1
|
Mehta RI, Ranjan M, Haut MW, Carpenter JS, Rezai AR. Focused Ultrasound for Neurodegenerative Diseases. Magn Reson Imaging Clin N Am 2024; 32:681-698. [PMID: 39322357 DOI: 10.1016/j.mric.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Neurodegenerative diseases are a leading cause of death and disability and pose a looming global public health crisis. Despite progress in understanding biological and molecular factors associated with these disorders and their progression, effective disease modifying treatments are presently limited. Focused ultrasound (FUS) is an emerging therapeutic strategy for Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In these contexts, applications of FUS include neuroablation, neuromodulation, and/or blood-brain barrier opening with and without facilitated intracerebral drug delivery. Here, the authors review preclinical evidence and current and emerging applications of FUS for neurodegenerative diseases and summarize future directions in the field.
Collapse
Affiliation(s)
- Rashi I Mehta
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University.
| | - Manish Ranjan
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University
| | - Marc W Haut
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University; Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University; Department of Neurology, Rockefeller Neuroscience Institute, West Virginia University
| | - Jeffrey S Carpenter
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University; Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University
| | - Ali R Rezai
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University; Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University
| |
Collapse
|
2
|
Garg V, Lavu VS, Hey G, Winter B, Firme MS, Hilliard JD, De Hemptinne C, Okun MS, Wong JK. Beyond Pallidal or Subthalamic Deep Brain Stimulation to Treat Dystonia. Tremor Other Hyperkinet Mov (N Y) 2024; 14:45. [PMID: 39308988 PMCID: PMC11414463 DOI: 10.5334/tohm.935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Deep brain stimulation of the subthalamic nucleus and globus pallidus internus is approved by the Food and Drug Administration for treating dystonia. Both targets have shown effectiveness in improving symptoms, but post-operative outcomes can vary significantly among patients. This variability has led researchers to explore alternative neuromodulation targets that might offer more consistent results. Emerging research has highlighted several promising new targets for DBS in dystonia. This review examines pre-clinical and clinical data on novel DBS targets for dystonia and explores non-invasive neuromodulation studies that shed light on the disease's underlying pathological circuitry.
Collapse
Affiliation(s)
- Vedant Garg
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Venkat Srikar Lavu
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Grace Hey
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Brett Winter
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Marcos Santana Firme
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Justin D. Hilliard
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Coralie De Hemptinne
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Michael S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| | - Joshua K. Wong
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
| |
Collapse
|
3
|
Fenoy AJ, Chu ZD, Ritter RJ, Conner CR, Kralik SF. Evaluating functional connectivity differences between DBS ON/OFF states in essential tremor. Neurotherapeutics 2024; 21:e00375. [PMID: 38824101 PMCID: PMC11301224 DOI: 10.1016/j.neurot.2024.e00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 06/03/2024] Open
Abstract
Deep brain stimulation (DBS) targeting the ventral intermediate (Vim) nucleus of the thalamus is an effective treatment for essential tremor (ET). We studied 15 ET patients undergoing DBS to a major input/output tract of the Vim, the dentato-rubro-thalamic tract (DRTt), using resting state functional MRI (rsfMRI) to evaluate connectivity differences between DBS ON and OFF and elucidate significant regions most influential in impacting tremor control and/or concomitant gait ataxia. Anatomical/functional 1.5T MRIs were acquired and replicated for each DBS state. Tremor severity and gait ataxia severity were scored with DBS ON at optimal stimulation parameters and immediately upon DBS OFF. Whole brain analysis was performed using dual regression analysis followed by randomized permutation testing for multiple correction comparison. Regions of interest (ROI) analysis was also performed. All 15 patients had tremor improvement between DBS ON/OFF (p < 0.001). Whole brain analysis revealed significant connectivity changes between states in the left pre-central gyrus and left supplemental motor area. Group analysis of ROIs revealed that, with threshold p < 0.05, in DBS ON vs. OFF both tremor duration and tremor improvement were significantly correlated to changes in connectivity. A sub-group analysis of patients with greater ataxia had significantly decreased functional connectivity between multiple ROIs in the cortex and cerebellum when DBS was ON compared to OFF. Stimulation of the DRTt and concordant improvement of tremor resulted in connectivity changes seen in multiple regions outside the motor network; when combined with both structural and electrophysiologic connectivity, this may help to serve as a biomarker to improve DBS targeting and possibly predict outcome.
Collapse
Affiliation(s)
- Albert J Fenoy
- Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA; Departments of Neurosurgery and Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
| | - Zili D Chu
- Edward B. Singleton Department of Radiology, Baylor College of Medicine at Texas Children's Hospital, Houston, TX, USA
| | - Robert J Ritter
- Department of Neurosurgery, McGovern School of Medicine, UTHealth Houston, Houston, TX, USA
| | - Christopher R Conner
- Division of Neurosurgery, Dept. of Surgery, University of Connecticut, Hartford, CT, USA
| | - Stephen F Kralik
- Edward B. Singleton Department of Radiology, Baylor College of Medicine at Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
4
|
Berger A, Chung J, Schnurman Z, Stepanov V, Pan L, Shepherd TM, Mogilner A. Comparison of Dentatorubrothalamic Tractography Methods Based on the Anatomy of the Rubral Wing. Oper Neurosurg (Hagerstown) 2024; 27:56-64. [PMID: 38289086 DOI: 10.1227/ons.0000000000001058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/01/2023] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND AND OBJECTIVES Precise localization of the dentatorubrothalamic (DRT) tract can facilitate anatomic targeting in MRI-guided high-intensity focused ultrasound (HIFU) thalamotomy and thalamic deep brain stimulation for tremor. The anatomic segment of DRT fibers adjacent to the ventral intermediate nucleus of the thalamus (VIM), referred to as the rubral wing (RW), may be directly visualized on the fast gray matter acquisition T1 inversion recovery. We compared reproducibility, lesion overlap, and clinical outcomes when reconstructing the DRT tract using a novel anatomically defined RW region of interest, DRT-RW, to an existing tractography method based on the posterior subthalamic area region of interest (DRT-PSA). METHODS We reviewed data of 23 patients with either essential tremor (n = 18) or tremor-predominant Parkinson's disease (n = 5) who underwent HIFU thalamotomy, targeting the VIM. DRT tractography, ipsilateral to the lesion, was created based on either DRT-PSA or DRT-RW. Volume sections of each tract were created and dice similarity coefficients were used to measure spatial overlap between the 2 tractographies. Post-HIFU lesion size and location (on postoperative T2 MRI) was correlated with tremor outcomes and side effects for both DRT tractography methods and the RW itself. RESULTS DRT-PSA passed through the RW and DRT-RW intersected with the ROIs of the DRT-PSA in all 23 cases. A higher percentage of the RW was ablated in patients who achieved tremor control (18.9%, 95% CI 15.1, 22.7) vs those without tremor relief (6.7%, 95% CI% 0, 22.4, P = .017). In patients with tremor control 6 months postoperatively (n = 12), those with side effects (n = 6) had larger percentages of their tracts ablated in comparison with those without side effects in both DRT-PSA (44.8, 95% CI 31.8, 57.8 vs 24.2%, 95% CI 12.4, 36.1, P = .025) and DRT-RW (35.4%, 95% CI 21.5, 49.3 vs 21.7%, 95% CI 12.7, 30.8, P = .030). CONCLUSION Tractography of the DRT could be reconstructed by direct anatomic visualization of the RW on fast gray matter acquisition T1 inversion recovery-MRI. Anatomic planning is expected to be quicker, more reproducible, and less operator-dependent.
Collapse
Affiliation(s)
- Assaf Berger
- Department of Neurological Surgery, NYU Langone Medical Center, NYU Grossman School of Medicine, New York University, New York , New York , USA
| | - Jongchul Chung
- Department of Neurological Surgery, NYU Langone Medical Center, NYU Grossman School of Medicine, New York University, New York , New York , USA
| | - Zane Schnurman
- Department of Neurological Surgery, NYU Langone Medical Center, NYU Grossman School of Medicine, New York University, New York , New York , USA
| | - Valentin Stepanov
- Department of Radiology, NYU Langone Medical Center, NYU Grossman School of Medicine, New York University, New York , New York , USA
| | - Ling Pan
- Department of Neurological Surgery, NYU Langone Medical Center, NYU Grossman School of Medicine, New York University, New York , New York , USA
| | - Timothy M Shepherd
- Department of Radiology, NYU Langone Medical Center, NYU Grossman School of Medicine, New York University, New York , New York , USA
| | - Alon Mogilner
- Department of Neurological Surgery, NYU Langone Medical Center, NYU Grossman School of Medicine, New York University, New York , New York , USA
| |
Collapse
|
5
|
Weng L, Zhu Z, Dai K, Zheng Z, Zhu J, Wu H. Reduced-Reference Learning for Target Localization in Deep Brain Stimulation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:2434-2447. [PMID: 38324428 DOI: 10.1109/tmi.2024.3363425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
This work proposes a supervised machine learning method for target localization in deep brain stimulation (DBS). DBS is a recognized treatment for essential tremor. The effects of DBS significantly depend on the precise implantation of electrodes. Recent research on diffusion tensor imaging shows that the optimal target for essential tremor is related to the dentato-rubro-thalamic tract (DRTT), thus DRTT targeting has become a promising direction. The tractography-based targeting is more accurate than conventional ones, but still too complicated for clinical scenarios, where only structural magnetic resonance imaging (sMRI) data is available. In order to improve efficiency and utility, we consider target localization as a non-linear regression problem in a reduced-reference learning framework, and solve it with convolutional neural networks (CNNs). The proposed method is an efficient two-step framework, and consists of two image-based networks: one for classification and the other for localization. We model the basic workflow as an image retrieval process and define relevant performance metrics. Using DRTT as pseudo groundtruths, we show that individualized tractography-based optimal targets can be inferred from sMRI data with high accuracy. For two datasets of 280×220/272×227 (0.7/0.8 mm slice thickness) sMRI input, our model achieves an average posterior localization error of 2.3/1.2 mm, and a median of 1.7/1.02 mm. The proposed framework is a novel application of reduced-reference learning, and a first attempt to localize DRTT from sMRI. It significantly outperforms existing methods using 3D-CNN, anatomical and DRTT atlas, and may serve as a new baseline for general target localization problems.
Collapse
|
6
|
Matsuda T, Morigaki R, Hayasawa H, Koyama H, Oda T, Miyake K, Takagi Y. Striatal parvalbumin interneurons are activated in a mouse model of cerebellar dystonia. Dis Model Mech 2024; 17:dmm050338. [PMID: 38616770 PMCID: PMC11128288 DOI: 10.1242/dmm.050338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 04/09/2024] [Indexed: 04/16/2024] Open
Abstract
Dystonia is thought to arise from abnormalities in the motor loop of the basal ganglia; however, there is an ongoing debate regarding cerebellar involvement. We adopted an established cerebellar dystonia mouse model by injecting ouabain to examine the contribution of the cerebellum. Initially, we examined whether the entopeduncular nucleus (EPN), substantia nigra pars reticulata (SNr), globus pallidus externus (GPe) and striatal neurons were activated in the model. Next, we examined whether administration of a dopamine D1 receptor agonist and dopamine D2 receptor antagonist or selective ablation of striatal parvalbumin (PV, encoded by Pvalb)-expressing interneurons could modulate the involuntary movements of the mice. The cerebellar dystonia mice had a higher number of cells positive for c-fos (encoded by Fos) in the EPN, SNr and GPe, as well as a higher positive ratio of c-fos in striatal PV interneurons, than those in control mice. Furthermore, systemic administration of combined D1 receptor agonist and D2 receptor antagonist and selective ablation of striatal PV interneurons relieved the involuntary movements of the mice. Abnormalities in the motor loop of the basal ganglia could be crucially involved in cerebellar dystonia, and modulating PV interneurons might provide a novel treatment strategy.
Collapse
Affiliation(s)
- Taku Matsuda
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Ryoma Morigaki
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Department of Advanced Brain Research, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima 770-8503, Japan
| | - Hiroaki Hayasawa
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Hiroshi Koyama
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Teruo Oda
- Department of Advanced Brain Research, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Kazuhisa Miyake
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| | - Yasushi Takagi
- Department of Neurosurgery, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
- Department of Advanced Brain Research, Graduate School of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan
| |
Collapse
|
7
|
Neudorfer C, Kultas-Ilinsky K, Ilinsky I, Paschen S, Helmers AK, Cosgrove GR, Richardson RM, Horn A, Deuschl G. The role of the motor thalamus in deep brain stimulation for essential tremor. Neurotherapeutics 2024; 21:e00313. [PMID: 38195310 PMCID: PMC11103222 DOI: 10.1016/j.neurot.2023.e00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024] Open
Abstract
The advent of next-generation technology has significantly advanced the implementation and delivery of Deep Brain Stimulation (DBS) for Essential Tremor (ET), yet controversies persist regarding optimal targets and networks responsible for tremor genesis and suppression. This review consolidates key insights from anatomy, neurology, electrophysiology, and radiology to summarize the current state-of-the-art in DBS for ET. We explore the role of the thalamus in motor function and describe how differences in parcellations and nomenclature have shaped our understanding of the neuroanatomical substrates associated with optimal outcomes. Subsequently, we discuss how seminal studies have propagated the ventral intermediate nucleus (Vim)-centric view of DBS effects and shaped the ongoing debate over thalamic DBS versus stimulation in the posterior subthalamic area (PSA) in ET. We then describe probabilistic- and network-mapping studies instrumental in identifying the local and network substrates subserving tremor control, which suggest that the PSA is the optimal DBS target for tremor suppression in ET. Taken together, DBS offers promising outcomes for ET, with the PSA emerging as a better target for suppression of tremor symptoms. While advanced imaging techniques have substantially improved the identification of anatomical targets within this region, uncertainties persist regarding the distinct anatomical substrates involved in optimal tremor control. Inconsistent subdivisions and nomenclature of motor areas and other subdivisions in the thalamus further obfuscate the interpretation of stimulation results. While loss of benefit and habituation to DBS remain challenging in some patients, refined DBS techniques and closed-loop paradigms may eventually overcome these limitations.
Collapse
Affiliation(s)
- Clemens Neudorfer
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | - Igor Ilinsky
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, IA, USA
| | - Steffen Paschen
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| | | | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R Mark Richardson
- Brain Modulation Lab, Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, 02114, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA; Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité -Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Günther Deuschl
- Department of Neurology, Christian-Albrechts-University, Kiel, Germany
| |
Collapse
|
8
|
Deuter D, Mederer T, Kohl Z, Forras P, Rosengarth K, Schlabeck M, Röhrl D, Wendl C, Fellner C, Schmidt NO, Schlaier J. Amelioration of Parkinsonian tremor evoked by DBS: which role play cerebello-(sub)thalamic fiber tracts? J Neurol 2024; 271:1451-1461. [PMID: 38032372 PMCID: PMC10896868 DOI: 10.1007/s00415-023-12095-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Current pathophysiological models of Parkinson's disease (PD) assume a malfunctioning network being adjusted by the DBS signal. As various authors showed a main involvement of the cerebellum within this network, cerebello-cerebral fiber tracts are gaining special interest regarding the mediation of DBS effects. OBJECTIVES The crossing and non-decussating fibers of the dentato-rubro-thalamic tract (c-DRTT/nd-DRTT) and the subthalamo-ponto-cerebellar tract (SPCT) are thought to build up an integrated network enabling a bidimensional communication between the cerebellum and the basal ganglia. The aim of this study was to investigate the influence of these tracts on clinical control of Parkinsonian tremor evoked by DBS. METHODS We analyzed 120 electrode contacts from a cohort of 14 patients with tremor-dominant or equivalence-type PD having received bilateral STN-DBS. Probabilistic tractography was performed to depict the c-DRTT, nd-DRTT, and SPCT. Distance maps were calculated for the tracts and correlated to clinical tremor control for each electrode pole. RESULTS A significant difference between "effective" and "less-effective" contacts was only found for the c-DRTT (p = 0.039), but not for the SPCT, nor the nd-DRTT. In logistic and linear regressions, significant results were also found for the c-DRTT only (pmodel logistic = 0.035, ptract logistic = 0,044; plinear = 0.027). CONCLUSIONS We found a significant correlation between the distance of the DBS electrode pole to the c-DRTT and the clinical efficacy regarding tremor reduction. The c-DRTT might therefore play a major role in the mechanisms of alleviation of Parkinsonian tremor and could eventually serve as a possible DBS target for tremor-dominant PD in future.
Collapse
Affiliation(s)
- Daniel Deuter
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
- Center for Deep Brain Stimulation, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany.
| | - Tobias Mederer
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Center for Deep Brain Stimulation, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Zacharias Kohl
- Center for Deep Brain Stimulation, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Department of Neurology, Regensburg Medbo District Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Patricia Forras
- Center for Deep Brain Stimulation, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Department of Neurology, Regensburg Medbo District Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Katharina Rosengarth
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Mona Schlabeck
- Center for Deep Brain Stimulation, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Daniela Röhrl
- Center for Deep Brain Stimulation, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Department of Anesthesiology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Christina Wendl
- Center for Deep Brain Stimulation, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Department of Radiology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Department of Radiology, Regensburg Medbo District Hospital, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Claudia Fellner
- Department of Radiology, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Nils-Ole Schmidt
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| | - Jürgen Schlaier
- Department of Neurosurgery, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
- Center for Deep Brain Stimulation, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, 93053, Regensburg, Germany
| |
Collapse
|
9
|
Wiśniewski K, Gajos A, Zaczkowski K, Szulia A, Grzegorczyk M, Dąbkowska A, Wójcik R, Bobeff EJ, Kwiecień K, Brandel MG, Fahlström A, Bogucki A, Ciszek B, Jaskólski DJ. Overlapping stimulation of subthalamic nucleus and dentato-rubro-thalamic tract in Parkinson's disease after deep brain stimulation. Acta Neurochir (Wien) 2024; 166:106. [PMID: 38403814 DOI: 10.1007/s00701-024-06006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/09/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces tremor, rigidity, and akinesia. According to the literature, the dentato-rubro-thalamic tract (DRTt) is verified target for DBS in essential tremor; however, its role in the treatment of Parkinson's disease is only vaguely described. The aim of our study was to identify the relationship between symptom alleviation in PD patients and the distance of the DBS electrode electric field (EF) to the DRTt. METHODS A single-center retrospective analysis of patients (N = 30) with idiopathic Parkinson's disease (PD) who underwent DBS between November 2018 and January 2020 was performed. DRTt and STN were visualized using diffusion-weighted imaging (DWI) and tractography protocol of magnetic resonance (MR). The EF was calculated and compared with STN and course of DRTt. Evaluation of patients before and after surgery was performed with use of UPDRS-III scale. The association between distance from EF to DRTt and clinical outcomes was examined. To confirm the anatomical variation between DRTt and STN observed in tractography, white matter dissection was performed with the Klingler technique on ten human brains. RESULTS Patients with EF overlapping STN and DRTt benefited from significant motor symptoms improvement. Anatomical findings confirmed the presence of population differences in variability of the DRTt course and were consistent with the DRTt visualized by MR. CONCLUSIONS DRTt proximity to STN, the main target in PD DBS surgery, confirmed by DWI with tractography protocol of MR combined with proper predefined stimulation parameters may improve efficacy of DBS-STN.
Collapse
Affiliation(s)
- K Wiśniewski
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland.
| | - A Gajos
- Department of Extrapyramidal Diseases, Medical University of Łódź, Łódź, Poland
| | - K Zaczkowski
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
| | - A Szulia
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
| | - M Grzegorczyk
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland
| | - A Dąbkowska
- Department of Forensic Medicine, Medical University of Warsaw, Warsaw, Poland
| | - R Wójcik
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
| | - E J Bobeff
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Łódź, Poland
| | - K Kwiecień
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
| | - M G Brandel
- Department of Neurosurgery, University of California, San Diego, San Diego, CA, 92123, USA
| | - A Fahlström
- Department of Medical Sciences, Section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | - A Bogucki
- Department of Extrapyramidal Diseases, Medical University of Łódź, Łódź, Poland
| | - B Ciszek
- Department of Descriptive and Clinical Anatomy, Medical University of Warsaw, Warsaw, Poland
| | - D J Jaskólski
- Department of Neurosurgery and Neurooncology, Medical University of Łódź, Barlicki University Hospital, Łódź, Poland
| |
Collapse
|
10
|
Sajonz BEA, Frommer ML, Reisert M, Blazhenets G, Schröter N, Rau A, Prokop T, Reinacher PC, Rijntjes M, Urbach H, Meyer PT, Coenen VA. Disbalanced recruitment of crossed and uncrossed cerebello-thalamic pathways during deep brain stimulation is predictive of delayed therapy escape in essential tremor. Neuroimage Clin 2024; 41:103576. [PMID: 38367597 PMCID: PMC10944187 DOI: 10.1016/j.nicl.2024.103576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Thalamic deep brain stimulation (DBS) is an efficacious treatment for drug-resistant essential tremor (ET) and the dentato-rubro-thalamic tract (DRT) constitutes an important target structure. However, up to 40% of patients habituate and lose treatment efficacy over time, frequently accompanied by a stimulation-induced cerebellar syndrome. The phenomenon termed delayed therapy escape (DTE) is insufficiently understood. Our previous work showed that DTE clinically is pronounced on the non-dominant side and suggested that differential involvement of crossed versus uncrossed DRT (DRTx/DRTu) might play a role in DTE development. METHODS We retrospectively enrolled right-handed patients under bilateral thalamic DBS >12 months for ET from a cross-sectional study. They were characterized with the Fahn-Tolosa-Marin Tremor Rating Scale (FTMTRS) and Scale for the Assessment and Rating of Ataxia (SARA) scores at different timepoints. Normative fiber tractographic evaluations of crossed and uncrossed cerebellothalamic pathways and volume of activated tissue (VAT) studies together with [18F]Fluorodeoxyglucose positron emission tomography were applied. RESULTS A total of 29 patients met the inclusion criteria. Favoring DRTu over DRTx in the non-dominant VAT was associated with DTE (R2 = 0.4463, p < 0.01) and ataxia (R2 = 0.2319, p < 0.01). Moreover, increasing VAT size on the right (non-dominant) side was associated at trend level with more asymmetric glucose metabolism shifting towards the right (dominant) dentate nucleus. CONCLUSION Our results suggest that a disbalanced recruitment of DRTu in the non-dominant VAT induces detrimental stimulation effects on the dominant cerebellar outflow (together with contralateral stimulation) leading to DTE and thus hampering the overall treatment efficacy.
Collapse
Affiliation(s)
- Bastian E A Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany.
| | - Marvin L Frommer
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Nils Schröter
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Alexander Rau
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Thomas Prokop
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Michel Rijntjes
- Department of Neurology and Neurophysiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Philipp T Meyer
- Department of Nuclear Medicine, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany; Center for Deep Brain Stimulation, University of Freiburg, Germany
| |
Collapse
|
11
|
Kamagata K, Andica C, Uchida W, Takabayashi K, Saito Y, Lukies M, Hagiwara A, Fujita S, Akashi T, Wada A, Hori M, Kamiya K, Zalesky A, Aoki S. Advancements in Diffusion MRI Tractography for Neurosurgery. Invest Radiol 2024; 59:13-25. [PMID: 37707839 PMCID: PMC11805476 DOI: 10.1097/rli.0000000000001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
ABSTRACT Diffusion magnetic resonance imaging tractography is a noninvasive technique that enables the visualization and quantification of white matter tracts within the brain. It is extensively used in preoperative planning for brain tumors, epilepsy, and functional neurosurgical procedures such as deep brain stimulation. Over the past 25 years, significant advancements have been made in imaging acquisition, fiber direction estimation, and tracking methods, resulting in considerable improvements in tractography accuracy. The technique enables the mapping of functionally critical pathways around surgical sites to avoid permanent functional disability. When the limitations are adequately acknowledged and considered, tractography can serve as a valuable tool to safeguard critical white matter tracts and provides insight regarding changes in normal white matter and structural connectivity of the whole brain beyond local lesions. In functional neurosurgical procedures such as deep brain stimulation, it plays a significant role in optimizing stimulation sites and parameters to maximize therapeutic efficacy and can be used as a direct target for therapy. These insights can aid in patient risk stratification and prognosis. This article aims to discuss state-of-the-art tractography methodologies and their applications in preoperative planning and highlight the challenges and new prospects for the use of tractography in daily clinical practice.
Collapse
|
12
|
Germann J, Gouveia FV, Beyn ME, Elias GJB, Lozano AM. Computational Neurosurgery in Deep Brain Stimulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1462:435-451. [PMID: 39523281 DOI: 10.1007/978-3-031-64892-2_26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Computational methods and technologies are critical for neurosurgery in general and in deep brain stimulation (DBS) in particular. They increasingly inform every aspect of clinical DBS therapy, from presurgical planning and hardware implantation to postoperative adjustment of stimulation parameters. Computational methods also occupy a prominent position within the DBS research sphere, where they facilitate efforts to better understand DBS' underlying mechanisms and optimize and individualize its delivery. This chapter provides a high-level overview of the various computational tools and methods that have been applied to DBS. First, we discuss the invaluable contribution of computational neuroimaging (primarily magnetic resonance imaging) to DBS, targeting and the role of postoperative methods of image analysis-specifically, electrode localization, volume of activated tissue modeling, and sweet-spot mapping-in precisely localizing DBS' targets in the brain and discerning optimal treatment loci. We then address the growing field of connectomics, which leverages specific magnetic resonance imaging (MRI) sequences and post-acquisition processing algorithms to explore how DBS operates at the level of brain-wide networks. Next, the search for electrophysiological and imaging-based biomarkers of optimal DBS therapy is explored. We lastly touch on the incipient field of spatial characterization analysis and discuss the ongoing development of adaptive, closed-loop DBS systems.
Collapse
Affiliation(s)
- Jürgen Germann
- Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | | | - Michelle E Beyn
- Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Gavin J B Elias
- Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University Health Network, University of Toronto, Toronto, ON, Canada.
- Krembil Brain Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada.
| |
Collapse
|
13
|
Conner CR, Forseth KJ, Lozano AM, Ritter R, Fenoy AJ. Thalamo-cortical evoked potentials during stimulation of the dentato-rubro-thalamic tract demonstrate synaptic filtering. Neurotherapeutics 2024; 21:e00295. [PMID: 38237402 PMCID: PMC10903089 DOI: 10.1016/j.neurot.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 02/16/2024] Open
Abstract
Essential tremor DBS targeting the ventral intermediate nucleus (Vim) of the thalamus and its input, the dentato-rubro-thalamic tract (DRTt), has proven to be an effective treatment strategy. We examined thalamo-cortical evoked potentials (TCEPs) and cortical dynamics during stimulation of the DRTt. We recorded TCEPs in primary motor cortex during clinical and supra-clinical stimulation of the DRTt in ten essential tremor patients. Stimulation was varied over pulse amplitude (2-10 mA) and pulse width (30-250 μs) to allow for strength-duration testing. Testing at clinical levels (3 mA, 60 μs) for stimulation frequencies of 1-160 Hz was performed and phase amplitude coupling (PAC) of beta phase and gamma power was calculated. Primary motor cortex TCEPs displayed two responses: early and all-or-none (<20 ms) or delayed and charge-dependent (>50 ms). Strength-duration curve approximation indicates that the chronaxie of the neural elements related to the TCEPs is <200 μs. At the range of clinical stimulation (amplitude 2-5 mA, pulse width 30-60 μs), TCEPs were not noted over primary motor cortex. Decreased pathophysiological phase-amplitude coupling was seen above 70 Hz stimulation without changes in power spectra and below the threshold of TCEPs. Our findings demonstrate that DRTt stimulation within normal clinical bounds does not excite fibers directly connected with primary motor cortex but that supra-clinical stimulation can excite a direct axonal tract. Both clinical efficacy and phase-amplitude coupling were frequency-dependent, favoring a synaptic filtering model as a possible mechanism of action.
Collapse
Affiliation(s)
- Christopher R Conner
- Division of Neurosurgery, Department of Surgery, University of Connecticut, Hartford, CT, USA.
| | - Kiefer J Forseth
- Division of Neurosurgery, University of California San Diego, San Diego, CA, USA
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Robert Ritter
- Department of Neurosurgery, University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| |
Collapse
|
14
|
Deuter D, Torka E, Kohl Z, Schmidt NO, Schlaier J. Mediation of Tremor Control by the Decussating and Nondecussating Part of the Dentato-Rubro-Thalamic Tract in Deep Brain Stimulation in Essential Tremor: Which Part Should Be Stimulated? Neuromodulation 2023; 26:1668-1679. [PMID: 35715283 DOI: 10.1016/j.neurom.2022.04.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES The dentato-rubro-thalamic tract (DRTT) has been found to play a major role in the mechanisms of tremor alleviation by deep brain stimulation (DBS) in essential tremor (ET). Still, the influence of the two different parts of the DRTT, consisting of crossing and nondecussating fibers, is not yet clear with respect to tremor reduction. The aim of this study was to assess the influence of the crossing and the nondecussating part of the DRTT on tremor control in ET. MATERIALS AND METHODS We investigated 80 electrode contacts in ten patients with ET who received bilateral DBS of the Nucleus ventralis intermedius of the thalamus (VIM). Preoperatively and with patients under general anesthesia, 3T magnetic resonance imaging scans were performed, including Diffusion Tensor Imaging scans with 64 gradient directions. We calculated the course of the two parts of the DRTT based on a workflow for probabilistic fiber tracking including protocols for correction of susceptibility- and eddy current-induced distortions. Distances of electrode contacts were correlated with clinical data from neurologic single pole testing. RESULTS Voltage- and current-steered systems were analyzed separately. Regarding postural tremor, effective contacts showed significantly lower distances to both parts of the DRTT (crossing p < 0.001, nondecussating p < 0.05) in voltage-steered systems. Regarding intentional tremor, significant results were only found for the crossing part (p < 0.01). Regarding both tremor types, effective contacts were closer to the crossing part, unlike less effective contacts. Nonlinear regression analyses using a logistic model showed higher coefficients for the crossing part of the DRTT. Multivariate regression models including distances to both parts of the DRTT showed a significant influence of only the crossing part. Analysis of current-steered systems showed unstable data, probably because of the small number of analyzed patients. CONCLUSIONS Our data suggest an involvement of both parts of the DRTT in tremor reduction, indicating mediation of DBS effects by both fiber bundles, although the crossing part showed stronger correlations with good clinical responses. Nevertheless, special attention should be paid to methodologic aspects when using probabilistic tractography for patient-specific targeting to avoid uncertain and inaccurate results.
Collapse
Affiliation(s)
- Daniel Deuter
- Department of Neurosurgery, University of Regensburg Medical Center, Regensburg, Germany; Center for Deep Brain Stimulation, University of Regensburg Medical Center, Regensburg, Germany.
| | - Elisabeth Torka
- Center for Deep Brain Stimulation, University of Regensburg Medical Center, Regensburg, Germany; Department of Neurology, University of Regensburg Medical Center, Regensburg, Germany
| | - Zacharias Kohl
- Center for Deep Brain Stimulation, University of Regensburg Medical Center, Regensburg, Germany; Department of Neurology, University of Regensburg Medical Center, Regensburg, Germany
| | - Nils-Ole Schmidt
- Department of Neurosurgery, University of Regensburg Medical Center, Regensburg, Germany
| | - Juergen Schlaier
- Department of Neurosurgery, University of Regensburg Medical Center, Regensburg, Germany; Center for Deep Brain Stimulation, University of Regensburg Medical Center, Regensburg, Germany
| |
Collapse
|
15
|
Malaga KA, Houshmand L, Costello JT, Chandrasekaran J, Chou KL, Patil PG. Thalamic Segmentation and Neural Activation Modeling Based on Individual Tissue Microstructure in Deep Brain Stimulation for Essential Tremor. Neuromodulation 2023; 26:1689-1698. [PMID: 36470728 DOI: 10.1016/j.neurom.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 12/05/2022]
Abstract
OBJECTIVE Thalamic deep brain stimulation (DBS) is the primary surgical therapy for essential tremor (ET). Thalamic DBS traditionally uses an atlas-based targeting approach, which, although nominally accurate, may obscure individual anatomic differences from population norms. The objective of this study was to compare this traditional atlas-based approach with a novel quantitative modeling methodology grounded in individual tissue microstructure (N-of-1 approach). MATERIALS AND METHODS The N-of-1 approach uses individual patient diffusion tensor imaging (DTI) data to perform thalamic segmentation and volume of tissue activation (VTA) modeling. For each patient, the thalamus was individually segmented into 13 nuclei using DTI-based k-means clustering. DBS-induced VTAs associated with tremor suppression and side effects were then computed for each patient with finite-element electric-field models incorporating DTI microstructural data. Results from N-of-1 and traditional atlas-based modeling were compared for a large cohort of patients with ET treated with thalamic DBS. RESULTS The size and shape of individual N-of-1 thalamic nuclei and VTAs varied considerably across patients (N = 22). For both methods, tremor-improving therapeutic VTAs showed similar overlap with motor thalamic nuclei and greater motor than sensory nucleus overlap. For VTAs producing undesirable sustained paresthesia, 94% of VTAs overlapped with N-of-1 sensory thalamus estimates, whereas 74% of atlas-based segmentations overlapped. For VTAs producing dysarthria/motor contraction, the N-of-1 approach predicted greater spread beyond the thalamus into the internal capsule and adjacent structures than the atlas-based method. CONCLUSIONS Thalamic segmentation and VTA modeling based on individual tissue microstructure explain therapeutic stimulation equally well and side effects better than a traditional atlas-based method in DBS for ET. The N-of-1 approach may be useful in DBS targeting and programming, particularly when patient neuroanatomy deviates from population norms.
Collapse
Affiliation(s)
- Karlo A Malaga
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Layla Houshmand
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Joseph T Costello
- Department of Electrical Engineering, University of Michigan, Ann Arbor, MI, USA
| | | | - Kelvin L Chou
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Parag G Patil
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA; Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
16
|
Bot M, Pauwels R, van den Munckhof P, de Win M, Odekerken VJJ, Beudel M, Dijk J, de Bie RMA, Schuurman PR. The Fast Gray Matter Acquisition T1 Inversion Recovery Sequence in Deep Brain Stimulation: Introducing the Rubral Wing for Dentato-Rubro-Thalamic Tract Depiction and Tremor Control. Neuromodulation 2023; 26:1705-1713. [PMID: 35088745 DOI: 10.1016/j.neurom.2021.11.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/26/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND The dentato-rubro-thalamic tract (DRT) is currently considered as a potential target in deep brain stimulation (DBS) for various types of tremor. However, tractography depiction can vary depending on the included brain regions. The fast gray matter acquisition T1 inversion recovery (FGATIR) sequence, with excellent delineation of gray and white matter, possibly provides anatomical identification of rubro-thalamic DRT fibers. OBJECTIVE This study aimed to evaluate the FGATIR sequence by comparison with DRT depiction, electrode localization, and effectiveness of DBS therapy. MATERIALS AND METHODS In patients with DBS therapy because of medication-refractory tremor, the FGATIR sequence was evaluated for depiction of the thalamus, red nucleus (RN), and rubro-thalamic connections. Deterministic tractography of the DRT, electrode localization, and tremor control were compared. The essential tremor rating scale was used to assess (hand) tremor. Tremor control was considered successful when complete tremor suppression (grade 0) or almost complete suppression (grade 1) was observed. RESULTS In the postoperative phase, we evaluated 14 patients who underwent DRT-guided DBS: 12 patients with essential tremor, one with tremor-dominant Parkinson disease, and one with multiple sclerosis, representing 24 trajectories. Mean follow-up was 11.3 months (range 6-19 months). The FGATIR sequence provided a clear delineation of a hypointense white matter tract within the hyperintense thalamus. In coronal plane, this tract was most readily recognizable as a "rubral wing," with the round RN as base and lateral triangular convergence. The deterministic DRT depiction was consistently situated within the rubral wing. The number of active contacts located within the DRT (and rubral wing) was 22 (92%), of which 16 (73%) showed successful tremor control. CONCLUSIONS The FGATIR sequence offers visualization of the rubro-thalamic connections that form the DRT, most readily recognizable as a "rubral wing" in coronal plane. This sequence contributes to tractographic depiction of DRT and provides a direct anatomical DBS target area for tremor control.
Collapse
Affiliation(s)
- Maarten Bot
- Department of Neurosurgery, Amsterdam University Medical Center, Amsterdam, The Netherlands.
| | - Rik Pauwels
- Department of Neurosurgery, University Medical Center Groningen, Groningen, The Netherlands
| | | | - Maartje de Win
- Department of Radiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Vincent J J Odekerken
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Martijn Beudel
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Joke Dijk
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Rob M A de Bie
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - P Richard Schuurman
- Department of Neurosurgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Hariz M, Cif L, Blomstedt P. Thirty Years of Global Deep Brain Stimulation: "Plus ça change, plus c'est la même chose"? Stereotact Funct Neurosurg 2023; 101:395-406. [PMID: 37844558 DOI: 10.1159/000533430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/31/2023] [Indexed: 10/18/2023]
Abstract
BACKGROUND The advent of deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease 30 years ago has ushered a global breakthrough of DBS as a universal method for therapy and research in wide areas of neurology and psychiatry. The literature of the last three decades has described numerous concepts and practices of DBS, often branded as novelties or discoveries. However, reading the contemporary publications often elicits a sense of déjà vu in relation to several methods, attributes, and practices of DBS. Here, we review various applications and techniques of the modern-era DBS and compare them with practices of the past. SUMMARY Compared with modern literature, publications of the old-era functional stereotactic neurosurgery, including old-era DBS, show that from the very beginning multidisciplinarity and teamwork were often prevalent and insisted upon, ethical concerns were recognized, brain circuitries and rational for brain targets were discussed, surgical indications were similar, closed-loop stimulation was attempted, evaluations of surgical results were debated, and controversies were common. Thus, it appears that virtually everything done today in the field of DBS bears resemblance to old-time practices, or has been done before, albeit with partly other tools and techniques. Movement disorders remain the main indications for modern DBS as was the case for lesional surgery and old-era DBS. The novelties today consist of the STN as the dominant target for DBS, the tremendous advances in computerized brain imaging, the sophistication and versatility of implantable DBS hardware, and the large potential for research. KEY MESSAGES Many aspects of contemporary DBS bear strong resemblance to practices of the past. The dominant clinical indications remain movement disorders with virtually the same brain targets as in the past, with one exception: the STN. Other novel brain targets - that are so far subject to DBS trials - are the pedunculopontine nucleus for gait freezing, the anteromedial internal pallidum for Gilles de la Tourette and the fornix for Alzheimer's disease. The major innovations and novelties compared to the past concern mainly the unmatched level of research activity, its high degree of sponsorship, and the outstanding advances in technology that have enabled multimodal brain imaging and the miniaturization, versatility, and sophistication of implantable hardware. The greatest benefit for patients today, compared to the past, is the higher level of precision and safety of DBS, and of all functional stereotactic neurosurgery.
Collapse
Affiliation(s)
- Marwan Hariz
- Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
- UCL Institute of Neurology, Queen Square, London, UK
| | - Laura Cif
- Laboratoire de Recherche en Neurosciences Cliniques, Montpellier, France
| | - Patric Blomstedt
- Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| |
Collapse
|
18
|
Holcomb JM, Chopra R, Feltrin FS, Elkurd M, El-Nazer R, McKenzie L, O’Suilleabhain P, Maldjian JA, Dauer W, Shah BR. Improving tremor response to focused ultrasound thalamotomy. Brain Commun 2023; 5:fcad165. [PMID: 37533544 PMCID: PMC10390385 DOI: 10.1093/braincomms/fcad165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 08/04/2023] Open
Abstract
MRI-guided high-intensity focused ultrasound thalamotomy is an incisionless therapy for essential tremor. To reduce adverse effects, the field has migrated to treating at 2 mm above the anterior commissure-posterior commissure plane. We perform MRI-guided high-intensity focused ultrasound with an advanced imaging targeting technique, four-tract tractography. Four-tract tractography uses diffusion tensor imaging to identify the critical white matter targets for tremor control, the decussating and non-decussating dentatorubrothalamic tracts, while the corticospinal tract and medial lemniscus are identified to be avoided. In some patients, four-tract tractography identified a risk of damaging the medial lemniscus or corticospinal tract if treated at 2 mm superior to the anterior commissure-posterior commissure plane. In these patients, we chose to target 1.2-1.5 mm superior to the anterior commissure-posterior commissure plane. In these patients, post-operative imaging revealed that the focused ultrasound lesion extended into the posterior subthalamic area. This study sought to determine if patients with focused ultrasound lesions that extend into the posterior subthalamic area have a differnce in tremor improvement than those without. Twenty essential tremor patients underwent MRI-guided high-intensity focused ultrasound and were retrospectively classified into two groups. Group 1 included patients with an extension of the thalamic-focused ultrasound lesion into the posterior subthalamic area. Group 2 included patients without extension of the thalamic-focused ultrasound lesion into the posterior subthalamic area. For each patient, the percent change in postural tremor, kinetic tremor and Archimedes spiral scores were calculated between baseline and a 3-month follow-up. Two-tailed Wilcoxon rank-sum tests were used to compare the improvement in tremor scores, the total number of sonications, thermal dose to achieve initial tremor response, and skull density ratio between groups. Group 1 had significantly greater postural, kinetic, and Archimedes spiral score percent improvement than Group 2 (P values: 5.41 × 10-5, 4.87 × 10-4, and 5.41 × 10-5, respectively). Group 1 also required significantly fewer total sonications to control the tremor and a significantly lower thermal dose to achieve tremor response (P values: 6.60 × 10-4 and 1.08 × 10-5, respectively). No significant group differences in skull density ratio were observed (P = 1.0). We do not advocate directly targeting the posterior subthalamic area with MRI-guided high-intensity focused ultrasound because the shape of the focused ultrasound lesion can result in a high risk of adverse effects. However, when focused ultrasound lesions naturally extend from the thalamus into the posterior subthalamic area, they provide greater tremor control than those that only involve the thalamus.
Collapse
Affiliation(s)
- James M Holcomb
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Rajiv Chopra
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Fabricio S Feltrin
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Mazen Elkurd
- Department of Neurology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Rasheda El-Nazer
- Department of Neurology, UTSW Medical Center, Dallas, TX 75235, USA
| | - Lauren McKenzie
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | | | - Joseph A Maldjian
- Focused Ultrasound Lab and Program, Department of Radiology, UTSW Medical Center, Dallas, TX 75235, USA
| | - William Dauer
- Department of Neurology, UTSW Medical Center, Dallas, TX 75235, USA
- O’Donnell Brain Institute, UTSW Medical Center, Dallas, TX 75235, USA
| | - Bhavya R Shah
- Correspondence to: Bhavya R. Shah Department of Radiology, UTSW Medical Center, 1801 Inwood Rd Dallas, TX 75235, USA E-mail:
| |
Collapse
|
19
|
Hou X, Mo Y, Zhu Z, Zhang H, Liu X, Zou Z, He X, Xue S, Li J, Li M, Zhang S. Technical Issues of Vim–PSA Double-Target DBS for Essential Tremor. Brain Sci 2023; 13:brainsci13040566. [PMID: 37190531 DOI: 10.3390/brainsci13040566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/10/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Background: Deep brain stimulation (DBS) is an effective surgical treatment for essential tremor (ET), with the ventral intermediate nucleus (Vim) and posterior subthalamic area (PSA) as the most common targets. The stimulation efficacy of ET with Vim–PSA double-target DBS has been reported. Herein, we aim to propose surgical techniques for Vim–PSA double-target DBS surgery. Methods: This study enrolled six patients with ET who underwent Vim–PSA double-target electrode implantation from October 2019 to May 2022. The targets were located and adjusted using coordinates and multimodality MRI images. A burr hole was accurately drilled in line with the electrode trajectory under the guidance of a stereotactic frame. Novel approaches were adopted during the electrode implantation process for pneumocephalus reduction, including “arachnoid piamater welding” and “water sealing”. Electrophysiological recording was used to identify the implantation sites of the electrodes. A 3D reconstruction model of electrodes and nuclei was established to facilitate programming. Results: The combination of coordinates and multimodality MRI images for target location and adjustment enabled the alignment of Vim and PSA. Postoperative CT scanning showed that the electrode was precisely implanted. Stereotactic guidance facilitated accurate burr hole drilling. “Arachnoid piamater welding” and “water sealing” were efficient in reducing pneumocephalus. Intraoperative electrophysiological verified the efficacy of Vim–PSA double-target DBS surgery. Conclusions: The methods for target location and adjustment, accurate drilling of the burr hole, reduction in pneumocephalus, and intraoperative electrophysiological verification are key issues in DBS surgery targeting both the Vim and PSA. This study may provide technical support for Vim–PSA DBS, especially for surgeons with less experience in functional neurosurgery.
Collapse
|
20
|
Parras O, Domínguez P, Tomás-Biosca A, Guridi J. The role of tractography in the localization of the Vim nucleus of the thalamus and the dentato-rubro-thalamic tract for the treatment of tremor. Neurologia 2022; 37:691-699. [PMID: 31917004 DOI: 10.1016/j.nrl.2019.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 08/08/2019] [Accepted: 09/16/2019] [Indexed: 10/25/2022] Open
Abstract
INTRODUCTION The ventralis intermedius (Vim) nucleus of the thalamus is the usual surgical target for tremor. However, locating the structure may be difficult as it is not visible with conventional imaging methods; therefore, surgical procedures typically use indirect calculations correlated with clinical and intraoperative neurophysiological findings. Current ablative surgical procedures such as Gamma-Knife thalamotomy and magnetic resonance-guided focused ultrasound require new alternatives for locating the Vim nucleus. In this review, we compare Vim nucleus location for the treatment of tremor using stereotactic procedures versus direct location by means of tractography. DISCUSSION The most widely used cytoarchitectonic definition of the Vim nucleus is that established by Schaltenbrand and Wahren. There is a well-defined limit between the motor and the sensory thalamus; Vim neurons respond to passive joint movements and are synchronous with peripheral tremor. The most frequently used stereotactic coordinates for the Vim nucleus are based on indirect calculations referencing the mid-commissural line and third ventricle, which vary between patients. Recent studies suggest that the dentato-rubro-thalamic tract is an optimal target for controlling tremor, citing a clinical improvement; however, this has not yet been corroborated. CONCLUSIONS Visualisation of the cerebello-rubro-thalamic pathway by tractography may help in locating the Vim nucleus. The technique has several limitations, and the method requires standardisation to obtain more precise results. The utility of direct targeting by tractography over indirect targeting for patients with tremor remains to be demonstrated in the long-term.
Collapse
Affiliation(s)
- O Parras
- Servicio de Neurocirugía, Clínica Universidad de Navarra, Pamplona, España
| | - P Domínguez
- Servicio de Neurorradiología, Clínica Universidad de Navarra, Pamplona, España
| | - A Tomás-Biosca
- Servicio de Neurocirugía, Clínica Universidad de Navarra, Pamplona, España
| | - J Guridi
- Servicio de Neurocirugía, Clínica Universidad de Navarra, Pamplona, España.
| |
Collapse
|
21
|
Reproducible protocol to obtain and measure first-order relay human thalamic white-matter tracts. Neuroimage 2022; 262:119558. [PMID: 35973564 DOI: 10.1016/j.neuroimage.2022.119558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 07/25/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
The "primary" or "first-order relay" nuclei of the thalamus feed the cerebral cortex with information about ongoing activity in the environment or the subcortical motor systems. Because of the small size of these nuclei and the high specificity of their input and output pathways, new imaging protocols are required to investigate thalamocortical interactions in human perception, cognition and language. The goal of the present study was twofold: I) to develop a reconstruction protocol based on in vivo diffusion MRI to extract and measure the axonal fiber tracts that originate or terminate specifically in individual first-order relay nuclei; and, II) to test the reliability of this reconstruction protocol. In left and right hemispheres, we investigated the thalamocortical/corticothalamic axon bundles linking each of the first-order relay nuclei and their main cortical target areas, namely, the lateral geniculate nucleus (optic radiation), the medial geniculate nucleus (acoustic radiation), the ventral posterior nucleus (somatosensory radiation) and the ventral lateral nucleus (motor radiation). In addition, we examined the main subcortical input pathway to the ventral lateral posterior nucleus, which originates in the dentate nucleus of the cerebellum. Our protocol comprised three components: defining regions-of-interest; preprocessing diffusion data; and modeling white-matter tracts and tractometry. We then used computation and test-retest methods to check whether our protocol could reliably reconstruct these tracts of interest and their profiles. Our results demonstrated that the protocol had nearly perfect computational reproducibility and good-to-excellent test-retest reproducibility. This new protocol may be of interest for both basic human brain neuroscience and clinical studies and has been made publicly available to the scientific community.
Collapse
|
22
|
Sajonz BE, Frommer ML, Walz ID, Reisert M, Maurer C, Rijntjes M, Piroth T, Schröter N, Jenkner C, Reinacher PC, Brumberg J, Meyer PT, Blazhenets G, Coenen VA. Unravelling delayed therapy escape after thalamic deep brain stimulation for essential tremor? - Additional clinical and neuroimaging evidence. Neuroimage Clin 2022; 36:103150. [PMID: 35988341 PMCID: PMC9402391 DOI: 10.1016/j.nicl.2022.103150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 07/15/2022] [Accepted: 08/08/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Delayed therapy escape after thalamic deep brain stimulation (DBS) for essential tremor is a serious yet frequent condition. It is often difficult to detect this process at onset due to its gradual evolution. OBJECTIVE Here we aim to identify clinical and neuroimaging hallmarks of delayed therapy escape. METHODS We retrospectively studied operationalized and quantitative analyses of tremor and gait, as well as [18F]fluorodeoxyglucose (FDG) PET of 12 patients affected by therapy escape. All examinations were carried out with activated DBS (ON) and 72 h after deactivation (OFF72h); gait and tremor were also analyzed directly after deactivation (OFF0h). Changes of normalized glucose metabolism between stimulation conditions were assessed using within-subject analysis of variance and statistical parametric mapping. Additionally, a comparison to the [18F]FDG PET of an age-matched control group was performed. Exploratory correlation analyses were conducted with operationalized and parametric clinical data. RESULTS Of the immediately accessible parametric tremor data (i.e. ON or OFF0h) only the rebound (i.e. OFF0h) frequency of postural tremor showed possible correlations with signs of ataxia at ON. Regional glucose metabolism was significantly increased bilaterally in the thalamus and dentate nucleus in ON compared to OFF72h. No differences in regional glucose metabolism were found in patients in ON and OFF72h compared with the healthy controls. CONCLUSIONS Rebound frequency of postural tremor seems to be a good diagnostic marker for delayed therapy escape. Regional glucose metabolism suggests that this phenomenon may be associated with increased metabolic activity in the thalamus and dentate nucleus possibly due to antidromic stimulation effects. We see reasons to interpret the delayed therapy escape phenomenon as being related to long term and chronic DBS.
Collapse
Affiliation(s)
- Bastian E.A. Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,Corresponding author at: Department of Stereotactic and Functional Neurosurgery, Freiburg University Medical Center, Breisacher Strasse 64 – 79106 Freiburg, i.Br., Germany.
| | - Marvin L. Frommer
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Isabelle D. Walz
- Department of Neurology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,Department of Sport and Sport Science, University of Freiburg, Freiburg im Breisgau, Germany
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Christoph Maurer
- Department of Neurology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Michel Rijntjes
- Department of Neurology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Tobias Piroth
- Department of Neurology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,Department of Neurology, Kantonsspital Aarau, Aarau, Switzerland
| | - Nils Schröter
- Department of Neurology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Carolin Jenkner
- Clinical Trials Unit, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Peter C. Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,Fraunhofer Institute for Laser Technology (ILT), Aachen, Germany
| | - Joachim Brumberg
- Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Philipp T. Meyer
- Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Ganna Blazhenets
- Department of Nuclear Medicine, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Volker A. Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany,Center for Deep Brain Stimulation, University of Freiburg, Germany,Center for Basics in Neuromodulation (Neuromod Basics), Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
23
|
Baumgartner AJ, Thompson JA, Kern DS, Ojemann SG. Novel targets in deep brain stimulation for movement disorders. Neurosurg Rev 2022; 45:2593-2613. [PMID: 35511309 DOI: 10.1007/s10143-022-01770-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 12/01/2021] [Accepted: 03/08/2022] [Indexed: 12/26/2022]
Abstract
The neurosurgical treatment of movement disorders, primarily via deep brain stimulation (DBS), is a rapidly expanding and evolving field. Although conventional targets including the subthalamic nucleus (STN) and internal segment of the globus pallidus (GPi) for Parkinson's disease and ventral intermediate nucleus of the thalams (VIM) for tremor provide substantial benefit in terms of both motor symptoms and quality of life, other targets for DBS have been explored in an effort to maximize clinical benefit and also avoid undesired adverse effects associated with stimulation. These novel targets primarily include the rostral zona incerta (rZI), caudal zona incerta (cZI)/posterior subthalamic area (PSA), prelemniscal radiation (Raprl), pedunculopontine nucleus (PPN), substantia nigra pars reticulata (SNr), centromedian/parafascicular (CM/PF) nucleus of the thalamus, nucleus basalis of Meynert (NBM), dentato-rubro-thalamic tract (DRTT), dentate nucleus of the cerebellum, external segment of the globus pallidus (GPe), and ventral oralis (VO) complex of the thalamus. However, reports of outcomes utilizing these targets are scattered and disparate. In order to provide a comprehensive resource for researchers and clinicians alike, we have summarized the existing literature surrounding these novel targets, including rationale for their use, neurosurgical techniques where relevant, outcomes and adverse effects of stimulation, and future directions for research.
Collapse
Affiliation(s)
| | - John A Thompson
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Drew S Kern
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA
| | - Steven G Ojemann
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO, USA.
- University of Colorado Hospital, 12631 East 17th Avenue, PO Box 6511, Aurora, CO, 80045, USA.
| |
Collapse
|
24
|
Kochanski RB, Slavin KV. The future perspectives of psychiatric neurosurgery. PROGRESS IN BRAIN RESEARCH 2022; 270:211-228. [PMID: 35396029 DOI: 10.1016/bs.pbr.2022.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The future of psychiatric neurosurgery can be viewed from two separate perspectives: the immediate future and the distant future. Both show promise, but the treatment strategy for mental diseases and the technology utilized during these separate periods will likely differ dramatically. It can be expected that the initial advancements will be built upon progress of neuroimaging and stereotactic targeting while surgical technology becomes adapted to patient-specific symptomatology and structural/functional imaging parameters. This individualized approach has already begun to show significant promise when applied to deep brain stimulation for treatment-resistant depression and obsessive-compulsive disorder. If effectiveness of these strategies is confirmed by well designed, double-blind, placebo-controlled clinical studies, further technological advances will continue into the distant future, and will likely involve precise neuromodulation at the cellular level, perhaps using wireless technology with or without closed-loop design. This approach, being theoretically less invasive and carrying less risk, may ultimately propel psychiatric neurosurgery to the forefront in the treatment algorithm of mental illness. Despite prominent development of non-invasive therapeutic options, such as stereotactic radiosurgery or transcranial magnetic resonance-guided focused ultrasound, chances are there will still be a need in surgical management of patients with most intractable psychiatric conditions.
Collapse
Affiliation(s)
- Ryan B Kochanski
- Neurosurgery, Methodist Healthcare System, San Antonio, TX, United States
| | - Konstantin V Slavin
- Department of Neurosurgery, University of Illinois at Chicago, Chicago, IL, United States; Neurology Service, Jesse Brown Veterans Administration Medical Center, Chicago, IL, United States.
| |
Collapse
|
25
|
Hollunder B, Rajamani N, Siddiqi SH, Finke C, Kühn AA, Mayberg HS, Fox MD, Neudorfer C, Horn A. Toward personalized medicine in connectomic deep brain stimulation. Prog Neurobiol 2022; 210:102211. [PMID: 34958874 DOI: 10.1016/j.pneurobio.2021.102211] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 02/08/2023]
Abstract
At the group-level, deep brain stimulation leads to significant therapeutic benefit in a multitude of neurological and neuropsychiatric disorders. At the single-patient level, however, symptoms may sometimes persist despite "optimal" electrode placement at established treatment coordinates. This may be partly explained by limitations of disease-centric strategies that are unable to account for heterogeneous phenotypes and comorbidities observed in clinical practice. Instead, tailoring electrode placement and programming to individual patients' symptom profiles may increase the fraction of top-responding patients. Here, we propose a three-step, circuit-based framework with the aim of developing patient-specific treatment targets that address the unique symptom constellation prevalent in each patient. First, we describe how a symptom network target library could be established by mapping beneficial or undesirable DBS effects to distinct circuits based on (retrospective) group-level data. Second, we suggest ways of matching the resulting symptom networks to circuits defined in the individual patient (template matching). Third, we introduce network blending as a strategy to calculate optimal stimulation targets and parameters by selecting and weighting a set of symptom-specific networks based on the symptom profile and subjective priorities of the individual patient. We integrate the approach with published literature and conclude by discussing limitations and future challenges.
Collapse
Affiliation(s)
- Barbara Hollunder
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Nanditha Rajamani
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Shan H Siddiqi
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany; NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael D Fox
- Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA
| | - Clemens Neudorfer
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany; Center for Brain Circuit Therapeutics, Brigham & Women's Hospital, Boston, MA, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
26
|
Kvernmo N, Konglund AE, Reich MM, Roothans J, Pripp AH, Dietrichs E, Volkmann J, Skogseid IM. Deep brain stimulation for arm tremor: A randomized trial comparing two targets. Ann Neurol 2022; 91:585-601. [PMID: 35148020 PMCID: PMC9311445 DOI: 10.1002/ana.26317] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/14/2022] [Accepted: 02/07/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus (VIM) effectively suppresses arm tremor. Uncontrolled studies suggest the posterior subthalamic area (PSA) may be superior. We compared the intra-individual efficacy of VIM- versus PSA-DBS on tremor suppression and arm function. METHODS We performed a randomized, double-blind, crossover trial at Oslo University Hospital in patients (18-80 years) with isolated or combined action tremor affecting at least one arm. Four-contact DBS leads were implanted (bi- or unilaterally) with a trajectory to cover the VIM (upper two contacts) and PSA (lower two contacts). Patients were randomized (1:1 ratio) post-surgery to: Group 1, VIM-stimulation months 0-3 (period 1), then PSA-stimulation months 4-6 (period 2); Group 2, PSA-stimulation first, then VIM-stimulation. Primary endpoint was the difference in improvement from baseline to the end of the VIM- versus PSA-period in the sum of the dominant arm tremor scores of the Fahn-Tolosa-Marin Tremor Rating Scale (FTMTRS), items 5/6 + 10-14. RESULTS Forty-five patients were randomized to Group 1 (n = 23) or 2 (n = 22). In the primary endpoint per-protocol analysis (mixed model, n = 40), mean difference in the sum FTMTRS score improvement for the dominant arm was -2.65 points (95% CI -4.33 to -0.97; p = 0.002). The difference in favour of PSA stimulation was highly significant in period 2, but not period 1. INTERPRETATION Our randomized trial demonstrated that PSA stimulation provided superior tremor suppression compared with VIM stimulation. A period effect reducing tremor for up to three months in both groups was most likely attributed to a post-surgery stun effect. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nadja Kvernmo
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Norway
| | - Ane E Konglund
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Martin M Reich
- Department of Neurology, University Hospital of Wuerzburg, Wuerzburg, Germany.,Visual DBS lab, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Jonas Roothans
- Visual DBS lab, University Hospital of Wuerzburg, Wuerzburg, Germany
| | - Are H Pripp
- Department of Biostatistics, Oslo University Hospital, Oslo, Norway
| | - Espen Dietrichs
- Department of Neurology, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Norway
| | - Jens Volkmann
- Department of Neurology, University Hospital of Wuerzburg, Wuerzburg, Germany.,Institute of Clinical Medicine, University of Wuerzburg, Germany
| | | |
Collapse
|
27
|
Yeh FC, Irimia A, Bastos DCDA, Golby AJ. Tractography methods and findings in brain tumors and traumatic brain injury. Neuroimage 2021; 245:118651. [PMID: 34673247 PMCID: PMC8859988 DOI: 10.1016/j.neuroimage.2021.118651] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 12/31/2022] Open
Abstract
White matter fiber tracking using diffusion magnetic resonance imaging (dMRI) provides a noninvasive approach to map brain connections, but improving anatomical accuracy has been a significant challenge since the birth of tractography methods. Utilizing tractography in brain studies therefore requires understanding of its technical limitations to avoid shortcomings and pitfalls. This review explores tractography limitations and how different white matter pathways pose different challenges to fiber tracking methodologies. We summarize the pros and cons of commonly-used methods, aiming to inform how tractography and its related analysis may lead to questionable results. Extending these experiences, we review the clinical utilization of tractography in patients with brain tumors and traumatic brain injury, starting from tensor-based tractography to more advanced methods. We discuss current limitations and highlight novel approaches in the context of these two conditions to inform future tractography developments.
Collapse
Affiliation(s)
- Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA; Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | | - Alexandra J Golby
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Wu C, Ferreira F, Fox M, Harel N, Hattangadi-Gluth J, Horn A, Jbabdi S, Kahan J, Oswal A, Sheth SA, Tie Y, Vakharia V, Zrinzo L, Akram H. Clinical applications of magnetic resonance imaging based functional and structural connectivity. Neuroimage 2021; 244:118649. [PMID: 34648960 DOI: 10.1016/j.neuroimage.2021.118649] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/24/2021] [Accepted: 10/10/2021] [Indexed: 12/23/2022] Open
Abstract
Advances in computational neuroimaging techniques have expanded the armamentarium of imaging tools available for clinical applications in clinical neuroscience. Non-invasive, in vivo brain MRI structural and functional network mapping has been used to identify therapeutic targets, define eloquent brain regions to preserve, and gain insight into pathological processes and treatments as well as prognostic biomarkers. These tools have the real potential to inform patient-specific treatment strategies. Nevertheless, a realistic appraisal of clinical utility is needed that balances the growing excitement and interest in the field with important limitations associated with these techniques. Quality of the raw data, minutiae of the processing methodology, and the statistical models applied can all impact on the results and their interpretation. A lack of standardization in data acquisition and processing has also resulted in issues with reproducibility. This limitation has had a direct impact on the reliability of these tools and ultimately, confidence in their clinical use. Advances in MRI technology and computational power as well as automation and standardization of processing methods, including machine learning approaches, may help address some of these issues and make these tools more reliable in clinical use. In this review, we will highlight the current clinical uses of MRI connectomics in the diagnosis and treatment of neurological disorders; balancing emerging applications and technologies with limitations of connectivity analytic approaches to present an encompassing and appropriate perspective.
Collapse
Affiliation(s)
- Chengyuan Wu
- Department of Neurological Surgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, 909 Walnut Street, Third Floor, Philadelphia, PA 19107, USA; Jefferson Integrated Magnetic Resonance Imaging Center, Department of Radiology, Thomas Jefferson University, 909 Walnut Street, First Floor, Philadelphia, PA 19107, USA.
| | - Francisca Ferreira
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Michael Fox
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota, 2021 Sixth Street S.E., Minneapolis, MN 55455, USA.
| | - Jona Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, Center for Precision Radiation Medicine, University of California, San Diego, 3855 Health Sciences Drive, La Jolla, CA 92037, USA.
| | - Andreas Horn
- Neurology Department, Movement Disorders and Neuromodulation Section, Charité - University Medicine Berlin, Charitéplatz 1, D-10117, Berlin, Germany.
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Joshua Kahan
- Department of Neurology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA.
| | - Ashwini Oswal
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Mansfield Rd, Oxford OX1 3TH, UK.
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, 7200 Cambridge, Ninth Floor, Houston, TX 77030, USA.
| | - Yanmei Tie
- Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, Radiology, and Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA; Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA.
| | - Vejay Vakharia
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK.
| | - Ludvic Zrinzo
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| | - Harith Akram
- Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, 33 Queen Square, London WC1N 3BG, UK; Unit of Functional Neurosurgery, UCL Queen Square Institute of Neurology, 33 Queen Square, London WC1N 3BG, UK.
| |
Collapse
|
29
|
Kremer NI, Oterdoom DLM, Absalom AR, Ten Cate DW, van Dijk JMC, van Egmond ME, Drost G. Are we on the right track in DBS surgery for dystonic head tremor? Polymyography is a promising answer. Parkinsonism Relat Disord 2021; 93:74-76. [PMID: 34826764 DOI: 10.1016/j.parkreldis.2021.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 11/27/2022]
Abstract
The clinical benefit of Deep Brain Stimulation (DBS) is associated with electrode positioning accuracy. Intraoperative assessment of clinical effect is therefore key. Evaluating this clinical effect in patients with dystonic head tremor, as opposed to limb tremor, is challenging because the head is fixed in a stereotactic frame. To clinically assess head tremor during surgery, surface electromyography (EMG) electrodes were bilaterally applied to the sternocleidomastoid and cervical paraspinal muscles. This case shows that intraoperative polymyography is an easy and useful tool to assess the clinical effect of DBS electrode positioning.
Collapse
Affiliation(s)
- Naomi I Kremer
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - D L Marinus Oterdoom
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anthony R Absalom
- Department of Anesthesiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - David W Ten Cate
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Martje E van Egmond
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gea Drost
- Department of Neurosurgery, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
30
|
Gadot R, Shofty B, Najera RA, Anand A, Banks G, Khan AB, LoPresti MA, Vanegas Arroyave N, Sheth SA. Case Report: Dual Target Deep Brain Stimulation With Externalized Programming for Post-traumatic Complex Movement Disorder. Front Neurosci 2021; 15:774073. [PMID: 34819837 PMCID: PMC8606815 DOI: 10.3389/fnins.2021.774073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Movement disorders can be common, persistent, and debilitating sequelae of severe traumatic brain injury. Post-traumatic movement disorders are usually complex in nature, involving multiple phenomenological manifestations, and can be difficult to control with medical management alone. Deep brain stimulation (DBS) has been used to treat these challenging cases, but distorted brain anatomy secondary to trauma can complicate effective targeting. In such cases, use of diffusion tractography imaging and inpatient testing with externalized DBS leads can be beneficial in optimizing outcomes. Case Description: We present the case of a 42-year-old man with severe, disabling post-traumatic tremor who underwent bilateral, dual target DBS to the globus pallidus internus (GPi) and a combined ventral intermediate nucleus of the thalamus (Vim)/dentato-rubro-thalamic tracts (DRTT) target. DRTT fiber tracts were reconstructed preoperatively to assist in surgical targeting given the patient’s distorted anatomy. Externalization and survey of the four leads extra-operatively with inpatient testing allowed for internalization of the leads that demonstrated benefit. Six months after surgery, the patient’s tremor and dystonic burden had decreased by 67% in the performance sub-score of The Essential Tremor Rating Scale (TETRAS). Conclusion: A patient-tailored approach including target selection guided by individualized anatomy and tractography as well as extra-operative externalized lead interrogation was shown to be effective in optimizing clinical outcome in a patient with refractory post-traumatic tremor.
Collapse
Affiliation(s)
- Ron Gadot
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Ben Shofty
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Ricardo A Najera
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Adrish Anand
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Garrett Banks
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, United States
| | - Abdul Basit Khan
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Melissa A LoPresti
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | | | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
31
|
Bot M, van Rootselaari AF, Odekerken V, Dijk J, de Bie RMA, Beudel M, van den Munckhof P, Schuurman PR. Evaluating and Optimizing Dentato-Rubro-Thalamic-Tract Deterministic Tractography in Deep Brain Stimulation for Essential Tremor. Oper Neurosurg (Hagerstown) 2021; 21:533-539. [PMID: 34562007 DOI: 10.1093/ons/opab324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/18/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dentato-rubro-thalamic tract (DRT) deep brain stimulation (DBS) suppresses tremor in essential tremor (ET) patients. However, DRT depiction through tractography can vary depending on the included brain regions. Moreover, it is unclear which section of the DRT is optimal for DBS. OBJECTIVE To evaluate deterministic DRT tractography and tremor control in DBS for ET. METHODS After DBS surgery, DRT tractography was conducted in 37 trajectories (20 ET patients). Per trajectory, 5 different DRT depictions with various regions of interest (ROI) were constructed. Comparison resulted in a DRT depiction with highest correspondence to intraoperative tremor control. This DRT depiction was subsequently used for evaluation of short-term postoperative adverse and beneficial effects. RESULTS Postoperative optimized DRT tractography employing the ROI motor cortex, posterior subthalamic area (PSA), and ipsilateral superior cerebellar peduncle and dentate nucleus best corresponded with intraoperative trajectories (92%) and active DBS contacts (93%) showing optimal tremor control. DRT tractography employing a red nucleus or ventral intermediate nucleus of the thalamus (VIM) ROI often resulted in a more medial course. Optimal stimulation was located in the section between VIM and PSA. CONCLUSION This optimized deterministic DRT tractography strongly correlates with optimal tremor control. This technique is readily implementable for prospective evaluation in DBS target planning for ET.
Collapse
Affiliation(s)
- Maarten Bot
- Department of Neurosurgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Anne-Fleur van Rootselaari
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Vincent Odekerken
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Joke Dijk
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Rob M A de Bie
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Martijn Beudel
- Department of Neurology and Clinical Neurophysiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | | | - P Richard Schuurman
- Department of Neurosurgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
32
|
Boutet A, Loh A, Chow CT, Taha A, Elias GJB, Neudorfer C, Germann J, Paff M, Zrinzo L, Fasano A, Kalia SK, Steele CJ, Mikulis D, Kucharczyk W, Lozano AM. A literature review of magnetic resonance imaging sequence advancements in visualizing functional neurosurgery targets. J Neurosurg 2021; 135:1445-1458. [PMID: 33770759 DOI: 10.3171/2020.8.jns201125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/13/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Historically, preoperative planning for functional neurosurgery has depended on the indirect localization of target brain structures using visible anatomical landmarks. However, recent technological advances in neuroimaging have permitted marked improvements in MRI-based direct target visualization, allowing for refinement of "first-pass" targeting. The authors reviewed studies relating to direct MRI visualization of the most common functional neurosurgery targets (subthalamic nucleus, globus pallidus, and thalamus) and summarize sequence specifications for the various approaches described in this literature. METHODS The peer-reviewed literature on MRI visualization of the subthalamic nucleus, globus pallidus, and thalamus was obtained by searching MEDLINE. Publications examining direct MRI visualization of these deep brain stimulation targets were included for review. RESULTS A variety of specialized sequences and postprocessing methods for enhanced MRI visualization are in current use. These include susceptibility-based techniques such as quantitative susceptibility mapping, which exploit the amount of tissue iron in target structures, and white matter attenuated inversion recovery, which suppresses the signal from white matter to improve the distinction between gray matter nuclei. However, evidence confirming the superiority of these sequences over indirect targeting with respect to clinical outcome is sparse. Future targeting may utilize information about functional and structural networks, necessitating the use of resting-state functional MRI and diffusion-weighted imaging. CONCLUSIONS Specialized MRI sequences have enabled considerable improvement in the visualization of common deep brain stimulation targets. With further validation of their ability to improve clinical outcomes and advances in imaging techniques, direct visualization of targets may play an increasingly important role in preoperative planning.
Collapse
Affiliation(s)
- Alexandre Boutet
- 1University Health Network, Toronto
- 2Joint Department of Medical Imaging, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | - Ludvic Zrinzo
- 3Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Alfonso Fasano
- 4Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology, University of Toronto
- 5Krembil Brain Institute, Toronto, Ontario
| | | | - Christopher J Steele
- 6Department of Psychology, Concordia University, Montreal, Quebec, Canada; and
- 7Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - David Mikulis
- 1University Health Network, Toronto
- 2Joint Department of Medical Imaging, University of Toronto, Ontario, Canada
| | - Walter Kucharczyk
- 1University Health Network, Toronto
- 2Joint Department of Medical Imaging, University of Toronto, Ontario, Canada
| | | |
Collapse
|
33
|
Connectivity correlates to predict essential tremor deep brain stimulation outcome: Evidence for a common treatment pathway. NEUROIMAGE-CLINICAL 2021; 32:102846. [PMID: 34624639 PMCID: PMC8503569 DOI: 10.1016/j.nicl.2021.102846] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/14/2021] [Accepted: 09/27/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND PURPOSE Deep brain stimulation (DBS) is the most common surgical treatment for essential tremor (ET), yet there is variation in outcome and stimulation targets. This study seeks to consolidate proposed stimulation "sweet spots," as well as assess the value of structural connectivity in predicting treatment outcomes. MATERIALS AND METHODS Ninety-seven ET individuals with unilateral thalamic DBS were retrospectively included. Using normative brain connectomes, structural connectivity measures were correlated with the percentage improvement in contralateral tremor, based on the Fahn-Tolosa-Marin tremor rating scale (TRS), after parameter optimization (range 3.1-12.9 months) using a leave-one-out cross-validation in 83 individuals. The predictive feature map was used for cross-validation in a separate cohort of 14 ET individuals treated at another center. Lastly, estimated volumes of tissue activated (VTA) were used to assess a treatment "sweet spot," which was compared to seven previously reported stimulation sweet spots and their relationship to the tract identified by the predictive feature map. RESULTS In the training cohort, structural connectivity between the VTA and dentato-rubro-thalamic tract (DRTT) correlated with contralateral tremor improvement (R = 0.41; p < 0.0001). The same connectivity profile predicted outcomes in a separate validation cohort (R = 0.59; p = 0.028). The predictive feature map represented the anatomical course of the DRTT, and all seven analyzed sweet spots overlapped the predictive tract (DRTT). CONCLUSIONS Our results strongly support the possibility that structural connectivity is a predictor of contralateral tremor improvement in ET DBS. The results suggest the future potential for a patient-specific functionally based surgical target. Finally, the results showed convergence in "sweet spots" suggesting the importance of the DRTT to the outcome.
Collapse
|
34
|
Coenen VA, Sajonz BE, Reinacher PC, Kaller CP, Urbach H, Reisert M. A detailed analysis of anatomical plausibility of crossed and uncrossed streamline rendition of the dentato-rubro-thalamic tract (DRT(T)) in a commercial stereotactic planning system. Acta Neurochir (Wien) 2021; 163:2809-2824. [PMID: 34181083 PMCID: PMC8437929 DOI: 10.1007/s00701-021-04890-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022]
Abstract
Background An increasing number of neurosurgeons use display of the dentato-rubro-thalamic tract (DRT) based on diffusion weighted imaging (dMRI) as basis for their routine planning of stimulation or lesioning approaches in stereotactic tremor surgery. An evaluation of the anatomical validity of the display of the DRT with respect to modern stereotactic planning systems and across different tracking environments has not been performed. Methods Distinct dMRI and anatomical magnetic resonance imaging (MRI) data of high and low quality from 9 subjects were used. Six subjects had repeated MRI scans and therefore entered the analysis twice. Standardized DICOM structure templates for volume of interest definition were applied in native space for all investigations. For tracking BrainLab Elements (BrainLab, Munich, Germany), two tensor deterministic tracking (FT2), MRtrix IFOD2 (https://www.mrtrix.org), and a global tracking (GT) approach were used to compare the display of the uncrossed (DRTu) and crossed (DRTx) fiber structure after transformation into MNI space. The resulting streamlines were investigated for congruence, reproducibility, anatomical validity, and penetration of anatomical way point structures. Results In general, the DRTu can be depicted with good quality (as judged by waypoints). FT2 (surgical) and GT (neuroscientific) show high congruence. While GT shows partly reproducible results for DRTx, the crossed pathway cannot be reliably reconstructed with the other (iFOD2 and FT2) algorithms. Conclusion Since a direct anatomical comparison is difficult in the individual subjects, we chose a comparison with two research tracking environments as the best possible “ground truth.” FT2 is useful especially because of its manual editing possibilities of cutting erroneous fibers on the single subject level. An uncertainty of 2 mm as mean displacement of DRTu is expectable and should be respected when using this approach for surgical planning. Tractographic renditions of the DRTx on the single subject level seem to be still illusive.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Strasse 64, 79106, Freiburg i.Br, Germany.
- Medical Faculty of Freiburg University, Freiburg, Germany.
- Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany.
| | - Bastian E Sajonz
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Strasse 64, 79106, Freiburg i.Br, Germany
- Medical Faculty of Freiburg University, Freiburg, Germany
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Strasse 64, 79106, Freiburg i.Br, Germany
- Medical Faculty of Freiburg University, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Christoph P Kaller
- Medical Faculty of Freiburg University, Freiburg, Germany
- Department of Neuroradiology, Freiburg University Medical Center, Freiburg, Germany
| | - Horst Urbach
- Medical Faculty of Freiburg University, Freiburg, Germany
- Department of Neuroradiology, Freiburg University Medical Center, Freiburg, Germany
| | - M Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Breisacher Strasse 64, 79106, Freiburg i.Br, Germany
- Medical Faculty of Freiburg University, Freiburg, Germany
- Department of Radiology - Medical Physics, Freiburg University, Freiburg, Germany
| |
Collapse
|
35
|
Purrer V, Upadhyay N, Borger V, Pieper CC, Kindler C, Grötz S, Keil VC, Stöcker T, Boecker H, Wüllner U. Lesions of the cerebello-thalamic tract rather than the ventral intermediate nucleus determine the outcome of focused ultrasound therapy in essential tremor: A 3T and 7T MRI-study. Parkinsonism Relat Disord 2021; 91:105-108. [PMID: 34562715 DOI: 10.1016/j.parkreldis.2021.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
INTRODUCTION The ventral intermediate nucleus of the thalamus (VIM) is an important relay station receiving cerebellar and pallidal fiber tracts. Data on structural visualization of the VIM however is limited and uncertainty prevails to what extent lesional approaches to treat tremor affect the VIM itself or passing tracts. The aim of the study was to analyze the localization of individual lesions with respect to the VIM and the cerebello-thalamic tract (CTT). METHODS We employed ultrahigh resolution (7 Tesla) MRI to delineate the VIM and performed 3 T-DTI-imaging pre- and post-interventional in seven ET patients undergoing transcranial magnetic resonance guided focused ultrasound (tcMRgFUS). Tremor improvement was measured using a modified subscore of the Clinical Rating Scale for Tremor. RESULTS All subjects showed substantial tremor improvement (88.5%, range 80.7%-94,8%) after tcMRgFUS. We found only a minor overlap of the lesions with the VIM (4%, range 1%-7%) but a larger overlap with the CTT (43%, range 23%-60%) in all subjects. CONCLUSIONS Lesions within the CTT rather than the VIM seem to drive the tremorlytic response and clinical improvement in tcMRgFUS.
Collapse
Affiliation(s)
- Veronika Purrer
- Department of Neurology, University Hospital Bonn, Germany; German Centre of Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Neeraj Upadhyay
- German Centre of Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Germany
| | - Claus Christian Pieper
- Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Germany
| | - Christine Kindler
- Department of Neurology, University Hospital Bonn, Germany; German Centre of Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Simon Grötz
- Department of Neuroradiology, University Hospital Bonn, Germany
| | - Vera Catharina Keil
- Department of Neuroradiology, University Hospital Bonn, Germany; Department of Radiology, Amsterdam University Medical Center (AUMC), VUmc, Amsterdam, the Netherlands
| | - Tony Stöcker
- Department of Physics and Astronomy, University of Bonn, Bonn, Germany
| | - Henning Boecker
- German Centre of Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Germany
| | - Ullrich Wüllner
- Department of Neurology, University Hospital Bonn, Germany; German Centre of Neurodegenerative Diseases (DZNE), Bonn, Germany
| |
Collapse
|
36
|
Diniz JM, Cury RG, Iglesio RF, Lepski GA, França CC, Barbosa ER, de Andrade DC, Teixeira MJ, Duarte KP. Dentate nucleus deep brain stimulation: Technical note of a novel methodology assisted by tractography. Surg Neurol Int 2021; 12:400. [PMID: 34513166 PMCID: PMC8422468 DOI: 10.25259/sni_338_2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/30/2021] [Indexed: 11/04/2022] Open
Abstract
Background The cerebellum has emerged as an attractive and promising target for neuromodulation in movement disorders due to its vast connection with important cortical and subcortical areas. Here, we describe a novel technique of deep brain stimulation (DBS) of the dentate nucleus (DN) aided by tractography. Methods Since 2015, patients with movement disorders including dystonia, ataxia, and tremor have been treated with DN DBS. The cerebellar target was initially localized using coordinates measured from the fastigial point. The target was adjusted with direct visualization of the DN in the susceptibility-weighted imaging and T2 sequences of the MRI and finally refined based on the reconstruction of the dentatorubrothalamic tract (DRTT). Results Three patients were treated with this technique. The final target was located in the anterior portion of DN in close proximity to the DRTT, with the tip of the lead on the white matter and the remaining contacts on the DN. Clinical outcomes were variable and overall positive, with no major side effect. Conclusion Targeting the DN based on tractography of the DRTT seems to be feasible and safe. Larger studies will be necessary to support our preliminary findings.
Collapse
Affiliation(s)
- Juliete Melo Diniz
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Rubens Gisbert Cury
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ricardo Ferrareto Iglesio
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Guilherme Alves Lepski
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Carina Cura França
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Egberto Reis Barbosa
- Department of Neurology, Movement Disorders Center, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Manoel Jacobsen Teixeira
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Kleber Paiva Duarte
- Department of Neurology, Functional Neurosurgery Division, School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Parras O, Domínguez P, Tomás-Biosca A, Guridi J. The role of tractography in the localisation of the Vim nucleus of the thalamus and the dentatorubrothalamic tract for the treatment of tremor. NEUROLOGÍA (ENGLISH EDITION) 2021; 37:691-699. [DOI: 10.1016/j.nrleng.2019.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 09/16/2019] [Indexed: 11/30/2022] Open
|
38
|
Morrison MA, Lee AT, Martin AJ, Dietiker C, Brown EG, Wang DD. DBS targeting for essential tremor using intersectional dentato-rubro-thalamic tractography and direct proton density visualization of the VIM: technical note on 2 cases. J Neurosurg 2021; 135:806-814. [PMID: 33450737 DOI: 10.3171/2020.8.jns201378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 08/03/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Direct visualization of the ventral intermediate nucleus (VIM) of the thalamus on standard MRI sequences remains elusive. Therefore, deep brain stimulation (DBS) surgery for essential tremor (ET) indirectly targets the VIM using atlas-derived consensus coordinates and requires awake intraoperative testing to confirm clinical benefits. The objective of this study was to evaluate the utility of proton density (PD)-weighted MRI and tractography of the intersecting dentato-rubro-thalamic tract (DRTT) for direct "intersectional" targeting of the VIM in ET. METHODS DBS targets were selected by identifying the VIM on PD-weighted images relative to the DRTT in 2 patients with ET. Tremor reduction was confirmed with intraoperative clinical testing. Intended target coordinates based on the direct intersectional targeting technique were compared with consensus coordinates obtained with indirect targeting. Pre- and postoperative tremor scores were assessed using the Fahn-Tolosa-Marin tremor rating scale (TRS). RESULTS Planned DBS coordinates based on direct versus indirect targeting of the VIM differed in both the anteroposterior (range 0 to 2.3) and lateral (range -0.7 to 1) directions. For 1 patient, indirect targeting-without PD-weighted visualization of the VIM and DRTT-would have likely resulted in suboptimal electrode placement within the VIM. At the 3-month follow-up, both patients demonstrated significant improvement in tremor symptoms subjectively and according to the TRS (case 1: 68%, case 2: 72%). CONCLUSIONS Direct intersectional targeting of the VIM using PD-weighted imaging and DRTT tractography is a feasible method for DBS placement in patients with ET. These advanced targeting techniques can supplement awake intraoperative testing or be used independently in asleep cases to improve surgical efficiency and confidence.
Collapse
Affiliation(s)
- Melanie A Morrison
- 2Department of Radiology & Biomedical Imaging, University of California, San Francisco; and
| | - Anthony T Lee
- 1Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco
| | - Alastair J Martin
- 2Department of Radiology & Biomedical Imaging, University of California, San Francisco; and
| | - Cameron Dietiker
- 3Department of Neurology, Movement Disorders and Neuromodulation Center, Weill Institute for Neurosciences, University of California, San Francisco, California
| | - Ethan G Brown
- 3Department of Neurology, Movement Disorders and Neuromodulation Center, Weill Institute for Neurosciences, University of California, San Francisco, California
| | - Doris D Wang
- 1Department of Neurological Surgery, Weill Institute for Neurosciences, University of California, San Francisco
| |
Collapse
|
39
|
Ferreira F, Akram H, Ashburner J, Zrinzo L, Zhang H, Lambert C. Ventralis intermedius nucleus anatomical variability assessment by MRI structural connectivity. Neuroimage 2021; 238:118231. [PMID: 34089871 PMCID: PMC8960999 DOI: 10.1016/j.neuroimage.2021.118231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022] Open
Abstract
The ventralis intermedius nucleus (Vim) is centrally placed in the dentato-thalamo-cortical pathway (DTCp) and is a key surgical target in the treatment of severe medically refractory tremor. It is not visible on conventional MRI sequences; consequently, stereotactic targeting currently relies on atlas-based coordinates. This fails to capture individual anatomical variability, which may lead to poor long-term clinical efficacy. Probabilistic tractography, combined with known anatomical connectivity, enables localisation of thalamic nuclei at an individual subject level. There are, however, a number of confounds associated with this technique that may influence results. Here we focused on an established method, using probabilistic tractography to reconstruct the DTCp, to identify the connectivity-defined Vim (cd-Vim) in vivo. Using 100 healthy individuals from the Human Connectome Project, our aim was to quantify cd-Vim variability across this population, measure the discrepancy with atlas-defined Vim (ad-Vim), and assess the influence of potential methodological confounds. We found no significant effect of any of the confounds. The mean cd-Vim coordinate was located within 1.88 mm (left) and 2.12 mm (right) of the average midpoint and 3.98 mm (left) and 5.41 mm (right) from the ad-Vim coordinates. cd-Vim location was more variable on the right, which reflects hemispheric asymmetries in the probabilistic DTC reconstructed. The method was reproducible, with no significant cd-Vim location differences in a separate test-retest cohort. The superior cerebellar peduncle was identified as a potential source of artificial variance. This work demonstrates significant individual anatomical variability of the cd-Vim that atlas-based coordinate targeting fails to capture. This variability was not related to any methodological confound tested. Lateralisation of cerebellar functions, such as speech, may contribute to the observed asymmetry. Tractography-based methods seem sensitive to individual anatomical variability that is missed by conventional neurosurgical targeting; these findings may form the basis for translational tools to improve efficacy and reduce side-effects of thalamic surgery for tremor.
Collapse
Affiliation(s)
- Francisca Ferreira
- EPSRC Centre for Doctoral Training in Intelligent, Integrated Imaging in Healthcare (i4health), University College London, Gower Street, London WC1E 6BT, United Kingdom; Functional Neurosurgery Unit, Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom; Wellcome Centre for Human Neuroimaging, 12 Queen Square, London WC1N 3AR, United Kingdom.
| | - Harith Akram
- Functional Neurosurgery Unit, Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom
| | - John Ashburner
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London WC1N 3AR, United Kingdom
| | - Ludvic Zrinzo
- Functional Neurosurgery Unit, Department of Clinical and Motor Neurosciences, UCL Institute of Neurology, Queen Square, WC1N 3BG London, United Kingdom
| | - Hui Zhang
- EPSRC Centre for Doctoral Training in Intelligent, Integrated Imaging in Healthcare (i4health), University College London, Gower Street, London WC1E 6BT, United Kingdom; Department of Computer Science and Centre for Medical Image Computing, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Christian Lambert
- Wellcome Centre for Human Neuroimaging, 12 Queen Square, London WC1N 3AR, United Kingdom
| |
Collapse
|
40
|
Coenen VA, Reisert M. DTI for brain targeting: Diffusion weighted imaging fiber tractography-Assisted deep brain stimulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 159:47-67. [PMID: 34446250 DOI: 10.1016/bs.irn.2021.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fiber tractography assisted Deep Brain Stimulation (DBS) has been performed by different groups for more than 10 years to now. Groups around the world have adapted initial approaches to currently embrace the fiber tractography technology mainly for treating tremor (DBS and lesions), psychiatric indications (OCD and major depression) and pain (DBS). Despite the advantages of directly visualizing the target structure, the technology is demanding and is vulnerable to inaccuracies especially since it is performed on individual level. In this contribution, we will focus on tremor and psychiatric indications, and will show future applications of sophisticated tractography applications for subthalamic nucleus (STN) DBS surgery and stimulation steering as an example.
Collapse
Affiliation(s)
- Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Center for Deep Brain Stimulation, Medical Center of Freiburg University, Freiburg, Germany.
| | - Marco Reisert
- Department of Stereotactic and Functional Neurosurgery, Medical Center of Freiburg University, Freiburg, Germany; Medical Faculty of Freiburg University, Freiburg, Germany; Department of Radiology-Medical Physics, Freiburg University, Freiburg, Germany
| |
Collapse
|
41
|
Middlebrooks EH, Okromelidze L, Carter RE, Jain A, Lin C, Westerhold E, Peña AB, Quiñones-Hinojosa A, Uitti RJ, Grewal SS. Directed stimulation of the dentato-rubro-thalamic tract for deep brain stimulation in essential tremor: a blinded clinical trial. Neuroradiol J 2021; 35:203-212. [PMID: 34340623 DOI: 10.1177/19714009211036689] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Observational studies utilising diffusion tractography have suggested a common mechanism for tremor alleviation in deep brain stimulation for essential tremor: the decussating portion of the dentato-rubro-thalamic tract. We hypothesised that directional stimulation of the dentato-rubro-thalamic tract would result in greater tremor improvement compared to sham programming, as well as comparable improvement as more tedious standard-of-care programming. METHODS A prospective, blinded crossover trial was performed to assess the feasibility, safety and outcomes of programming based solely on dentato-rubro-thalamic tract anatomy. Using magnetic resonance imaging diffusion-tractography, the dentato-rubro-thalamic tract was identified and a connectivity-based treatment setting was derived by modelling a volume of tissue activated using directional current steering oriented towards the dentato-rubro-thalamic tract centre. A sham setting was created at approximately 180° opposite the connectivity-based treatment. Standard-of-care programming at 3 months was compared to connectivity-based treatment and sham settings that were blinded to the programmer. The primary outcome measure was percentage improvement in the Fahn-Tolosa-Marín tremor rating score compared to the preoperative baseline. RESULTS Among the six patients, tremor rating scores differed significantly among the three experimental conditions (P=0.030). The mean tremor rating score improvement was greater with the connectivity-based treatment settings (64.6% ± 14.3%) than with sham (44.8% ± 18.6%; P=0.031) and standard-of-care programming (50.7% ± 19.2%; P=0.062). The distance between the centre of the dentato-rubro-thalamic tract and the volume of tissue activated inversely correlated with the percentage improvement in the tremor rating score (R2=0.24; P=0.04). No significant adverse events were encountered. CONCLUSIONS Using a blinded, crossover trial design, we have shown the technical feasibility, safety and potential efficacy of connectivity-based stimulation settings in deep brain stimulation for treatment of essential tremor.
Collapse
Affiliation(s)
- Erik H Middlebrooks
- Department of Radiology, Mayo Clinic, USA.,Department of Neurosurgery, Mayo Clinic, USA
| | | | | | | | - Chen Lin
- Department of Radiology, Mayo Clinic, USA
| | | | | | | | | | | |
Collapse
|
42
|
Merola A, Singh J, Reeves K, Changizi B, Goetz S, Rossi L, Pallavaram S, Carcieri S, Harel N, Shaikhouni A, Sammartino F, Krishna V, Verhagen L, Dalm B. New Frontiers for Deep Brain Stimulation: Directionality, Sensing Technologies, Remote Programming, Robotic Stereotactic Assistance, Asleep Procedures, and Connectomics. Front Neurol 2021; 12:694747. [PMID: 34367055 PMCID: PMC8340024 DOI: 10.3389/fneur.2021.694747] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
Over the last few years, while expanding its clinical indications from movement disorders to epilepsy and psychiatry, the field of deep brain stimulation (DBS) has seen significant innovations. Hardware developments have introduced directional leads to stimulate specific brain targets and sensing electrodes to determine optimal settings via feedback from local field potentials. In addition, variable-frequency stimulation and asynchronous high-frequency pulse trains have introduced new programming paradigms to efficiently desynchronize pathological neural circuitry and regulate dysfunctional brain networks not responsive to conventional settings. Overall, these innovations have provided clinicians with more anatomically accurate programming and closed-looped feedback to identify optimal strategies for neuromodulation. Simultaneously, software developments have simplified programming algorithms, introduced platforms for DBS remote management via telemedicine, and tools for estimating the volume of tissue activated within and outside the DBS targets. Finally, the surgical accuracy has improved thanks to intraoperative magnetic resonance or computerized tomography guidance, network-based imaging for DBS planning and targeting, and robotic-assisted surgery for ultra-accurate, millimetric lead placement. These technological and imaging advances have collectively optimized DBS outcomes and allowed “asleep” DBS procedures. Still, the short- and long-term outcomes of different implantable devices, surgical techniques, and asleep vs. awake procedures remain to be clarified. This expert review summarizes and critically discusses these recent innovations and their potential impact on the DBS field.
Collapse
Affiliation(s)
- Aristide Merola
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Jaysingh Singh
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Kevin Reeves
- Department of Psychiatry, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Barbara Changizi
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Steven Goetz
- Medtronic PLC Neuromodulation, Minneapolis, MN, United States
| | | | | | | | - Noam Harel
- Center for Magnetic Resonance Research, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Ammar Shaikhouni
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Francesco Sammartino
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Vibhor Krishna
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Leo Verhagen
- Movement Disorder Section, Department of Neurological Sciences, Rush University, Chicago, IL, United States
| | - Brian Dalm
- Department of Neurosurgery, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
43
|
Determining an efficient deep brain stimulation target in essential tremor - Cohort study and review of the literature. Parkinsonism Relat Disord 2021; 89:54-62. [PMID: 34225135 DOI: 10.1016/j.parkreldis.2021.06.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 11/22/2022]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is a highly efficacious treatment for essential tremor (ET). Still, the optimal anatomical target in the (sub)thalamic area is a matter of debate. The aim of this study was to determine the optimal target of DBS for ET regarding beneficial clinical outcome and impact on activities of daily living as well as stimulation-induced side effects and compare it with previously published coordinates. METHODS In 30 ET patients undergoing bilateral DBS, severity of tremor was assessed by blinded video ratings before and at 1-year follow-up with DBS ON and OFF. Tremor scores and reported side effects and volumes of tissue activated were used to create a probabilistic map of DBS efficiency and side effects. RESULTS DBS was effective both in tremor suppression as well as in improving patient reported outcomes, which were positively correlated. The "sweet spot" for tremor suppression was located inferior of the VIM in the subthalamic area, close to the superior margin of the zona incerta. The Euclidean distance of active contacts to this spot as well as to 10 of 13 spots from the literature review was predictive of individual outcome. A cluster associated with the occurrence of ataxia was located in direct vicinity of the "sweet spot". CONCLUSION Our findings suggest the highest clinical efficacy of DBS in the posterior subthalamic area, lining up with previously published targets likely representing the dentato-rubro-thalamic tract. Side effects may not necessarily indicate lead misplacement, but should encourage clinicians to employ novel DBS programing options.
Collapse
|
44
|
Bruno F, Catalucci A, Varrassi M, Arrigoni F, Sucapane P, Cerone D, Pistoia F, Torlone S, Tommasino E, De Santis L, Barile A, Ricci A, Marini C, Splendiani A, Masciocchi C. Comparative evaluation of tractography-based direct targeting and atlas-based indirect targeting of the ventral intermediate (Vim) nucleus in MRgFUS thalamotomy. Sci Rep 2021; 11:13538. [PMID: 34188190 PMCID: PMC8241849 DOI: 10.1038/s41598-021-93058-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/08/2021] [Indexed: 11/12/2022] Open
Abstract
To analyze and compare direct and indirect targeting of the Vim for MRgFUS thalamotomy. We retrospectively evaluated 21 patients who underwent unilateral MRgFUS Vim ablation and required targeting repositioning during the procedures. For each patient, in the three spatial coordinates, we recorded: (i) indirect coordinates; (ii) the coordinates where we clinically observed tremor reduction during the verification stage sonications; (iii) direct coordinates, measured on the dentatorubrothalamic tract (DRTT) at the after postprocessing of DTI data. The agreement between direct and indirect coordinates compared to clinically effective coordinates was evaluated through the Bland–Altman test and intraclass correlation coefficient. The median absolute percentage error was also calculated. Compared to indirect targeting, direct targeting showed inferior error values on the RL and AP coordinates (0.019 vs. 0.079 and 0.207 vs. 0.221, respectively) and higher error values on the SI coordinates (0.263 vs. 0.021). The agreement between measurements was higher for tractography along the AP and SI planes and lower along the RL planes. Indirect atlas-based targeting represents a valid approach for MRgFUS thalamotomy. The direct tractography approach is a valuable aid in assessing the possible deviation of the error in cases where no immediate clinical response is achieved.
Collapse
Affiliation(s)
- Federico Bruno
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy. .,Italian Society of Medical and Interventional Radiology, SIRM Foundation, Milan, Italy.
| | - Alessia Catalucci
- Neuroradiology and Interventional Radiology, San Salvatore Hospital, L'Aquila, Italy
| | - Marco Varrassi
- Neuroradiology and Interventional Radiology, San Salvatore Hospital, L'Aquila, Italy
| | - Francesco Arrigoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | | | | | - Francesca Pistoia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Silvia Torlone
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Emanuele Tommasino
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Luca De Santis
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | | | - Carmine Marini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| | - Carlo Masciocchi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio 1, 67100, L'Aquila, Italy
| |
Collapse
|
45
|
Kakei S, Manto M, Tanaka H, Mitoma H. Pathophysiology of Cerebellar Tremor: The Forward Model-Related Tremor and the Inferior Olive Oscillation-Related Tremor. Front Neurol 2021; 12:694653. [PMID: 34262527 PMCID: PMC8273235 DOI: 10.3389/fneur.2021.694653] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
Lesions in the Guillain-Mollaret (G-M) triangle frequently cause various types of tremors or tremor-like movements. Nevertheless, we know relatively little about their generation mechanisms. The deep cerebellar nuclei (DCN), which is a primary node of the triangle, has two main output paths: the primary excitatory path to the thalamus, the red nucleus (RN), and other brain stem nuclei, and the secondary inhibitory path to the inferior olive (IO). The inhibitory path contributes to the dentato-olivo-cerebellar loop (the short loop), while the excitatory path contributes to the cerebrocerebellar loop (the long loop). We propose a novel hypothesis: each loop contributes to physiologically distinct type of tremors or tremor-like movements. One type of irregular tremor-like movement is caused by a lesion in the cerebrocerebellar loop, which includes the primary path. A lesion in this loop affects the cerebellar forward model and deteriorates its accuracy of prediction and compensation of the feedback delay, resulting in irregular instability of voluntary motor control, i.e., cerebellar ataxia (CA). Therefore, this type of tremor, such as kinetic tremor, is usually associated with other symptoms of CA such as dysmetria. We call this type of tremor forward model-related tremor. The second type of regular tremor appears to be correlated with synchronized oscillation of IO neurons due, at least in animal models, to reduced degrees of freedom in IO activities. The regular burst activity of IO neurons is precisely transmitted along the cerebellocerebral path to the motor cortex before inducing rhythmical reciprocal activities of agonists and antagonists, i.e., tremor. We call this type of tremor IO-oscillation-related tremor. Although this type of regular tremor does not necessarily accompany ataxia, the aberrant IO activities (i.e., aberrant CS activities) may induce secondary maladaptation of cerebellar forward models through aberrant patterns of long-term depression (LTD) and/or long-term potentiation (LTP) of the cerebellar circuitry. Although our hypothesis does not cover all tremors or tremor-like movement disorders, our approach integrates the latest theories of cerebellar physiology and provides explanations how various lesions in or around the G-M triangle results in tremors or tremor-like movements. We propose that tremor results from errors in predictions carried out by the cerebellar circuitry.
Collapse
Affiliation(s)
- Shinji Kakei
- Department of Anatomy and Physiology, Jissen Women's University, Tokyo, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium
- Service des Neurosciences, University of Mons, Mons, Belgium
| | - Hirokazu Tanaka
- Faculty of Information Technology, Tokyo City University, Tokyo, Japan
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
46
|
Vedam-Mai V, Deisseroth K, Giordano J, Lazaro-Munoz G, Chiong W, Suthana N, Langevin JP, Gill J, Goodman W, Provenza NR, Halpern CH, Shivacharan RS, Cunningham TN, Sheth SA, Pouratian N, Scangos KW, Mayberg HS, Horn A, Johnson KA, Butson CR, Gilron R, de Hemptinne C, Wilt R, Yaroshinsky M, Little S, Starr P, Worrell G, Shirvalkar P, Chang E, Volkmann J, Muthuraman M, Groppa S, Kühn AA, Li L, Johnson M, Otto KJ, Raike R, Goetz S, Wu C, Silburn P, Cheeran B, Pathak YJ, Malekmohammadi M, Gunduz A, Wong JK, Cernera S, Wagle Shukla A, Ramirez-Zamora A, Deeb W, Patterson A, Foote KD, Okun MS. Proceedings of the Eighth Annual Deep Brain Stimulation Think Tank: Advances in Optogenetics, Ethical Issues Affecting DBS Research, Neuromodulatory Approaches for Depression, Adaptive Neurostimulation, and Emerging DBS Technologies. Front Hum Neurosci 2021; 15:644593. [PMID: 33953663 PMCID: PMC8092047 DOI: 10.3389/fnhum.2021.644593] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/10/2021] [Indexed: 12/20/2022] Open
Abstract
We estimate that 208,000 deep brain stimulation (DBS) devices have been implanted to address neurological and neuropsychiatric disorders worldwide. DBS Think Tank presenters pooled data and determined that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. The DBS Think Tank was founded in 2012 providing a space where clinicians, engineers, researchers from industry and academia discuss current and emerging DBS technologies and logistical and ethical issues facing the field. The emphasis is on cutting edge research and collaboration aimed to advance the DBS field. The Eighth Annual DBS Think Tank was held virtually on September 1 and 2, 2020 (Zoom Video Communications) due to restrictions related to the COVID-19 pandemic. The meeting focused on advances in: (1) optogenetics as a tool for comprehending neurobiology of diseases and on optogenetically-inspired DBS, (2) cutting edge of emerging DBS technologies, (3) ethical issues affecting DBS research and access to care, (4) neuromodulatory approaches for depression, (5) advancing novel hardware, software and imaging methodologies, (6) use of neurophysiological signals in adaptive neurostimulation, and (7) use of more advanced technologies to improve DBS clinical outcomes. There were 178 attendees who participated in a DBS Think Tank survey, which revealed the expansion of DBS into several indications such as obesity, post-traumatic stress disorder, addiction and Alzheimer’s disease. This proceedings summarizes the advances discussed at the Eighth Annual DBS Think Tank.
Collapse
Affiliation(s)
- Vinata Vedam-Mai
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, United States.,Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - James Giordano
- Department of Neurology and Neuroethics Studies Program, Georgetown University Medical Center, Washington, DC, United States
| | - Gabriel Lazaro-Munoz
- Center for Medical Ethics and Health Policy, Baylor College of Medicine, Houston, TX, United States
| | - Winston Chiong
- Weill Institute for Neurosciences, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Nanthia Suthana
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Psychology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jean-Philippe Langevin
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States.,Neurosurgery Service, Department of Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - Jay Gill
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Wayne Goodman
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Nicole R Provenza
- School of Engineering, Brown University, Providence, RI, United States
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - Rajat S Shivacharan
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - Tricia N Cunningham
- Department of Neurosurgery, Stanford University Medical Center, Stanford, CA, United States
| | - Sameer A Sheth
- Department of Neurological Surgery, Baylor College of Medicine, Houston, TX, United States
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Katherine W Scangos
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Helen S Mayberg
- Department of Neurology and Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andreas Horn
- Movement Disorders & Neuromodulation Unit, Department for Neurology, Charité - University Medicine Berlin, Berlin, Germany
| | - Kara A Johnson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Christopher R Butson
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Ro'ee Gilron
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Coralie de Hemptinne
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States.,Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Robert Wilt
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Maria Yaroshinsky
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Simon Little
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Philip Starr
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Greg Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Prasad Shirvalkar
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States.,Department of Anesthesiology (Pain Management) and Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Edward Chang
- Department of Neurological Surgery, Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, United States
| | - Jens Volkmann
- Neurologischen Klinik Universitätsklinikum Würzburg, Würzburg, Germany
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Andrea A Kühn
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Luming Li
- National Engineering Laboratory for Neuromodulation, School of Aerospace Engineering, Tsinghua University, Beijing, China
| | - Matthew Johnson
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Kevin J Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Robert Raike
- Restorative Therapies Group Implantables, Research and Core Technology, Medtronic, Minneapolis, MN, United States
| | - Steve Goetz
- Restorative Therapies Group Implantables, Research and Core Technology, Medtronic, Minneapolis, MN, United States
| | - Chengyuan Wu
- Department of Neurological Surgery, Thomas Jefferson University Hospitals, Philadelphia, PA, United States
| | - Peter Silburn
- Asia Pacific Centre for Neuromodulation, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Binith Cheeran
- Neuromodulation Division, Abbott, Plano, TX, United States
| | - Yagna J Pathak
- Neuromodulation Division, Abbott, Plano, TX, United States
| | | | - Aysegul Gunduz
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Joshua K Wong
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Stephanie Cernera
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States.,J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Wissam Deeb
- Department of Neurology, University of Massachusetts, Worchester, MA, United States
| | - Addie Patterson
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Kelly D Foote
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| | - Michael S Okun
- Norman Fixel Institute for Neurological Diseases and the Program for Movement Disorders and Neurorestoration, Department of Neurology, University of Florida, Gainesville, FL, United States
| |
Collapse
|
47
|
Paulo DL, Bick SK. Advanced Imaging in Psychiatric Neurosurgery: Toward Personalized Treatment. Neuromodulation 2021; 25:195-201. [PMID: 33788971 DOI: 10.1111/ner.13392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/22/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Our aim is to review several recent landmark studies discussing the application of advanced neuroimaging to guide target selection in deep brain stimulation (DBS) for psychiatric disorders. MATERIALS AND METHODS We performed a PubMed literature search of articles related to psychiatric neurosurgery, DBS, diffusion tensor imaging, probabilistic tractography, functional magnetic resonance imaging (MRI), and blood oxygen level-dependent activation. Relevant articles were included in the review. RESULTS Recent advances in neuroimaging, namely the use of diffusion tensor imaging, probabilistic tractography, functional MRI, and Positron emission tomography have provided higher resolution depictions of structural and functional connectivity between regions of interest. Applying these imaging modalities to DBS has increased understanding of the mechanism of action of DBS from the single structure to network level, allowed for new DBS targets to be discovered, and allowed for individualized DBS targeting for psychiatric indications. CONCLUSIONS Advanced neuroimaging techniques may be especially important to guide personalized DBS targeting in psychiatric disorders such as treatment-resistant depression and obsessive-compulsive disorder where symptom profiles and underlying disordered circuitry are more heterogeneous. These articles suggest that advanced imaging can help to further individualize and optimize DBS, a promising next step in improving its efficacy.
Collapse
Affiliation(s)
- Danika L Paulo
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah K Bick
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
48
|
Lin Z, Zhang X, Wang L, Zhang Y, Zhou H, Sun Q, Sun B, Huang P, Li D. Revisiting the L-Dopa Response as a Predictor of Motor Outcomes After Deep Brain Stimulation in Parkinson's Disease. Front Hum Neurosci 2021; 15:604433. [PMID: 33613209 PMCID: PMC7889513 DOI: 10.3389/fnhum.2021.604433] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate the correlation between preoperative response to the L-dopa challenge test and efficacy of deep brain stimulation (DBS) on motor function in Parkinson's disease (PD). Methods: We retrospectively reviewed the data of 38 patients with idiopathic PD who underwent DBS surgery with a median follow-up duration of 7 months. Twenty underwent bilateral globus pallidus interna (GPi) DBS, and 18 underwent bilateral subthalamic nucleus (STN) DBS. The Movement Disorder Society Unified Parkinson Disease Rating Scale-Motor Part (MDS UPDRS-III) was assessed before surgery and at the last follow-up in different medication and stimulation conditions, respectively. Results: Pearson's correlation analysis revealed a positive correlation between preoperative L-dopa challenge responsiveness and GPi-DBS responsiveness on the total score (R 2 = 0.283, p = 0.016) but not on the non-tremor total score (R 2 = 0.158, p = 0.083) of MDS UPDRS-III. Such correlation remained significant (R 2' = 0.332, p = 0.010) after controlling for age at the time of surgery as confounding factor by partial correlation analysis. The preoperative L-dopa challenge responsiveness was significantly correlated with the tremor-controlling outcome of GPi-DBS (R 2 = 0.390, p = 0.003). In contrast, we found a positive correlation between preoperative L-dopa challenge responsiveness and STN-DBS responsiveness on the non-tremor total score (R 2 = 0.290, p = 0.021), but not on the total score (R 2 = 0.130, p = 0.141) of MDS UPDRS-III. The partial correlation analysis further demonstrated that the predictive value of preoperative L-dopa challenge responsiveness on the non-tremor motor outcome of STN-DBS was eliminated (R 2' = 0.120, p = 0.174) after controlling for age at the time of surgery as confounding factor. Interpretation: The short-term predictive value of preoperative response to the L-dopa challenge test for the motor outcome of GPi-DBS in PD was systematically described. Our findings suggest: (1) a solid therapeutic effect of GPi-DBS in treating L-dopa-responsive tremors; (2) a negative effect of age at the time of surgery on motor outcomes of STN-DBS, (3) a possible preference of STN- to GPi-DBS in L-dopa-resistant tremor control, and (4) a possible preference of GPi- to STN-DBS in elderly PD patients who have a satisfactory dopamine response.
Collapse
Affiliation(s)
- Zhengyu Lin
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoxiao Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linbin Wang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingying Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haiyan Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Huang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dianyou Li
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
49
|
Abdulbaki A, Kaufmann J, Galazky I, Buentjen L, Voges J. Neuromodulation of the subthalamic nucleus in Parkinson's disease: the effect of fiber tract stimulation on tremor control. Acta Neurochir (Wien) 2021; 163:185-195. [PMID: 33174115 PMCID: PMC7778622 DOI: 10.1007/s00701-020-04495-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/14/2020] [Indexed: 11/29/2022]
Abstract
Background Therapeutic effects of deep brain stimulation (DBS) of the subthalamic nucleus (STN) in Parkinson’s disease (PD) may in parts be attributed to the stimulation of white matter near the targeted structure. The dentato-rubro-thalamic (DRT) tract supposed to improve tremor control in patients with essential tremor could be one candidate structure. The aim of this study was to investigate the effect of stimulation proximity to the DRT on tremor control in PD patients treated with STN-DBS. Methods For this retrospective analysis, we included 36 consecutive patients (median age 65.5 years) treated with STN-DBS for disabling motor symptoms including tremor. Stereotactic implantation of DBS electrodes into the motor area of the STN was performed using direct MRI-based targeting and intraoperative microelectrode recording. Tremor severity was assessed preoperatively and at regular intervals postoperatively (Unified Parkinson’s Disease Rating Scale III). The DRT was visualized in 60 hemispheres after probabilistic fiber tracking (3-T MRI). The position of active electrode contacts was verified on intraoperative stereotactic X-rays and postoperative CT images after co-registration with 3D treatment planning MRI/CT images. We determined the shortest distance of active contacts to the ipsilateral DRT tracts on perpendicular view slices and correlated this value with tremor change percentage. Results Twelve patients had unilateral tremor only, and accordingly, 12 hemispheres were excluded from further imaging analysis. The remaining 60 hemispheres were associated with contralateral resting tremor. Active brain electrode contacts leading to resting tremor improvement (46 hemispheres) had a significantly shorter distance to the DRT (1.6 mm (0.9–2.1) [median (25th–75th percentiles)]) compared with contacts of non-responders (14 hemispheres, distance: 2.8 mm (2–4.6), p < 0.001). Conclusion This retrospective analysis suggests that in STN-DBS, better tremor control in PD patients correlates with the distance of active electrode contacts to the DRT. Tractography may optimize both individually DBS targeting and postoperative adjustment of stimulation parameters.
Collapse
Affiliation(s)
- Arif Abdulbaki
- Department Stereotactic Neurosurgery, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Jörn Kaufmann
- Department of Neurology, OvGU-Magdeburg, Magdeburg, Germany
| | - Imke Galazky
- Department of Neurology, OvGU-Magdeburg, Magdeburg, Germany
| | - Lars Buentjen
- Department Stereotactic Neurosurgery, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Jürgen Voges
- Department Stereotactic Neurosurgery, University Hospital Magdeburg, Leipziger Str. 44, 39120, Magdeburg, Germany.
- Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.
| |
Collapse
|
50
|
Structure-function relationship of the posterior subthalamic area with directional deep brain stimulation for essential tremor. NEUROIMAGE-CLINICAL 2020; 28:102486. [PMID: 33395977 PMCID: PMC7674616 DOI: 10.1016/j.nicl.2020.102486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/10/2020] [Accepted: 10/25/2020] [Indexed: 11/21/2022]
Abstract
Directional DBS of the DRTT and the zona incerta is correlated with tremor suppression. Activation patterns for tremor suppression and side effects involve mostly the dentato-rubro-thalamic tract and the zona incerta. Concomitant side effects often limit the therapeutic window of directional deep brain stimulation.
Deep Brain Stimulation of the posterior subthalamic area is an emergent target for the treatment of Essential Tremor. Due to the heterogeneous and complex anatomy of the posterior subthalamic area, it remains unclear which specific structures mediate tremor suppression and different side effects. The objective of the current work was to yield a better understanding of what anatomical structures mediate the different clinical effects observed during directional deep brain stimulation of that area. We analysed a consecutive series of 12 essential tremor patients. Imaging analysis and systematic clinical testing performed 4–6 months postoperatively yielded location, clinical efficacy and corresponding therapeutic windows for 160 directional contacts. Overlap ratios between individual activation volumes and neighbouring thalamic and subthalamic nuclei as well as individual fiber tracts were calculated. Further, we generated stimulation heatmaps to assess the area of activity and structures stimulated during tremor suppression and occurrence of side effects. Stimulation of the dentato-rubro-thalamic tract and the zona incerta was most consistently correlated with tremor suppression. Both individual and group analysis demonstrated a similar pattern of activation for tremor suppression and different sorts of side-effects. Unlike current clinical concepts, induction of spasms and paresthesia were not correlated with stimulation of the corticospinal tract and the medial lemniscus. Furthermore, we noticed a significant difference in the therapeutic window between the best and worst directional contacts. The best directional contacts did not provide significantly larger therapeutic windows than omnidirectional stimulation at the same level. Deep brain stimulation of the posterior subthalamic area effectively suppresses all aspects of ET but can be associated with concomitant side effects limiting the therapeutic window. Activation patterns for tremor suppression and side effects were similar and predominantly involved the dentato-rubro-thalamic tract and the zona incerta. We found no different activation patterns between different types of side effects and no clear correlation between structure and function. Future studies with use of more sophisticated modelling of activation volumes taking into account fiber heterogeneity and orientation may eventually better delineate these different clusters, which may allow for a refined targeting and programming within this area.
Collapse
|