1
|
Demircubuk I, Candar E, Sengul G. Anatomical and neurochemical organization of the dorsal, lumbar precerebellar and sacral precerebellar nuclei in the human spinal cord. Ann Anat 2025; 259:152390. [PMID: 39938757 DOI: 10.1016/j.aanat.2025.152390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 01/19/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
BACKGROUND AND PURPOSE The dorsal nucleus (Clarke's nucleus, D), lumbar precerebellar nucleus (LPrCb), and sacral precerebellar nucleus (Stilling's sacral nucleus, SPrCb) are precerebellar nuclei of the spinal cord. This study investigates the cytoarchitecture and neurochemical organization of the D, LPrCb, and SPrCb nuclei in the human spinal cord. MATERIAL AND METHODS Using Nissl staining and immunohistochemistry for markers including calbindin (Cb), calretinin (Cr), parvalbumin (Pv), choline acetyltransferase (ChAT), glutamic acid decarboxylase (GAD 65/67), and vesicular glutamate transporter 1 (VGLUT1), we analyzed sections from T1-T12, L1-L5, and S1-Co1 segments of a human spinal cord. RESULTS Our findings reveal a diverse range of neuron sizes and morphologies within these nuclei, with multipolar neurons being predominant. The immunohistochemical analysis showed distinct neurochemical characteristics, with varying densities of the markers across the D, LPrCb, and SPrCb. CONCLUSION This study provides the first detailed characterization of these nuclei in the human spinal cord, highlighting their intricate organization and suggesting potential functional similarities. The comprehensive understanding of the neurochemical profiles of these nuclei lays the groundwork for future research into their roles in motor coordination and their involvement in neurodegenerative diseases. Our findings underscore the importance of further investigation into the pathological changes occurring within the precerebellar nuclei to advance treatment and prevention strategies for related neurological disorders.
Collapse
Affiliation(s)
- Ibrahim Demircubuk
- Department of Anatomy, Institute of Health Sciences, Ege University, Izmir, Turkiye
| | - Esra Candar
- Department of Neuroscience, Institute of Health Sciences, Ege University, Izmir, Turkiye
| | - Gulgun Sengul
- Department of Anatomy, Institute of Health Sciences, Ege University, Izmir, Turkiye; Department of Anatomy School of Medicine, Ege University, Izmir, Turkiye.
| |
Collapse
|
2
|
Cherchi M. Possible mechanisms connecting cerebellar ataxias and bilateral vestibular weakness: diagnostic and therapeutic implications. J Neurol 2024; 272:14. [PMID: 39666156 DOI: 10.1007/s00415-024-12794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 12/13/2024]
Affiliation(s)
- Marcello Cherchi
- Department of Neurology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
3
|
Wang Y, Zhai Y, Wang J. Insight into the early pathogenesis and therapeutic strategies of spinocerebellar ataxia type 3/machado-joseph disease from mouse models. Parkinsonism Relat Disord 2024; 126:106991. [PMID: 38749872 DOI: 10.1016/j.parkreldis.2024.106991] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/31/2024] [Accepted: 04/29/2024] [Indexed: 09/05/2024]
Abstract
Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is the most common subtype of hereditary ataxia (HA), which is characterized by motor deficits and a lack of effective treatments, and imposes a huge physical, mental, and financial burden on patients and their families. Therefore, it is important to study the early pathogenesis of spinal cerebellar ataxia type 3 based on a mouse model for subsequent preventive treatment and seeking new therapeutic targets.
Collapse
Affiliation(s)
- Ying Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - YuYun Zhai
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ju Wang
- Department of Rehabilitation, Traditional Chinese Hospital Medicine of Qing Yang District of Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Cunha-Garcia D, Monteiro-Fernandes D, Correia JS, Neves-Carvalho A, Vilaça-Ferreira AC, Guerra-Gomes S, Viana JF, Oliveira JF, Teixeira-Castro A, Maciel P, Duarte-Silva S. Genetic Ablation of Inositol 1,4,5-Trisphosphate Receptor Type 2 (IP 3R2) Fails to Modify Disease Progression in a Mouse Model of Spinocerebellar Ataxia Type 3. Int J Mol Sci 2023; 24:10606. [PMID: 37445783 PMCID: PMC10341520 DOI: 10.3390/ijms241310606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is a rare neurodegenerative disease caused by an abnormal polyglutamine expansion within the ataxin-3 protein (ATXN3). This leads to neurodegeneration of specific brain and spinal cord regions, resulting in a progressive loss of motor function. Despite neuronal death, non-neuronal cells, including astrocytes, are also involved in SCA3 pathogenesis. Astrogliosis is a common pathological feature in SCA3 patients and animal models of the disease. However, the contribution of astrocytes to SCA3 is not clearly defined. Inositol 1,4,5-trisphosphate receptor type 2 (IP3R2) is the predominant IP3R in mediating astrocyte somatic calcium signals, and genetically ablation of IP3R2 has been widely used to study astrocyte function. Here, we aimed to investigate the relevance of IP3R2 in the onset and progression of SCA3. For this, we tested whether IP3R2 depletion and the consecutive suppression of global astrocytic calcium signalling would lead to marked changes in the behavioral phenotype of a SCA3 mouse model, the CMVMJD135 transgenic line. This was achieved by crossing IP3R2 null mice with the CMVMJD135 mouse model and performing a longitudinal behavioral characterization of these mice using well-established motor-related function tests. Our results demonstrate that IP3R2 deletion in astrocytes does not modify SCA3 progression.
Collapse
Affiliation(s)
- Daniela Cunha-Garcia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Daniela Monteiro-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Joana Sofia Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Ana Catarina Vilaça-Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Sónia Guerra-Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - João Filipe Viana
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
- IPCA-EST-2Ai, Polytechnic Institute of Cávado and Ave, Applied Artificial Intelligence Laboratory, Campus of IPCA, 4750-810 Barcelos, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal; (D.C.-G.); (D.M.-F.); (J.S.C.); (A.N.-C.); (A.C.V.-F.); (S.G.-G.); (J.F.V.); (J.F.O.); (A.T.-C.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal
| |
Collapse
|
5
|
Marvel CL, Chen L, Joyce MR, Morgan OP, Iannuzzelli KG, LaConte SM, Lisinski JM, Rosenthal LS, Li X. Quantitative susceptibility mapping of basal ganglia iron is associated with cognitive and motor functions that distinguish spinocerebellar ataxia type 6 and type 3. Front Neurosci 2022; 16:919765. [PMID: 36061587 PMCID: PMC9433989 DOI: 10.3389/fnins.2022.919765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background In spinocerebellar ataxia type 3 (SCA3), volume loss has been reported in the basal ganglia, an iron-rich brain region, but iron content has not been examined. Recent studies have reported that patients with SCA6 have markedly decreased iron content in the cerebellar dentate, coupled with severe volume loss. Changing brain iron levels can disrupt cognitive and motor functions, yet this has not been examined in the SCAs, a disease in which iron-rich regions are affected. Methods In the present study, we used quantitative susceptibility mapping (QSM) to measure tissue magnetic susceptibility (indicating iron concentration), structural volume, and normalized susceptibility mass (indicating iron content) in the cerebellar dentate and basal ganglia in people with SCA3 (n = 10) and SCA6 (n = 6) and healthy controls (n = 9). Data were acquired using a 7T Philips MRI scanner. Supplemental measures assessed motor, cognitive, and mood domains. Results Putamen volume was lower in both SCA groups relative to controls, replicating prior findings. Dentate susceptibility mass and volume in SCA6 was lower than in SCA3 or controls, also replicating prior findings. The novel finding was that higher basal ganglia susceptibility mass in SCA6 correlated with lower cognitive performance and greater motor impairment, an association that was not observed in SCA3. Cerebellar dentate susceptibility mass, however, had the opposite relationship with cognition and motor function in SCA6, suggesting that, as dentate iron is depleted, it relocated to the basal ganglia, which contributed to cognitive and motor decline. By contrast, basal ganglia volume loss, rather than iron content, appeared to drive changes in motor function in SCA3. Conclusion The associations of higher basal ganglia iron with lower motor and cognitive function in SCA6 but not in SCA3 suggest the potential for using brain iron deposition profiles beyond the cerebellar dentate to assess disease states within the cerebellar ataxias. Moreover, the role of the basal ganglia deserves greater attention as a contributor to pathologic and phenotypic changes associated with SCA.
Collapse
Affiliation(s)
- Cherie L. Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michelle R. Joyce
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Owen P. Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katherine G. Iannuzzelli
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Stephen M. LaConte
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Jonathan M. Lisinski
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
| | - Liana S. Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
6
|
Development of the human perihypoglossal nuclei from mid-gestation to the perinatal period: A morphological study. Neurosci Lett 2022; 782:136696. [PMID: 35623495 DOI: 10.1016/j.neulet.2022.136696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Morphological data on the development of the human perihypoglossal nuclei (PHN) are scarce. This study describes the morphology of the human PHN from mid-gestation to the perinatal period. MATERIALS AND METHODS Ten brains were collected from infants aged 21-43 postmenstrual weeks (PW). Serial sections were cut and stained using the Klüver-Barrera method. Morphometric parameters [volume, neuronal numerical density (Nv) and total number (Nt), and neuronal profile area (PA)] were analyzed from microscopic observations. RESULTS Four PHN [nucleus of Roller (RO), interfascicular nucleus (IF), intercalated nucleus (IC), and prepositus nucleus (PR)] were identified at 21 PW. Medium-sized to large, oval, or polygonal neurons were concentrated in the ventral nuclei (RO and IF) and localized regions near the IC-PR transition of the dorsal nuclei (IC and PR). Small to large neurons of various shapes were scattered across the dorsal nuclei. The PR showed rostrocaudal differences in the neuronal cytoarchitecture. The volume of each nucleus increased between 21 and 43 PW, with a typical exponential increase for the dorsal nuclei. The Nv in each nucleus exponentially decreased, whereas the Nt was almost stable. The median PA linearly increased for every nucleus, and the increasing rates were greater for the ventral nuclei than those for the dorsal nuclei. CONCLUSIONS The dorsal and ventral PHN are identifiable at mid-gestation. The topographic relationships of the four nuclei are conserved until the perinatal period. The characteristic neuronal cytoarchitecture of each group is rapidly formed by 28-30 PW.
Collapse
|
7
|
Louis ED, Faust PL. Essential Tremor Within the Broader Context of Other Forms of Cerebellar Degeneration. THE CEREBELLUM 2021; 19:879-896. [PMID: 32666285 DOI: 10.1007/s12311-020-01160-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Essential tremor (ET) has recently been reconceptualized by many as a degenerative disease of the cerebellum. Until now, though, there has been no attempt to frame it within the context of these diseases. Here, we compare the clinical and postmortem features of ET with other cerebellar degenerations, thereby placing it within the broader context of these diseases. Action tremor is the hallmark feature of ET. Although often underreported in the spinocerebellar ataxias (SCAs), action tremors occur, and it is noteworthy that in SCA12 and 15, they are highly prevalent, often severe, and can be the earliest disease manifestation, resulting in an initial diagnosis of ET in many cases. Intention tremor, sometimes referred to as "cerebellar tremor," is a common feature of ET and many SCAs. Other features of cerebellar dysfunction, gait ataxia and eye motion abnormalities, are seen to a mild degree in ET and more markedly in SCAs. Several SCAs (e.g., SCA5, 6, 14, and 15), like ET, follow a milder and more protracted disease course. In ET, numerous postmortem changes have been localized to the cerebellum and are largely confined to the cerebellar cortex, preserving the cerebellar nuclei. Purkinje cell loss is modest. Similarly, in SCA3, 12, and 15, Purkinje cell loss is limited, and in SCA12 and 15, there is preservation of cerebellar nuclei and relative sparing of other central nervous system regions. Both clinically and pathologically, there are numerous similarities and intersection points between ET and other disorders of cerebellar degeneration.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology and Therapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center and the New York Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
8
|
Stezin A, Bhardwaj S, Khokhar S, Hegde S, Jain S, Bharath RD, Saini J, Pal PK. In vivo microstructural white matter changes in early spinocerebellar ataxia 2. Acta Neurol Scand 2021; 143:326-332. [PMID: 33029780 DOI: 10.1111/ane.13359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE White matter (WM) integrity of Spinocerebellar ataxia 2 (SCA2) is poorly understood, more so in the early stages of SCA2. In this study, we evaluated the microstructural integrity of the WM tracts with an emphasis on the nature of in vivo pathological involvement in early SCA2. MATERIALS AND METHODS We evaluated the MRI images of 26 genetically proven SCA2 patients with disease duration <5 years and 24 age- and gender-matched healthy controls using tract-based spatial statistics (TBSS) to identify the WM tract changes and their clinico-genetic correlates (age at onset, duration of disease, ataxia severity and CAG repeat length) using standard methodology. RESULTS The mean age at onset and duration of disease were 28.7 ± 8.51 years and 3.5 ± 0.69 months, respectively. The mean CAG repeat length was 42.5 ± 4.6, and the ataxia severity score was 16.1 ± 4.9. Altered DTI scalars signifying degeneration was present in the bilateral anterior thalamic radiation (ATR), corticospinal tract (CST), inferior fronto-occipital fasciculus (IFOF), superior and inferior longitudinal fasciculus (SLF and ILF), uncinate fasciculus (UF), cingulum, corpus callosum (CC), forceps major and forceps minor (corrected p < .05). DTI scalars representing demyelination was seen in the superior cerebellar peduncle (SCP) and cerebellar WM. There was a significant correlation of SARA score with axial diffusivity of the bilateral cingulum, ATR, CST, forceps minor, IFOF, ILF, SLF and SCP on the right side (corrected p < .05). CONCLUSION Extensive WM involvement is present in early SCA2. The DTI scalars indicate degeneration and demyelination and may have clinical implications.
Collapse
Affiliation(s)
- Albert Stezin
- Department of Clinical Neurosciences, Department of Neurology National Institute of Mental Health & Neurosciences (NIMHANS) Bangalore India
| | - Sujas Bhardwaj
- Department of Neurology National Institute of Mental Health & Neurosciences (NIMHANS) Bangalore India
| | - Sunil Khokhar
- Department of Neuroimaging and Interventional Radiology National Institute of Mental Health & Neurosciences (NIMHANS) Bangalore India
| | - Shantala Hegde
- Department of Clinical Neuropsychology National Institute of Mental Health & Neurosciences (NIMHANS) Bangalore India
| | - Sanjeev Jain
- Department of Psychiatry National Institute of Mental Health & Neurosciences (NIMHANS) Bangalore India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology National Institute of Mental Health & Neurosciences (NIMHANS) Bangalore India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Radiology National Institute of Mental Health & Neurosciences (NIMHANS) Bangalore India
| | - Pramod Kumar Pal
- Department of Neurology National Institute of Mental Health & Neurosciences (NIMHANS) Bangalore India
| |
Collapse
|
9
|
Lemos J, Novo A, Duque C, Cunha I, Ribeiro J, Castelhano J, Januário C. Static and Dynamic Ocular Motor Abnormalities as Potential Biomarkers in Spinocerebellar Ataxia Type 3. THE CEREBELLUM 2020; 20:402-409. [PMID: 33215370 DOI: 10.1007/s12311-020-01217-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 01/19/2023]
Abstract
While dynamic ocular motor abnormalities (e.g., gaze-evoked nystagmus (GEN), low optokinetic nystagmus (OKN), pursuit and vestibulo-ocular reflex (VOR) gains, and dysmetric saccades) have been shown to be potential biomarkers in spinocerebellar ataxia type 3 (SCA3), the value of static abnormalities (e.g., convergent [esodeviation] and divergent strabismus [exodeviation]) is unknown. Moreover, studies on dynamic abnormalities in SCA3 usually do not take into account the existence of potential abduction-adduction asymmetries in patients with degenerative ataxia. Thirty-eight patients with genetically confirmed SCA3 (24 females; mean age ± SD, 49.8± 12.2 years) and 22 healthy controls (12 females, p = 0.589; mean age ± SD, 50.7± 12.5 years, p = 0.651) underwent clinical and video-oculographic assessment. A p value < 0.002 (between- and within-group analyses) and < 0.001 (correlation analysis) was considered significant. Patients showed larger esodeviation at distance (p < 0.001), became more esodeviated in lateral gaze (p < 0.001), and their near exodeviation correlated with scale for the assessment and rating of ataxia (SARA) score (p = 0.004). Pursuit, OKN, and VOR gains were lower in patients, both for their adducting and abducting components (p < 0.001). Saccades showed higher velocities (p < 0.001), abducting saccades showed lower amplitude (p < 0.001), and adducting saccades tended to show greater vertical bias (p = 0.018) in patients. Abducting saccades showed relatively lower velocity (p < 0.001) and lower amplitude (p = 0.015) than abducting saccades within patients. All dynamic ocular motor abnormalities except saccades correlated with SARA score, CAG repeat number, and/or disease duration (p < 0.001). Static and dynamic ocular motor abnormalities are potential biomarkers in SCA3. SCA3 studies using saccades should take into account the existence of potential abduction-adduction asymmetries.
Collapse
Affiliation(s)
- João Lemos
- Neurology Department, Coimbra University Hospital Centre, Praceta Mota Pinto, 3000-135, Coimbra, Portugal. .,Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra University, Coimbra, Portugal.
| | - Ana Novo
- Neurology Department, Coimbra University Hospital Centre, Praceta Mota Pinto, 3000-135, Coimbra, Portugal
| | - Cristina Duque
- Neurology Department, Coimbra University Hospital Centre, Praceta Mota Pinto, 3000-135, Coimbra, Portugal
| | - Inês Cunha
- Neurology Department, Coimbra University Hospital Centre, Praceta Mota Pinto, 3000-135, Coimbra, Portugal
| | - Joana Ribeiro
- Neurology Department, Coimbra University Hospital Centre, Praceta Mota Pinto, 3000-135, Coimbra, Portugal
| | - João Castelhano
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, Coimbra University, Coimbra, Portugal
| | - Cristina Januário
- Neurology Department, Coimbra University Hospital Centre, Praceta Mota Pinto, 3000-135, Coimbra, Portugal.,Faculty of Medicine, Coimbra University, Coimbra, Portugal
| |
Collapse
|
10
|
Sen NE, Arsovic A, Meierhofer D, Brodesser S, Oberschmidt C, Canet-Pons J, Kaya ZE, Halbach MV, Gispert S, Sandhoff K, Auburger G. In Human and Mouse Spino-Cerebellar Tissue, Ataxin-2 Expansion Affects Ceramide-Sphingomyelin Metabolism. Int J Mol Sci 2019; 20:E5854. [PMID: 31766565 PMCID: PMC6928749 DOI: 10.3390/ijms20235854] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/08/2023] Open
Abstract
Ataxin-2 (human gene symbol ATXN2) acts during stress responses, modulating mRNA translation and nutrient metabolism. Ataxin-2 knockout mice exhibit progressive obesity, dyslipidemia, and insulin resistance. Conversely, the progressive ATXN2 gain of function due to the fact of polyglutamine (polyQ) expansions leads to a dominantly inherited neurodegenerative process named spinocerebellar ataxia type 2 (SCA2) with early adipose tissue loss and late muscle atrophy. We tried to understand lipid dysregulation in a SCA2 patient brain and in an authentic mouse model. Thin layer chromatography of a patient cerebellum was compared to the lipid metabolome of Atxn2-CAG100-Knockin (KIN) mouse spinocerebellar tissue. The human pathology caused deficits of sulfatide, galactosylceramide, cholesterol, C22/24-sphingomyelin, and gangliosides GM1a/GD1b despite quite normal levels of C18-sphingomyelin. Cerebellum and spinal cord from the KIN mouse showed a consistent decrease of various ceramides with a significant elevation of sphingosine in the more severely affected spinal cord. Deficiency of C24/26-sphingomyelins contrasted with excess C18/20-sphingomyelin. Spinocerebellar expression profiling revealed consistent reductions of CERS protein isoforms, Sptlc2 and Smpd3, but upregulation of Cers2 mRNA, as prominent anomalies in the ceramide-sphingosine metabolism. Reduction of Asah2 mRNA correlated to deficient S1P levels. In addition, downregulations for the elongase Elovl1, Elovl4, Elovl5 mRNAs and ELOVL4 protein explain the deficit of very long-chain sphingomyelin. Reduced ASMase protein levels correlated to the accumulation of long-chain sphingomyelin. Overall, a deficit of myelin lipids was prominent in SCA2 nervous tissue at prefinal stage and not compensated by transcriptional adaptation of several metabolic enzymes. Myelination is controlled by mTORC1 signals; thus, our human and murine observations are in agreement with the known role of ATXN2 yeast, nematode, and mouse orthologs as mTORC1 inhibitors and autophagy promoters.
Collapse
Affiliation(s)
- Nesli-Ece Sen
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
- Faculty of Biosciences, Goethe-University, 60438 Frankfurt am Main, Germany
| | - Aleksandar Arsovic
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195 Berlin, Germany;
| | - Susanne Brodesser
- Membrane Biology and Lipid Biochemistry Unit, Life and Medical Sciences Institute, University of Bonn, 53121 Bonn, Germany;
| | - Carola Oberschmidt
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Júlia Canet-Pons
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Zeynep-Ece Kaya
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
- Cerrahpasa School of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Melanie-Vanessa Halbach
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Suzana Gispert
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| | - Konrad Sandhoff
- Membrane Biology and Lipid Biochemistry Unit, Life and Medical Sciences Institute, University of Bonn, 53121 Bonn, Germany;
| | - Georg Auburger
- Experimental Neurology, Building 89, Goethe University Medical Faculty, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany; (N.-E.S.); (A.A.); (C.O.); (J.C.-P.); (Z.-E.K.); (M.-V.H.); (S.G.)
| |
Collapse
|
11
|
Sen NE, Canet-Pons J, Halbach MV, Arsovic A, Pilatus U, Chae WH, Kaya ZE, Seidel K, Rollmann E, Mittelbronn M, Meierhofer D, De Zeeuw CI, Bosman LWJ, Gispert S, Auburger G. Generation of an Atxn2-CAG100 knock-in mouse reveals N-acetylaspartate production deficit due to early Nat8l dysregulation. Neurobiol Dis 2019; 132:104559. [PMID: 31376479 DOI: 10.1016/j.nbd.2019.104559] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominant neurodegenerative disorder caused by CAG-expansion mutations in the ATXN2 gene, mainly affecting motor neurons in the spinal cord and Purkinje neurons in the cerebellum. While the large expansions were shown to cause SCA2, the intermediate length expansions lead to increased risk for several atrophic processes including amyotrophic lateral sclerosis and Parkinson variants, e.g. progressive supranuclear palsy. Intense efforts to pioneer a neuroprotective therapy for SCA2 require longitudinal monitoring of patients and identification of crucial molecular pathways. The ataxin-2 (ATXN2) protein is mainly involved in RNA translation control and regulation of nutrient metabolism during stress periods. The preferential mRNA targets of ATXN2 are yet to be determined. In order to understand the molecular disease mechanism throughout different prognostic stages, we generated an Atxn2-CAG100-knock-in (KIN) mouse model of SCA2 with intact murine ATXN2 expression regulation. Its characterization revealed somatic mosaicism of the expansion, with shortened lifespan, a progressive spatio-temporal pattern of pathology with subsequent phenotypes, and anomalies of brain metabolites such as N-acetylaspartate (NAA), all of which mirror faithfully the findings in SCA2 patients. Novel molecular analyses from stages before the onset of motor deficits revealed a strong selective effect of ATXN2 on Nat8l mRNA which encodes the enzyme responsible for NAA synthesis. This metabolite is a prominent energy store of the brain and a well-established marker for neuronal health. Overall, we present a novel authentic rodent model of SCA2, where in vivo magnetic resonance imaging was feasible to monitor progression and where the definition of earliest transcriptional abnormalities was possible. We believe that this model will not only reveal crucial insights regarding the pathomechanism of SCA2 and other ATXN2-associated disorders, but will also aid in developing gene-targeted therapies and disease prevention.
Collapse
Affiliation(s)
- Nesli-Ece Sen
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Júlia Canet-Pons
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Melanie V Halbach
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Aleksandar Arsovic
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Ulrich Pilatus
- Institute of Neuroradiology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Woon-Hyung Chae
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Zeynep-Ece Kaya
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany; Department of Neurology, Cerrahpasa School of Medicine, Istanbul University, 34098 Istanbul, Turkey
| | - Kay Seidel
- Department of Anatomy II, Institute of Clinical Neuroanatomy, Goethe University, 60590 Frankfurt am Main, Germany
| | - Ewa Rollmann
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Michel Mittelbronn
- Neurological Institute (Edinger Institute), Goethe University, 60590 Frankfurt am Main, Germany; Luxembourg Centre of Neuropathology (LCNP), Luxembourg; Department of Pathology, Laboratoire National de Santé (LNS), Dudelange, Luxembourg; Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg; Department of Oncology, NORLUX Neuro-Oncology Laboratory, Luxembourg Institute of Health (LIH), Luxembourg
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Chris I De Zeeuw
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Department of Neuroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Laurens W J Bosman
- Department of Neuroscience, Erasmus Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Halbach MV, Gispert S, Stehning T, Damrath E, Walter M, Auburger G. Atxn2 Knockout and CAG42-Knock-in Cerebellum Shows Similarly Dysregulated Expression in Calcium Homeostasis Pathway. THE CEREBELLUM 2017; 16:68-81. [PMID: 26868665 PMCID: PMC5243904 DOI: 10.1007/s12311-016-0762-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited neurodegenerative disorder with preferential affection of Purkinje neurons, which are known as integrators of calcium currents. The expansion of a polyglutamine (polyQ) domain in the RNA-binding protein ataxin-2 (ATXN2) is responsible for this disease, but the causal roles of deficient ATXN2 functions versus aggregation toxicity are still under debate. Here, we studied mouse mutants with Atxn2 knockout (KO) regarding their cerebellar global transcriptome by microarray and RT-qPCR, in comparison with data from Atxn2-CAG42-knock-in (KIN) mouse cerebellum. Global expression downregulations involved lipid and growth signaling pathways in good agreement with previous data. As a novel effect, downregulations of key factors in calcium homeostasis pathways (the transcription factor Rora, transporters Itpr1 and Atp2a2, as well as regulator Inpp5a) were observed in the KO cerebellum, and some of them also occurred subtly early in KIN cerebellum. The ITPR1 protein levels were depleted from soluble fractions of cerebellum in both mutants, but accumulated in its membrane-associated form only in the SCA2 model. Coimmunoprecipitation demonstrated no association of ITPR1 with Q42-expanded or with wild-type ATXN2. These findings provide evidence that the physiological functions and protein interactions of ATXN2 are relevant for calcium-mediated excitation of Purkinje cells as well as for ATXN2-triggered neurotoxicity. These insights may help to understand pathogenesis and tissue specificity in SCA2 and other polyQ ataxias like SCA1, where inositol regulation of calcium flux and RORalpha play a role.
Collapse
Affiliation(s)
- Melanie Vanessa Halbach
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Tanja Stehning
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Ewa Damrath
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany
| | - Michael Walter
- Institute for Medical Genetics, Eberhard-Karls-University of Tuebingen, 72076, Tuebingen, Germany
| | - Georg Auburger
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Building 89, 3rd floor, Theodor Stern Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
13
|
Sen NE, Drost J, Gispert S, Torres-Odio S, Damrath E, Klinkenberg M, Hamzeiy H, Akdal G, Güllüoğlu H, Başak AN, Auburger G. Search for SCA2 blood RNA biomarkers highlights Ataxin-2 as strong modifier of the mitochondrial factor PINK1 levels. Neurobiol Dis 2016; 96:115-126. [PMID: 27597528 DOI: 10.1016/j.nbd.2016.09.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/24/2016] [Accepted: 09/01/2016] [Indexed: 12/13/2022] Open
Abstract
Ataxin-2 (ATXN2) polyglutamine domain expansions of large size result in an autosomal dominantly inherited multi-system-atrophy of the nervous system named spinocerebellar ataxia type 2 (SCA2), while expansions of intermediate size act as polygenic risk factors for motor neuron disease (ALS and FTLD) and perhaps also for Levodopa-responsive Parkinson's disease (PD). In view of the established role of ATXN2 for RNA processing in periods of cell stress and the expression of ATXN2 in blood cells such as platelets, we investigated whether global deep RNA sequencing of whole blood from SCA2 patients identifies a molecular profile which might serve as diagnostic biomarker. The bioinformatic analysis of SCA2 blood global transcriptomics revealed various significant effects on RNA processing pathways, as well as the pathways of Huntington's disease and PD where mitochondrial dysfunction is crucial. Notably, an induction of PINK1 and PARK7 expression was observed. Conversely, expression of Pink1 was severely decreased upon global transcriptome profiling of Atxn2-knockout mouse cerebellum and liver, in parallel to strong effects on Opa1 and Ghitm, which encode known mitochondrial dynamics regulators. These results were validated by quantitative PCR and immunoblots. Starvation stress of human SH-SY5Y neuroblastoma cells led to a transcriptional phasic induction of ATXN2 in parallel to PINK1, and the knockdown of one enhanced the expression of the other during stress response. These findings suggest that ATXN2 may modify the known PINK1 roles for mitochondrial quality control and autophagy during cell stress. Given that PINK1 is responsible for autosomal recessive juvenile PD, this genetic interaction provides a concept how the degeneration of nigrostriatal dopaminergic neurons and the Parkinson phenotype may be triggered by ATXN2 mutations.
Collapse
Affiliation(s)
- Nesli Ece Sen
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany; Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey
| | - Jessica Drost
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Sylvia Torres-Odio
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Ewa Damrath
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Michael Klinkenberg
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany
| | - Hamid Hamzeiy
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey
| | - Gülden Akdal
- Department of Neurology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Halil Güllüoğlu
- Department of Neurology, Faculty of Medicine, Izmir University, Izmir, Turkey
| | - A Nazlı Başak
- Suna and İnan Kıraç Foundation, Neurodegeneration Research Laboratory (NDAL), Boğaziçi University, 34342 Istanbul, Turkey.
| | - Georg Auburger
- Experimental Neurology, Goethe University Medical School, 60590 Frankfurt/Main, Germany.
| |
Collapse
|
14
|
Both ubiquitin ligases FBXW8 and PARK2 are sequestrated into insolubility by ATXN2 PolyQ expansions, but only FBXW8 expression is dysregulated. PLoS One 2015; 10:e0121089. [PMID: 25790475 PMCID: PMC4366354 DOI: 10.1371/journal.pone.0121089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/27/2015] [Indexed: 12/13/2022] Open
Abstract
The involvement of the ubiquitin-proteasome system (UPS) in the course of various age-associated neurodegenerative diseases is well established. The single RING finger type E3 ubiquitin-protein ligase PARK2 is mutated in a Parkinson’s disease (PD) variant and was found to interact with ATXN2, a protein where polyglutamine expansions cause Spinocerebellar ataxia type 2 (SCA2) or increase the risk for Levodopa-responsive PD and for the motor neuron disease Amyotrophic lateral sclerosis (ALS). We previously reported evidence for a transcriptional induction of the multi-subunit RING finger Skp1/Cul/F-box (SCF) type E3 ubiquitin-protein ligase complex component FBXW8 in global microarray profiling of ATXN2-expansion mouse cerebellum and demonstrated its role for ATXN2 degradation in vitro. Now, we documented co-localization in vitro and co-immunoprecipitations both in vitro and in vivo, which indicate associations of FBXW8 with ATXN2 and PARK2. Both FBXW8 and PARK2 proteins are driven into insolubility by expanded ATXN2. Whereas the FBXW8 transcript upregulation by ATXN2- expansion was confirmed also in qPCR of skin fibroblasts and blood samples of SCA2 patients, a FBXW8 expression dysregulation was not observed in ATXN2-deficient mice, nor was a PARK2 transcript dysregulation observed in any samples. Jointly, all available data suggest that the degradation of wildtype and mutant ATXN2 is dependent on FBXW8, and that ATXN2 accumulation selectively modulates FBXW8 levels, while PARK2 might act indirectly through FBXW8. The effects of ATXN2-expansions on FBXW8 expression in peripheral tissues like blood may become useful for clinical diagnostics.
Collapse
|
15
|
de Rezende TJR, D'Abreu A, Guimarães RP, Lopes TM, Lopes-Cendes I, Cendes F, Castellano G, França MC. Cerebral cortex involvement in Machado-Joseph disease. Eur J Neurol 2014; 22:277-83, e23-4. [PMID: 25251537 DOI: 10.1111/ene.12559] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 07/25/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Machado-Joseph disease (MJD/SCA3) is the most frequent spinocerebellar ataxia, characterized by brainstem, basal ganglia and cerebellar damage. Few magnetic resonance imaging based studies have investigated damage in the cerebral cortex. The objective was to determine whether patients with MJD/SCA3 have cerebral cortex atrophy, to identify regions more susceptible to damage and to look for the clinical and neuropsychological correlates of such lesions. METHODS Forty-nine patients with MJD/SCA3 (mean age 47.7 ± 13.0 years, 27 men) and 49 matched healthy controls were enrolled. All subjects underwent magnetic resonance imaging scans in a 3 T device, and three-dimensional T1 images were used for volumetric analyses. Measurement of cortical thickness and volume was performed using the FreeSurfer software. Groups were compared using ancova with age, gender and estimated intracranial volume as covariates, and a general linear model was used to assess correlations between atrophy and clinical variables. RESULTS Mean CAG expansion, Scale for Assessment and Rating of Ataxia (SARA) score and age at onset were 72.1 ± 4.2, 14.7 ± 7.3 and 37.5 ± 12.5 years, respectively. The main findings were (i) bilateral paracentral cortex atrophy, as well as the caudal middle frontal gyrus, superior and transverse temporal gyri, and lateral occipital cortex in the left hemisphere and supramarginal gyrus in the right hemisphere; (ii) volumetric reduction of basal ganglia and hippocampi; (iii) a significant correlation between SARA and brainstem and precentral gyrus atrophy. Furthermore, some of the affected cortical regions showed significant correlations with neuropsychological data. CONCLUSIONS Patients with MJD/SCA3 have widespread cortical and subcortical atrophy. These structural findings correlate with clinical manifestations of the disease, which support the concept that cognitive/motor impairment and cerebral damage are related in disease.
Collapse
Affiliation(s)
- T J R de Rezende
- Department of Neurology, University of Campinas (UNICAMP), Campinas, Brazil; Department of Cosmic Rays and Chronology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Seidel K, Mahlke J, Siswanto S, Krüger R, Heinsen H, Auburger G, Bouzrou M, Grinberg LT, Wicht H, Korf HW, den Dunnen W, Rüb U. The brainstem pathologies of Parkinson's disease and dementia with Lewy bodies. Brain Pathol 2014; 25:121-35. [PMID: 24995389 DOI: 10.1111/bpa.12168] [Citation(s) in RCA: 221] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/22/2014] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) and dementia with Lewy bodies (DLB) are among the human synucleinopathies, which show alpha-synuclein immunoreactive neuronal and/or glial aggregations and progressive neuronal loss in selected brain regions (eg, substantia nigra, ventral tegmental area, pedunculopontine nucleus). Despite several studies about brainstem pathologies in PD and DLB, there is currently no detailed information available regarding the presence of alpha-synuclein immunoreactive inclusions (i) in the cranial nerve, precerebellar, vestibular and oculomotor brainstem nuclei and (ii) in brainstem fiber tracts and oligodendroctyes. Therefore, we analyzed the inclusion pathologies in the brainstem nuclei (Lewy bodies, LB; Lewy neurites, LN; coiled bodies, CB) and fiber tracts (LN, CB) of PD and DLB patients. As reported in previous studies, LB and LN were most prevalent in the substantia nigra, ventral tegmental area, pedunculopontine and raphe nuclei, periaqueductal gray, locus coeruleus, parabrachial nuclei, reticular formation, prepositus hypoglossal, dorsal motor vagal and solitary nuclei. Additionally we were able to demonstrate LB and LN in all cranial nerve nuclei, premotor oculomotor, precerebellar and vestibular brainstem nuclei, as well as LN in all brainstem fiber tracts. CB were present in nearly all brainstem nuclei and brainstem fiber tracts containing LB and/or LN. These findings can contribute to a large variety of less well-explained PD and DLB symptoms (eg, gait and postural instability, impaired balance and postural reflexes, falls, ingestive and oculomotor dysfunctions) and point to the occurrence of disturbances of intra-axonal transport processes and transneuronal spread of the underlying pathological processes of PD and DLB along anatomical pathways.
Collapse
Affiliation(s)
- Kay Seidel
- Dr. Senckenbergisches Chronomedizinisches Institute, J.W. Goethe University, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kang JS, Klein JC, Baudrexel S, Deichmann R, Nolte D, Hilker R. White matter damage is related to ataxia severity in SCA3. J Neurol 2013; 261:291-9. [PMID: 24272589 DOI: 10.1007/s00415-013-7186-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/05/2013] [Accepted: 11/05/2013] [Indexed: 12/31/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) is the most frequent inherited cerebellar ataxia in Europe, the US and Japan, leading to disability and death through motor complications. Although the affected protein ataxin-3 is found ubiquitously in the brain, grey matter atrophy is predominant in the cerebellum and the brainstem. White matter pathology is generally less severe and thought to occur in the brainstem, spinal cord, and cerebellar white matter. Here, we investigated both grey and white matter pathology in a group of 12 SCA3 patients and matched controls. We used voxel-based morphometry for analysis of tissue loss, and tract-based spatial statistics (TBSS) on diffusion magnetic resonance imaging to investigate microstructural pathology. We analysed correlations between microstructural properties of the brain and ataxia severity, as measured by the Scale for the Assessment and Rating of Ataxia (SARA) score. SCA3 patients exhibited significant loss of both grey and white matter in the cerebellar hemispheres, brainstem including pons and in lateral thalamus. On between-group analysis, TBSS detected widespread microstructural white matter pathology in the cerebellum, brainstem, and bilaterally in thalamus and the cerebral hemispheres. Furthermore, fractional anisotropy in a white matter network comprising frontal, thalamic, brainstem and left cerebellar white matter strongly and negatively correlated with SARA ataxia scores. Tractography identified the thalamic white matter thus implicated as belonging to ventrolateral thalamus. Disruption of white matter integrity in patients suffering from SCA3 is more widespread than previously thought. Moreover, our data provide evidence that microstructural white matter changes in SCA3 are strongly related to the clinical severity of ataxia symptoms.
Collapse
Affiliation(s)
- J-S Kang
- Department of Neurology, Goethe-University of Frankfurt, Schleusenweg 2-16, 60528, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Rüb U, Farrag K, Seidel K, Brunt ER, Heinsen H, Bürk K, Melegh B, von Gall C, Auburger G, Bohl J, Korf HW, Hoche F, den Dunnen W. Involvement of the cholinergic basal forebrain nuclei in spinocerebellar ataxia type 2 (SCA2). Neuropathol Appl Neurobiol 2013; 39:634-43. [DOI: 10.1111/nan.12025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 01/18/2013] [Indexed: 12/30/2022]
Affiliation(s)
- U. Rüb
- Dr. Senckenberg Chronomedical Institute; Goethe-University; Frankfurt/Main; Germany
| | - K. Farrag
- Dr. Senckenberg Chronomedical Institute; Goethe-University; Frankfurt/Main; Germany
| | - K. Seidel
- Dr. Senckenberg Chronomedical Institute; Goethe-University; Frankfurt/Main; Germany
| | - E. R. Brunt
- Department of Neurology; University Medical Center Groningen; University of Groningen; Groningen; The Netherlands
| | - H. Heinsen
- Morphological Brain Research Unit; Psychiatric Clinic; Julius Maximilians University, Würzburg; Würzburg; Germany
| | - K. Bürk
- Department of Neurology; Philipps-University of Marburg; Marburg; Germany
| | - B. Melegh
- Department of Medical Genetics; University of Pécs; Pécs; Hungary
| | - C. von Gall
- Dr. Senckenberg Chronomedical Institute; Goethe-University; Frankfurt/Main; Germany
| | - G. Auburger
- Molecular Neurogenetics; Department of Neurology; Goethe-University; Frankfurt/Main; Germany
| | - J. Bohl
- Neuropathology Division; Johannes Gutenberg-University; Mainz; Germany
| | - H. W. Korf
- Dr. Senckenberg Chronomedical Institute; Goethe-University; Frankfurt/Main; Germany
| | - F. Hoche
- Dr. Senckenberg Chronomedical Institute; Goethe-University; Frankfurt/Main; Germany
| | - W. den Dunnen
- Department of Pathology and Medical Biology; University Medical Center Groningen; University of Groningen; Groningen; The Netherlands
| |
Collapse
|
19
|
Rüb U, Schöls L, Paulson H, Auburger G, Kermer P, Jen JC, Seidel K, Korf HW, Deller T. Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol 2013; 104:38-66. [PMID: 23438480 DOI: 10.1016/j.pneurobio.2013.01.001] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 01/22/2013] [Accepted: 01/31/2013] [Indexed: 12/18/2022]
Abstract
The spinocerebellar ataxias type 1 (SCA1), 2 (SCA2), 3 (SCA3), 6 (SCA6) and 7 (SCA7) are genetically defined autosomal dominantly inherited progressive cerebellar ataxias (ADCAs). They belong to the group of CAG-repeat or polyglutamine diseases and share pathologically expanded and meiotically unstable glutamine-encoding CAG-repeats at distinct gene loci encoding elongated polyglutamine stretches in the disease proteins. In recent years, progress has been made in the understanding of the pathogenesis of these currently incurable diseases: Identification of underlying genetic mechanisms made it possible to classify the different ADCAs and to define their clinical and pathological features. Furthermore, advances in molecular biology yielded new insights into the physiological and pathophysiological role of the gene products of SCA1, SCA2, SCA3, SCA6 and SCA7 (i.e. ataxin-1, ataxin-2, ataxin-3, α-1A subunit of the P/Q type voltage-dependent calcium channel, ataxin-7). In the present review we summarize our current knowledge about the polyglutamine ataxias SCA1, SCA2, SCA3, SCA6 and SCA7 and compare their clinical and electrophysiological features, genetic and molecular biological background, as well as their brain pathologies. Furthermore, we provide an overview of the structure, interactions and functions of the different disease proteins. On the basis of these comprehensive data, similarities, differences and possible disease mechanisms are discussed.
Collapse
Affiliation(s)
- Udo Rüb
- Dr. Senckenberg Chronomedical Institute, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Scherzed W, Brunt ER, Heinsen H, de Vos RA, Seidel K, Bürk K, Schöls L, Auburger G, Del Turco D, Deller T, Korf HW, den Dunnen WF, Rüb U. Pathoanatomy of cerebellar degeneration in spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3). THE CEREBELLUM 2012; 11:749-60. [PMID: 22198871 DOI: 10.1007/s12311-011-0340-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cerebellum is one of the well-known targets of the pathological processes underlying spinocerebellar ataxia type 2 (SCA2) and type 3 (SCA3). Despite its pivotal role for the clinical pictures of these polyglutamine ataxias, no pathoanatomical studies of serial tissue sections through the cerebellum have been performed in SCA2 and SCA3 so far. Detailed pathoanatomical data are an important prerequisite for the identification of the initial events of the underlying disease processes of SCA2 and SCA3 and the reconstruction of its spread through the brain. In the present study, we performed a pathoanatomical investigation of serial thick tissue sections through the cerebellum of clinically diagnosed and genetically confirmed SCA2 and SCA3 patients. This study demonstrates that the cerebellar Purkinje cell layer and all four deep cerebellar nuclei consistently undergo considerable neuronal loss in SCA2 and SCA3. These cerebellar findings contribute substantially to the pathogenesis of clinical symptoms (i.e., dysarthria, intention tremor, oculomotor dysfunctions) of SCA2 and SCA3 patients and may facilitate the identification of the initial pathological alterations of the pathological processes of SCA2 and SCA3 and reconstruction of its spread through the brain.
Collapse
Affiliation(s)
- W Scherzed
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Goethe-University, Theodor-Stern-Kai 7, Frankfurt/Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Rüb U, Bürk K, Timmann D, den Dunnen W, Seidel K, Farrag K, Brunt E, Heinsen H, Egensperger R, Bornemann A, Schwarzacher S, Korf HW, Schöls L, Bohl J, Deller T. Spinocerebellar ataxia type 1 (SCA1): new pathoanatomical and clinico-pathological insights. Neuropathol Appl Neurobiol 2012; 38:665-80. [DOI: 10.1111/j.1365-2990.2012.01259.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
22
|
Damrath E, Heck MV, Gispert S, Azizov M, Nowock J, Seifried C, Rüb U, Walter M, Auburger G. ATXN2-CAG42 sequesters PABPC1 into insolubility and induces FBXW8 in cerebellum of old ataxic knock-in mice. PLoS Genet 2012; 8:e1002920. [PMID: 22956915 PMCID: PMC3431311 DOI: 10.1371/journal.pgen.1002920] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 07/10/2012] [Indexed: 12/15/2022] Open
Abstract
Spinocerebellar Ataxia Type 2 (SCA2) is caused by expansion of a polyglutamine encoding triplet repeat in the human ATXN2 gene beyond (CAG)31. This is thought to mediate toxic gain-of-function by protein aggregation and to affect RNA processing, resulting in degenerative processes affecting preferentially cerebellar neurons. As a faithful animal model, we generated a knock-in mouse replacing the single CAG of murine Atxn2 with CAG42, a frequent patient genotype. This expansion size was inherited stably. The mice showed phenotypes with reduced weight and later motor incoordination. Although brain Atxn2 mRNA became elevated, soluble ATXN2 protein levels diminished over time, which might explain partial loss-of-function effects. Deficits in soluble ATXN2 protein correlated with the appearance of insoluble ATXN2, a progressive feature in cerebellum possibly reflecting toxic gains-of-function. Since in vitro ATXN2 overexpression was known to reduce levels of its protein interactor PABPC1, we studied expansion effects on PABPC1. In cortex, PABPC1 transcript and soluble and insoluble protein levels were increased. In the more vulnerable cerebellum, the progressive insolubility of PABPC1 was accompanied by decreased soluble protein levels, with PABPC1 mRNA showing no compensatory increase. The sequestration of PABPC1 into insolubility by ATXN2 function gains was validated in human cell culture. To understand consequences on mRNA processing, transcriptome profiles at medium and old age in three different tissues were studied and demonstrated a selective induction of Fbxw8 in the old cerebellum. Fbxw8 is encoded next to the Atxn2 locus and was shown in vitro to decrease the level of expanded insoluble ATXN2 protein. In conclusion, our data support the concept that expanded ATXN2 undergoes progressive insolubility and affects PABPC1 by a toxic gain-of-function mechanism with tissue-specific effects, which may be partially alleviated by the induction of FBXW8. Frequent age-associated neurodegenerative disorders like Alzheimer's, Parkinson's, and Lou Gehrig's disease are being elucidated molecularly by studying rare heritable variants. Various hereditary neurodegenerative disorders are caused by polyglutamine expansions in different proteins. In spite of this common pathogenesis and the pathological aggregation of most affected proteins, investigators were puzzled that the pattern of affected neuron population varies and that molecular mechanisms seem different between such disorders. The polyglutamine expansions in the Ataxin-2 (ATXN2) protein are exceptional in view of the lack of aggregate clumps in nuclei of affected Purkinje neurons and well documented alterations of RNA processing in the resulting disorders SCA2 and ALS. Here, as a faithful disease model and to overcome the unavailability of autopsied patient brain tissues, we generated and characterized an ATXN2-CAG42-knock-in mouse mutant. Our data show that the unspecific, chronically present mutation leads to progressive insolubility and to reduced soluble levels of the disease protein and of an interactor protein, which modulates RNA processing. Compensatory efforts are particularly weak in vulnerable tissue. They appear to include the increased degradation of the toxic disease protein by FBXW8. Thus the link between protein and RNA pathology becomes clear, and crucial molecular targets for preventive therapy are identified.
Collapse
Affiliation(s)
- Ewa Damrath
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Melanie V. Heck
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Suzana Gispert
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Mekhman Azizov
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Joachim Nowock
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Carola Seifried
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Udo Rüb
- Department of Clinical Neuroanatomy, Dr. Senckenbergisches Chronomedizinisches Institut, Goethe University Medical School, Frankfurt am Main, Germany
| | - Michael Walter
- Institute of Medical Genetics, Eberhard Karls University, Tübingen, Germany
| | - Georg Auburger
- Experimental Neurology, Department of Neurology, Goethe University Medical School, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
23
|
Seidel K, Siswanto S, Brunt ERP, den Dunnen W, Korf HW, Rüb U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol 2012; 124:1-21. [PMID: 22684686 DOI: 10.1007/s00401-012-1000-x] [Citation(s) in RCA: 304] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/25/2012] [Accepted: 05/25/2012] [Indexed: 12/22/2022]
Abstract
The autosomal dominant cerebellar ataxias (ADCAs) represent a heterogeneous group of neurodegenerative diseases with progressive ataxia and cerebellar degeneration. The current classification of this disease group is based on the underlying genetic defects and their typical disease courses. According to this categorization, ADCAs are divided into the spinocerebellar ataxias (SCAs) with a progressive disease course, and the episodic ataxias (EA) with episodic occurrences of ataxia. The prominent disease symptoms of the currently known and genetically defined 31 SCA types result from damage to the cerebellum and interconnected brain grays and are often accompanied by more specific extra-cerebellar symptoms. In the present review, we report the genetic and clinical background of the known SCAs and present the state of neuropathological investigations of brain tissue from SCA patients in the final disease stages. Recent findings show that the brain is commonly seriously affected in the polyglutamine SCAs (i.e. SCA1, SCA2, SCA3, SCA6, SCA7, and SCA17) and that the patterns of brain damage in these diseases overlap considerably in patients suffering from advanced disease stages. In the more rarely occurring non-polyglutamine SCAs, post-mortem neuropathological data currently are scanty and investigations have been primarily performed in vivo by means of MRI brain imaging. Only a minority of SCAs exhibit symptoms and degenerative patterns allowing for a clear and unambiguous diagnosis of the disease, e.g. retinal degeneration in SCA7, tau aggregation in SCA11, dentate calcification in SCA20, protein depositions in the Purkinje cell layer in SCA31, azoospermia in SCA32, and neurocutaneous phenotype in SCA34. The disease proteins of polyglutamine ataxias and some non-polyglutamine ataxias aggregate as cytoplasmic or intranuclear inclusions and serve as morphological markers. Although inclusions may impair axonal transport, bind transcription factors, and block protein quality control, detailed molecular and pathogenetic consequences remain to be determined.
Collapse
Affiliation(s)
- Kay Seidel
- Dr. Senckenbergisches Chronomedizinisches Institut, Goethe University, Theodor-Stern-Kai 7, 60950, Frankfurt/Main, Germany
| | | | | | | | | | | |
Collapse
|
24
|
Seidel K, Vinet J, Dunnen WFAD, Brunt ER, Meister M, Boncoraglio A, Zijlstra MP, Boddeke HWGM, Rüb U, Kampinga HH, Carra S. The HSPB8-BAG3 chaperone complex is upregulated in astrocytes in the human brain affected by protein aggregation diseases. Neuropathol Appl Neurobiol 2012; 38:39-53. [PMID: 21696420 DOI: 10.1111/j.1365-2990.2011.01198.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIMS HSPB8 is a small heat shock protein that forms a complex with the co-chaperone BAG3. Overexpression of the HSPB8-BAG3 complex in cells stimulates autophagy and facilitates the clearance of mutated aggregation-prone proteins, whose accumulation is a hallmark of many neurodegenerative disorders. HSPB8-BAG3 could thus play a protective role in protein aggregation diseases and might be specifically upregulated in response to aggregate-prone protein-mediated toxicity. Here we analysed HSPB8-BAG3 expression levels in post-mortem human brain tissue from patients suffering of the following protein conformation disorders: Alzheimer's disease, Parkinson's disease, Huntington's disease and spinocerebellar ataxia type 3 (SCA3). METHODS Western blotting and immunohistochemistry techniques were used to analyse HSPB8 and BAG3 expression levels in fibroblasts from SCA3 patients and post-mortem brain tissues, respectively. RESULTS In all diseases investigated, we observed a strong upregulation of HSPB8 and a moderate upregulation of BAG3 specifically in astrocytes in the cerebral areas affected by neuronal damage and degeneration. Intriguingly, no significant change in the HSPB8-BAG3 expression levels was observed within neurones, irrespective of their localization or of the presence of proteinaceous aggregates. CONCLUSIONS We propose that the upregulation of HSPB8 and BAG3 may enhance the ability of astrocytes to clear aggregated proteins released from neurones and cellular debris, maintain the local tissue homeostasis and/or participate in the cytoskeletal remodelling that astrocytes undergo during astrogliosis.
Collapse
Affiliation(s)
- K Seidel
- Department of Pathology and Medical Biology, University Medical Centre Groningen, Groningen, the Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Affiliation(s)
- Georg W J Auburger
- Section Molecular Neurogenetics, Department of Neurology, Johann Wolfgang Goeche University Medical School, Frankfurt/Main, Germany.
| |
Collapse
|
26
|
Affiliation(s)
- Jonathan D Fratkin
- Departments of Pathology (Neuropathology), University of Mississippi Medical Center, Jackson, MS 39216-4505, USA.
| | | |
Collapse
|
27
|
Matilla-Dueñas A. Machado-Joseph disease and other rare spinocerebellar ataxias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 724:172-88. [PMID: 22411243 DOI: 10.1007/978-1-4614-0653-2_14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The spinocerebellar ataxias (SCAs) are a group of neurodegenerative diseases characterised by progressive lack of motor coordination leading to major disability. SCAs show high clinical, genetic, molecular and epidemiological variability. In the last one decade, the intensive scientific research devoted to the SCAs is resulting in clear advances and a better understanding on the genetic and nongenetic factors contributing to their pathogenesis which are facilitating the diagnosis, prognosis and development of new therapies. The scope of this chapter is to provide an updated information on Machado-Joseph disease (MJD), the most frequent SCA subtype worldwide and other rare spinocerebellar ataxias including dentatorubral-pallidoluysian atrophy (DRPLA), the X-linked fragile X tremor and ataxia syndrome (FXTAS) and the nonprogressive episodic forms of inherited ataxias (EAs). Furthermore, the different therapeutic strategies that are currently being investigated to treat the ataxia and non-ataxia symptoms in SCAs are also described.
Collapse
|
28
|
Hoche F, Balikó L, den Dunnen W, Steinecker K, Bartos L, Sáfrány E, Auburger G, Deller T, Korf HW, Klockgether T, Rüb U, Melegh B. Spinocerebellar ataxia type 2 (SCA2): identification of early brain degeneration in one monozygous twin in the initial disease stage. THE CEREBELLUM 2011; 10:245-53. [PMID: 21128038 DOI: 10.1007/s12311-010-0239-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Spinocerebellar ataxia type 2 (SCA2) is a progressive autosomal dominantly inherited cerebellar ataxia and is assigned to the CAG repeat or polyglutamine diseases. Recent morphological studies characterized the pathoanatomical features in heterozygous SCA2 patients and revealed severe neuronal loss in a large variety of cerebellar and extra-cerebellar brain sites. In the present study, we examined the brain pathoanatomy of a monozygous twin of a large Hungarian SCA2 family with pathologically extended CAG repeats in both SCA2 alleles. This unique patient was in the initial clinical stage of SCA2 and died almost 3 years after SCA2 onset. Upon pathoanatomical investigation, we observed loss of giant Betz pyramidal cells in the primary motor cortex, degeneration of sensory thalamic nuclei, the Purkinje cell layer, and deep cerebellar nuclei, as well as select brainstem nuclei (i.e., substantia nigra, oculomotor nucleus, reticulotegmental nucleus of the pons, facial, lateral vestibular, and raphe interpositus nuclei, inferior olive). All of these degenerated brain gray matter structures are known as consistent targets of the underlying pathological process in heterozygous SCA2 patients. Since they were already involved in our patient within 3 years after disease onset, we think that we were for the first time able to identify the early brain targets of the pathological process of SCA2.
Collapse
Affiliation(s)
- Franziska Hoche
- Institute of Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Goethe-University, 60590, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
D'Abreu A, França MC, Yasuda CL, Campos BAG, Lopes-Cendes I, Cendes F. Neocortical atrophy in Machado-Joseph disease: a longitudinal neuroimaging study. J Neuroimaging 2011; 22:285-91. [PMID: 21699609 DOI: 10.1111/j.1552-6569.2011.00614.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND/PURPOSE Previous imaging studies in the Machado-Joseph disease (MJD/SCA3) have mostly concentrated on the cerebellum and brainstem. Our goal was to perform a whole brain longitudinal evaluation. METHODS We included 45 patients and 51 controls, who underwent two brain magnetic resonance imaging and magnetic resonance spectroscopy (mean interval of 12.5 ± 1.5 months). We used voxel-based morphometry (VBM) and the MarsBar analysis toolbox to extract grey matter density (GMD) values from regions of interest. We used a linear regression model and a general linear model to correlate GMD with clinical markers, and paired t-test for the longitudinal evaluation. RESULTS We observed decreased GMD (P < .01) at frontal, parietal, temporal and occipital lobes, subcortical grey matter, cerebellum, and brainstem. White matter atrophy was restricted to the cerebellum. Age, CAG, and disease duration predicted GMD in different areas, but age and CAG were the most important predictors. The longitudinal analysis failed to demonstrate changes. Changes in regions other than the cerebellum appeared to contribute significantly to the final International Cooperative Ataxia Rating Scale score. CONCLUSION We confirmed cortical involvement in MJD/SCA3. The most important factors in predicting GMD were age and CAG. The lack of progression of atrophy may indicate floor effect and/or short duration of follow-up.
Collapse
|
30
|
Baizer JS, Sherwood CC, Hof PR, Witelson SF, Sultan F. Neurochemical and Structural Organization of the Principal Nucleus of the Inferior Olive in the Human. Anat Rec (Hoboken) 2011; 294:1198-216. [DOI: 10.1002/ar.21400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 03/28/2011] [Accepted: 03/28/2011] [Indexed: 02/06/2023]
|
31
|
Abstract
The aim of this review is to provide data on sleep disturbances in three categories of neurodegenerative disorders: synucleinopathies, tauopathies, and other diseases (this heterogeneous group includes also spinocerebellar degeneration and amyotrophic lateral sclerosis). Analysing and knowing sleep disorders in neurodegenerative diseases may offer important insights into the pathomechanism of some of these diseases and calls attention to the still insufficiently known 'sleep neurology'. The identification of sleep disorders in some neurodegenerative conditions may make their diagnosis easier and earlier; for example, rapid eye movements sleep behaviour disorder may precede any other clinical manifestation of synucleinopathies by more than 10 years.
Collapse
Affiliation(s)
- A Raggi
- Department of Neurology I.C., Oasi Institute for Research on Mental Retardation and Brain Aging (IRCCS), Troina, Italy
| | | |
Collapse
|
32
|
Quartu M, Serra MP, Boi M, Melis T, Ambu R, Del Fiacco M. Brain-derived neurotrophic factor (BDNF) and polysialylated-neural cell adhesion molecule (PSA-NCAM): codistribution in the human brainstem precerebellar nuclei from prenatal to adult age. Brain Res 2010; 1363:49-62. [PMID: 20932956 DOI: 10.1016/j.brainres.2010.09.106] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/28/2010] [Accepted: 09/28/2010] [Indexed: 01/17/2023]
Abstract
Occurrence and distribution of the neurotrophin brain-derived neurotrophic factor (BDNF) and polysialylated-neural cell adhesion molecule (PSA-NCAM), a neuroplasticity marker known to modulate BDNF signalling, were examined by immunohistochemistry in the human brainstem precerebellar nuclei at prenatal, perinatal and adult age. Western blot analysis performed in human brainstem showed for both molecules a single protein band compatible with the molecular weight of the dimeric form of mature BDNF and with that of PSA-NCAM. Detectability of both molecules up to 72h post-mortem was also assessed in rat brain. In neuronal perikarya, BDNF-like immunoreactivity (LI) appeared as intracytoplasmic granules, whereas PSA-NCAM-LI appeared mostly as peripheral staining, indicative of membrane labelling; immunoreactivity to both substances also labelled nerve fibres and terminals. BDNF- and PSA-NCAM-LI occurred in the external cuneate nucleus, perihypoglossal nuclei, inferior olive complex, arcuate nucleus, lateral reticular formation, vestibular nuclei, pontine reticulotegmental and paramedian reticular nuclei, and pontine basilar nuclei. With few exceptions, for both substances the distribution pattern detected at prenatal age persisted later on, though the immunoreactivity appeared often higher in pre- and full-term newborns than in adult specimens. The results obtained suggest that BDNF operates in the development, maturation, maintenance and plasticity of human brainstem precerebellar neuronal systems. They also imply a multiple origin for the BDNF-LI of the human cerebellum. The codistribution of BDNF- and PSA-NCAM-LI in analyzed regions suggests that PSA-NCAM may modulate the functional interaction between BDNF and its high and low affinity receptors, an issue worth further analysis, particularly in view of the possible clinical significance of neuronal trophism in cerebellar neurodegenerative disorders.
Collapse
Affiliation(s)
- Marina Quartu
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy.
| | | | | | | | | | | |
Collapse
|
33
|
Axonal inclusions in spinocerebellar ataxia type 3. Acta Neuropathol 2010; 120:449-60. [PMID: 20635090 PMCID: PMC2923324 DOI: 10.1007/s00401-010-0717-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 06/29/2010] [Accepted: 07/02/2010] [Indexed: 01/08/2023]
Abstract
Protein aggregation is a major pathological hallmark of many neurodegenerative disorders including polyglutamine diseases. Aggregation of the mutated form of the disease protein ataxin-3 into neuronal nuclear inclusions is well described in the polyglutamine disorder spinocerebellar ataxia type 3 (SCA3 or Machado-Joseph disease), although these inclusions are not thought to be directly pathogenic. Neuropil aggregates have not yet been described in SCA3. We performed a systematic immunohistochemical study of serial thick sections through brains of seven clinically diagnosed and genetically confirmed SCA3 patients. Using antibodies against ataxin-3, p62, ubiquitin, the polyglutamine marker 1C2 as well as TDP-43, we analyzed neuronal localization, composition and distribution of aggregates within SCA3 brains. The analysis revealed widespread axonal aggregates in fiber tracts known to undergo neurodegeneration in SCA3. Similar to neuronal nuclear inclusions, the axonal aggregates were ubiquitinated and immunopositive for the proteasome and autophagy associated shuttle protein p62, indicating involvement of neuronal protein quality control mechanisms. Rare TDP-43 positive axonal inclusions were also observed. Based on the correlation between affected fiber tracts and degenerating neuronal nuclei, we hypothesize that these novel axonal inclusions may be detrimental to axonal transport mechanisms and thereby contribute to degeneration of nerve cells in SCA3.
Collapse
|
34
|
Gierga K, Schelhaas HJ, Brunt ER, Seidel K, Scherzed W, Egensperger R, de Vos RAI, den Dunnen W, Ippel PF, Petrasch-Parwez E, Deller T, Schöls L, Rüb U. Spinocerebellar ataxia type 6 (SCA6): neurodegeneration goes beyond the known brain predilection sites. Neuropathol Appl Neurobiol 2009; 35:515-27. [DOI: 10.1111/j.1365-2990.2009.01015.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
35
|
Abstract
Spinocerebellar ataxia type 2 (SCA2) is an autosomal dominantly inherited, neurodegenerative disease. It can manifest either with a cerebellar syndrome or as Parkinson's syndrome, while later stages involve mainly brainstem, spinal cord and thalamus. This particular atrophy pattern resembles sporadic multi-system-atrophy (MSA) and results in some clinical features indicative of SCA2, such as early saccade slowing, early hyporeflexia, severe tremor of postural or action type, and early myoclonus. For treatment, levodopa is temporarily useful for rigidity/bradykinesia and for tremor, magnesium for muscle cramps, but neuroprotective therapy will depend on the elucidation of pathogenesis. The disease cause lies in the polyglutamine domain of the protein ataxin-2, which can expand in families over successive generations resulting in earlier onset age and faster progression. Genetic testing in SCA2 and other polyglutamine disorders like the well-studied Huntington's disease is now readily available for family planning. Although these disorders differ clinically and in the affected neuron populations, it is not understood how the different polyglutamine proteins mediate such tissue specificity. The neuronal intranuclear inclusion bodies described in other polyglutamine disorders are not frequent in SCA2. For the quite ubiquitously expressed ataxin-2, a subcellular localization at the Golgi, the endoplasmic reticulum and the plasma membrane, in interaction with proteins of mRNA translation and of endocytosis have been observed. As a first victim of SCA2 degeneration, cerebellar Purkinje neurons may be preferentially susceptible to alterations of these subcellular pathways, and therefore our review aims to portray the particular profile of the SCA2 disease process and correlate it to the specific features of ataxin-2.
Collapse
Affiliation(s)
- Isabel Lastres-Becker
- Molecular Neurogenetics, Department of Neurology, Klinikum, J. W. Goethe University, Frankfurt am Main, Germany
| | | | | |
Collapse
|
36
|
Rüb U, Heinsen H, Brunt ER, Landwehrmeyer B, Den Dunnen WFA, Gierga K, Deller T. The human premotor oculomotor brainstem system - can it help to understand oculomotor symptoms in Huntington's disease? Neuropathol Appl Neurobiol 2009; 35:4-15. [PMID: 19187058 DOI: 10.1111/j.1365-2990.2008.00994.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent progress in oculomotor research has enabled new insights into the functional neuroanatomy of the human premotor oculomotor brainstem network. In the present review, we provide an overview of its functional neuroanatomy and summarize the broad range of oculomotor dysfunctions that may occur in Huntington's disease (HD) patients. Although some of these oculomotor symptoms point to an involvement of the premotor oculomotor brainstem network in HD, no systematic analysis of this functional system has yet been performed in brains of HD patients. Therefore, its exact contribution to oculomotor symptoms in HD remains unclear. A possible strategy to clarify this issue is the use of unconventional 100-microm-thick serial tissue sections stained for Nissl substance and lipofuscin pigment (Nissl-pigment stain according to Braak). This technique makes it possible to identify the known nuclei of the premotor oculomotor brainstem network and to study their possible involvement in the neurodegenerative process. Studies applying this morphological approach and using the current knowledge regarding the functional neuroanatomy of this human premotor oculomotor brainstem network will help to elucidate the anatomical basis of the large spectrum of oculomotor dysfunctions that are observed in HD patients. This knowledge may aid clinicians in the diagnosis and monitoring of the disease.
Collapse
Affiliation(s)
- U Rüb
- Institute of Clinical Neuroanatomy, J. W. Goethe University, Frankfurt/Main, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Hoche F, Seidel K, Brunt ER, Auburger G, Schöls L, Bürk K, de Vos RA, den Dunnen W, Bechmann I, Egensperger R, Van Broeckhoven C, Gierga K, Deller T, Rüb U. Involvement of the auditory brainstem system in spinocerebellar ataxia type 2 (SCA2), type 3 (SCA3) and type 7 (SCA7). Neuropathol Appl Neurobiol 2008; 34:479-91. [DOI: 10.1111/j.1365-2990.2007.00933.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
38
|
New insights into the pathoanatomy of spinocerebellar ataxia type 3 (Machado-Joseph disease). Curr Opin Neurol 2008; 21:111-6. [PMID: 18317266 DOI: 10.1097/wco.0b013e3282f7673d] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent neuropathological findings in spinocerebellar ataxia type 3 and discusses their relevance for clinical neurology. RECENT FINDINGS The extent of the spinocerebellar ataxia type 3 related central nervous neurodegenerative changes has been recently systematically investigated in a series of pathoanatomical studies. These studies showed that the extent of the central nervous degenerative changes of spinocerebellar ataxia type 3 has been underestimated so far. The newly described pattern of central nervous neurodegeneration includes the visual, auditory, vestibular, somatosensory, ingestion-related, dopaminergic and cholinergic systems. These pathological findings were correlated with clinical findings and explain a variety of the spinocerebellar ataxia type 3 symptoms observed in clinical practice. SUMMARY Systematic pathoanatomical analysis of spinocerebellar ataxia type 3 brains helps to understand the structural basis of this neurodegenerative disease and offers explanations for a variety of disease symptoms. This better understanding of the neuropathology of the condition has implications for the treatment of spinocerebellar ataxia type 3 patients and represents a basis for further biochemical and molecular biological studies aimed at deciphering the pathomechanisms of this progressive ataxic disorder.
Collapse
|
39
|
Rüb U, Jen JC, Braak H, Deller T. Functional neuroanatomy of the human premotor oculomotor brainstem nuclei: insights from postmortem and advanced in vivo imaging studies. Exp Brain Res 2008; 187:167-80. [PMID: 18385989 DOI: 10.1007/s00221-008-1342-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 03/02/2008] [Indexed: 12/19/2022]
Abstract
Considerable progress has been made recently in the field of the functional neuroanatomy of the primate oculomotor system, which has also improved our understanding of the structure, organization and function of the human oculomotor system. In the present review we provide for the first time an overview of the neuroanatomical basis of eye movement control in humans as revealed by a series of post-mortem studies in which the human premotor oculomotor brainstem nuclei were identified using unconventional 100 μm thick serial tissue sections stained for Nissl substance and lipofuscin pigment (Nissl-pigment stain according to Braak). Data from control brains and from patients suffering from spinocerebellar ataxia type 3, a neurodegenerative disease that severely impairs oculomotor function are discussed and recommendations for the identification of human premotor oculomotor brainstem nuclei in post-mortem studies are given. To visualize premotor brainstem nuclei in living patients, modern brain imaging techniques have been employed, albeit with limited success. Establishing topographic markers of brainstem nuclei may be a necessary next step to further elucidate the functional neuroanatomy of the premotor oculomotor brainstem network in human patients. This will help radiologists to identify these nuclei in living patients and will enable clinicians to monitor the progression of neurological disorders affecting the oculomotor system.
Collapse
Affiliation(s)
- Udo Rüb
- Institute for Clinical Neuroanatomy, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt/Main, Germany.
| | | | | | | |
Collapse
|
40
|
Rüb U, Brunt ER, Seidel K, Gierga K, Mooy CM, Kettner M, Van Broeckhoven C, Bechmann I, La Spada AR, Schöls L, den Dunnen W, de Vos RAI, Deller T. Spinocerebellar ataxia type 7 (SCA7): widespread brain damage in an adult-onset patient with progressive visual impairments in comparison with an adult-onset patient without visual impairments. Neuropathol Appl Neurobiol 2008; 34:155-68. [DOI: 10.1111/j.1365-2990.2007.00882.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
41
|
Riess O, Rüb U, Pastore A, Bauer P, Schöls L. SCA3: neurological features, pathogenesis and animal models. CEREBELLUM (LONDON, ENGLAND) 2008; 7:125-37. [PMID: 18418689 DOI: 10.1007/s12311-008-0013-4] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The most frequent subtype of autosomal dominant inherited spinocerebellar ataxias is caused by CAG repeat expansions of more than 55 units in the ataxin-3 gene. The clinical variability of the phenotype depends on the length of the expanded repeat and the age at onset (and thus indirectly with the repeat size). Anticipation of the phenotype is most frequently associated with repeat expansions in paternal transmission. In this review we describe four clinical subphenotypes and correlate them to the respective repeat expansions. We also provide a detailed description of the neuropathological features. Finally, we discuss the current knowledge on the function of normal and dysfunction of altered ataxin-3 and how this translates to the predicted structure of the protein.
Collapse
Affiliation(s)
- Olaf Riess
- Department of Medical Genetics, University of Tuebingen, Calwerstrasse 7, D-72076 Tuebingen, Germany.
| | | | | | | | | |
Collapse
|
42
|
Ying SH, Horn AKE, Geiner S, Wadia NH, Büttner-Ennever JA. Selective, circuit-wide sparing of floccular connections in hereditary olivopontine cerebellar atrophy with slow saccades. PROGRESS IN BRAIN RESEARCH 2008; 171:583-6. [PMID: 18718358 DOI: 10.1016/s0079-6123(08)00684-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We present a systems-oriented histopathologic analysis of the ocular motor control circuits in the cerebellum and brainstem from a patient with a hereditary form of olivopontine cerebellar atrophy of the Wadia type, which has a characteristic ocular motor presentation of slow saccades but relative preservation of smooth pursuit and gaze-holding. This differential pattern of clinical involvement is associated with a lobule-specific pattern of cerebellar degeneration. We asked whether these patterns of sparing and degeneration were consistent throughout the associated deep cerebellar and brainstem structures. Specimens were fixed in formalin, embedded in paraffin, and stained for various markers. We found that elements of the floccular and nodular pathways, controlling smooth pursuit and vestibular reflexes, were relatively spared, particularly those structures that are interconnected with the medial regions. Conversely, the elements of the dorsal vermis pathway controlling saccade adaptation were relatively involved. This subregional specificity of degeneration further defines possible areas of investigation for elucidating pathophysiology, testing biomarkers of disease, and developing areas for therapeutic intervention.
Collapse
Affiliation(s)
- Sarah H Ying
- Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | | | | | | |
Collapse
|
43
|
Genovese RF, Newman DB. Understanding artemisinin-induced brainstem neurotoxicity. Arch Toxicol 2007; 82:379-85. [DOI: 10.1007/s00204-007-0252-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Accepted: 10/15/2007] [Indexed: 11/28/2022]
|
44
|
Schlerf JE, Spencer RMC, Zelaznik HN, Ivry RB. Timing of rhythmic movements in patients with cerebellar degeneration. THE CEREBELLUM 2007; 6:221-31. [PMID: 17786818 DOI: 10.1080/14734220701370643] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
A distinction in temporal performance has been identified between two classes of rhythmic movements: those requiring explicit timing of salient events marking successive cycles, i.e., event timing, and continuous movements in which timing is hypothesized to be emergent. Converging evidence in support of this distinction is reviewed, including neuropsychological studies showing that individuals with cerebellar damage are selectively impaired on tasks requiring event timing (e.g., tapping). Recent behavioral evidence in neurologically healthy individuals suggests that for continuous movements (e.g., circle drawing), the initial cycle is marked by a transformation from event to emergent timing, allowing the participant to match their movement rate to an externally defined cycle duration. We report a new experiment in which individuals with cerebellar ataxia produced rhythmic tapping or circle drawing movements. Participants were either paced by a metronome or unpaced. Ataxics showed a disproportionate increase in temporal variability during tapping compared to circle drawing, although they were more variable than controls on both tasks. However, two predictions of the transformation hypothesis were not confirmed. First, the ataxics did not show a selective impairment on circle drawing during the initial cycles, a phase when we hypothesized event timing would be required to establish the movement rate. Second, the metronome did not increase variability of the performance of the ataxics. Taken together, these results provide further evidence that the integrity of the cerebellum is especially important for event timing, although our attempt to specify the relationship between event and emergent timing was not successful.
Collapse
Affiliation(s)
- J E Schlerf
- Helen Wills Neuroscience Institute, UC Berkeley, Berkeley, California 94720-1650, USA.
| | | | | | | |
Collapse
|
45
|
Rüb U, De Vos RA, Brunt ER, Sebestény T, Schöls L, Auburger G, Bohl J, Ghebremedhin E, Gierga K, Seidel K, Den Dunnen W, Heinsen H, Paulson H, Deller T. Spinocerebellar ataxia type 3 (SCA3): thalamic neurodegeneration occurs independently from thalamic ataxin-3 immunopositive neuronal intranuclear inclusions. Brain Pathol 2006; 16:218-27. [PMID: 16911479 PMCID: PMC8095748 DOI: 10.1111/j.1750-3639.2006.00022.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
In the last years progress has been made regarding the involvement of the thalamus during the course of the currently known polyglutamine diseases. Although recent studies have shown that the thalamus consistently undergoes neurodegeneration in Huntington's disease (HD) and spinocerebellar ataxia type 2 (SCA2) it is still unclear whether it is also a consistent target of the pathological process of spinocerebellar ataxia type 3 (SCA3). Accordingly we studied the thalamic pathoanatomy and distribution pattern of ataxin-3 immunopositive neuronal intranuclear inclusions (NI) in nine clinically diagnosed and genetically confirmed SCA3 patients and carried out a detailed statistical analysis of our findings. During our pathoanatomical study we disclosed (i) a consistent degeneration of the ventral anterior, ventral lateral and reticular thalamic nuclei; (ii) a degeneration of the ventral posterior lateral nucleus and inferior and lateral subnuclei of the pulvinar in the majority of these SCA3 patients; and (iii) a degeneration of the ventral posterior medial and lateral posterior thalamic nuclei, the lateral geniculate body and some of the limbic thalamic nuclei in some of them. Upon immunocytochemical analysis we detected NI in all of the thalamic nuclei of all of our SCA3 patients. According to our statistical analysis (i) thalamic neurodegeneration and the occurrence of ataxin-3 immunopositive thalamic NI was not associated with the individual length of the CAG-repeats in the mutated SCA3 allele, the patients age at disease onset and the duration of SCA3 and (ii) thalamic neurodegeneration was not correlated with the occurrence of ataxin-3 immunopositive thalamic NI. This lack of correlation may suggest that ataxin-3 immunopositive NI are not immediately decisive for the fate of affected nerve cells but rather represent unspecific and pathognomonic morphological markers of SCA3.
Collapse
Affiliation(s)
- Udo Rüb
- Institute for Clinical Neuroanatomy
| | - Rob A.I. De Vos
- Laboratorium Pathologie Oost Nederland, Burg. Edo Bergsmalaan 1, Enschede, the Netherlands
| | | | | | - Ludger Schöls
- Center of Neurology and Hertie‐Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Georg Auburger
- Section Molecular Neurogenetics, Department of Neurology, Johann Wolfgang Goethe‐University, Frankfurt/Main, Germany
| | - Jürgen Bohl
- Neuropathology Division, University Clinic of Mainz, Mainz, Germany
| | | | | | | | - Wilfred Den Dunnen
- Department of Pathology and Laboratory Medicine, University Medical Center Groningen, Groningen, the Netherlands
| | - Helmut Heinsen
- Morphological Brain Research Unit, Julius Maximilians University, Würzburg, Germany
| | - Henry Paulson
- Department of Neurology, University of Iowa College of Medicine, Iowa City, Iowa, USA
| | | |
Collapse
|
46
|
Rüb U, Seidel K, Ozerden I, Gierga K, Brunt ER, Schöls L, de Vos RAI, den Dunnen W, Schultz C, Auburger G, Deller T. Consistent affection of the central somatosensory system in spinocerebellar ataxia type 2 and type 3 and its significance for clinical symptoms and rehabilitative therapy. ACTA ACUST UNITED AC 2006; 53:235-49. [PMID: 17014911 DOI: 10.1016/j.brainresrev.2006.08.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2006] [Revised: 08/21/2006] [Accepted: 08/23/2006] [Indexed: 02/08/2023]
Abstract
The spinocerebellar ataxias type 2 (SCA2) and type 3 (SCA3) are progressive, currently untreatable and ultimately fatal ataxic disorders, which belong to the group of neurological disorders known as CAG-repeat or polyglutamine diseases. Since knowledge regarding the involvement of the central somatosensory system in SCA2 and SCA3 currently is only fragmentary, a variety of somatosensory disease signs remained unexplained or widely misunderstood. The present review (1) draws on the current knowledge in the field of neuroanatomy, (2) describes the anatomy and functional neuroanatomy of the human central somatosensory system, (3) provides an overview of recent findings regarding the affection of the central somatosensory system in SCA2 and SCA3 patients, and (4) points out the underestimated pathogenic role of the central somatosensory system for somatosensory and somatomotor disease symptoms in SCA2 and SCA3. Finally, based on recent findings in the research fields of neuropathology and neural plasticity, this review supports currently applied and recommends further neurorehabilitative approaches aimed at maintaining, improving, and/or recovering adequate somatomotor output by enforcing and changing somatosensory input in the very early clinical stages of SCA2 and SCA3.
Collapse
Affiliation(s)
- Udo Rüb
- Department of Clinical Neuroanatomy, J W Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt/Main, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Boesch SM, Frauscher B, Brandauer E, Wenning GK, Högl B, Poewe W. Disturbance of rapid eye movement sleep in spinocerebellar ataxia type 2. Mov Disord 2006; 21:1751-4. [PMID: 16830308 DOI: 10.1002/mds.21036] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Five genetically confirmed spinocerebellar ataxia type 2 (SCA2) patients were admitted to our sleep laboratory for two all-night video-polysomnographies. A standard montage was used, including electroencephalography, vertical and horizontal electrooculography, electromyography of mental, submental, and tibialis anterior muscles, and respiratory monitoring. Four of five SCA2 patients had insufficient muscle atonia during rapid eye movement (REM) sleep. All patients exhibited myoclonic jerks during REM sleep, while elaborated behavior was not observed in the video. Abnormal motor control during sleep with periodic leg movements and REM sleep without atonia occurs frequently in SCA2. This finding may reflect a dysfunction of dopaminergic and/or brainstem and cerebellar outflow pathways.
Collapse
Affiliation(s)
- Sylvia M Boesch
- Clinical Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | | | | | | | | | | |
Collapse
|