1
|
Han Y, Zhang P, Duan X, Gao X, Gao L. Advances in precise synthesis of metal nanoclusters and their applications in electrochemical biosensing of disease biomarkers. NANOSCALE 2025; 17:3616-3634. [PMID: 39744955 DOI: 10.1039/d4nr04714a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Metal nanoclusters (NCs), comprising tens to hundreds of metal atoms, are condensed matter with concrete molecular structures and discrete energy levels. Compared to metal atoms and nanoparticles, metal NCs exhibit unique physicochemical properties, especially fascinating electrocatalytic activities. This review focuses on recent progress in the precise synthesis of metal NCs and their applications in electrochemical analysis of various disease biomarkers. First, we provide a brief overview of current nanotechnology-enabled electrochemical biosensors. Subsequently, we highlight the precise synthesis of metal NCs protected by various ligands such as peptides, proteins and nucleic acids. Next, we summarize the design and construction of electrochemical biosensors that utilize metal NCs as electrode materials to detect electrochemically active and inactive disease-associated biomarkers, including small biomolecules (glucose, reactive oxygen species, cholesterol, neurotransmitters and amino acids) and biomacromolecules (proteins, enzymes, and nucleic acids). Due to unique electrocatalytic properties, high specific surface areas, and atomically modulated structures, metal NCs promote electron exchange or act as a redox medium in these electrochemical sensing platforms. Finally, we conclude with present challenges and propose future research directions, with the aim to enhance the specificity, sensitivity, and durability of customized metal NC-based electrochemical biosensors for precise disease diagnostics.
Collapse
Affiliation(s)
- Ying Han
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Ping Zhang
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Xiaoyi Duan
- College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Xueyun Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| | - Liang Gao
- Department of Chemistry, College of Chemistry and Life Science, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
2
|
Balali MR, Taghizadeh M, Alizadeh M, Karami Y, Karimi F, Khatami SH, Taheri-Anganeh M, Ehtiati S, Movahedpour A, Mahmoudi R, Ghasemi H. MicroRNA biosensors for detection of chronic kidney disease. Clin Chim Acta 2025; 567:120081. [PMID: 39653321 DOI: 10.1016/j.cca.2024.120081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024]
Abstract
Chronic kidney disease (CKD) is a prevalent health condition characterized by gradual kidney function loss. Early detection is crucial for the effective management and treatment of CKD. A promising biomarker for various diseases, including chronic kidney disease, is microRNAs (miRNAs), which are becoming increasingly important due to their stability and differential expression in various disease-related states, including CKD. Recent developments in microRNA biosensors have made it possible to detect miRNAs associated with CKD in a sensitive and specific manner. This review article discusses the current state of microRNA biosensors for detecting CKD and highlights their potential applications in clinical settings. Various microRNA biosensors, including electrochemical, optical, and nanomaterial-based sensors, are explored for their ability to detect specific miRNAs linked to CKD progression. The advantages and limitations of these biosensors are evaluated, focusing on factors such as sensitivity, specificity, and ease of use. Overall, microRNA biosensors are promising diagnostic tools for early detection of CKD. However, challenges such as standardizing protocols, validating in large cohorts, and translating to clinical practice remain to be addressed. Future research efforts should aim to overcome these limitations to fully realize the potential of microRNA biosensors in improving the diagnosis and management of CKD.
Collapse
Affiliation(s)
| | - Mohammad Taghizadeh
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Alizadeh
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousof Karami
- Department of Clinical Science, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Movahedpour
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.
| | - Hassan Ghasemi
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran.
| |
Collapse
|
3
|
Gaikwad P, Desai TR, Ghosh S, Gurnani C. Flexible Nanostructured NiS-Based Electrochemical Biosensor for Simultaneous Detection of DNA Nucleobases. ACS OMEGA 2025; 10:2561-2574. [PMID: 39895750 PMCID: PMC11780467 DOI: 10.1021/acsomega.4c07106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/17/2024] [Accepted: 11/25/2024] [Indexed: 02/04/2025]
Abstract
Herein, we demonstrate a one-step, scalable, solution-processed method for the growth of nickel sulfide (NiS) nanostructures using single-source precursors (SSPs) on a flexible substrate as a versatile framework for simultaneous detection of four DNA nucleobases. The as-grown NiS nanostructures exhibit a broad bandgap range and spherical morphology with high surface area and significant porosity, as confirmed by SEM, TEM, and BET surface area analysis. Consequently, the NiS/Ni-foam electrode exhibited remarkable electrochemical performance toward the oxidation of A, G, T, and C due to its large surface area, high electrode activity, and efficient electron transfer capacity. Under the optimum conditions, the electrode demonstrated selective and simultaneous detection of all four nucleobases over a wide linear range from 200 to 1000 μM for A and G, and 50 to 500 μM for T and C, with a low limit of detection of 159 μM for A, 147.6 μM for G, 16.8 μM for T, and 45.9 μM for C, along with high sensitivity of 1.2 × 10-4 A M-1 for A, 6.1 × 10-4 A M-1 for G, 1.2 × 10-3 A M-1 for T, and 3.0 × 10-4 A M-1 for C. The as-fabricated electrode revealed excellent reproducibility and stability toward nucleobase detection and demonstrated a reliable DPV response under different bending and twisting conditions. For immediate practical application, NiS/Ni-foam was utilized to quantify the concentration of all nucleobases in calf thymus and Escherichia coli (E. coli) DNA, resulting in a (G + C)/(A + T) ratio of 0.79 and 1.10, respectively. This simple, cost-effective, and flexible NiS/Ni-foam electrode paves the way for the development of non-invasive, wearable biosensors for potential applications in early disease detection.
Collapse
Affiliation(s)
- Prajakta
N. Gaikwad
- Department
of Chemistry, Ecole Centrale School of Engineering, Mahindra University, Hyderabad 500043, India
| | - Trishala R. Desai
- Department
of Chemistry, Ecole Centrale School of Engineering, Mahindra University, Hyderabad 500043, India
| | - Souradyuti Ghosh
- Centre
for Life Sciences, Mahindra University, Hyderabad 500043, India
- Interdisciplinary
Center for Nanosensors and Nanomedicines, Mahindra University, Hyderabad 500043, India
| | - Chitra Gurnani
- Department
of Chemistry, Ecole Centrale School of Engineering, Mahindra University, Hyderabad 500043, India
- Interdisciplinary
Center for Nanosensors and Nanomedicines, Mahindra University, Hyderabad 500043, India
| |
Collapse
|
4
|
Qian L, Sridhar D, Shi T, van der Zalm J, Thiruppathi AR, Guerreiro MC, Chen A. Sensitive electrochemical detection of methimazole based on a unique copper and exfoliated graphene oxide nanocomposite. CHEMOSPHERE 2024; 365:143343. [PMID: 39278330 DOI: 10.1016/j.chemosphere.2024.143343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/10/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Herein, we report the creation of a novel sensitive electrochemical sensing platform based on a copper and exfoliated graphene oxide (Cu-eGO) nanocomposite using a facile synthesis technique, which simultaneously removes the sodium ions that result from the exfoliation process to generate eGO from graphite. This novel Cu-eGO nanocomposite was characterized via SEM, EDX, Raman and XPS. The Cu-eGO/GCE exhibited much greater activity for the electrochemical oxidation of methimazole than the eGO/GCE or bare GCE. The electrochemical properties and kinetics involved in the oxidation of methimazole at the Cu-eGO were examined using voltammetry and electrochemical impedance spectroscopy (EIS). This Cu-eGO based sensing platform demonstrated high sensitivity at 1.32 μAμM-1cm-2, a low limit of detection at 0.06 μM, robust stability, and strong anti-interference against potential interferents that may exist in biological systems for the detection of methimazole. The developed electrochemical sensor was successfully employed in blood serum samples that mimicked real biological environments, showing its high applicability.
Collapse
Affiliation(s)
- Lanting Qian
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G,2W1 Canada
| | - Deepak Sridhar
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G,2W1 Canada
| | - Tony Shi
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G,2W1 Canada
| | - Joshua van der Zalm
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G,2W1 Canada
| | - Antony R Thiruppathi
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G,2W1 Canada
| | - Mario C Guerreiro
- Department of Chemistry, Institute of Natural Sciences, Federal University of Lavras, P.O. Box 3037, Lavras, MG, 37200-900, Brazil
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Rd E, Guelph, Ontario, N1G,2W1 Canada.
| |
Collapse
|
5
|
Metto M, Tesfaye A, Atlabachew M, Abebe A, Fentahun T, Munshea A. A Novel Poly(cytosine)-Based Electrochemical Biosensor for Sensitive and Selective Determination of Guanine in Biological Samples. ACS OMEGA 2024; 9:26222-26234. [PMID: 38911807 PMCID: PMC11191103 DOI: 10.1021/acsomega.4c01939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 06/25/2024]
Abstract
The novel poly(cytosine)-modified glassy carbon electrode-based electrochemical sensor was fabricated potentiodynamically for the detection of Guanine (G) in clinical and biological samples. The surface of the electrode was successfully activated by electropolymerization, and about a 7.5-fold current improvement due to modification was achieved. From the analysis of the dependence of peak current and peak potential on a scan rate, a higher R 2 for the peak current on the square root of scan rate (R 2 = 0.999) than the dependence of peak current on scan rate (R 2 = 0.982) indicated that the oxidation of G at poly(cytosine)/GCE was predominantly diffusion controlled. The oxidative peak response of the electrode revealed a high linear range of G concentration (0.1-200 μM) under optimized conditions. The detection limit and limit of quantification were 6.10 and 20.13 nM, respectively, associated with the %RSD of under 1%. The validation of the developed electrochemical sensor for the determination of G was investigated by analyzing human urine DNA and serum samples with spike recovery results in the range of 98.20-103.70% with the interferent recovery percentage in the range of 97.86-103.10% containing 50-300% of potential interferents. The newly designed sensor demonstrated the highest level of performance for the G detection in real samples.
Collapse
Affiliation(s)
- Melaku Metto
- Department
of Chemistry, College of Science, Bahir
Dar University, Bahir
Dar 6000, Ethiopia
- Department
of Chemistry, College of Natural and Computational Sciences, Injibara University, Injibara 6400, Ethiopia
| | - Alemu Tesfaye
- Department
of Chemistry, College of Science, Bahir
Dar University, Bahir
Dar 6000, Ethiopia
| | - Minaleshewa Atlabachew
- Department
of Chemistry, College of Science, Bahir
Dar University, Bahir
Dar 6000, Ethiopia
| | - Atakilt Abebe
- Department
of Chemistry, College of Science, Bahir
Dar University, Bahir
Dar 6000, Ethiopia
| | - Tihunie Fentahun
- Department
of Chemistry, College of Science, Bahir
Dar University, Bahir
Dar 6000, Ethiopia
| | - Abaineh Munshea
- Department
of Chemistry, College of Science, Bahir
Dar University, Bahir
Dar 6000, Ethiopia
| |
Collapse
|
6
|
Guo H, Yang Z, Sun L, Lu Z, Wei X, Wang M, Yu Z, Yang W. Imine-linked covalent organic framework with high crystallinity for constructing sensitive purine bases electrochemical sensor. J Colloid Interface Sci 2024; 659:639-649. [PMID: 38198941 DOI: 10.1016/j.jcis.2023.12.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
In this work, a covalent organic framework (TADM-COF) with high crystallinity and large specific surface area (2597 m2 g-1) has been successfully synthesized using 1,3,5-(4-aminophenyl) benzene (TAPB) and 2,5-dimethoxy-p-phenyldiformaldehyde (DMTP). The COF was grown in situ on oxide particles to form core-shell nanocomposites (SiO2@TADM COF, Fe3O4@TADM COF and Co3O4@TADM COF) to realize its function as a shell material. Among them, the Co3O4@TADM COF with the highest electrochemical response to purine bases was further cross-linked with multi-walled carbon nanotubes (MWCNT) to construct a novel electrochemical sensor (Co3O4@TADM COF/MWCNT/GCE) for detection of purine bases. In this nanocomposite, Co3O4 possesses rich catalytic active sites, MWCNT ensures superior electrical conductivity and COF provides a stable environment for electrocatalytic reactions as the shell. At the same time, regular pore structure of the COFs also offers smooth channels for the transfer of analytes to the catalytic site. The synergistic effect among the three components showed remarkable sensing performance for the simultaneous detection of guanine (G) and adenine (A) with a wide linear range of 0.6-180 μM and low limits of detection (LODs) of 0.020 μM for G and 0.024 μM for A (S/N = 3), respectively. The developed sensor platform was also successfully applied in the detection of purine bases in thermally denatured herring DNA extract. The work provided a general strategy for amplifying signal of COF and its composite in the electrochemical sensing.
Collapse
Affiliation(s)
- Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| | - Zeyun Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Lei Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Zongyan Lu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Xiaoqin Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Mingyue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Zhiguo Yu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou 730070, PR China.
| |
Collapse
|
7
|
Sun L, Guo H, Wei X, Lu Z, Wang M, Yang Z, Hui Y, Yu Z, Yang W. Highly crystalline polyimide covalent organic framework as electrochemical sensing platform for the ultrasensitive detection of purine bases in DNA. Talanta 2024; 269:125493. [PMID: 38043342 DOI: 10.1016/j.talanta.2023.125493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/05/2023]
Abstract
It is of great significance to propose simple methods to detect DNA bases sensitively for biological analysis and medical diagnosis. Herein, a highly crystalline polyimide covalent organic framework (TAPM-COF) has been successfully synthesized via a solvothermal route using pyromellitic dianhydride (PMDA) and tris(4-aminophenyl) amine (TAPA), which possessed large specific surface area (2286 m2 g-1) and excellent thermal stability. Intriguingly, the crystallinity of the TAPM-COF improved significantly with the increase of water content in the reaction medium. To verify this phenomenon, we synthesized TPPM-COF with two pores by pyromellitic dianhydride (PMDA) and N,N,N',N'-tetrakis(4-aminophenyl)-1,4-benzenediamine (TPDA), which bonding was similar to TAPM-COF. Furthermore, the prepared TAPM-COF-0.3 was used to construct a novel and independent electrochemical biosensor on glassy carbon electrode for simultaneously determination of adenine (A) and guanine (G) without other additives. However, to further improve signal of TAPM-COF in electrochemical sensing, the crystalline TAPM-COF-0.3 can be readily integrated with amino-functionalized multiwalled carbon nanotubes (NH2-MWCNT) to form core-shell TAPM-COF-0.3@NH2-MWCNT driven by a π-π stacking interaction for more sensitive electrochemical sensing toward purine bases. In comparison to TAPM-COF/GCE, the TAPM-COF@NH2-MWCNT/GCE exhibited more favorable linear range and lower limit of detection. The work provided a new strategy for amplifying signal of COF in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Lei Sun
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China.
| | - Xiaoqin Wei
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Zongyan Lu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Mingyue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Zeyun Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Yingfei Hui
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Zhiguo Yu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China.
| |
Collapse
|
8
|
Silvestri A, Vázquez-Díaz S, Misia G, Poletti F, López-Domene R, Pavlov V, Zanardi C, Cortajarena AL, Prato M. An Electroactive and Self-Assembling Bio-Ink, based on Protein-Stabilized Nanoclusters and Graphene, for the Manufacture of Fully Inkjet-Printed Paper-Based Analytical Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300163. [PMID: 37144410 DOI: 10.1002/smll.202300163] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/11/2023] [Indexed: 05/06/2023]
Abstract
Hundreds of new electrochemical sensors are reported in literature every year. However, only a few of them makes it to the market. Manufacturability, or rather the lack of it, is the parameter that dictates if new sensing technologies will remain forever in the laboratory in which they are conceived. Inkjet printing is a low-cost and versatile technique that can facilitate the transfer of nanomaterial-based sensors to the market. Herein, an electroactive and self-assembling inkjet-printable ink based on protein-nanomaterial composites and exfoliated graphene is reported. The consensus tetratricopeptide proteins (CTPRs), used to formulate this ink, are engineered to template and coordinate electroactive metallic nanoclusters (NCs), and to self-assemble upon drying, forming stable films. The authors demonstrate that, by incorporating graphene in the ink formulation, it is possible to dramatically improve the electrocatalytic properties of the ink, obtaining an efficient hybrid material for hydrogen peroxide (H2 O2 ) detection. Using this bio-ink, the authors manufactured disposable and environmentally sustainable electrochemical paper-based analytical devices (ePADs) to detect H2 O2 , outperforming commercial screen-printed platforms. Furthermore, it is demonstrated that oxidoreductase enzymes can be included in the formulation, to fully inkjet-print enzymatic amperometric biosensors ready to use.
Collapse
Affiliation(s)
- Alessandro Silvestri
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Silvia Vázquez-Díaz
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Giuseppe Misia
- Department of Chemical and Pharmaceutical Sciences, Universitá Degli Studi di Trieste, Trieste, 34127, Italy
| | - Fabrizio Poletti
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, 41125, Italy
| | - Rocío López-Domene
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- POLYMAT and Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Valeri Pavlov
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
| | - Chiara Zanardi
- Department of molecular sciences and nanosystems, Ca' Foscari University of Venice, Venezia, 30170, Italy
- Institute of Organic Synthesis and Photoreactivity, National Research Council of Italy, Bologna, 40129, Italy
| | - Aitziber L Cortajarena
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC BiomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, 20014, Spain
- Department of Chemical and Pharmaceutical Sciences, Universitá Degli Studi di Trieste, Trieste, 34127, Italy
- Ikerbasque, Basque Foundation for Science, Bilbao, 48009, Spain
| |
Collapse
|
9
|
Wen X, Yan X, Zheng X, Kou Q, Yang L, Tang J, Chen X, Xie Y, Le T. Selection and truncation of aptamers as fluorescence sensing platforms for selective and sensitive detection of nitrofurazone. Anal Chim Acta 2023; 1252:341044. [PMID: 36935137 DOI: 10.1016/j.aca.2023.341044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/02/2023] [Accepted: 03/02/2023] [Indexed: 03/13/2023]
Abstract
Nitrofurazone (NFZ) is an antibiotic banned in many countries, as its residue seriously harms the human body. Herein, anti-NFZ aptamers were selected and identified based on the magnetic bead SELEX technique using a ssDNA library with a full length of 90 nucleotides (nt). Five full sequence candidate aptamers (NFZ8, NFZ24, NFZ28, NFZ34, and NFZ70) were obtained by secondary structure analysis. We optimized the entire sequence to obtain a truncated aptamer, a 16 nt sequence (NFZ8-1:5'-GTTCTATTGAAAAAAC-3') that showed the highest affinity for NFZ (Kd = 76.11 nM). The binding site of NFZ and aptamer NFZ8-1 was found to be "GAA" by molecular docking. In addition, utilizing the most special truncated aptamer NFZ8-1 as the identification probe, a graphene oxide fluorescent aptasensor is an innovative for the detection of NFZ residue that showed a wide linear reach from 1.25 to 160 ng/mL and a low limit of detection of 1.13 ng/mL. In the actual water environment sample detection, the recovery rate ranged from 95.21 to 113.66%, and the coefficient of variation ranged from 3.53 to 11.24%. These results demonstrate that the NFZ-truncated aptamer applied to the aptasensor provides a novel methodology for recognizing NFZ residues.
Collapse
Affiliation(s)
- Xu Wen
- College of Life Science, Chongqing Normal University, Chongqing, 401331, PR China
| | - Xueling Yan
- College of Life Science, Chongqing Normal University, Chongqing, 401331, PR China
| | - Xiaoling Zheng
- College of Life Science, Chongqing Normal University, Chongqing, 401331, PR China
| | - Qiming Kou
- College of Life Science, Chongqing Normal University, Chongqing, 401331, PR China
| | - Lulan Yang
- College of Life Science, Chongqing Normal University, Chongqing, 401331, PR China
| | - Jiaming Tang
- College of Life Science, Chongqing Normal University, Chongqing, 401331, PR China
| | - Xingyue Chen
- College of Life Science, Chongqing Normal University, Chongqing, 401331, PR China
| | - Yong Xie
- Bioassay 3D Reconstruction Laboratory, Chongqing College of Electronic Engineering, Chongqing, 401331, PR China
| | - Tao Le
- College of Life Science, Chongqing Normal University, Chongqing, 401331, PR China.
| |
Collapse
|
10
|
Ashraf G, Aziz A, Iftikhar T, Zhong ZT, Asif M, Chen W. The Roadmap of Graphene-Based Sensors: Electrochemical Methods for Bioanalytical Applications. BIOSENSORS 2022; 12:1183. [PMID: 36551150 PMCID: PMC9775289 DOI: 10.3390/bios12121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Graphene (GR) has engrossed immense research attention as an emerging carbon material owing to its enthralling electrochemical (EC) and physical properties. Herein, we debate the role of GR-based nanomaterials (NMs) in refining EC sensing performance toward bioanalytes detection. Following the introduction, we briefly discuss the GR fabrication, properties, application as electrode materials, the principle of EC sensing system, and the importance of bioanalytes detection in early disease diagnosis. Along with the brief description of GR-derivatives, simulation, and doping, classification of GR-based EC sensors such as cancer biomarkers, neurotransmitters, DNA sensors, immunosensors, and various other bioanalytes detection is provided. The working mechanism of topical GR-based EC sensors, advantages, and real-time analysis of these along with details of analytical merit of figures for EC sensors are discussed. Last, we have concluded the review by providing some suggestions to overcome the existing downsides of GR-based sensors and future outlook. The advancement of electrochemistry, nanotechnology, and point-of-care (POC) devices could offer the next generation of precise, sensitive, and reliable EC sensors.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
11
|
Salverda M, Thiruppathi AR, Pakravan F, Wood PC, Chen A. Electrochemical Exfoliation of Graphite to Graphene-Based Nanomaterials. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248643. [PMID: 36557776 PMCID: PMC9783006 DOI: 10.3390/molecules27248643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Here, we report on a new automated electrochemical process for the production of graphene oxide (GO) from graphite though electrochemical exfoliation. The effects of the electrolyte and applied voltage were investigated and optimized. The morphology, structure and composition of the electrochemically exfoliated GO (EGO) were probed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), FTIR spectroscopy and Raman spectroscopy. Important metrics such as the oxygen content (25.3 at.%), defect density (ID/IG = 0.85) and number of layers of the formed EGO were determined. The EGO was also compared with the GO prepared using the traditional chemical method, demonstrating the effectiveness of the automated electrochemical process. The electrochemical properties of the EGO, CGO and other carbon-based materials were further investigated and compared. The automated electrochemical exfoliation of natural graphite powder demonstrated in the present study does not require any binders; it is facile, cost-effective and easy to scale up for a large-scale production of graphene-based nanomaterials for various applications.
Collapse
Affiliation(s)
- Michael Salverda
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Antony Raj Thiruppathi
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Farnood Pakravan
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Peter C. Wood
- Zentek Ltd., 24 Corporate Court, Guelph, ON N1G 5G5, Canada
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Correspondence:
| |
Collapse
|
12
|
Highly sensitive molecularly imprinted polymer-based electrochemical sensor for voltammetric determination of Adenine and Guanine in real samples using gold screen-printed electrode. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
13
|
Chen J, Li S, Chen Y, Yang J, Dong J. Highly selective detection of adenine and guanine by NH 2-MIL-53(Fe)/CS/MXene nanocomposites with excellent electrochemical performance. Mikrochim Acta 2022; 189:328. [PMID: 35962293 DOI: 10.1007/s00604-022-05376-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/17/2022] [Indexed: 11/28/2022]
Abstract
Adenine (A) and guanine (G) are mainly found in deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) and play a crucial role in genetic information transfer and protein synthesis. In this study, NH2-MIL-53(Fe)/CS/MXene nanocomposites were prepared for detecting guanine and adenine. With high specific surface area, excellent water dispersion, and numerous active sites, MXene (transition metal carbides, nitrides, and carbonitrides) provides a good platform for loading primitive metal-organic frameworks (MOFs). At the same time, the problem of poor conductivity and dispersion of MOFs is solved. The electrochemical catalytic oxidation of adenine and guanine of NH2-MIL-53 (Fe)/CS/MXene nanocomposites was carried out by differential pulse voltammetry (DPV). Operating voltage of DPV: 0.7-0.9 V (vs. Ag/AgCl) for G, 1.0-1.2 V (vs. Ag/AgCl) for A, 0.8 V (vs. Ag/AgCl), and 1.1 V (vs. Ag/AgCl) for G and A. The concentration ranges for detecting A and G were 3-118 μM and 2-120 μM with detection limits of 0.57 μM and 0.17 μM (S/N = 3), respectively. The nanocomposite was used for detecting G and A in herring sperm DNA, and the content of G and A was found to be about 9 and 11 μM; the RSD values were 3.4 and 1.3%, respectively.
Collapse
Affiliation(s)
- Jing Chen
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China.
| | - Shuying Li
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | | | - Jiao Yang
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| | - Jianbin Dong
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
14
|
Manikandan VS, Boateng E, Durairaj S, Chen A. Electrochemical Sensing of Vanillin Based on Fluorine-Doped Reduced Graphene Oxide Decorated with Gold Nanoparticles. Foods 2022; 11:foods11101448. [PMID: 35627019 PMCID: PMC9140755 DOI: 10.3390/foods11101448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/08/2022] [Accepted: 05/13/2022] [Indexed: 01/27/2023] Open
Abstract
4-hydroxy-3-methoxybenzaldehyde (vanillin) is a biophenol compound that is relatively abundant in the world’s most popular flavoring ingredient, natural vanilla. As a powerful antioxidant chemical with beneficial antimicrobial properties, vanillin is not only used as a flavoring agent in food, beverages, perfumery, and pharmaceutical products, it may also be employed as a food-preserving agent, and to fight against yeast and molds. The widespread use of vanilla in major industries warrants the need to develop simple and cost-effective strategies for the quantitative determination of its major component, vanillin. Herein, we explore the applications of a selective and sensitive electrochemical sensor (Au electrodeposited on a fluorine-doped reduced-graphene-oxide-modified glassy-carbon electrode (Au/F-rGO/GCE)) for the detection of vanillin. The electrochemical performance and analytical capabilities of this novel electrochemical sensor were investigated using electrochemical techniques including cyclic voltammetry and differential pulse voltammetry. The excellent sensitivity, selectivity, and reproducibility of the proposed electrochemical sensor may be attributed to the high conductivity and surface area of the formed nanocomposite. The high performance of the sensor developed in the present study was further demonstrated with real-sample analysis.
Collapse
Affiliation(s)
- Venkatesh S. Manikandan
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (V.S.M.); (E.B.); (S.D.)
- Department of Chemistry, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada
| | - Emmanuel Boateng
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (V.S.M.); (E.B.); (S.D.)
| | - Sharmila Durairaj
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (V.S.M.); (E.B.); (S.D.)
| | - Aicheng Chen
- Electrochemical Technology Centre, Department of Chemistry, University of Guelph, 50 Stone Road E, Guelph, ON N1G 2W1, Canada; (V.S.M.); (E.B.); (S.D.)
- Correspondence: ; Tel.: +1-519-8244120 (ext. 54764)
| |
Collapse
|
15
|
Zhang T, Xuan X, Li M, Li C, Li P, Li H. Molecularly imprinted Ni-polyacrylamide-based electrochemical sensor for the simultaneous detection of dopamine and adenine. Anal Chim Acta 2022; 1202:339689. [DOI: 10.1016/j.aca.2022.339689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/29/2022] [Accepted: 03/04/2022] [Indexed: 12/31/2022]
|
16
|
Luo S, Kan X. A nanozyme-catalysis-based ratiometric electrochemical sensor for general detection of Cd 2+. Analyst 2022; 147:5437-5444. [DOI: 10.1039/d2an01480g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AuPt–rGO showed good peroxidase-like activity for the oxidation of OPD to DAP (a novel internal reference) and achieved sensitive and reliable detection of Cd2+ based on a ratiometric strategy.
Collapse
Affiliation(s)
- Shan Luo
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, China
| | - Xianwen Kan
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
- The Key Laboratory of Functional Molecular Solids, Ministry of Education; Anhui Laboratory of Molecule-Based Materials, Anhui Key Laboratory of Chemo-Biosensing, China
| |
Collapse
|