therapies. However, so far, nanodrug design has not taken into consideration possible effects on human microbiota. The beneficial functions of bacteria could be stimulated by nanodrugs while negative effects on beneficial bacteria could cause risks to human health. Here, simulated intestinal fluid (IF) was optimized for culturing a human commensal and probiotic bacterial strain, Lactobacillus casei, to study the effects of medically relevant NPs—Ag and hyaluronic acid-coated Au NPs (HA-Au NPs)—in conditions pertinent to the gastrointestinal tract. When cultivated either aerobically or anaerobically, the specific growth rates of L. casei were ~0.2 h−1 in IF and ~0.4 h−1 in the standard medium of lactobacilli (MRS). Ag NPs inhibited the growth of L. casei in IF at lower concentrations (EC50 ~ 65 and 15 mg/L in aerobic and anaerobic conditions, respectively) than in MRS (EC50 > 100 mg/L), likely caused by differences in the composition of the two media and different intrinsic growth rates of bacteria in IF and MRS. Ag NP dissolution in IF and MRS did not explain the differences in growth inhibition, implying NP-specific effects. HA-Au NPs were not growth-inhibitory to L. casei up to 250 mg/L. Still, both NPs at sub-growth-inhibitory concentrations suppressed the expression of bacteriocin genes in L. casei, suggesting an inhibitory effect of NPs on the probiotic properties of L. casei, i.e., its competitiveness in microbial communities. However, HA-Au NPs did not appear to affect or even stimulated the immunomodulatory properties of L. casei in human intestinal epithelial cells. Thus, medically relevant NPs at low, sub-bacteriostatic levels can affect the metabolism of beneficial human bacteria and potentially induce changes in the microbiota and immune signaling.
Collapse
Affiliation(s)
- Wenqian Huang
- College of Life Science, China Jiliang University, Hangzhou 310018, China
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China
| | - Yirong Zhang
- College of Life Science, China Jiliang University, Hangzhou 310018, China
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China
| | - Zhi Li
- College of Life Science, China Jiliang University, Hangzhou 310018, China
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China
| | - Minjie Li
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou 310018, China
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
13
|
Chen X, Huang Q, Ruan S, Luo F, You R, Feng S, Zhu L, Wu Y, Lu Y. Self-calibration SERS sensor with “core-satellite” structure for detection of hyaluronidase activity. Anal Chim Acta 2022; 1227:340302. [DOI: 10.1016/j.aca.2022.340302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/01/2022]
|
14
|
Wang BX, Duan G, Xu W, Xu C, Jiang J, Yang Z, Wu Y, Pi F. Flexible surface-enhanced Raman scatting substrates: recent advances in their principles, design strategies, diversified material selections and applications. Crit Rev Food Sci Nutr 2022; 64:472-516. [PMID: 35930338 DOI: 10.1080/10408398.2022.2106547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Surface-enhanced Raman scattering (SERS) is widely used as a powerful analytical technology in cutting-edge areas such as food safety, biology, chemistry, and medical diagnosis, providing ultra-fast, ultra-sensitive, nondestructive characterization and achieving ultra-high detection sensitivity even down to the single-molecule level. Development of Raman spectroscopy is strongly dependent on high-performance SERS substrates, which have long evolved from the early days of rough metal electrodes to periodic nanopatterned arrays building on solid supporting substrates. For rigid SERS substrates, however, their applications are restricted by sophisticated pretreatments for detecting solid samples with non-planar surfaces. It is therefore essential to reassert the principles in constructing flexible SERS substrates. Herein, we comprehensively review the state-of-the-art in understanding, preparing and using flexible SERS. The basic mechanisms behind the flexible SERS are briefly outlined, typical design strategies are highlighted and diversified selection of materials in preparing flexible SERS substrates are reviewed. Then the recent achievements of various interdisciplinary applications based on flexible SERS substrates are summarized. Finally, the challenges and perspectives for future evolution of flexible SERS and their applications are demonstrated. We propose new research directions focused on stimulating the real potential of SERS as an advanced analytical technique for commercialization.
Collapse
Affiliation(s)
- Ben-Xin Wang
- School of Science, Jiangnan University, Wuxi, China
| | - Guiyuan Duan
- School of Science, Jiangnan University, Wuxi, China
| | - Wei Xu
- School of Science, Jiangnan University, Wuxi, China
| | - Chongyang Xu
- School of Science, Jiangnan University, Wuxi, China
| | | | | | - Yangkuan Wu
- School of Science, Jiangnan University, Wuxi, China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Yan G, Kong B, Zhao J, Ni H, Zhan L, Huang C, Zou H. Fluorescence turn-on Cu 2-xSe@HA-rhodamine 6G FRET nanoprobe for hyaluronidase detection and imaging. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112496. [PMID: 35689932 DOI: 10.1016/j.jphotobiol.2022.112496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The application of nanostructures to design fluorescence resonance energy transfer (FRET) based sensing platforms has been greatly concerned with the demand for sensitive and selective detection of biomolecules. Here, a novel sensitive turn-on fluorescence strategy based on the FRET mechanism has been designed for hyaluronidase (HAase) detection through the modulation of Cu2-xSe@HA-Rh6G nanoprobe fabricated by self-assembly of rhodamine 6G (Rh6G) together with Cu2-xSe@HA nanoparticles through electrostatic adsorption. The Cu2-xSe@HA had extensive localized surface plasma resonance (LSPR) absorption in the wide range of ultraviolet (UV) to near-infrared (NIR) wavelengths and showed good light capture characteristics, which can be acted as good acceptors in the FRET interactions with Rh6G, inducing its efficient fluorescence quenching. In the presence of HAase, the FRET process was disrupted and the fluorescence signal was recovered. In the range of 0.1-10.0 U/mL, the fluorescence recovery of Rh6G showed a good linear relationship with the concentration of HAase, and the detection limit was 0.06 U/mL. The sensing platform has been used for HAase detection in real urine samples and cancer cells imaging.
Collapse
Affiliation(s)
- Guojuan Yan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Bo Kong
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jiaqiang Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Huanhuan Ni
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Lei Zhan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Chengzhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Luminescent and Real-Time Analysis System, Chongqing Science and Technology Commission, College of Chemistry and Chemical Engineering, Southwest University, Beibei, Chongqing 400715, China
| | - Hongyan Zou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Li C, Liu R, Song Y, Chen Y, Zhu D, Yu L, Huang Q, Zhang Z, Xue Z, Hua Z, Lu C, Lu A, Liu Y. Hyaluronic Acid Hydrogels Hybridized With Au-Triptolide Nanoparticles for Intraarticular Targeted Multi-Therapy of Rheumatoid Arthritis. Front Pharmacol 2022; 13:849101. [PMID: 35712709 PMCID: PMC9197263 DOI: 10.3389/fphar.2022.849101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease, characterized by synovial inflammation in multiple joints. Triptolide (TP) is a disease-modifying anti-rheumatic drug (DMARD) highly effective in patients with RA and has anti-inflammatory properties. However, its clinical application has been limited owing to practical disadvantages. In the present study, hyaluronic acid (HA) hydrogel-loaded RGD-attached gold nanoparticles (AuNPs) containing TP were synthesized to alleviate the toxicity and increase therapeutic specificity. The hydrogels can be applied for targeted photothermal-chemo treatment and in vivo imaging of RA. Hydrogel systems with tyramine-modified HA (TA-HA) conjugates have been applied to artificial tissue models as surrogates of cartilage to investigate drug transport and release properties. After degradation of HA chains, heat was locally generated at the inflammation region site due to near-infrared resonance (NIR) irradiation of AuNPs, and TP was released from nanoparticles, delivering heat and drug to the inflamed joints simultaneously. RA can be penetrated with NIR light. Intraarticular administration of the hydrogels containing low dosage of TP with NIR irradiation improved the inflamed conditions in mice with collagen-induced arthritis (CIA). Additionally, in vitro experiments were applied to deeply verify the antirheumatic mechanisms of TP-PLGA-Au@RGD/HA hydrogels. TP-PLGA-Au@RGD/HA hydrogel treatment significantly reduced the migratory and invasive capacities of RA fibroblast-like synoviocytes (RA-FLS) in vitro, through the decrease of phosphorylation of mTOR and its substrates, p70S6K1, thus inhibiting the mTOR pathway.
Collapse
Affiliation(s)
- Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Dongjie Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qingcai Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhengjia Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zeyu Xue
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenglai Hua
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Cheng Lu, ; Aiping Lu, ; Yuanyan Liu,
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Hongkong, China
- *Correspondence: Cheng Lu, ; Aiping Lu, ; Yuanyan Liu,
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Cheng Lu, ; Aiping Lu, ; Yuanyan Liu,
| |
Collapse
|
17
|
Ferreira-Gonçalves T, Ferreira D, Ferreira HA, Reis CP. Nanogold-based materials in medicine: from their origins to their future. Nanomedicine (Lond) 2021; 16:2695-2723. [PMID: 34879741 DOI: 10.2217/nnm-2021-0265] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The properties of gold-based materials have been explored for centuries in several research fields, including medicine. Multiple published production methods for gold nanoparticles (AuNPs) have shown that the physicochemical and optical properties of AuNPs depend on the production method used. These different AuNP properties have allowed exploration of their usefulness in countless distinct biomedical applications over the last few years. Here we present an extensive overview of the most commonly used AuNP production methods, the resulting distinct properties of the AuNPs and the potential application of these AuNPs in diagnostic and therapeutic approaches in biomedicine.
Collapse
Affiliation(s)
- Tânia Ferreira-Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health Technologies (DFFTS), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa, 1649-003, Portugal
| | - David Ferreira
- Comprehensive Health Research Centre (CHRC), Departamento de Desporto e Saúde, Escola de Saúde e Desenvolvimento Humano, Universidade de Évora, Largo dos Colegiais, Évora, 7000, Portugal
| | - Hugo A Ferreira
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| | - Catarina P Reis
- Research Institute for Medicines (iMed.ULisboa), Department of Pharmacy, Pharmacology and Health Technologies (DFFTS), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, Lisboa, 1649-003, Portugal.,Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa, 1749-016, Portugal
| |
Collapse
|
18
|
Terracciano R, Carcamo-Bahena Y, Butler EB, Demarchi D, Grattoni A, Filgueira CS. Hyaluronate-Thiol Passivation Enhances Gold Nanoparticle Peritumoral Distribution When Administered Intratumorally in Lung Cancer. Biomedicines 2021; 9:1561. [PMID: 34829790 PMCID: PMC8615404 DOI: 10.3390/biomedicines9111561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
Biofouling is the unwanted adsorption of cells, proteins, or intracellular and extracellular biomolecules that can spontaneously occur on the surface of metal nanocomplexes. It represents a major issue in bioinorganic chemistry because it leads to the creation of a protein corona, which can destabilize a colloidal solution and result in undesired macrophage-driven clearance, consequently causing failed delivery of a targeted drug cargo. Hyaluronic acid (HA) is a bioactive, natural mucopolysaccharide with excellent antifouling properties, arising from its hydrophilic and polyanionic characteristics in physiological environments which prevent opsonization. In this study, hyaluronate-thiol (HA-SH) (MW 10 kDa) was used to surface-passivate gold nanoparticles (GNPs) synthesized using a citrate reduction method. HA functionalized GNP complexes (HA-GNPs) were characterized using absorption spectroscopy, scanning electron microscopy, zeta potential, and dynamic light scattering. GNP cellular uptake and potential dose-dependent cytotoxic effects due to treatment were evaluated in vitro in HeLa cells using inductively coupled plasma-optical emission spectrometry (ICP-OES) and trypan blue and MTT assays. Further, we quantified the in vivo biodistribution of intratumorally injected HA functionalized GNPs in Lewis Lung carcinoma (LLC) solid tumors grown on the flank of C57BL/6 mice and compared localization and retention with nascent particles. Our results reveal that HA-GNPs show overall greater peritumoral distribution (** p < 0.005, 3 days post-intratumoral injection) than citrate-GNPs with reduced biodistribution in off-target organs. This property represents an advantageous step forward in localized delivery of metal nano-complexes to the infiltrative region of a tumor, which may improve the application of nanomedicine in the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Rossana Terracciano
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (R.T.); (Y.C.-B.); (A.G.)
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy;
| | - Yareli Carcamo-Bahena
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (R.T.); (Y.C.-B.); (A.G.)
| | - E. Brian Butler
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Danilo Demarchi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Torino, Italy;
| | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (R.T.); (Y.C.-B.); (A.G.)
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, TX 77030, USA;
- Department of Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Carly S. Filgueira
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; (R.T.); (Y.C.-B.); (A.G.)
- Department of Cardiovascular Surgery, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
19
|
Li W, Cao Z, Yu L, Huang Q, Zhu D, Lu C, Lu A, Liu Y. Hierarchical drug release designed Au @PDA-PEG-MTX NPs for targeted delivery to breast cancer with combined photothermal-chemotherapy. J Nanobiotechnology 2021; 19:143. [PMID: 34001161 PMCID: PMC8130275 DOI: 10.1186/s12951-021-00883-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/05/2021] [Indexed: 01/11/2023] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer with a low survival rate and one of the major causes of cancer-related death. Methotrexate (MTX) is an anti-tumor drug used in the treatment of BC. Poor dispersion in water and toxic side effects limit its clinical application. Gold nanoparticles (AuNPs), owing to their specific structures and unique biological and physiochemical properties, have emerged as potential vehicles for tumor targeting, bioimaging and cancer therapy. An innovative nano drug-loading system (Au @PDA-PEG-MTX NPs) was prepared for targeted treatment of BC. Au @PDA-PEG-MTX NPs under near infra-red region (NIR) irradiation showed effective photothermal therapy against MDA-MB-231 human BC cells growth in vitro by inducing apoptosis through triggering reactive oxygen species (ROS) overproduction and generating excessive heat. In vivo studies revealed deep penetration ability of Au @PDA-PEG-MTX NPs under NIR irradiation to find application in cancer-targeted fluorescence imaging, and exhibited effective photothermal therapy against BC xenograft growth by inducing apoptosis. Histopathological analysis, cellular uptake, cytotoxicity assay, and apoptosis experiments indicated that Au @PDA-PEG-MTX NPs possessed a good therapeutic effect with high biocompatibility and fewer side effects. This Au NPs drug-loading system achieved specific targeting of MTX to BC cells by surface functionalisation, fluorescence imaging under laser irradiation, combined photothermal-chemotherapy, and pH- and NIR- triggered hierarchical drug release.
Collapse
Affiliation(s)
- Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Liuchunyang Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qingcai Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongjie Zhu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Aiping Lu
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hongkong, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|