1
|
Wang J, Ji H, Zhang B, Zhu X, Liu Y, Chang W, Xie X, Zhu H. Tailoring shell thickness in Au@Cu 2O nanoparticles for enhanced mimetic peroxidase activity: a colorimetric aptasensor for zearalenone detection. Mikrochim Acta 2025; 192:339. [PMID: 40329106 DOI: 10.1007/s00604-025-07202-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Zearalenone (ZEN), a prevalent mycotoxin in agricultural crops, poses significant risks to human and animal health due to its bioaccumulation potential within the food chain. In this study, Au@Cu2O core-shell nanoparticles with precisely controlled Cu2O shell thickness were synthesized through a gold nanoparticle (AuNPs)-mediated self-assembly strategy by modulating the amount of AuNPs. Systematic analysis revealed an inverse correlation between peroxidase-like activity and shell thickness. Consequently, a high-sensitivity colorimetric aptasensor for ZEN detection was developed via the integration of Au@Cu2O nanoparticles with ZEN-specific aptamers. The Au@Cu2O nanoparticles function as signal amplifiers, while the aptamers provide target specificity. Under optimal conditions, the aptasensor demonstrated a linear dynamic range of 0.0005-5 μg/L for ZEN, with colorimetric signal intensities exhibiting exceptional specificity for ZEN, with negligible cross-reactivity to co-occurring mycotoxins (AFB1, AFB2, OTA, DON, T-2), while achieving stable detection in real agricultural matrices, including wheat flour and cornmeal. Hence, this work not only offers a novel strategy for ZEN monitoring in food but also advances the rational design of core-shell nanomaterials for biosensing applications.
Collapse
Affiliation(s)
- Junhao Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huifu Ji
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bobo Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China
| | - Xiaodong Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Weidan Chang
- Department of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450002, China
| | - Xinhua Xie
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China.
| | - Hongshuai Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China.
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Xu N, Li X, Tian C, Zhang Z, Chen L, Luan F, Zhuang X. Lanthanide ion-based metal-organic framework as an effective tri-mode nanoprobe for alcoholic content detection. Mikrochim Acta 2025; 192:101. [PMID: 39836245 DOI: 10.1007/s00604-024-06915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025]
Abstract
A lanthanide ion-based metal-organic framework (Eu-TATAB nanorods) was designed and synthesized as an effective tri-mode nanoprobe for sensitive and portable detection of ethanol content in a water-ethanol mixture. The assay was based on the responsive properties of Eu-TATAB nanorods to ethanol stimulus and their adaptive encapsulation capability towards optically active lanthanides. With the addition of ethanol to the Eu-TATAB nanorods, the structure was destroyed, resulting in a decrease in luminescence, electrochemiluminescence, and ultraviolet-visible spectrophotometric signals by perturbing energy transfer in the Eu-TATAB nanorods. According to the degree of the decrease in three luminescence intensities, the ethanol content could be quantitatively detected. Based on this, the rapid detection of alcohol content in different types of spirits and alcoholic beverages was further realized. This method is simple, convenient, and sensitive, and has good application prospects and development potential.
Collapse
Affiliation(s)
- Ning Xu
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Xin Li
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Chunyuan Tian
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Zhiyang Zhang
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
| | - Lingxin Chen
- Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
| | - Feng Luan
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| | - Xuming Zhuang
- School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China.
| |
Collapse
|
3
|
Zhang F, Gao Y, Ren E, Fang L, Yang W, Zhang L, Wang Z. Paper-based multicolor sensor for on-site quantitative detection of organophosphate pesticides based on acetylcholinesterase-mediated paper-based Au 3+-etching of gold nanobipyramids and CIELab color space. Talanta 2025; 281:126925. [PMID: 39305765 DOI: 10.1016/j.talanta.2024.126925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/03/2024] [Accepted: 09/18/2024] [Indexed: 10/25/2024]
Abstract
On-site quantitative detection of organophosphorus pesticides (OPs) is crucial for safeguarding food and public safety. This study presents a novel acetylcholinesterase (AChE)-mediated paper-based Au3+-etching of gold nanobipyramids (AuNBPs) system. The system employs a long-term storable AuNBPs-deposited nylon membrane embedded within a portable and temperature-controlled paper-based analytical device. This system, coupled with a colorimeter-based quantitative method, enables the development of a practical paper-based multicolor sensor (PMS) for on-site quantitative detection of three common OPs (paraoxon, dichlorvos, and trichlorfon). In the absence of OPs, AChE hydrolyzes acetylthiocholine to thiocholine, which reduces Au3+ to Au+. The presence of OPs inhibits AChE activity, thereby preserving Au3+ to etch AuNBPs on nylon membranes, accompanied by multicolor changes. These color changes can be simply quantified by measuring the a∗ parameter of the CIELab color space using a portable colorimeter. Under optimal conditions, the PMS displayed eight OPs-corresponding color changes with a minimum detectable concentration of 1.0-10 μg/L (visual observation) and limits of detection of 0.8-7.2 μg/L (colorimeter) and 0.2-3.4 μg/L (UV-vis spectrometry). The PMS successfully determined the OPs in vegetable and rice samples with recoveries of 89.0-109 % and RSDs (n = 5) of <6 %. These results were consistent with those obtained using the HPLC-MS method. The PMS demonstrates excellent portability, AuNBPs stability, detection sensitivity, and reproducibility, making it a promising tool for the on-site quantitative detection of OPs residues in food. Furthermore, the paper-based etching system coupled with the colorimeter-based quantitative method provides a valuable reference to develop practical PMSs for various targets in diverse fields.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yu Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Enxi Ren
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Ling Fang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Fujian Key Laboratory of Agro-Products Quality and Safety, Institute of Quality Standards Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences, Fuzhou, 350003, China
| | - Weijuan Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Liaoyuan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Zongwen Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection & Key Lab of Biopesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| |
Collapse
|
4
|
Zhang C, Li Y, Si H, Du H, Lv L, Xu B, Deng Y, Li J, Yang H, Zhou Y, Wang B. A portable colorimetric immunosensor for highly sensitive point-of-care testing of leather artifacts. Mikrochim Acta 2024; 191:764. [PMID: 39601921 DOI: 10.1007/s00604-024-06842-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
A point-of-care testing (POCT) platform, i.e., a portable colorimetric immunosensor based on iron oxide magnetic beads and AuNPs, has been developed for detecting leather residues. The immunosensor demonstrates a linear detection range from 1 ng/mL to 10 µg/mL, with a limit of detection (LOD) of 0.985 ng/mL. The sensor exhibits high specificity and repeatability and performs effectively in detecting leather artifacts excavated from Inner Mongolia. Thus, the proposed colorimetric immunosensor not only enables the micro-detection of leather artifacts but also shows significant potential for on-site leather detection at archaeological sites.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yichang Li
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hui Si
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hao Du
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lianpeng Lv
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Bing Xu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yefeng Deng
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Junting Li
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Hailiang Yang
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou, 310002, China
| | - Yang Zhou
- Key Scientific Research Base of Textile Conservation, State Administration for Cultural Heritage, China National Silk Museum, Hangzhou, 310002, China
| | - Bing Wang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- Institute of Textile Conservation, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
5
|
Xu L, Luo ML, Dai JJ, Zhu H, Li P, Wang D, Yang FQ. Applications of nanomaterials with enzyme-like activity for the detection of phytochemicals and hazardous substances in plant samples. Chin Med 2024; 19:140. [PMID: 39380087 PMCID: PMC11462967 DOI: 10.1186/s13020-024-01014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024] Open
Abstract
Plants such as herbs, vegetables, fruits, and cereals are closely related to human life. Developing effective testing methods to ensure their safety and quantify their active components are of significant importance. Recently, nanomaterials with enzyme-like activity (known as nanozymes) have been widely developed in various assays, including colorimetric, fluorescence, chemiluminescence, and electrochemical analysis. This review presents the latest advances in analyzing phytochemicals and hazardous substances in plant samples based on nanozymes, including some active ingredients, organophosphorus pesticides, heavy metal ions, and mycotoxins. Additionally, the current shortcomings and challenges of the actual sample analysis were discussed.
Collapse
Affiliation(s)
- Lei Xu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Mao-Ling Luo
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Jing-Jing Dai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Huan Zhu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.
| | - Dan Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, People's Republic of China.
| |
Collapse
|
6
|
Zhu X, Zhang B, Wang J, He Y, Chen Z, Chang W, Xie X, Zhu H. Cu 2O nanoparticles with morphology-dependent peroxidase mimic activity: a novel colorimetric biosensor for deoxynivalenol detection. Mikrochim Acta 2024; 191:588. [PMID: 39256210 DOI: 10.1007/s00604-024-06676-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/31/2024] [Indexed: 09/12/2024]
Abstract
Different morphological Cu2O nanoparticles including cube, truncated cube, and octahedron were successfully prepared by a selective surface stabilization strategy. The prepared cube Cu2O exhibited superior peroxidase-like activity over the other two morphological Cu2O nanoparticles, which can readily oxidize 3,3',5,5'-tetramethylbenzidine (TMB) to form visually recognizable color signals. Consequently, a sensitive and simple colorimetric biosensor was proposed for deoxynivalenol (DON) detection. In this biosensor, the uniform cube Cu2O was employed as the vehicle to label the antibody for the recognition of immunoreaction. The sensing strategy showed a detection limit as low as 0.01 ng/mL, and a wide linear range from 2 to 100 ng/mL. Concurrently, the approximate DON concentration can be immediately and conveniently observed by the vivid color changes. Benefiting from the high sensitivity and selectivity of the designed biosensor, the detection of DON in wheat, corn, and tap water samples was achieved, suggesting the bright prospect of the biosensor for the convenient and intuitive detection of DON in actual samples.
Collapse
Affiliation(s)
- Xiaodong Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - BoBo Zhang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China
| | - Junhao Wang
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yangchun He
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ziyue Chen
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weidan Chang
- Department of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, 450002, China
| | - Xinhua Xie
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China.
| | - Hongshuai Zhu
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, 450002, China.
- Key Laboratory for Staple Grain Processing, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450002, China.
- Agricultural Engineering Postdoctoral Research Station, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
7
|
Meira DI, Barbosa AI, Borges J, Reis RL, Correlo VM, Vaz F. Recent advances in nanomaterial-based optical biosensors for food safety applications: Ochratoxin-A detection, as case study. Crit Rev Food Sci Nutr 2024; 64:6318-6360. [PMID: 36688280 DOI: 10.1080/10408398.2023.2168248] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Global population growth tremendously impacts the global food industry, endangering food safety and quality. Mycotoxins, particularly Ochratoxin-A (OTA), emerge as a food chain production threat, since it is produced by fungus that contaminates different food species and products. Beyond this, OTA exhibits a possible human toxicological risk that can lead to carcinogenic and neurological diseases. A selective, sensitive, and reliable OTA biodetection approach is essential to ensure food safety. Current detection approaches rely on accurate and time-consuming laboratory techniques performed at the end of the food production process, or lateral-flow technologies that are rapid and on-site, but do not provide quantitative and precise OTA concentration measurements. Nanoengineered optical biosensors arise as an avant-garde solution, providing high sensing performance, and a fast and accurate OTA biodetection screening, which is attractive for the industrial market. This review core presents and discusses the recent advancements in optical OTA biosensing, considering engineered nanomaterials, optical transduction principle and biorecognition methodologies. Finally, the major challenges and future trends are discussed, and current patented OTA optical biosensors are emphasized for a particular promising detection method.
Collapse
Affiliation(s)
- Diana I Meira
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Guimarães, Portugal
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
| | - Ana I Barbosa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Joel Borges
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Guimarães, Portugal
- LaPMET-Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Vitor M Correlo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Filipe Vaz
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Guimarães, Portugal
- LaPMET-Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, Portugal
| |
Collapse
|
8
|
Qiao M, Liu M, Wan Z, Suo Z, Liu Y, Wei M. A novel fluorescent aptasensor based on 3D porous nitrogen-sulfur co-doped carbon mesh and hybridization chain reaction for sensitive detection of ochratoxin A. Mikrochim Acta 2023; 190:313. [PMID: 37470836 DOI: 10.1007/s00604-023-05897-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
A novel three-dimensional (3D) porous nitrogen-sulfur co-doped carbon (N-S-C) mesh was synthesized and used for the first time as the quenching material to construct a fluorescent aptasensor for ochratoxin A (OTA) detection. The fluorescent aptasensor with enzyme-free signal amplification strategy was developed by using cDNA as a promoter to trigger hybridization chain reaction (HCR), which effectively improved the sensitivity of this aptasensor. In the absence of OTA, 3D porous N-S-C mesh can adsorb carboxyfluorescein FAM-labeled hairpin DNA1 (H1-FAM) and hairpin DNA2 (H2) and quench the fluorescence of FAM. In the presence of the OTA, the OTA specifically binds to the aptamer strand and the DNA duplex undergoes dissociation. The released cDNA in turn serves as a promoter for HCR, and the strand assembly of H1-FAM and H2 is triggered by the promoter to generate long-strand DNA polymers via HCR, resulting in an increasing fluorescent signal. Under optimal conditions, there was a good linear relationship between lgCOTA and fluorescence intensity difference in the range 0.01-500 ng/mL (R2 = 0.993), and the detection limit was 2.7 pg/mL. The designed sensor platform was applied to determine spiked OTA in peanut, wheat flour, corn flour, black tea, and wine with recoveries in the range of 94.4-119.6%.
Collapse
Affiliation(s)
- Mengxiang Qiao
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Mingwei Liu
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Zhigang Wan
- Food Inspection and Quarantine Technology Center of Shenzhen Customs, Shenzhen, 518045, People's Republic of China
| | - Zhiguang Suo
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Yong Liu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, People's Republic of China
| | - Min Wei
- College of Food Science and Technology, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
9
|
Guo R, Ji Y, Chen J, Ye J, Ni B, Li L, Yang Y. Multicolor Visual Detection of Deoxynivalenol in Grain Based on Magnetic Immunoassay and Enzymatic Etching of Plasmonic Gold Nanobipyramids. Toxins (Basel) 2023; 15:351. [PMID: 37368652 DOI: 10.3390/toxins15060351] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, a multicolor visual method based on a magnetic immunoassay and enzyme-induced gold nanobipyramids (Au NBPs) etching was developed for deoxynivalenol (DON) detection. The magnetic beads modified with high affinity DON monoclonal antibodies were used as a carrier for target enrichment and signal transformation and the Au NBPs with excellent plasmonic optical properties were served as enzymatic etching substrates. The oxidation state TMB, which was generated through catalysis of horseradish peroxidase (HRP), induced the etching of plasmonic Au NBPs, resulting in the longitudinal peak blue-shift of local surface plasmon resonance (LSPR). Correspondingly, Au NBPs with various aspect ratios displayed a variety of individual colors which were visualized by the naked eye. The LSPR peak shift was linearly related to the DON concentration in the range of 0~2000 ng/mL and the detection limit was 57.93 ng/mL. The recovery for naturally contaminated wheat and maize at different concentrations ranged from 93.7% to 105.7% with a good relative standard deviation below 11.8%. Through observing the color change in Au NBPs, samples with overproof DON could be screened preliminarily by the naked eye. The proposed method has the potential to be applied in on-site rapid screening of mycotoxins in grain. In addition, the current multicolor visual method only used for the simultaneous detection of multiple mycotoxins is in urgent need of a breakthrough to overcome the limitation of single mycotoxin detection.
Collapse
Affiliation(s)
- Rui Guo
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str., Xicheng District, Beijing 100037, China
| | - Yue Ji
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str., Xicheng District, Beijing 100037, China
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| | - Jinnan Chen
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str., Xicheng District, Beijing 100037, China
| | - Jin Ye
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str., Xicheng District, Beijing 100037, China
| | - Baoxia Ni
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str., Xicheng District, Beijing 100037, China
| | - Li Li
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str., Xicheng District, Beijing 100037, China
| | - Yongtan Yang
- Academy of National Food and Strategic Reserves Administration, No.11 Baiwanzhuang Str., Xicheng District, Beijing 100037, China
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
10
|
Liu M, Fu X, Lu M, Liu J, Xie H, Wei P, Zhang W, Xie Y, Qi Y. Colorimetric and visual determination of iodide ions via morphology transition of gold nanobipyramids. Anal Biochem 2023; 666:115077. [PMID: 36754136 DOI: 10.1016/j.ab.2023.115077] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
The gold nanobipyramids (Au NBPs) are widely used in the analytical detection of biochemistry due to their unique localized surface plasmon resonance (LSPR) properties. In our developed approach, I- in kelp was detected by etching Au NBPs in the presence of IO3-. Under acidic conditions, IO3- reacted rapidly with I- to form I2, subsequently I2 reacted with I- to form the intermediate I3-. In the presence of CTAB, Au NBPs were etched by I2 derived from I3-, resulting in a decrease in the aspect ratio of Au NBPs, to form a significant blue shift of LSPR longitudinal peak and color variation of colloid which changed from blue-green to magenta and could be employed to quantitatively detect the concentration of I- with the naked eye. A linear relationship can be found between the LSPR peak changes with the I- concentration in a wide range from 4.0 μM to 15.0 μM, and the sensitive limit of detection (LOD) was 0.2 μM for UV-vis spectroscopy and the obvious color changes with a visual LOD was 4.0 μM for the naked eye. Benefiting from the high specificity, the proposed colorimetric detection of I- in kelp samples was achieved, indicating the available potential of the colorimetric detection for the determination of I- in real samples. What's more, this detection procedure was time-saving and could avoid tedious procedures.
Collapse
Affiliation(s)
- Min Liu
- MOE Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China
| | - Xiaojuan Fu
- MOE Key Laboratory of Oil and Gas Fine Chemicals, School of Chemistry, Xinjiang University, Urumqi, 830046, China
| | - Mengjie Lu
- MOE Key Laboratory of Oil and Gas Fine Chemicals, School of Chemistry, Xinjiang University, Urumqi, 830046, China
| | - Jijian Liu
- MOE Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China
| | - Huihui Xie
- MOE Key Laboratory of Oil and Gas Fine Chemicals, School of Chemistry, Xinjiang University, Urumqi, 830046, China
| | - Peng Wei
- MOE Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China
| | - Weidong Zhang
- School of Chemical Engineering, Qinghai University, Xining, 810016, China.
| | - Yahong Xie
- MOE Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China.
| | - Ying Qi
- MOE Key Laboratory of Oil and Gas Fine Chemicals, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
11
|
Chen Q, Pan Y, Sun C, Wang Z, Wu Y, Fu F. A multicolor immunosensor for the visual detection of six sulfonamides based on manganese dioxide nanosheet-mediated etching of gold nanobipyramids. Talanta 2023; 258:124449. [PMID: 36924640 DOI: 10.1016/j.talanta.2023.124449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
In reality, various sulfonamides (SAs) were alternately used in animal husbandry to avoid generating drug resistance. Thus, it is crucial to develop simple and high-throughput methods for detecting multiple or groups of SAs to realize rapid screening of total SAs residues in foods. We herein developed a sensitive and efficient MnO2 nanosheets-mediated etching of gold nanobipyramids (AuNBPs), which can generate more vivid color changes, and further fabricated a high-throughput multicolor immunosensor for the visual screening/semi-quantitative detection of 6 different SAs including sulfamethazine (SMZ), sulfamethoxydiazine (SMD), sulfisomidine (SIM), sulfamerazine (SMR), sulfamonomethoxine (SMM) and sulfaquinoxaline (SQ) by using AuNBPs as signal and broad-specificity anti-SAs antibody as a bio-receptor. The immunosensor displays more vivid color changes, and has a lower visual detection limit and excellent specificity. It can be applied to detect as little as 1.0 ng/mL of SMZ, SMD, SMR and 2.0 ng/mL of SIM, SMM, SQ by bare eye observation, and 0.2 ng/mL of above 6 SAs by UV-visible spectrophotometry. The visual detection limit of the immunosensor is much lower than the maximum residue limit of total SAs (100 μg/kg) in edible tissues. The immunosensor was successfully applied to detect SMZ, SMD, SIM, SMR, SMM and SQ in milk with a recovery of 84%-106% and a RSD (n = 5) < 8%. The success of this study provided a promising assay for the on-site rapid screening of SMZ, SMD, SIM, SMR, SMM and SQ in food by bare eye observation. Importantly, the immunosensor may be expended as a general method for the visual screening/semi-quantitative detection of the group of other antibiotics by using the corresponding broad-specificity antibody as a bio-receptor.
Collapse
Affiliation(s)
- Qian Chen
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yuquan Pan
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Chaochen Sun
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Zongwen Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yongning Wu
- NHC Key Lab of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of China Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - FengFu Fu
- Key Laboratory for Analytical Science of Food Safety and Biology of MOE, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
12
|
A novel method for detection of ochratoxin A in foods—Co-MOFs based dual signal ratiometric electrochemical aptamer sensor coupled with DNA walker. Food Chem 2023; 403:134316. [DOI: 10.1016/j.foodchem.2022.134316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
|
13
|
Luo Q, Tian M, Luo F, Zhao M, Lin C, Qiu B, Wang J, Lin Z. Multicolor Biosensor for Trypsin Detection Based on the Regulation of the Peroxidase Activity of Bovine Serum Albumin-Coated Gold Nanoclusters and Etching of Gold Nanobipyramids. Anal Chem 2023; 95:2390-2397. [PMID: 36638045 DOI: 10.1021/acs.analchem.2c04418] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The detection of trypsin is significantly important for both clinical diagnosis and disease treatment. In this study, an innovative multicolor sensor for trypsin detection has been established based on the regulation of the peroxidase activity of bovine serum albumin-coated gold nanoclusters (BSA-Au NCs) and efficient etching of gold nanobipyramids (Au NBPs). BSA-Au NCs have slight peroxidase enzyme activity and can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to generate TMB+, while trypsin can hydrolyze BSA ligands on the surface of BSA-Au NCs, thus exposing more catalytic active sites of BSA-Au NCs and resulting in the enhancement of the peroxidase activity of BSA-Au NCs, hence more TMB+ is generated. Under acidic conditions, TMB+ can etch Au NBPs efficiently, consequently affecting the aspect ratio of Au NBPs accompanied by the ultraviolet-visible (UV-vis) spectra blue shifting of the system. Furthermore, this also results in color variations that can be distinguished and recognized by naked eyes without any expensive and sophisticated instruments. This multicolor sensor has an available linear relationship with the logarithm of the trypsin concentration in the range of 0.1-100 μg/mL, and the detection limit is 0.045 μg/mL. The designed sensor has been used to detect the concentration of trypsin in human serum samples from healthy individuals and pancreatitis patients with satisfactory results.
Collapse
Affiliation(s)
- Qin Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, China
| | - Mengjian Tian
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, China
| | - Min Zhao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian361005, China.,Computer Management Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian361005, China
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, China
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian350116, China
| |
Collapse
|
14
|
Huang J, Wei F, Cui Y, Hou L, Lin T. Fluorescence immunosensor based on functional nanomaterials and its application in tumor biomarker detection. RSC Adv 2022; 12:31369-31379. [PMID: 36349017 PMCID: PMC9624183 DOI: 10.1039/d2ra04989a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/19/2022] [Indexed: 09/29/2023] Open
Abstract
An immunosensor is defined as an analytical device that detects the binding of an antigen to its specific antibody by coupling an immunochemical reaction to the surface of a device called a transducer. Fluorescence immunosensing is one of the most promising immunoassays at present, and has the advantages of simple operation, fast response and high stability. A traditional fluorescence immunosensor often uses an enzyme-labelled antibody as a recognition unit and an organic dye as a fluorescence probe, so it is easily affected by environmental factors with low sensitivity. Nanomaterials have unique photostability, catalytic properties and biocompatibility, which open up a new path for the construction of stable and sensitive fluorescence immunosensors. This paper briefly introduces different kinds of immunosensors and the role of nanomaterials in the construction of immunosensors. The significance of fluorescent immunosensors constructed from functional nanomaterials to detect tumor biomarkers was analyzed, and the strategies to further improve the performance of fluorescent immunosensors and their future development trend were summarized.
Collapse
Affiliation(s)
- Juanjuan Huang
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| | - Fenghuang Wei
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| | - Yuling Cui
- Jinan Center for Food and Drug Control Jinan 250102 Shandong China
| | - Li Hou
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| | - Tianran Lin
- School of Chemistry and Pharmaceutical Science, State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University Guilin 541004 P. R. China
| |
Collapse
|
15
|
Lin X, Yu W, Tong X, Li C, Duan N, Wang Z, Wu S. Application of Nanomaterials for Coping with Mycotoxin Contamination in Food Safety: From Detection to Control. Crit Rev Anal Chem 2022; 54:355-388. [PMID: 35584031 DOI: 10.1080/10408347.2022.2076063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mycotoxins, which are toxic secondary metabolites produced by fungi, are harmful to humans. Mycotoxin-induced contamination has drawn attention worldwide. Consequently, the development of reliable and sensitive detection methods and high-efficiency control strategies for mycotoxins is important to safeguard food industry safety and public health. With the rapid development of nanotechnology, many novel nanomaterials that provide tremendous opportunities for greatly improving the detection and control performance of mycotoxins because of their unique properties have emerged. This review comprehensively summarizes recent trends in the application of nanomaterials for detecting mycotoxins (fluorescence, colorimetric, surface-enhanced Raman scattering, electrochemical, and point-of-care testing) and controlling mycotoxins (inhibition of fungal growth, mycotoxin absorption, and degradation). These detection methods possess the advantages of high sensitivity and selectivity, operational simplicity, and rapidity. With research attention on the control of mycotoxins and the gradual excavation of the properties of nanomaterials, nanomaterials are also employed for the inhibition of fungal growth, mycotoxin absorption, and mycotoxin degradation, and impressive controlling effects are obtained. This review is expected to provide the readers insight into this state-of-the-art area and a reference to design nanomaterials-based schemes for the detection and control of mycotoxins.
Collapse
Affiliation(s)
- Xianfeng Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Wenyan Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xinyu Tong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Changxin Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Nuo Duan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shijia Wu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
16
|
Liang H, Qileng A, Shen H, Zhou Y, Liu W, Lei H, Liu Y. Handheld Platform for Sensitive Rosiglitazone Detection: Immunosensor Based on a Time-Based Readout Device. Anal Chem 2022; 94:4294-4302. [PMID: 35107977 DOI: 10.1021/acs.analchem.1c04957] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The detection of rosiglitazone (RSG) in food is of great importance since the excessive intake of RSG could cause adverse effects on the human body. Although liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry are the preliminary methods for the detection of hazardous materials in food, they are not suitable for point-of-care or on-site detection. Herein, a time-based readout (TBR) device with an application software (APP) controlled by a smart phone was developed for the sensitive and selective immunoassay of RSG. The homemade TBR device was based on a two-electrode system, where the immune molecule-modified glassy carbon electrode was used as the bioanode, and Prussian blue-modified FTO was used as the cathode. By using Au-modified octahedral Cu2O with high catalytic activity as mimetic peroxidase, an insulating layer was generated on the cathode by catalyzing 4-chloro-1-naphthol (4-CN) into benzo-4-chlorohexadienone (B4Q). The time to reach a fixed potential varied indirectly with the concentrations of RSG and was recognized by the APP, while the electrochromic property on the cathode was also correspondingly changed. Under optimum conditions, both the square root of the time and the chroma value of the electrochromism exhibited linear responses for the detection of RSG ranging from 5 × 10-10 to 5 × 10-7 g/L, while the limits of detection were 8.2 × 10-11 and 1.3 × 10-10 g/L, respectively. With easy operation and portability, this TBR device showed a promising application for point-of-care monitoring of hazardous materials in food or the environment.
Collapse
Affiliation(s)
- Hongzhi Liang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Aori Qileng
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.,The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Haoran Shen
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yaowei Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Weipeng Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Hongtao Lei
- The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingju Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China.,The Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Lin Y, Zhan Y, Luo F, Lin C, Wang J, Qiu B, Lin Z. Multicolor hydrogen sulfide sensor for meat freshness assessment based on Cu 2+-modified boron nitride nanosheets-supported subnanometer gold nanoparticles. Food Chem 2022; 381:132278. [PMID: 35139466 DOI: 10.1016/j.foodchem.2022.132278] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/15/2022]
Abstract
Hydrogen sulfide (H2S) has emerged as an important indicator in the spoilage process of meat. In this study, a mimetic enzyme based on Cu2+-modified boron nitride nanosheets-supported gold nanoparticles (AuNPs/Cu2+-BNNS) was synthesized, which can be used to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). The H2S gas can inhibit the activity of AuNPs/Cu2+-BNNS toward catalytic oxidation of TMB. Meanwhile, the usage of headspace method could avoid most interferences in the rotten sample. Various concentrations of TMB+ could change the aspect ratio of the gold nanoroads (AuNRs), which results in vivid color changing and UV-vis spectra shifting. The sensor had a good linear relationship with H2S concentration ranging from 10.0 to 90.0 μmol/L, and the detection limit is 7.8 μmol/L. The AuNPs/Cu2+-BNNS sensors were successfully applied to detect H2S produced by meat spoilage with satisfying results.
Collapse
Affiliation(s)
- Yisheng Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yuanjin Zhan
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China.
| |
Collapse
|
18
|
Luo Q, Lin Y, Cai Q, Luo F, Lin C, Wang J, Qiu B, Lin Z. A multicolor biosensor for alkaline phosphatase activity detection based on the peroxidase activity of copper nanoclusters and etching of gold nanorods. Analyst 2022; 147:2749-2756. [DOI: 10.1039/d2an00517d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multicolor biosensor for ALP activity has been developed based on the peroxidase activity of copper nanoclusters and etching of gold nanorods.
Collapse
Affiliation(s)
- Qin Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Yisheng Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Qihong Cai
- Pharmaceutical and Medical Technology College of Putian University, Putian, Fujian, China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Cuiying Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Jian Wang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Bin Qiu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350116, China
| |
Collapse
|
19
|
A novel aptasensor based on DNA hydrogel for sensitive visual detection of ochratoxin A. Mikrochim Acta 2021; 188:395. [PMID: 34709464 DOI: 10.1007/s00604-021-05000-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 08/24/2021] [Indexed: 10/20/2022]
Abstract
A novel visual detection mode is proposed to improve the detection sensitivity for the determination of ochratoxin A (OTA). The mode is based on aptamer recognition and the signal amplification of rolling circle amplification (RCA) products self-assembled DNA hydrogel. Moreover, gold nanoparticles (AuNPs) were directly assembled inside the DNA hydrogel by adjusting the padlock probe sequences to achieve a stronger binding force between the DNA hydrogel and AuNPs; this avoids the need for modification of AuNPs with DNA sequences. In the presence of OTA, DNA hydrogel is formed. With higher concentrations of OTA, a larger amount of DNA hydrogel is formed. When AuNPs are added to the DNA hydrogel, AuNPs can be enclosed inside the DNA hydrogel. With more DNA hydrogel, there is less AuNPs in the supernatant. Thus, the absorbance of the supernatant is anti-correlated with the concentration of OTA. After optimization of the experimental conditions, the change in the absorbance of the supernatant was linearly correlated with the concentration of OTA, in the range 0.05 to 10 ng/mL; the limit of detection was 0.005 ng/mL. The good specificity of the developed biosensor was confirmed in the presence of other mycotoxins that are coexistent with or analogues of OTA. By comparing the developed method with the ELISA method, the accuracy and stability of this new method were also verified, with good performance obtained in real samples. Diagram of the principle of the colorimetric aptasensor for OTA detection based on rolling circle amplification product self-assembled DNA hydrogel.
Collapse
|
20
|
Gold nanorods etching as a powerful signaling process for plasmonic multicolorimetric chemo-/biosensors: Strategies and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213934] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|