1
|
Indongo G, Varghese S, Shkhair AI, Abraham MK, Rajeevan G, Kala AB, Madanan AS, George S. Fe(III)-quenched cysteine-capped copper nanoclusters as a selective fluorescence turn-on sensor for valine: A potential cancer biomarker candidate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 335:125981. [PMID: 40054147 DOI: 10.1016/j.saa.2025.125981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/21/2025] [Accepted: 03/01/2025] [Indexed: 03/24/2025]
Abstract
This study introduces a fluorescence turn-on sensor for the selective detection of valine, an amino acid increasingly recognized as a potential biomarker in cancer diagnostics, using iron(III) (Fe3+) quenched L-cysteine capped copper nanoclusters (L-cys@CuNCs) based on the paramagnetic quenching mechanism of Fe3+. The L-cys@CuNCs, synthesized through a one-pot hydrothermal method, exhibit stable green fluorescence, high photostability and a detection limit of 3.00 µM for valine. Restoration of fluorescence upon interaction with valine enables a highly sensitive detection, with strong selectivity against other amino acids and ions. This specificity makes the sensor particularly promising for screening valine in biological samples, supporting its potential as a non-invasive cancer biomarker. To enhance practicality, a paper-based assay was developed, demonstrating its adaptability to point of care formats. Additionally, testing in human saliva and urine samples validated the probe's utility in real biological conditions, underscoring its potential in non-invasive cancer diagnostics. This biosensing platform offers a rapid, accessible tool for valine detection, contributing to early cancer detection and patient screening in clinical and resource limited settings.
Collapse
Affiliation(s)
- Geneva Indongo
- Department of Biotechnology, Faculty of Applied Sciences and Technology, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Ali Ibrahim Shkhair
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Arathy B Kala
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Anju S Madanan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India; International Inter University Centre for Sensing and Imaging (IIUCSI), Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram 695581, Kerala, India.
| |
Collapse
|
2
|
Xu R, Liu N, Li Z, Ma Q. Aggregation-induced ECL strategy based on CuAg nanoclusters/Curdlan-g-PGTMAC for gastric cancer detection. Anal Chim Acta 2025; 1351:343930. [PMID: 40187886 DOI: 10.1016/j.aca.2025.343930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
In this work, a novel biosensor based on aggregation-induced luminescence (AIE) of copper-silver alloy nanoclusters (CuAg NCs) has been developed for the detection of gastric cancer marker miRNA-142-3p. The alloy nanoclusters were synthesized by doping Ag ions into Cu NCs as nano-emitters. On the one hand, the doped Ag ions induced Ag-Cu metallophilic interactions, which promoted the relaxation of excited electrons through the radiative pathway. On the other hand, the doped Ag ions can reduce the band gap between the HOMO-LUMO orbitals of the nanoclusters, which decreased the energy consumed for electronic excitation. Therefore, the luminescent signal and stability of CuAg NCs were significantly enhanced. Furthermore, the modification of the permanently positively charged polysaccharide quaternary ammonium salt (Curdlan-g-PGTMAC) on CuAg NCs induced the aggregation-induced electrochemiluminescence (AIECL) effect. The introduction of Curdlan-g-PGTMAC also accelerated the reduction of the co-interaction reagent (S2O82-), which significantly improved the ECL generation efficiency. The ECL response of the CuAg NC-based AIECL biosensor showed a good linear correlation with the concentration of miRNA-142-3p over a wide range from 1 fM to 100 nM with a detection limit as low as 8.8 fM. The ECL biosensor with high sensitivity and wide dynamic range was used for the clinical application of miRNA-142-3p in gastric cancer successfully.
Collapse
Affiliation(s)
- Runze Xu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ning Liu
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhenrun Li
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Qiang Ma
- Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
3
|
Indongo G, Varghese S, Abraham MK, Rajeevan G, Kala AB, Dhahir DM, George S. Fluorescence-Based Detection of Methionine for Noninvasive Cancer Diagnosis Using Cu-Sn Bimetallic Nanoclusters. ChemMedChem 2025:e2500064. [PMID: 40270219 DOI: 10.1002/cmdc.202500064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/07/2025] [Accepted: 04/22/2025] [Indexed: 04/25/2025]
Abstract
Methionine is an essential sulfur-containing amino acid that plays a pivotal role in cancer biology due to its abnormal metabolism in malignant cells. Elevated methionine levels serve as potential biomarkers for various cancers, highlighting their diagnostic significance. This study presents a bimetallic sensing platform using L-cysteine-capped copper-tin nanoclusters (Cu-SnNCs) for the selective and sensitive detection of methionine. The Cu-SnNCs are synthesized via a one-pot hydrothermal process, exhibiting strong blue fluorescence, high stability, and significant optical properties. Fe3+ is employed as a quencher, leveraging its paramagnetic nature to suppress fluorescence, which is subsequently restored upon the addition of methionine. The sensing mechanism demonstrates a linear response over a methionine concentration range of 0.18-1.62 mm, with a detection limit of 1.69 μm. The probe's potential is further validated with a preliminary paper strip test for detecting methionine in biological samples. These findings underscore the utility of Cu-SnNCs as a noninvasive, economical diagnostic tool for cancer detection and screening.
Collapse
Affiliation(s)
- Geneva Indongo
- Faculty of Applied Sciences and Technology, Department of Biotechnology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Susan Varghese
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Arathy B Kala
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Dheyaa Mohammed Dhahir
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
- International Inter University Center for Sensing and Imaging (IIUCSI), Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| |
Collapse
|
4
|
Indongo G, Abraham MK, Rajeevan G, Kala AB, Dhahir DM, George S. Fluorescence 'turn-on' sensing of glial fibrillary acidic protein using graphene oxide-quenched copper nanoclusters. Mikrochim Acta 2025; 192:260. [PMID: 40140017 DOI: 10.1007/s00604-025-07103-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/08/2025] [Indexed: 03/28/2025]
Abstract
This study introduces a fluorescence based sensing platform made to detect glial fibrillary acidic protein (GFAP), a critical biomarker associated with glioblastoma and other astrocytic malignancies. Leveraging the unique optical properties of copper nanoclusters (CuNCs) functionalized with GFAP antibodies (GFAP Ab), the platform incorporates graphene oxide (GO) as a fluorescence quencher to create a highly sensitive turn on sensor responsive to GFAP antigens. The detection mechanism relies on Förster resonance energy transfer (FRET), wherein the binding of GFAP antigens disrupts the GFAP Ab@CuNCs-GO interaction, effectively restoring fluorescence. The CuNCs stabilized with l-cysteine to enhance biocompatibility and stability, exhibited strong green fluorescence with a quantum yield of 1.0%. Graphene oxide efficiently quenched the fluorescence of GFAP Ab@CuNCs therefore enhancing the platform's sensitivity. The sensor displayed a linear fluorescence response across a GFAP concentration range 0-46 ng/mL, with a detection limit of 32 pg/mL, demonstrating its capability to detect GFAP at clinically relevant levels. Validation of the sensor in biological fluids, including saliva, serum and urine, confirmed its applicability for minimally invasive diagnostics. Situated at the intersection of biosensing and clinical relevance, this study aims to address the need for cost effective and accessible diagnostic and screening tools for glioblastoma.
Collapse
Affiliation(s)
- Geneva Indongo
- Department of Biotechnology, Faculty of Applied Sciences and Technology, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Merin K Abraham
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Greeshma Rajeevan
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Arathy B Kala
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Dheyaa Mohammed Dhahir
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India
| | - Sony George
- Department of Chemistry, School of Physical and Mathematical Sciences, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.
- International Inter University Centre for Sensing and Imaging (IIUCSI), Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695581, India.
| |
Collapse
|
5
|
Yu X, Shen Q, Yu M, Zhang W, Kang Q, Shen D. An intense cathodic electrochemiluminescence from carbon-nanosheets in situ grown on glassy carbon electrode and application in immunoanalysis via biometallization strategy. Mikrochim Acta 2024; 191:549. [PMID: 39162737 DOI: 10.1007/s00604-024-06624-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024]
Abstract
An intense cathodic electrochemiluminescence (ECL) is reported from a polarized glassy carbon electrode (GCE) in peroxydisulfate solution. After the polarization in 1 M Na2SO4 at the potential of - 3.7 V for 3 s, carbon nanosheets (C-NSs) were in situ grown on the surface of the GCE. Measured in 100 mM K2S2O8 solution, the ECL intensity of the GCE/C-NSs is 112-fold that of a bare GCE. The ECL spectrum revealed that the true ECL luminophore in the GCE/C-NSs-peroxydisulfate system is O2/S2O82- which is promoted by C-NSs. When Cu2+ was electrochemically enriched and reduced to Cu(0) on the catalytic sites of C-NSs, the ECL from GCE/C-NSs/Cu in K2S2O8 solution was decreased with increasing logarithmic concentration of Cu2+ in the range from 10 pM to 1 μM, with a limit of detection (LOD) of 3 pM. An immunoanalysis method is proposed via a biometallization strategy using CuS nanoparticles as the tags and carcinoembryonic antigen (CEA) as the model analyte. After the immune recognition in the microplate, the CuS tags in the immunocomplex were dissolved and the resultant Cu2+ was electrochemically enriched and reduced on the catalytic sites of C-NSs, quenching the ECL intensity of GCE/C-NSs-O2/S2O82- system. The proposed ECL immunoanalysis method was used to quantify CEA in actual serum samples with an LOD of 1.0 fg mL-1, possessing the advantages of simple electrode modification, high sensitivity and good reproducibility.
Collapse
Affiliation(s)
- Xifeng Yu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Qirui Shen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Miaomiao Yu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Qi Kang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, People's Republic of China
| | - Dazhong Shen
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, People's Republic of China.
| |
Collapse
|
6
|
Liu W, Wang K, Liu P, Jiang W, Feng Y, Hu Y, Zheng M, Zhou Y, Xiao Y, Liu Y. Tb 3+ assisted dithioerythritol stabilized copper nanocluster with AIE behavior for ratiometric fluorescent determination of fluoroquinolones. Anal Chim Acta 2024; 1316:342842. [PMID: 38969406 DOI: 10.1016/j.aca.2024.342842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Fluoroquinolones (FQs) are widely used in livestock and poultry industry because of their satisfactory effects in preventing and treating bacterial infection. However, due to irrational use and poor biodegradability, FQs can easily remain in food animals and further enter the human body through the food chain. Therefore, accurate and sensitive detection of FQs residues in animal-origin food is significant. The traditional methods commonly used for FQs detection have some limitations. Ratiometric fluorescence detection technology has the advantages of fast, sensitive, self-correcting, and easy visualization. However, the reports on the use of ratiometric fluorescence probes for FQs detection are limited. RESULTS In this work, a novel probe was proposed for ratiometric fluorescent analysis of FQs. In this probe, the fluorescence of dithioerythritol stabilized copper nanoclusters (DTE-Cu NCs) was significantly enhanced due to the Tb3+ triggered aggregation-induced emission effect. FQs bound Tb3+ in Tb3+/DTE-Cu NCs through carboxyl and carbonyl groups, so that Tb3+ was effectively sensitized to emit green fluorescence. However, the red fluorescence of DTE-Cu NCs was not interfered. The fluorescence of the probe transformed from red to green with the increase of FQs concentration. Using norfloxacin (NOR), difloxacin (DIF), and enrofloxacin (ENR) as FQs simulants, this probe showed a sensitive linear response ranged from 0.025 to 22.5 μM, with the limits of detection of 9.6 nM, 9.3 nM, and 7.7 nM. The application potential for FQs detection was verified via a standard addition assay of egg samples with the recovery rate of 90.4 %-114.7 %. SIGNIFICANT The fluorescence probe based on Tb3+/DTE-Cu NCs is expected to realize the ratiometric fluorescence sensitive detection of FQs. The establishment of this simple, effective, and rapid detection platform opens up a new way for the detection of FQs residues in animal-origin foods, and also provides a new idea for the design of rapid detection platforms for other hazard factors.
Collapse
Affiliation(s)
- Wenya Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Kai Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Pan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Wanqi Jiang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yingying Feng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yunyun Hu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
7
|
Cheng B, Xia X, Han Z, Yu H, Xie Y, Guo Y, Yao W, Qian H, Cheng Y. A ratiometric fluorescent "off-on" sensor for acrylamide detection in toast based on red-emitting copper nanoclusters stabilized by bovine serum albumin. Food Chem 2024; 437:137878. [PMID: 37913709 DOI: 10.1016/j.foodchem.2023.137878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Acrylamide, as a Class 2A carcinogen, poses serious threats to human health. To achieve rapid and accurate determination of acrylamide in food, a ratiometric fluorescent "off-on" sensor was designed by incorporating red-emitting copper nanoclusters and glutathione. Copper nanoclusters with bimodal emission at 395 nm and 650 nm (excited at 310 nm) were synthesized by using bovine serum albumin as the ligand and ascorbic acid as the reductant. With glutathione addition, the fluorescence intensity at 650 nm gradually decreased, while the case at 395 nm slightly increased. The quenched fluorescence at 650 nm was subsequently restored by acrylamide through thiol-ene Michael addition reaction between acrylamide and glutathione. The constructed sensor showed excellent performance towards acrylamide detection in the range of 5-300 μM with a detection limit of 1.48 μM, and was further applied to real-sample detection of acrylamide in toast and exhibited good recoveries (90.29-101.30 %), indicating potential applications of this sensor.
Collapse
Affiliation(s)
- Baoxin Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiuhua Xia
- Wuxi Vocational Institute of Commerce, Wuxi 214122, China
| | - Zhiqiang Han
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Hang Yu
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yufei Xie
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Mu J, Jia Q. Anchoring copper nanoclusters to Al 2O 3 microsphere for dual-mode analysis of N-acetyl-β- D-glucosaminidase and information encryption. Int J Biol Macromol 2024; 260:129656. [PMID: 38253144 DOI: 10.1016/j.ijbiomac.2024.129656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/20/2023] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
Herein, we attempted to confine copper nanoclusters (CuNCs) with alumina (Al2O3) as the matrix (Al2O3@CuNCs), which effectively circumvented the drawbacks of CuNCs (such as weak photoluminescence and low quantum yield). Al2O3@CuNCs demonstrated sensitive response to p-nitrophenol, the catalytic product of N-acetyl-β-D-glucosaminidase (NAG) on account of the inner filter effect and dynamic quenching effect. In light of this, a novel assay was created to identify NAG, a critical indicator of diabetic nephropathy. Additionally, a portable and instrument-free sensing platform mainly consisting of a smartphone, a cuvette, a cuvette holder, a dark box and a 365 nm UV lamp was developed for the quantitative detection of NAG. The as-prepared material was also utilized in anti-counterfeiting and information encryption based on their excellent optical properties and sensitive response to the catalyzed product of NAG. This work advanced potential applications of CuNCs composites in the areas of portable, multi-mode biosensing, anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Jin Mu
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
9
|
Zhou C, Sun DW, Ma J, Qin A, Tang BZ, Lin XR, Cao SL. Assembly-Induced Emission of Copper Nanoclusters: Revealing the Sensing Mechanism for Detection of Volatile Basic Nitrogen in Seafood Freshness On-Site Monitoring. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6533-6547. [PMID: 38261539 PMCID: PMC10859926 DOI: 10.1021/acsami.3c13321] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024]
Abstract
Total volatile basic nitrogen (TVB-N) is a vital indicator for assessing seafood freshness and edibility. Rapid on-site detection of volatile basic nitrogen (VBN) is of significant importance for food safety monitoring. In this study, highly luminescent self-assembled copper nanoclusters (Cu NCs@p-MBA), synthesized using p-mercaptobenzoic acid (p-MBA) as the ligand, were utilized for the sensitive detection of VBNs. Under acidic conditions, Cu NCs@p-MBA formed compact and well-organized nanosheets through noncovalent interactions, accompanied by intense orange fluorescence emission (651 nm). The benzene carboxylic acid part of Cu NCs@p-MBA provided the driving force for supramolecular assembly and exhibited a strong affinity for amines, particularly low-molecular-weight amines such as ammonia (NH3) and trimethylamine (TMA). The quantitative determination of NH3 and TMA showed the detection limits as low as 0.33 and 0.81 ppm, respectively. Cu NCs@p-MBA also demonstrated good responsiveness to putrescine and histamine. Through density functional theory (DFT) calculations and molecular dynamics (MD) simulations, the precise atomic structure, assembly structure, luminescent properties, and reaction processes of Cu NCs@p-MBA were studied, revealing the sensing mechanism of Cu NCs@p-MBA for highly sensitive detection of VBNs. Based on the self-assembled Cu NCs@p-MBA nanosheets, portable fluorescent labels were developed for semiquantitative, visual, and real-time monitoring of seafood freshness. Therefore, this study exemplified the high sensitivity of self-assembly induced emission (SAIE)-type Cu NCs@p-MBA for VBNs sensing, offering an efficient solution for on-site monitoring of seafood freshness.
Collapse
Affiliation(s)
- Chenyue Zhou
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Centre, Guangzhou 510006, China
| | - Da-Wen Sun
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Centre, Guangzhou 510006, China
- Food
Refrigeration and Computerized Food Technology (FRCFT), Agriculture
and Food Science Centre, University College
Dublin, National University of Ireland, Belfield, Dublin 4, Ireland
| | - Ji Ma
- School
of Food Science and Engineering, South China
University of Technology, Guangzhou 510641, China
- Academy
of Contemporary Food Engineering, South
China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
- Engineering
and Technological Research Centre of Guangdong Province on Intelligent
Sensing and Process Control of Cold Chain Foods, & Guangdong Province
Engineering Laboratory for Intelligent Cold Chain Logistics Equipment
for Agricultural Products, Guangzhou Higher
Education Mega Centre, Guangzhou 510006, China
- State
Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced
Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State
Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced
Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State
Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced
Emission, South China University of Technology, Guangzhou 510640, China
- Shenzhen
Institute of Aggregate Science and Technology, School of Science and
Engineering, The Chinese University of Hong
Kong, Shenzhen 518172, China
| | - Xiao-Ru Lin
- Guangdong
Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528000, China
| | - Shi-Lin Cao
- Guangdong
Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan 528000, China
| |
Collapse
|
10
|
Jing X, Yu S, Zhang G, Tang Y, Yin J, Peng J, Lai W. Sensitive fluorescence ELISA for the detection of zearalenone based on self-assembly DNA nanocomposites and copper nanoclusters. Anal Bioanal Chem 2024; 416:983-992. [PMID: 38127274 DOI: 10.1007/s00216-023-05088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
Zearalenone (ZEN), produced by Fusarium species, is a potential risk to human health. Traditional enzyme-linked immunosorbent assay (ELISA) is restricted due to low sensitivity for the detection of ZEN. Herein, enzyme nanocomposites (ALP-SA-Bio-ssDNA, ASBD) were prepared with the self-assembly strategy based on streptavidin-labeled alkaline phosphatase (SA-ALP) and dual-biotinylated ssDNA (B2-ssDNA). The enzyme nanocomposites improved the loading amount of ALP and catalyzed more ascorbic acid 2-phosphate to generate ascorbic acid (AA). Subsequently, Cu2+ could be reduced to copper nanoclusters (CuNCs) having strong fluorescence signal by AA with poly T. Benefiting from the high enzyme load of nanocomposites and the strong signal of CuNCs, the fluorescence ELISA was successfully established for the detection of ZEN. The proposed method exhibited lower limit of detection (0.26 ng mL-1) than traditional ELISA (1.55 ng mL-1). The recovery rates ranged from 92.00% to 108.38% (coefficient of variation < 9.50%) for the detection of zearalenone in corn and wheat samples. In addition, the proposed method exhibited no cross reaction with four other mycotoxins. This proposed method could be used in trace detection for food safety.
Collapse
Affiliation(s)
- Xudong Jing
- State Key Laboratory of Food Science and Resources, Nanchang University, 235, East Nanjing Road, Nanchang, 330047, China
| | - Sha Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, 235, East Nanjing Road, Nanchang, 330047, China
| | - Ganggang Zhang
- Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, 330096, China.
| | - Yanyan Tang
- State Key Laboratory of Food Science and Resources, Nanchang University, 235, East Nanjing Road, Nanchang, 330047, China
| | - Jiaqi Yin
- State Key Laboratory of Food Science and Resources, Nanchang University, 235, East Nanjing Road, Nanchang, 330047, China
| | - Juan Peng
- State Key Laboratory of Food Science and Resources, Nanchang University, 235, East Nanjing Road, Nanchang, 330047, China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, 235, East Nanjing Road, Nanchang, 330047, China.
| |
Collapse
|
11
|
Cui F, Wang P, Liu K, Guo Y, Ma Q, He Y. Cu nanoclusters/nano-vesicle-based confinement-induced electrochemiluminescence strategy for miRNA-145 detection. SENSORS AND ACTUATORS B: CHEMICAL 2024; 401:134910. [DOI: 10.1016/j.snb.2023.134910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2024]
|
12
|
Abstract
Hemoglobin plays a vital role in a series of biological activities. Abnormal levels of hemoglobin in blood are associated with many clinical diseases. Therefore, development of simple and accurate methods for sensing hemoglobin is of considerable significance. The blowout advancement in nanotechnology has urged the use of different types of fluorescent nanomaterials for hemoglobin assay. The past decades have witnessed the rapid progress of fluorescent nanosensors for hemoglobin assay. In the review, the sensing principles of fluorescent nanomaterials for sensing hemoglobin were briefly discussed. The advances of fluorescent nanosensors for detection of hemoglobin were further highlighted. And the sensing performance of fluorescent nanosensors versus traditional detection approaches was compared. Finally, the challenges and future directions of fluorescent nanomaterials for detection of hemoglobin are discussed. The review will arouse much more attention to the construction of hemoglobin sensors and facilitate rapid development of fluorescent nanosensors of hemoglobin.
Collapse
Affiliation(s)
- Yongming Guo
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
| | - Yiting Tang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
| | - Yu Tan
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
| | - Yijin Li
- Reading Academy, Nanjing University of Information Science & Technology, Nanjing, China
| | - Yubin Xiang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, China
| |
Collapse
|
13
|
Luo Y, Guo Y. Nanomaterials for fluorescent detection of vitamin B 2: A review. Anal Biochem 2023; 683:115351. [PMID: 37858879 DOI: 10.1016/j.ab.2023.115351] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
Vitamin B2 plays vital roles in maintaining human health. It is of tremendous significance to construct sensitive sensors of VB2. In this review, we first briefly presented the sensing mechanisms of fluorescent nanomaterials for sensing VB2. Subsequently, the advances of nanomaterials for fluorescent determination of VB2 were highlighted. And sensing performance of traditional approaches and fluorescent nanosensors was further compared. In last section, the challenges and perspectives concerning the topic were discussed.
Collapse
Affiliation(s)
- Yanjuan Luo
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China
| | - Yongming Guo
- Zhejiang Engineering Research Center of Fat-soluble Vitamin, Shaoxing University, Shaoxing, 312000, China; School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
14
|
Sadhu VA, Jha S, Park TJ, Kailasa SK. Synthesis of copper nanoclusters from Bacopa monnieri leaves for fluorescence sensing of dichlorvos. LUMINESCENCE 2023; 38:1872-1882. [PMID: 37555766 DOI: 10.1002/bio.4575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/05/2023] [Accepted: 08/06/2023] [Indexed: 08/10/2023]
Abstract
In this work, a facile one-step green synthesis was developed for the fabrication of blue fluorescent copper nanocluster (Brahmi-CuNCs) from the extract of Bacopa monnieri (common name is Brahmi) via a microwave method. The as-prepared Brahmi-CuNCs emitted blue fluorescence at 452 nm when excited at 352 nm and showed a quantum yield of 31.32%. Brahmi-derived blue fluorescent CuNCs acted as a probe for fluorescence sensing of dichlorvos. Upon the addition of dichlorvos, the blue emission for Brahmi-CuNCs was gradually turned off, favouring establishment of a calibration graph in the range 0.5-100 μM with a detection limit of 0.23 μM. The as-synthesized Brahmi-CuNCs exhibited marked sensitivity and selectivity towards dichlorvos, favourable for assaying dichlorvos in various samples (cabbage, apple juice, and rice).
Collapse
Affiliation(s)
- Vibhuti Atulbhai Sadhu
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| | - Sanjay Jha
- ASPEE Shakilam Biotechnology Institute, Navsari Agricultural University, Surat, Gujarat, India
| | - Tae Jung Park
- Department of Chemistry, Research Institute of Chem-Bio Diagnostic Technology, Chung-Ang University, Seoul, Republic of Korea
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, India
| |
Collapse
|
15
|
Nanomaterials for fluorescent assay of bilirubin. Anal Biochem 2023; 666:115078. [PMID: 36754137 DOI: 10.1016/j.ab.2023.115078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
The accumulation of bilirubin in blood is associated with many diseases. Sensitive and accurate detection of bilirubin is of great significance for personal health care. The rapid development of fluorescent nanomaterials promotes rapid development in the bilirubin assay. In this review, traditional methods for detection of bilirubin are briefly presented to compare with fluorescent nanosensors. Subsequently, the recent progress of different types of fluorescent nanomaterials for determination of bilirubin is summarized. Further, the performance of fluorescent nanosensors and conventional techniques for sensing bilirubin are compared. To this end, the challenges and prospects concerning the topics are discussed. This review will provide some introductory knowledge for researchers to understand the status and importance of fluorescent nanosensors for sensing bilirubin.
Collapse
|
16
|
Metal Cluster Triggered-Assembling Heterogeneous Au-Ag Nanoclusters with Highly Loading Performance and Biocompatible Capability. Int J Mol Sci 2022; 23:ijms231911197. [PMID: 36232494 PMCID: PMC9569858 DOI: 10.3390/ijms231911197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, we firstly report the preparation of heterogeneously assembled structures Au-Ag nanoclusters (NCs) as good drug carriers with high loading performance and biocompatible capability. As glutathione-protected Au and Ag clusters self-assembled into porous Au-Ag NCs, the size value is about 1.358 (±0.05) nm. The morphology characterization revealed that the diameter of Au-Ag NCs is approximately 120 nm, as well as the corresponding potential ability in loading performance of the metal cluster triggered-assembling process. Compared with individual components, the stability and loading performance of heterogeneous Au-Ag NCs were improved and exhibit that the relative biocompatibility was enhanced. The exact information about this is that cell viability was approximately to 98% when cells were incubated with 100 µg mL−1 particle solution for 3 days. The drug release of Adriamycin from Au-Ag NCs was carried out in PBS at pH = 7.4 and 5.8, respectively. By simulating in vivo and tumor microenvironment, the release efficiency could reach over 65% at pH = 5.8 but less than 30% at pH = 7.2. Using an ultrasound field as external environment can accelerate the assembling process while metal clusters triggered assembling Au-Ag NCs. The size and morphology of the assembled Au-Ag NCs can be controlled by using different power parameters (8 W, 13 W, 18 W) under ambient atmosphere. Overall, a novel approach is exhibited, which conveys assembling work for metal clusters triggers into heterogeneous structures with porous characteristic. Its existing properties such as water-solubility, stability, low toxicity and capsulation can be considered as dependable agents in various biomedical applications and drug carriers in immunotherapies.
Collapse
|
17
|
Bairagi D, Hazra S, Basu K, Banerjee A. A Nanohybrid Containing Cyan‐Emitting Copper Nanoclusters and TiO
2
Nanoparticles: Tuning of Optoelectronic Properties. ChemistrySelect 2022. [DOI: 10.1002/slct.202201701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dipayan Bairagi
- School of Biological Sciences Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Soumyajit Hazra
- School of Biological Sciences Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Kingshuk Basu
- School of Biological Sciences Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Arindam Banerjee
- School of Biological Sciences Indian Association for the Cultivation of Science 2A & 2B Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
18
|
Hu X, Tang J, Shen Y. Turn-on fluorescence determination of sulfide based on site-occupying modulation of MOF-copper nanocluster interaction. Mikrochim Acta 2022; 189:306. [PMID: 35915277 DOI: 10.1007/s00604-022-05422-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/14/2022] [Indexed: 11/29/2022]
Abstract
A tunable interaction between Fe-MOFs (MIL-53(Fe) and kojic acid (KA)-functional copper nanoclusters (Cu NCs) has been studied. When introducing MIL-53(Fe), the Fe-O bonds can be formed between the KA on the surface of Cu NCs and MIL-53(Fe), which will induce the electron transfer from Cu NCs to MIL-53(Fe) and fluorescence quenching of Cu NCs. By introducing S2- it occupies the Fe-site of MIL-53(Fe) and impede the interaction between Cu NCs and MIL-53(Fe), rendering a "turn-on" fluorescence signal. Thus, the KA-Cu NC/MIL-53(Fe) pair is designed as fluorescence sensing for S2-, which displays a low detection limit of 18.6 nM and a wide linear detection range from 0.05 to 5 µM by fitting the fluorescence intensity at maximum wavelength of 500 nm with excitation at 400 nm. It was also applied to monitor S2- in water samples and food additives with satisfactory results, demonstrating the practicability and reliability of the sensing strategy based on the tuable MOF-Cu NC interactions.
Collapse
Affiliation(s)
- Xue Hu
- The Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, China
| | - Jianshe Tang
- The Key Laboratory of Water Pollution Control and Wastewater Reuse of Anhui Province, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, China
| | - Yizhong Shen
- School of Food & Biological Engineering, Key Laboratory for Agricultural Products Processing of Anhui Province, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
19
|
Liu L, Bai Q, Zhang X, Lu C, Li Z, Liang H, Chen L. Fluorescent Biosensor Based on Hairpin DNA Stabilized Copper Nanoclusters for Chlamydia trachomatis Detection. J Fluoresc 2022; 32:1651-1660. [PMID: 35612764 DOI: 10.1007/s10895-022-02961-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022]
Abstract
Chlamydia trachomatis (C. trachomatis) is a kind of intracellular parasitic microorganism, which can causes many diseases such as trachoma. In this strategy, a specific hairpin DNA with the probe loop as specific regions to recognize C. trachomatis DNA with strong affinity was designed, and its stem consisted of 24 AT base pairs as an effective template for hairpin DNA-CuNCs formation. In the absence of C. trachomatis DNA, the detection system showed strong orange fluorescence emission peaks at 606 nm. In the presence of C. trachomatis DNA, the conformation of DNA probe changed after hybridizing with C. trachomatis DNA. Then, the amount of hairpin DNA-CuNCs was reduced and resulted in low fluorescence emission. C. trachomatis DNA displayed a significant inhibitory effect on the synthesis of fluorescent hairpin DNA-CuNCs due to the competition between C. trachomatis DNA and the specific hairpin DNA. Under the optimal experimental conditions, different concentrations of C. trachomatis were tested and the results showed a good linear relationship in the range of 50 nM to 950 nM. Moreover, the detection limit was 18.5 nM and this detection method possessed good selectivity. Finally, the fluorescent biosensor had been successfully applied to the detection of C. trachomatis target sequence in HeLa cell lysate, providing a new strategy for the detection of C. trachomatis.
Collapse
Affiliation(s)
- Luyao Liu
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - Qinqin Bai
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - Xuebing Zhang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
- Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China
| | - Chunxue Lu
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zhongyu Li
- Institute of Pathogenic Biology, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Hao Liang
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China.
| | - Lili Chen
- Department of Public Health Laboratory Sciences, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
- Hengyang Engineering Technology Research Center, Hengyang, 421001, Hunan, China.
| |
Collapse
|
20
|
Mehta VN, Ghinaiya N, Rohit JV, Singhal RK, Basu H, Kailasa SK. Ligand chemistry of gold, silver and copper nanoparticles for visual read-out assay of pesticides: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
21
|
Shende P, Rodrigues B, Govardhane S. Diversified applications of self-assembled nanocluster delivery systems- A state-of-the- art review. Curr Pharm Des 2022; 28:1870-1884. [PMID: 35232345 DOI: 10.2174/1381612828666220301125944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/29/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Self-assembled nanoclusters arrange the components into an organized structure for the nanoparticulate system and also in the transportation of cellular elements for the fabrication of microelectronic devices. Nanoclusters reduce transcytosis and increase endocytosis in intestinal mucin to strengthen the retrograde pathway that helped in the delivery of actives to the Golgi apparatus. OBJECTIVES This review article focuses on the self-assembled nanoclusters for cellular transportation, applications of self-assembled structures in the delivery of essential elements like the use of a peptide in targeted and stimuli-responsive drug delivery systems, self-assembly of tocopherol nanoclusters that promotes vitamin E delivery across the endothelial barrier. Methods Current innovation in the self-assembly of peptides includes the formation of nanostructures like vesicles, fibers, and rod-coil in the applications of wound healing, tissue engineering, treatment of atherosclerosis, in sensing heavy metals from biological and environmental samples and advanced drug delivery. RESULTS Self-assembled biodegradable nanoclusters are used as biomimetic structures for synergistic effect. Improvement in the methods of preparation like the addition of a copolymer is used for temperature-triggered drug release nanoclusters. CONCLUSION Green synthesis of nanoclusters, nanocluster-based biosensor and artificial intelligence are the future concept in the manufacturing and the prevention of toxicity in humans.
Collapse
Affiliation(s)
- Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Bernice Rodrigues
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Sharayu Govardhane
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta Road, Vile Parle (W), Mumbai, India
| |
Collapse
|
22
|
Rapid sonochemical synthesis of copper nanoclusters with red fluorescence for highly sensitive detection of silver ions. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|