1
|
Tan B, Wang Q, Liu Q, Wu Y, Ban L, Yan Y, Li X, Zhu G, Fan J, Zhao H. γ-cyclodextrin metal-organic framework-activated gold nanoclusters with water solubility as multi-enzyme mimics for simultaneous detection of pesticide and cholinesterase activity. Anal Chim Acta 2025; 1358:344093. [PMID: 40374245 DOI: 10.1016/j.aca.2025.344093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 05/17/2025]
Abstract
Cyclodextrin metal-organic framework (CD-MOF) with environmentally friendly components has attracted enormous attention in the past few decades. However, the fragile aqueous stability has limited its application in aqueous catalysis. In this work, we have devised a novel strategy to cope with the problems by introducing the well-defined gold nanoclusters (AuNCs) onto the cyclodextrin ligand through host-guest chemistry. The combination with AuNCs endowed the fragile CD-MOF with excellent multi-enzyme mimicking catalytic abilities, including peroxidase (POD), oxidase (OXD), catalase (CAT) and glucose oxidase (GOx)-mimetic activities. Furthermore, based on its intrinsic POD-like activities, by constructing the typical enzyme cascade reaction, a colorimetric sensor based on Au38/γ-CD-MOF was developed for the rapid and sensitive of carbaryl and butyrylcholinesterase (BChE) activity, respectively. In addition, combined with the smartphone, a portable paper-based sensor was developed, which could realize the on-site and semiquantitative detection of pesticide residues by identifying the RGB value. This low-cost and easy-operation portable assay shows great potential for online detection of pesticides exposure and monitoring other disease biomarkers.
Collapse
Affiliation(s)
- Bing Tan
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, PR China.
| | - Qian Wang
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Qiaoli Liu
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Yimei Wu
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Luyao Ban
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Yingli Yan
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Xiang Li
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Guifen Zhu
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Jing Fan
- Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Engineering Laboratory of Environmental Functional Materials and Pollution Control, International Joint Laboratory on Key Techniques in Water Treatment, Henan Province, School of Environment, Henan Normal University, Xinxiang, Henan, 453007, PR China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, PR China.
| |
Collapse
|
2
|
Qin Y, Liang H, Wu J, Chi Z, Zhao S, Ye F. Self-Cascade of the Cu/Ce-MOF-808 Nanozyme for One-Step Colorimetric Sensing. Anal Chem 2025; 97:8468-8475. [PMID: 40214028 DOI: 10.1021/acs.analchem.5c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Natural enzyme cascades, including the same and different kinds of enzymes, have been widely used in biosensing. However, it is still a challenge for nanozymes, the mimics of natural enzymes, to achieve biosensing with different types of enzyme-like activities based on cascade reactions, such as hydrolase and oxidoreductase. Considering the characteristics of the multienzyme-like activity of some nanozymes, as a proof of concept, this study demonstrates a Cu/Ce-MOF-808 nanozyme as a self-cascade catalyst with hydrolase-like and catechol oxidase-like activities. Taking organophosphorus pesticides as an example, we constructed a self-cascade catalytic reaction for the one-step colorimetric detection of isocarbophos. Specifically, the hydrolase-like activity of Cu/Ce-MOF-808 can hydrolyze isocarbophos to produce colorless isopropyl salicylate, which is further oxidized by the catechol oxidase-like activity of Cu/Ce-MOF-808 and complexed with 4-aminoantipyrine (4-AAP) to produce red quinoneimine under neutral conditions with illumination. Thus, a colorimetric strategy for sensitive isocarbophos analysis is developed, with a linear range of 0.90-400.00 μg·mL-1 and a detection limit of 0.42 μg·mL-1. This research presents a new approach to the design and synthesis of nanozymes and has great application potential in the field of nanozyme cascade biosensing.
Collapse
Affiliation(s)
- Yuan Qin
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Huimei Liang
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jia Wu
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Zheyang Chi
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Fanggui Ye
- Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
3
|
Dong X, Yan W, Zhang D, Dong X, Li Y. Biomass spinach-drived metal-free carbon dots-based nanozyme for multimodal nitrite sensing and functionalized by glucose oxidase as ROS amplifiers to enhance tumor therapy. Int J Biol Macromol 2025; 304:140875. [PMID: 39938831 DOI: 10.1016/j.ijbiomac.2025.140875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/08/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
The metal-free carbon dots (CDs) nanozyme, which is endowed generation of multiple reactive oxygen species (ROS), followed by highly selective chemical sensing, remains a critical challenge. The exceptional biocatalytic properties of glucose oxidase (GOx) have spurred the development of GOx-functionalized nanocatalysts for cancer therapy. Here, the innovative free metal-doped CDs and CDs@GOx nanozymes with peroxidase (POD)-like activity were developed, which specifically catalyzed H₂O₂ to engender multiple ROS including •O2-, 1O2 and •OH, to oxidize colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue ox-TMB, indicating both nanozymes can be as ROS amplifiers to enhance tumor therapy. The introduction of NO₂- triggered a distinct color change from blue to green ascribed to the diazotization of ox-TMB along with quenching the fluorescence of CDs, which endowed high selectivity and sensitivity for NO2- detection. Furthermore, CDs catalyzed endogenous H₂O₂ within tumor cells, to effectively destroy cancer cells rather than normal cells. As expected, CDs@GOx preferentially catalyze glucose in cancer cells to further supply H2O2, allowing more ROS accumulation, thereby realizing the integration of starvation therapy and ROS therapy of cancer. Notably, in vivo anti-tumor efficacy demonstrated that CDs and CDs@GOx markedly inhibited tumor growth without external stimulation with neglected side effects. Compared to the saline group, the tumor size was reduced by 3 or 4 times for CDs and CDs@GOx, respectively. This metal-free CDs tailors a convenient and impactful nanoplatform for chemical sensing and as ROS amplifiers to enhance tumor therapy by non-invasive treatment.
Collapse
Affiliation(s)
- Xiaorui Dong
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Wenjun Yan
- Analytical Instrumentation Center, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, PR China.
| | | | - Xiuqing Dong
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| | - Yingqi Li
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
4
|
Shahid S, Khan A, Shahid W, Rehan M, Asif R, Nisar H, Kanwal Q, Choi JR. Nanoenzymes: A Radiant Hope for the Early Diagnosis and Effective Treatment of Breast and Ovarian Cancers. Int J Nanomedicine 2024; 19:5813-5835. [PMID: 38895143 PMCID: PMC11184228 DOI: 10.2147/ijn.s460712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/16/2024] [Indexed: 06/21/2024] Open
Abstract
Breast and ovarian cancers, despite having chemotherapy and surgical treatment, still have the lowest survival rate. Experimental stages using nanoenzymes/nanozymes for ovarian cancer diagnosis and treatment are being carried out, and correspondingly the current treatment approaches to treat breast cancer have a lot of adverse side effects, which is the reason why researchers and scientists are looking for new strategies with less side effects. Nanoenzymes have intrinsic enzyme-like activities and can reduce the shortcomings of naturally occurring enzymes due to the ease of storage, high stability, less expensive, and enhanced efficiency. In this review, we have discussed various ways in which nanoenzymes are being used to diagnose and treat breast and ovarian cancer. For breast cancer, nanoenzymes and their multi-enzymatic properties can control the level of reactive oxygen species (ROS) in cells or tissues, for example, oxidase (OXD) and peroxidase (POD) activity can be used to generate ROS, while catalase (CAT) or superoxide dismutase (SOD) activity can scavenge ROS. In the case of ovarian cancer, most commonly nanoceria is being investigated, and also when folic acid is combined with nanoceria there are additional advantages like inhibition of beta galactosidase. Nanocarriers are also used to deliver small interfering RNA that are effective in cancer treatment. Studies have shown that iron oxide nanoparticles are actively being used for drug delivery, similarly ferritin carriers are used for the delivery of nanozymes. Hypoxia is a major factor in ovarian cancer, therefore MnO2-based nanozymes are being used as a therapy. For cancer diagnosis and screening, nanozymes are being used in sonodynamic cancer therapy for cancer diagnosis and screening, whereas biomedical imaging and folic acid gold particles are also being used for image guided treatments. Nanozyme biosensors have been developed to detect ovarian cancer. This review article summarizes a detailed insight into breast and ovarian cancers in light of nanozymes-based diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Samiah Shahid
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Ayesha Khan
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
| | - Wajeehah Shahid
- Department of Physics, The University of Lahore, Lahore, Pakistan
| | - Mehvesh Rehan
- Institute of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, Pakistan
| | - Roha Asif
- Research Centre for Health Sciences (RCHS), The University of Lahore, Lahore, Pakistan
| | - Haseeb Nisar
- School of Life Sciences, University of Management and Technology, Lahore, Pakistan
| | - Qudsia Kanwal
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Jeong Ryeol Choi
- School of Electronic Engineering, Kyonggi University, Suwon, Kyeonggi-do, 16227, Republic of Korea
| |
Collapse
|
5
|
Scattolin T, Tonon G, Botter E, Canale VC, Hasanzadeh M, Cuscela DM, Buschini A, Zarepour A, Khosravi A, Cordani M, Rizzolio F, Zarrabi A. Synergistic applications of cyclodextrin-based systems and metal-organic frameworks in transdermal drug delivery for skin cancer therapy. J Mater Chem B 2024; 12:3807-3839. [PMID: 38529820 DOI: 10.1039/d4tb00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
This review article explores the innovative field of eco-friendly cyclodextrin-based coordination polymers and metal-organic frameworks (MOFs) for transdermal drug delivery in the case of skin cancer therapy. We critically examine the significant advancements in developing these nanocarriers, with a focus on their unique properties such as biocompatibility, targeted drug release, and enhanced skin permeability. These attributes are instrumental in addressing the limitations inherent in traditional skin cancer treatments and represent a paradigm shift towards more effective and patient-friendly therapeutic approaches. Furthermore, we discuss the challenges faced in optimizing the synthesis process for large-scale production while ensuring environmental sustainability. The review also emphasizes the immense potential for clinical applications of these nanocarriers in skin cancer therapy, highlighting their role in facilitating targeted, controlled drug release which minimizes systemic side effects. Future clinical applications could see these nanocarriers being customized to individual patient profiles, potentially revolutionizing personalized medicine in oncology. With further research and clinical trials, these nanocarriers hold the promise of transforming the landscape of skin cancer treatment. With this study, we aim to provide a comprehensive overview of the current state of research in this field and outline future directions for advancing the development and clinical application of these innovative nanocarriers.
Collapse
Affiliation(s)
- Thomas Scattolin
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, 35131, Padova, Italy
| | - Giovanni Tonon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Eleonora Botter
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30174, Venezia-Mestre, Italy
| | - Viviana Claudia Canale
- Department of Chemical Science and Technologies, University of Rome 'Tor Vergata', Via della Ricerca Scientifica, 00133 Rome, Italy
| | - Mahdi Hasanzadeh
- Department of Textile Engineering, Yazd University, P.O. Box 89195-741, Yazd, Iran
| | - Denise Maria Cuscela
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Annamaria Buschini
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
- COMT (Interdepartmental Centre for Molecular and Translational Oncology), University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai-600 077, India
| | - Arezoo Khosravi
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul 34959, Turkey
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid 28040, Spain.
- Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid 28040, Spain
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, Aviano, Italy.
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, Venice, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey.
- Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| |
Collapse
|
6
|
Chi Z, Gu J, Li H, Wang Q. Recent progress of metal-organic framework-based nanozymes with oxidoreductase-like activity. Analyst 2024; 149:1416-1435. [PMID: 38334683 DOI: 10.1039/d3an01995k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Nanozymes, a class of synthetic nanomaterials possessing enzymatic catalytic properties, exhibit distinct advantages such as exceptional stability and cost-effectiveness. Among them, metal-organic framework (MOF)-based nanozymes have garnered significant attention due to their large specific surface area, tunable pore size and uniform structure. MOFs are porous crystalline materials bridged by inorganic metal ions/clusters and organic ligands, which hold immense potential in the fields of catalysis, sensors and drug carriers. The combination of MOFs with diverse nanomaterials gives rise to various types of MOF-based nanozyme, encompassing original MOFs, MOF-based nanozymes with chemical modifications, MOF-based composites and MOF derivatives. It is worth mentioning that the metal ions and organic ligands in MOFs are perfectly suited for designing oxidoreductase-like nanozymes. In this review, we intend to provide an overview of recent trends and progress in MOF-based nanozymes with oxidoreductase-like activity. Furthermore, the current obstacles and prospective outlook of MOF-based nanozymes are proposed and briefly discussed. This comprehensive analysis aims to facilitate progress in the development of novel MOF-based nanozymes with oxidoreductase-like activity while serving as a valuable reference for scientists engaged in related disciplines.
Collapse
Affiliation(s)
- Zhongmei Chi
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Jiali Gu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Hui Li
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| | - Qiong Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, Liaoning Province, 121013, P. R. China.
| |
Collapse
|
7
|
Li R, Jiao L, Jia X, Yan L, Li X, Yan D, Zhai Y, Zhu C, Lu X. Bioinspired FeN 5 Sites with Enhanced Peroxidase-like Activity Enable Colorimetric Sensing of Uranyl Ions in Seawater. Anal Chem 2024. [PMID: 38324915 DOI: 10.1021/acs.analchem.3c05415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Nanozymes with peroxidase (POD)-like activity have garnered significant attention due to their exceptional performance in colorimetric assays. However, nanozymes often possess oxidase (OD) and POD-like activity simultaneously, which affects the accuracy and sensitivity of the detection results. To address this issue, inspired by the catalytic pocket of natural POD, a single-atom nanozyme with FeN5 configuration is designed, exhibiting enhanced POD-like activity in comparison with a single-atom nanozyme with FeN4 configuration. The axial N atom in FeN5 highly mimics the amino acid residues in natural POD to optimize the electronic structure of the metal active center Fe, realizing the efficient activation of H2O2. In addition, in the presence of both H2O2 and O2, FeN5 enhances the activation of H2O2, effectively avoiding the interference of dissolved oxygen in colorimetric sensing. As a proof-of-concept application, a colorimetric detection platform for uranyl ions (UO22+) in seawater is successfully constructed, demonstrating satisfactory sensitivity and specificity.
Collapse
Affiliation(s)
- Ruimin Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Lei Jiao
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xiangkun Jia
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Lijuan Yan
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Xiaotong Li
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Dongbo Yan
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Yanling Zhai
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| | - Chengzhou Zhu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan, Hubei 430079, P. R. China
| | - Xiaoquan Lu
- Institute of Molecular Metrology, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, P. R. China
| |
Collapse
|
8
|
Li D, Yadav A, Zhou H, Roy K, Thanasekaran P, Lee C. Advances and Applications of Metal-Organic Frameworks (MOFs) in Emerging Technologies: A Comprehensive Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300244. [PMID: 38356684 PMCID: PMC10862192 DOI: 10.1002/gch2.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/19/2023] [Indexed: 02/16/2024]
Abstract
Metal-organic frameworks (MOFs) that are the wonder material of the 21st century consist of metal ions/clusters coordinated to organic ligands to form one- or more-dimensional porous structures with unprecedented chemical and structural tunability, exceptional thermal stability, ultrahigh porosity, and a large surface area, making them an ideal candidate for numerous potential applications. In this work, the recent progress in the design and synthetic approaches of MOFs and explore their potential applications in the fields of gas storage and separation, catalysis, magnetism, drug delivery, chemical/biosensing, supercapacitors, rechargeable batteries and self-powered wearable sensors based on piezoelectric and triboelectric nanogenerators are summarized. Lastly, this work identifies present challenges and outlines future opportunities in this field, which can provide valuable references.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Anurag Yadav
- Department of ChemistryPondicherry UniversityPuducherry605014India
| | - Hong Zhou
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | - Kaustav Roy
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| | | | - Chengkuo Lee
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117583Singapore
- Center for Intelligent Sensors and MEMSNational University of SingaporeSingapore117608Singapore
| |
Collapse
|
9
|
Shubhangi, Nandi I, Rai SK, Chandra P. MOF-based nanocomposites as transduction matrices for optical and electrochemical sensing. Talanta 2024; 266:125124. [PMID: 37657374 DOI: 10.1016/j.talanta.2023.125124] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
Metal Organic Frameworks (MOFs), a class of crystalline microporous materials have been into research limelight lately due to their commendable physio-chemical properties and easy fabrication methods. They have enormous surface area which can be a working ground for innumerable molecule adhesions and site for potential sensor matrices. Their biocompatibility makes them valuable for in vitro detection systems but a compromised conductivity requires a lot of surface engineering of these molecules for their usage in electrochemical biosensors. However, they are not just restricted to a single type of transduction system rather can also be modified to achieve feat as optical (colorimetry, luminescence) and electro-luminescent biosensors. This review emphasizes on recent advancements in the area of MOF-based biosensors with focus on various MOF synthesis methods and their general properties along with selective attention to electrochemical, optical and opto-electrochemical hybrid biosensors. It also summarizes MOF-based biosensors for monitoring free radicals, metal ions, small molecules, macromolecules and cells in a wide range of real matrices. Extensive tables have been included for understanding recent trends in the field of MOF-composite probe fabrication. The article sums up the future scope of these materials in the field of biosensors and enlightens the reader with recent trends for future research scope.
Collapse
Affiliation(s)
- Shubhangi
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India; Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Indrani Nandi
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - S K Rai
- School of Biomedical Engineering, Indian Institute of Technology Laboratory (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Pranjal Chandra
- Laboratory of Bio-Physio Sensors and Nanobioengineering, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|