1
|
Zhang S, Li M, Qiu Y, Wu J, Xu X, Ma Q, Zheng Z, Lu G, Deng Z, Huang H. Enhanced VEGF secretion and blood-brain barrier disruption: Radiation-mediated inhibition of astrocyte autophagy via PI3K-AKT pathway activation. Glia 2024; 72:568-587. [PMID: 38009296 DOI: 10.1002/glia.24491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Radiation-induced damage to the blood-brain barrier (BBB) is the recognized pathological basis of radiation-induced brain injury (RBI), a side effect of head and neck cancer treatments. There is currently a lack of therapeutic approaches for RBI due to the ambiguity of its underlying mechanisms. Therefore, it is essential to identify these mechanisms in order to prevent RBI or provide early interventions. One crucial factor contributing to BBB disruption is the radiation-induced activation of astrocytes and oversecretion of vascular endothelial growth factor (VEGF). Mechanistically, the PI3K-AKT pathway can inhibit cellular autophagy, leading to pathological cell aggregation. Moreover, it acts as an upstream pathway of VEGF. In this study, we observed the upregulation of the PI3K-AKT pathway in irradiated cultured astrocytes through bioinformatics analysis, we then validated these findings in animal brains and in vitro astrocytes following radiation exposure. Additionally, we also found the inhibition of autophagy and the oversecretion of VEGF in irradiated astrocytes. By inhibiting the PI3K-AKT pathway or promoting cellular autophagy, we observed a significant amelioration of the inhibitory effect on autophagy, leading to reductions in VEGF oversecretion and BBB disruption. In conclusion, our study suggests that radiation can inhibit autophagy and promote VEGF oversecretion by upregulating the PI3K-AKT pathway in astrocytes. Blocking the PI3K pathway can alleviate both of these effects, thereby mitigating damage to the BBB in patients undergoing radiation treatment.
Collapse
Affiliation(s)
- Shifeng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Mingping Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Yuemin Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Junyu Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Xue Xu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Qian Ma
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Zhihui Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Gengxin Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Zhezhi Deng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Haiwei Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
2
|
Yang Y, He Y, Wei X, Wan H, Ding Z, Yang J, Zhou H. Network Pharmacology and Molecular Docking-Based Mechanism Study to Reveal the Protective Effect of Salvianolic Acid C in a Rat Model of Ischemic Stroke. Front Pharmacol 2022; 12:799448. [PMID: 35153756 PMCID: PMC8828947 DOI: 10.3389/fphar.2021.799448] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/14/2021] [Indexed: 12/18/2022] Open
Abstract
Salvianolic acid C (SAC) is a major bioactive component of Salvia miltiorrhiza Bunge (Danshen), a Chinese herb for treating ischemic stroke (IS). However, the mechanism by which SAC affects the IS has not yet been evaluated, thus a network pharmacology integrated molecular docking strategy was performed to systematically evaluate its pharmacological mechanisms, which were further validated in rats with cerebral ischemia. A total of 361 potential SAC-related targets were predicted by SwissTargetPrediction and PharmMapper, and a total of 443 IS-related targets were obtained from DisGeNET, DrugBank, OMIM, and Therapeutic Target database (TTD) databases. SAC-related targets were hit by the 60 targets associated with IS. By Gene ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment combined with the protein-protein interaction (PPI) network and cytoHubba plug-ins, nine related signaling pathways (proteoglycans in cancer, pathways in cancer, PI3K-Akt signaling pathway, Focal adhesion, etc.), and 20 hub genes were identified. Consequently, molecular docking indicated that SAC may interact with the nine targets (F2, MMP7, KDR, IGF1, REN, PPARG, PLG, ACE and MMP1). Four of the target proteins (VEGFR2, MMP1, PPARγ and IGF1) were verified using western blot. This study comprehensively analyzed pathways and targets related to the treatment of IS by SAC. The results of western blot also confirmed that the SAC against IS is mainly related to anti-inflammatory and angiogenesis, which provides a reference for us to find and explore the effective anti-IS drugs.
Collapse
Affiliation(s)
- Yuting Yang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu He
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoyu Wei
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhishan Ding
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiehong Yang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Huifen Zhou
- Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Allen BD, Limoli CL. Breaking barriers: Neurodegenerative repercussions of radiotherapy induced damage on the blood-brain and blood-tumor barrier. Free Radic Biol Med 2022; 178:189-201. [PMID: 34875340 PMCID: PMC8925982 DOI: 10.1016/j.freeradbiomed.2021.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/20/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
Exposure to radiation during the treatment of CNS tumors leads to detrimental damage of the blood brain barrier (BBB) in normal tissue. Effects are characterized by leakage of the vasculature which exposes the brain to a host of neurotoxic agents potentially leading to white matter necrosis, parenchymal calcification, and an increased chance of stroke. Vasculature of the blood tumor barrier (BTB) is irregular leading to poorly perfused and hypoxic tissue throughout the tumor that becomes resistant to radiation. While current clinical applications of cranial radiotherapy use dose fractionation to reduce normal tissue damage, these treatments still cause significant alterations to the cells that make up the neurovascular unit of the BBB and BTB. Damage to the vasculature manifests as reduction in tight junction proteins, alterations to membrane transporters, impaired cell signaling, apoptosis, and cellular senescence. While radiotherapy treatments are detrimental to normal tissue, adapting combined strategies with radiation targeted to damage the BTB could aid in drug delivery. Understanding differences between the BBB and the BTB may provide valuable insight allowing clinicians to improve treatment outcomes. Leveraging this information should allow advances in the development of therapeutic modalities that will protect the normal tissue while simultaneously improving CNS tumor treatments.
Collapse
Affiliation(s)
- Barrett D Allen
- Department of Radiation Oncology, University of California, Irvine, CA, 92697, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
4
|
Baird A, Oelsner L, Fisher C, Witte M, Huynh M. A multiscale computational model of angiogenesis after traumatic brain injury, investigating the role location plays in volumetric recovery. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:3227-3257. [PMID: 34198383 DOI: 10.3934/mbe.2021161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Vascular endothelial growth factor (VEGF) is a key protein involved in the process of angiogenesis. VEGF is of particular interest after a traumatic brain injury (TBI), as it re-establishes the cerebral vascular network in effort to allow for proper cerebral blood flow and thereby oxygenation of damaged brain tissue. For this reason, angiogenesis is critical in the progression and recovery of TBI patients in the days and weeks post injury. Although well established experimental work has led to advances in our understanding of TBI and the progression of angiogenisis, many constraints still exist with existing methods, especially when considering patient progression in the days following injury. To better understand the healing process on the proposed time scales, we develop a computational model that quickly simulates vessel growth and recovery by coupling VEGF and its interactions with its associated receptors to a physiologically inspired fractal model of the microvascular re-growth. We use this model to clarify the role that diffusivity, receptor kinetics and location of the TBI play in overall blood volume restoration in the weeks post injury and show that proper therapeutic angiogenesis, or vasculogenic therapies, could speed recovery of the patient as a function of the location of injury.
Collapse
Affiliation(s)
- Austin Baird
- Applied Research Associates Inc., Advanced Modeling & Simulation Systems Directorate, 8537 Six Forks Rd, Raleigh, NC 27615, USA
| | - Laura Oelsner
- Varian Medical Systems, 3100 Hansen Way, Palo Alto, CA 94304, USA
| | - Charles Fisher
- Applied Research Associates Inc., Advanced Modeling & Simulation Systems Directorate, 8537 Six Forks Rd, Raleigh, NC 27615, USA
| | - Matt Witte
- Applied Research Associates Inc., Advanced Modeling & Simulation Systems Directorate, 8537 Six Forks Rd, Raleigh, NC 27615, USA
| | - My Huynh
- Applied Research Associates Inc., Advanced Modeling & Simulation Systems Directorate, 8537 Six Forks Rd, Raleigh, NC 27615, USA
| |
Collapse
|
5
|
Ma X, Agas A, Siddiqui Z, Kim K, Iglesias-Montoro P, Kalluru J, Kumar V, Haorah J. Angiogenic peptide hydrogels for treatment of traumatic brain injury. Bioact Mater 2020; 5:124-132. [PMID: 32128463 PMCID: PMC7042674 DOI: 10.1016/j.bioactmat.2020.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 01/07/2023] Open
Abstract
Traumatic brain injury (TBI) impacts over 3.17 million Americans. Management of hemorrhage and coagulation caused by vascular disruption after TBI is critical for the recovery of patients. Cerebrovascular pathologies play an important role in the underlying mechanisms of TBI. The objective of this study is to evaluate a novel regenerative medicine for the injured tissue after brain injury. We utilized a recently described synthetic growth factor with angiogenic potential to facilitate vascular growth in situ at the injury site. Previous work has shown how this injectable self-assembling peptide-based hydrogel (SAPH) creates a regenerative microenvironment for neovascularization at the injury site. Supramolecular assembly allows for thixotropy; the injectable drug delivery system provides sustained in vivo efficacy. In this study, a moderate blunt injury model was used to cause physical vascular damage and hemorrhage. The angiogenic SAPH was then applied directly on the injured rat brain. At day 7 post-TBI, significantly more blood vessels were observed than the sham and injury control group, as well as activation of VEGF-receptor 2, demonstrating the robust angiogenic response elicited by the angiogenic SAPH. Vascular markers von-Willebrand factor (vWF) and α-smooth muscle actin (α-SMA) showed a concomitant increase with blood vessel density in response to the angiogenic SAPH. Moreover, blood brain barrier integrity and blood coagulation were also examined as the parameters to indicate wound recovery post TBI. Neuronal rescue examination by NeuN and myelin basic protein staining showed that the angiogenic SAPH may provide and neuroprotective benefit in the long-term recovery.
Collapse
Affiliation(s)
- Xiaotang Ma
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Agnieszka Agas
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Zain Siddiqui
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - KaKyung Kim
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Patricia Iglesias-Montoro
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Jagathi Kalluru
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Vivek Kumar
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
- Department of Chemical and Materials Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
- Department of Restorative Dentistry, Rutgers School of Dental Medicine, Newark, NJ, USA
| | - James Haorah
- Department of Biomedical Engineering, Center for Injury Bio-Mechanics, Materials and Medicine, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| |
Collapse
|
6
|
Estrada SM, Thagard AS, Dehart MJ, Damicis JR, Dornisch EM, Ippolito DL, Burd I, Napolitano PG, Ieronimakis N. The orphan nuclear receptor Nr4a1 mediates perinatal neuroinflammation in a murine model of preterm labor. Cell Death Dis 2020; 11:11. [PMID: 31907354 PMCID: PMC6944691 DOI: 10.1038/s41419-019-2196-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
Prematurity is associated with perinatal neuroinflammation and injury. Screening for genetic modulators in an LPS murine model of preterm birth revealed the upregulation of Nr4a1, an orphan nuclear transcription factor that is normally absent or limited in embryonic brains. Concurrently, Nr4a1 was downregulated with magnesium sulfate (MgSO4) and betamethasone (BMTZ) treatments administered to LPS exposed dams. To understand the role of Nr4a1 in perinatal brain injury, we compared the preterm neuroinflammatory response in Nr4a1 knockout (KO) versus wild type (wt) mice. Key inflammatory factors Il1b, Il6 and Tnf, and Iba1+ microglia were significantly lower in Nr4a1 KO versus wt brains exposed to LPS in utero. Treatment with MgSO4/BMTZ mitigated the neuroinflammatory process in wt but not Nr4a1 KO brains. These results correspond with a reduction in cerebral hemorrhage in wt but not mutant embryos from dams given MgSO4/BMTZ. Further analysis with Nr4a1-GFP-Cre × tdTomato loxP reporter mice revealed that the upregulation of Nr4a1 with perinatal neuroinflammation occurs in the cerebral vasculature. Altogether, this study implicates Nr4a1 in the developing vasculature as a potent mediator of neuroinflammatory brain injury that occurs with preterm birth. It is also possible that MgSO4/BMTZ mitigates this process by direct or indirect inhibition of Nr4a1.
Collapse
Affiliation(s)
- Sarah M Estrada
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Madigan Army Medical Center, Tacoma, WA, USA
| | - Andrew S Thagard
- Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, Madigan Army Medical Center, Tacoma, WA, USA
| | - Mary J Dehart
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA
| | - Jennifer R Damicis
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA
| | - Elisabeth M Dornisch
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA
| | | | - Irina Burd
- Integrated Research Center for Fetal Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter G Napolitano
- Department of Obstetrics and Gynecology, University of Washington Medical Center, Seattle, WA, USA
| | - Nicholas Ieronimakis
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, WA, USA.
| |
Collapse
|
7
|
Wang Q, Deng Y, Huang L, Zeng W, Chen S, Lv B, Jiang W, Han Y, Ding H, Wen M, Zeng H. Hypertonic saline downregulates endothelial cell-derived VEGF expression and reduces blood-brain barrier permeability induced by cerebral ischaemia via the VEGFR2/eNOS pathway. Int J Mol Med 2019; 44:1078-1090. [PMID: 31524227 PMCID: PMC6657973 DOI: 10.3892/ijmm.2019.4262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/28/2019] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to explore the possible mechanisms by which hypertonic saline (HS) effectively ameliorates cerebral oedema via the vascular endothelial growth factor receptor 2 (VEGFR2)-mediated endothelial nitric oxide synthase (eNOS) pathway of endothelial cells in rats. A middle cerebral artery occlusion (MCAO) model in Sprague-Dawley rats and an oxygen-glucose deprivation (OGD) model in cells were used in the present study. Evans blue (EB) staining and a horseradish peroxidase flux assay were performed to evaluate the protective effect of 10% HS on the blood-brain barrier (BBB). The expression levels of vascular endothelial growth factor (VEGF), VEGFR2, zonula occludens 1 (ZO1) and occludin were quantified. The results demonstrated that 10% HS effectively reduced EB extravasation in the peri-ischaemic brain tissue. At 24 h after MCAO, the protein expression levels of VEGF and VEGFR2 in the peri-ischaemic brain tissue were downregulated following treatment with 10% HS. In vitro experiments demonstrated that the permeability of a monolayer endothelial cell barrier was decreased significantly following HS treatment. In addition, VEGF and VEGFR2 protein expression levels were increased in endothelial cells under hypoxic conditions, but that effect was suppressed by HS treatment. Furthermore, HS inhibited the downregulation of ZO1 and occludin effectively, possibly through the VEGFR2/phospholipase C γ1 (PLCγ1)/eNOS signalling pathway. In conclusion, 10% HS may alleviate cerebral oedema through reducing ischaemia-induced BBB permeability, as a consequence of inhibiting VEGFR2/PLCγ1/eNOS-mediated downregulation of ZO1 and occludin.
Collapse
Affiliation(s)
- Qiaosheng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yiyu Deng
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Linqiang Huang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Wenxin Zeng
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Shenglong Chen
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Bo Lv
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Wenqiang Jiang
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Yongli Han
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Hongguang Ding
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Miaoyun Wen
- Department of Emergency and Critical Care Medicine, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Hongke Zeng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
8
|
Requejo C, Ruiz-Ortega JA, Bengoetxea H, Bulnes S, Ugedo L, Lafuente JV. Deleterious Effects of VEGFR2 and RET Inhibition in a Preclinical Model of Parkinson's Disease. Mol Neurobiol 2019; 55:201-212. [PMID: 28840516 DOI: 10.1007/s12035-017-0733-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Neurotrophic factors (NTFs) are a promising therapeutic option for Parkinson's disease (PD). They exert their function through tyrosine kinase receptors. Our goal was to assess the effects of administering a selective tyrosine kinase inhibitor (vandetanib) that blocks VEGFR2 and RET receptors in a preclinical model of PD. Rats underwent intrastriatal injections of 6-hydroxydopamine (6-OHDA). Two weeks later, the rats received 30 mg/kg vandetanib or saline orally. The effects were assessed using the rotational behavioral test, tyrosine hydroxylase (TH) immunohistochemistry, and western blot. In 6-OHDA-lesioned rats, motor symptoms were almost undetectable, but morphological and biochemical changes were significant. Vandetanib treatment, combined with the presence of 6-OHDA lesions, significantly increased behavioral impairment and morphological and biochemical changes. Therefore, after vandetanib treatment, the TH-immunopositive striatal volume, the percentage of TH+ neurons, and the extent of the axodendritic network in the substantia nigra decreased. Glial fibrillary acidic protein-positivity significantly decreased in the striatum and substantia nigra in the vandetanib-treated group. In addition, p-Akt and p-ERK 1/2 levels were significantly lower and caspase-3 expression significantly increased after vandetanib administration. In conclusion, we demonstrate for the first time the deleterious effect of a tyrosine kinase inhibitor on the dopaminergic system, supporting the beneficial and synergistic effect of NTFs reported in previous papers.
Collapse
Affiliation(s)
- C Requejo
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Vizcaya, Leioa, Spain.
| | - J A Ruiz-Ortega
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Vizcaya, Leioa, Spain
| | - H Bengoetxea
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Vizcaya, Leioa, Spain
| | - S Bulnes
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Vizcaya, Leioa, Spain
| | - L Ugedo
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Vizcaya, Leioa, Spain
| | - J V Lafuente
- LaNCE, Department of Neuroscience, University of the Basque Country (UPV/EHU), Vizcaya, Leioa, Spain
- Nanoneurosurgery Group, BioCruces Health Research Institute, 48903, Barakaldo, Bizkaia, Spain
- Faculty of Health Science, Universidad Autónoma de Chile, Santiago de Chile, Chile
| |
Collapse
|
9
|
Bengoetxea H, Rico-Barrio I, Ortuzar N, Murueta-Goyena A, Lafuente JV. Environmental Enrichment Reverses Tyrosine Kinase Inhibitor-Mediated Impairment Through BDNF-TrkB Pathway. Mol Neurobiol 2019; 55:43-59. [PMID: 28842826 DOI: 10.1007/s12035-017-0716-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exposure to an enriched environment (EE) has neuroprotective benefits and improves recovery from brain injury due to, among other, increased neurotrophic factor expression. Through these neurotrophins, important cortical and hippocampal changes occur. Vandetanib acts as a tyrosine kinase inhibitor of cell receptors, among others, the vascular endothelial growth factor receptor (VEGFR). Our aim was to investigate the effectiveness of EE counteracting cognitive and cellular effects after tyrosine kinase receptor blockade. Animals were reared under standard laboratory condition or EE; both groups received vandetanib or vehicle. Visuospatial learning was tested with Morris water maze. Neuronal, interneuronal, and vascular densities were measured by inmunohistochemistry and histochemistry techniques. Quantifications were performed in the hippocampus and in the visual cortex. Brain-derived neurotrophic factor (BDNF), tyrosine kinase B receptor (TrkB), Akt, and Erk were measured by Western blot technique. Vandetanib produces a significant decrease in vascular and neuronal densities and reduction in the expression of molecules involved in survival and proliferation processes such as phospho-Akt/Akt and phospho-Erk/Erk. These results correlated to a cognitive impairment in visuospatial test. On the other hand, animals reared in an EE are able to reverse the negative effects, activating PI3K-AKT and MAP kinase pathways mediated by BDNF-TrkB binding. Present results provide novel and consistent evidences about the usefulness of living in EE as a strategy to improve deleterious effects of blocking neurotrophic pathways by vandetanib and the notable role of the BDNF-TrkB pathway to balance the neurovascular unit and cognitive effects.
Collapse
Affiliation(s)
- Harkaitz Bengoetxea
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), Department of Neuroscience, Faculty of Medicine and Surgery, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain.
| | - Irantzu Rico-Barrio
- Department of Neuroscience, Faculty of Medicine and Surgery, University of the Basque Country (UPV/EHU), Barrio Sarriena, E-48940, Leioa, Bizkaia, Spain
| | - Naiara Ortuzar
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), Department of Neuroscience, Faculty of Medicine and Surgery, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
| | - Ane Murueta-Goyena
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), Department of Neuroscience, Faculty of Medicine and Surgery, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain
| | - José V Lafuente
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), Department of Neuroscience, Faculty of Medicine and Surgery, University of the Basque Country (UPV/EHU), 48940, Leioa, Bizkaia, Spain.,Nanoneurosurgery Group, BioCruces Health Research Institute, Barakaldo, Bizkaia, Spain.,Faculty of Health Science, Universidad Autónoma de Chile, Santiago de Chile, Chile
| |
Collapse
|
10
|
Increased Expression of Vascular Endothelial Growth Factor-D Following Brain Injury. Int J Mol Sci 2019; 20:ijms20071594. [PMID: 30935023 PMCID: PMC6479775 DOI: 10.3390/ijms20071594] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 01/02/2023] Open
Abstract
Alterations in the expression of the vascular endothelial growth factors (VEGF) A and B occur during blood–brain barrier (BBB) breakdown and angiogenesis following brain injury. In this study, the temporal and spatial expression of VEGF-D and VEGF receptors-2 and -3 (VEGFR-2 and VEGFR-3, respectively) was determined at the mRNA and protein level in the rat cortical cold-injury model over a period of 0.5 to 6 days post-injury. In order to relate endothelial VEGF-D protein expression with BBB breakdown, dual labeling immunofluorescence was performed using antibodies to VEGF-D and to fibronectin, a marker of BBB breakdown. In control rats, VEGF-D signal was only observed in scattered perivascular macrophages in the cerebral cortex. The upregulation of VEGF-D mRNA expression was observed in the injury site between days 0.5 to 4, coinciding with the period of BBB breakdown and angiogenesis. At the protein level, intracerebral vessels with BBB breakdown to fibronectin in the lesion on days 0.5 to 4 failed to show endothelial VEGF-D. Between days 0.5 to 6, an increased VEGF-D immunoreactivity was noted in the endothelium of pial vessels overlying the lesion site, in neutrophils, macrophages, and free endothelial cells within the lesion. The upregulation of VEGFR-2 and -3 mRNA and protein expression was observed early post-injury on day 0.5. Although there was concurrent expression of VEGF-A, VEGF-B, and VEGF-D post-injury, differences in their spatial expression during BBB breakdown and angiogenesis suggest that they have specific and separate roles in these processes.
Collapse
|
11
|
Torres-Vergara P, Escudero C, Penny J. Drug Transport at the Brain and Endothelial Dysfunction in Preeclampsia: Implications and Perspectives. Front Physiol 2018; 9:1502. [PMID: 30459636 PMCID: PMC6232255 DOI: 10.3389/fphys.2018.01502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022] Open
Abstract
Transport of drugs across biological barriers has been a subject of study for decades. The discovery and characterization of proteins that confer the barrier properties of endothelia and epithelia, including tight junction proteins and membrane transporters belonging to the ATP-binding cassette (ABC) and Solute Carrier (SLC) families, represented a significant step forward into understanding the mechanisms that govern drug disposition. Subsequently, numerous studies, including both pre-clinical approaches and clinical investigations, have been carried out to determine the influence of physiological and pathological states on drug disposition. Importantly, there has been increasing interest in gaining a better understanding of drug disposition during pregnancy, since epidemiological and clinical studies have demonstrated that the use of medications by pregnant women is significant and this condition embodies a series of significant anatomical and physiological modifications, particularly at excretory organs and barrier sites (e.g., placenta, breast) expressing transporter proteins which influence pharmacokinetics. Currently, most of the research in this field has focused on the expression profiling of transporter proteins in trophoblasts and endothelial cells of the placenta, regulation of drug-resistance mechanisms in disease states and pharmacokinetic studies. However, little attention has been placed on the influence that the cerebrovascular dysfunction present in pregnancy-related disorders, such as preeclampsia, might exert on drug disposition in the mother’s brain. This issue is particularly important since recent findings have demonstrated that preeclamptic women suffer from long-term alterations in the integrity of the blood-brain barrier (BBB). In this review we aim to analyze the available evidence regarding the influence of pregnancy on the expression of transporters and TJ proteins in brain endothelial cells, as well the mechanisms that govern the pathophysiological alterations in the BBB of women who experience preeclampsia. Future research efforts should be focused not only on achieving a better understanding of the influence of preeclampsia-associated endothelial dysfunction on drug disposition, but also in optimizing the pharmacological treatments of women suffering pregnancy-related disorders, its comorbidities and to develop new therapies aiming to restore the integrity of the BBB.
Collapse
Affiliation(s)
- Pablo Torres-Vergara
- Department of Pharmacy, Faculty of Pharmacy, University of Concepción, Concepción, Chile.,Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile
| | - Carlos Escudero
- Group of Research and Innovation in Vascular Health (GRIVAS Health), Chillán, Chile.,Vascular Physiology Laboratory, Department of Basic Sciences, Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.,Red Iberoamericana de Alteraciones Vasculares Asociadas a Trastornos del Embarazo (RIVA-TREM), Chillán, Chile
| | - Jeffrey Penny
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
12
|
Wen L, Tan Y, Dai S, Zhu Y, Meng T, Yang X, Liu Y, Liu X, Yuan H, Hu F. VEGF-mediated tight junctions pathological fenestration enhances doxorubicin-loaded glycolipid-like nanoparticles traversing BBB for glioblastoma-targeting therapy. Drug Deliv 2017; 24:1843-1855. [PMID: 29182025 PMCID: PMC8241127 DOI: 10.1080/10717544.2017.1386731] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 01/03/2023] Open
Abstract
The existence of blood-brain barrier (BBB) greatly hindered the penetration and accumulation of chemotherapeutics into glioblastoma (GBM), accompany with poor therapeutic effects. The growth of GBM supervene the impairment of tight junctions (TJs); however, the pathogenesis of BBB breakdown in GBM is essentially poorly understood. This study found that vascular endothelial growth factor (VEGF) secreted by GBM cells plays an important role in increasing the permeability of BBB by disrupting endothelial tight junction proteins claudin-5 and thus gave doxorubicin (DOX)-loaded glycolipid-like nanoparticles (Ap-CSSA/DOX), an effective entrance to brain tumor region for GBM-targeting therapy. In addition, VEGF downregulates the expression of claudin-5 with a dose-dependent mode, and interfering with the VEGF/VEGFR pathway using its inhibitor axitinib could reduce the permeability of BBB and enhance the integrity of the barrier. Ap-CSSA/DOX nanoparticles showed high affinity to expressed low-density lipoprotein receptor-related proteins 1 (LRP1) in both BBB and GBM. And BBB pathological fenestration in GBM further exposed more LRP1 binding sites for Ap-CSSA/DOX nanoparticles targeting to brain tumor, resulting in a higher transmembrane transport ratio in vitro and a stronger brain tumor biodistribution in vivo, and finally realizing a considerable antitumor effect. Overall, taking advantage of BBB pathological features to design an appropriate nanodrug delivery system (NDDS) might provide new insights into other central nervous system (CNS) diseases treatment.
Collapse
Affiliation(s)
- Lijuan Wen
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yanan Tan
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, People’s Republic of China
| | - Suhuan Dai
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yun Zhu
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, People’s Republic of China
| | - Tingting Meng
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xiqin Yang
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yupeng Liu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Xuan Liu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hong Yuan
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Fuqiang Hu
- College of Pharmaceutical Science, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
13
|
Huang L, Cao W, Deng Y, Zhu G, Han Y, Zeng H. Hypertonic saline alleviates experimentally induced cerebral oedema through suppression of vascular endothelial growth factor and its receptor VEGFR2 expression in astrocytes. BMC Neurosci 2016; 17:64. [PMID: 27733124 PMCID: PMC5062881 DOI: 10.1186/s12868-016-0299-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 05/17/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cerebral oedema is closely related to the permeability of blood-brain barrier, vascular endothelial growth factor (VEGF) and its receptor vascular endothelial growth factor receptor 2 (VEGFR2) all of which are important blood-brain barrier (BBB) permeability regulatory factors. Zonula occludens 1 (ZO-1) and claudin-5 are also the key components of BBB. Hypertonic saline is widely used to alleviate cerebral oedema. This study aimed to explore the possible mechanisms underlying hypertonic saline that ameliorates cerebral oedema effectively. METHODS Middle cerebral artery occlusion (MCAO) model in Sprague-Dawley (SD) rats and of oxygen-glucose deprivation model in primary astrocytes were used in this study. The brain water content (BWC) was used to assess the effect of 10 % HS on cerebral oedema. The assessment of Evans blue (EB) extravasation was performed to evaluate the protective effect of 10 % HS on blood-brain barrier. The quantification of VEGF, VEGFR2, ZO-1 and claudin-5 was used to illustrate the mechanism of 10 % HS ameliorating cerebral oedema. RESULTS BWC was analysed by wet-to-dry ratios in the ischemic hemisphere of SD rats; it was significantly decreased after 10 % HS treatment (P < 0.05). We also investigated the blood-brain barrier protective effect by 10 % HS which reduced EB extravasation effectively in the peri-ischemic brain tissue. In parallel to the above notably at 24 h following MCAO, mRNA and protein expression of VEGF and VEGFR2 in the peri-ischemic brain tissue was down-regulated after 10 % HS treatment (P < 0.05). Along with this, in vitro studies showed increased VEGF and VEGFR2 mRNA and protein expression in primary astrocytes under hypoxic condition (P < 0.05), but it was suppressed after HS treatment (P < 0.05). In addition, HS inhibited the down-regulation of ZO-1, claudin-5 effectively. CONCLUSIONS The results suggest that 10 % HS could alleviate cerebral oedema possibly through reducing the ischemia induced BBB permeability as a consequence of inhibiting VEGF-VEGFR2-mediated down-regulation of ZO-1, claudin-5.
Collapse
Affiliation(s)
- Linqiang Huang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Wei Cao
- Zhuzhou Central Hospital, Zhuzhou, 412007, People's Republic of China
| | - Yiyu Deng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Gaofeng Zhu
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Yongli Han
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China
| | - Hongke Zeng
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
14
|
Wong YH, Wu CC, Wu JCC, Lai HY, Chen KY, Jheng BR, Chen MC, Chang TH, Chen BS. Temporal Genetic Modifications after Controlled Cortical Impact--Understanding Traumatic Brain Injury through a Systematic Network Approach. Int J Mol Sci 2016; 17:216. [PMID: 26861311 PMCID: PMC4783948 DOI: 10.3390/ijms17020216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/10/2015] [Indexed: 02/05/2023] Open
Abstract
Traumatic brain injury (TBI) is a primary injury caused by external physical force and also a secondary injury caused by biological processes such as metabolic, cellular, and other molecular events that eventually lead to brain cell death, tissue and nerve damage, and atrophy. It is a common disease process (as opposed to an event) that causes disabilities and high death rates. In order to treat all the repercussions of this injury, treatment becomes increasingly complex and difficult throughout the evolution of a TBI. Using high-throughput microarray data, we developed a systems biology approach to explore potential molecular mechanisms at four time points post-TBI (4, 8, 24, and 72 h), using a controlled cortical impact (CCI) model. We identified 27, 50, 48, and 59 significant proteins as network biomarkers at these four time points, respectively. We present their network structures to illustrate the protein–protein interactions (PPIs). We also identified UBC (Ubiquitin C), SUMO1, CDKN1A (cyclindependent kinase inhibitor 1A), and MYC as the core network biomarkers at the four time points, respectively. Using the functional analytical tool MetaCore™, we explored regulatory mechanisms and biological processes and conducted a statistical analysis of the four networks. The analytical results support some recent findings regarding TBI and provide additional guidance and directions for future research.
Collapse
Affiliation(s)
- Yung-Hao Wong
- College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fujian 350002, China.
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
- Institute of Biomedical Science, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chia-Chou Wu
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - John Chung-Che Wu
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei Medical University, Taipei 110, Taiwan.
| | - Hsien-Yong Lai
- Institution Review Board (IRB), Christian Mennonite Hospital, Hualien 970, Taiwan.
| | - Kai-Yun Chen
- Graduate Institute of Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
| | - Bo-Ren Jheng
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| | - Mien-Cheng Chen
- Division of Cardiology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung City 833, Taiwan.
| | - Tzu-Hao Chang
- Graduate Institute of Biomedical Informatics, Taipei Medical University, Taipei 110, Taiwan.
| | - Bor-Sen Chen
- Laboratory of Control and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan.
| |
Collapse
|
15
|
Wang LF, Li X, Gao YB, Wang SM, Zhao L, Dong J, Yao BW, Xu XP, Chang GM, Zhou HM, Hu XJ, Peng RY. Activation of VEGF/Flk-1-ERK Pathway Induced Blood–Brain Barrier Injury After Microwave Exposure. Mol Neurobiol 2014; 52:478-91. [DOI: 10.1007/s12035-014-8848-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 07/31/2014] [Indexed: 12/14/2022]
|
16
|
Ceccariglia S, D’altocolle A, Del Fa’ A, Silvestrini A, Barba M, Pizzolante F, Repele A, Michetti F, Gangitano C. Increased expression of Aquaporin 4 in the rat hippocampus and cortex during trimethyltin-induced neurodegeneration. Neuroscience 2014; 274:273-88. [DOI: 10.1016/j.neuroscience.2014.05.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022]
|
17
|
Jiang S, Xia R, Jiang Y, Wang L, Gao F. Vascular endothelial growth factors enhance the permeability of the mouse blood-brain barrier. PLoS One 2014; 9:e86407. [PMID: 24551038 PMCID: PMC3925082 DOI: 10.1371/journal.pone.0086407] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 12/11/2013] [Indexed: 02/05/2023] Open
Abstract
The blood-brain barrier (BBB) impedes entry of many drugs into the brain, limiting clinical efficacy. A safe and efficient method for reversibly increasing BBB permeability would greatly facilitate central nervous system (CNS) drug delivery and expand the range of possible therapeutics to include water soluble compounds, proteins, nucleotides, and other large molecules. We examined the effect of vascular endothelial growth factor (VEGF) on BBB permeability in Kunming (KM) mice. Human VEGF165 was administered to treatment groups at two concentrations (1.6 or 3.0 µg/mouse), while controls received equal-volume saline. Changes in BBB permeability were measured by parenchymal accumulation of the contrast agent Gd-DTPA as assessed by 7 T magnetic resonance imaging (MRI). Mice were then injected with Evans blue, sacrificed 0.5 h later, and perfused transcardially. Brains were removed, fixed, and sectioned for histological study. Both VEGF groups exhibited a significantly greater signal intensity from the cerebral cortex and basal ganglia than controls (P<0.001). Evans blue fluorescence intensity was higher in the parenchyma and lower in the cerebrovasculature of VEGF-treated animals compared to controls. No significant brain edema was observed by diffusion weighted MRI (DWI) or histological staining. Exogenous application of VEGF can increase the permeability of the BBB without causing brain edema. Pretreatment with VEGF may be a feasible method to facilitate drug delivery into the CNS.
Collapse
Affiliation(s)
- Shize Jiang
- Molecular Imaging Laboratory, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China, People’s Republic of
| | - Rui Xia
- Molecular Imaging Laboratory, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China, People’s Republic of
| | - Yong Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China, People’s Republic of
| | - Lei Wang
- Molecular Imaging Laboratory, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China, People’s Republic of
| | - Fabao Gao
- Molecular Imaging Laboratory, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China, People’s Republic of
- * E-mail:
| |
Collapse
|
18
|
Brito MA, Pereira P, Barroso C, Aronica E, Brites D. New autopsy findings in different brain regions of a preterm neonate with kernicterus: neurovascular alterations and up-regulation of efflux transporters. Pediatr Neurol 2013; 49:431-8. [PMID: 24138949 DOI: 10.1016/j.pediatrneurol.2013.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 08/09/2013] [Accepted: 08/14/2013] [Indexed: 02/01/2023]
Abstract
BACKGROUND Kernicterus is an irreversible brain damage caused by bilirubin deposition in selective brain regions. Sick and preterm infants with hyperbilirubinemia are particularly susceptible to the condition. METHODS We studied autopsied brain tissue from a premature female infant with kernicterus with a bilirubin:albumin molar ratio of 1.0, hypoxia, acidosis, and seizures. The patient, previously described as having cerebellar axon/myelin loss and angiogenic sprouting, was assessed for histopathological features in brain regions less investigated, such as hippocampus and corpus striatum. Results were compared with age-matched controls. RESULTS Increased blood vessel density with poorly defined lumen structures was observed in the mesencephalon, pons, and medulla oblongata, and, more predominantly, in the corpus striatum and hippocampus. These two regions exhibited increased expression of vascular endothelial growth factor, paralleled by vascular endothelial growth factor receptor-2, and albumin extravasation into the brain parenchyma. No similar findings were observed in the nonjaundiced babies with hypoxia that served as controls (one preterm with sepsis and a term infant with pneumonia). We found increased cellular expression of multidrug resistance-associated protein 1 and P-glycoprotein in the hippocampus, known as defensive mechanisms against bilirubin-induced cytotoxicity. Increased density of blood vessels and microvascular permeability, together with parenchymal albumin, may have contributed to increasing the brain content and retention of bilirubin, a condition implicated in kernicterus disease. CONCLUSIONS This novel finding in a premature baby with kernicterus and associated risk factors deserves to be investigated in similar patients to better understand the less-well described effects of bilirubin-induced neurological sequelae in preterm infants.
Collapse
Affiliation(s)
- Maria A Brito
- Research Institute for Medicines and Pharmaceutical Sciences (iMed.UL), Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal; Department of Biochemistry and Human Biology, Faculdade de Farmácia, Universidade de Lisboa, Lisbon, Portugal.
| | | | | | | | | |
Collapse
|
19
|
Argandoña EG, Bengoetxea H, Bulnes S, Rico-Barrio I, Ortuzar N, Lafuente JV. Effect of intracortical vascular endothelial growth factor infusion and blockade during the critical period in the rat visual cortex. Brain Res 2012; 1473:141-54. [DOI: 10.1016/j.brainres.2012.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 06/18/2012] [Accepted: 07/06/2012] [Indexed: 12/11/2022]
|
20
|
Thau-Zuchman O, Shohami E, Alexandrovich AG, Leker RR. Combination of Vascular Endothelial and Fibroblast Growth Factor 2 for Induction of Neurogenesis and Angiogenesis after Traumatic Brain Injury. J Mol Neurosci 2012; 47:166-72. [PMID: 22246995 DOI: 10.1007/s12031-012-9706-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 01/03/2012] [Indexed: 12/31/2022]
|
21
|
Lafuente JV, Ortuzar N, Bengoetxea H, Bulnes S, Argandoña EG. Vascular Endothelial Growth Factor and Other Angioglioneurins. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2012; 102:317-46. [DOI: 10.1016/b978-0-12-386986-9.00012-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Thau-Zuchman O, Shohami E, Alexandrovich AG, Leker RR. Subacute treatment with vascular endothelial growth factor after traumatic brain injury increases angiogenesis and gliogenesis. Neuroscience 2011; 202:334-41. [PMID: 22173016 DOI: 10.1016/j.neuroscience.2011.11.071] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 11/29/2022]
Abstract
Vascular endothelial growth factor (VEGF) is neuroprotective and induces neurogenesis and angiogenesis when given early after traumatic brain injury (TBI). However, the effects of VEGF administration in the subacute phase after TBI remain unknown. Mice were subjected to TBI and treated with vehicle or VEGF beginning 7 days later for an additional 7 days. The animals were injected with BrdU to label proliferating cells and examined with a motor-sensory scale at pre-determined time points. Mice were killed 90 days post injury and immunohistochemistry was used to study cell fates. Our results demonstrate that lesion volumes did not differ between the groups confirming the lack of neuroprotective effects in this paradigm. VEGF treatment led to significant increments in cell proliferation (1.9 fold increase vs. vehicle, P<0.0001) and angiogenesis in the lesioned cortex (1.7 fold increase vs. vehicle, P=0.0001) but most of the proliferating cells differentiated into glia and no mature newly-generated neurons were detected. In conclusion, VEGF induces gliogenesis and angiogenesis when given 7 days post TBI. However, treated mice had only insignificant motor improvements in this paradigm, suggesting that the bulk of the beneficial effects observed when VEGF is given early after TBI results from the neuroprotective effects.
Collapse
Affiliation(s)
- O Thau-Zuchman
- Department of Neurology and the Peritz and Chantal Scheinberg Cerebrovascular Research Laboratory, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | |
Collapse
|
23
|
Medana IM, Day NPJ, Sachanonta N, Mai NTH, Dondorp AM, Pongponratn E, Hien TT, White NJ, Turner GDH. Coma in fatal adult human malaria is not caused by cerebral oedema. Malar J 2011; 10:267. [PMID: 21923924 PMCID: PMC3182981 DOI: 10.1186/1475-2875-10-267] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 09/17/2011] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The role of brain oedema in the pathophysiology of cerebral malaria is controversial. Coma associated with severe Plasmodium falciparum malaria is multifactorial, but associated with histological evidence of parasitized erythrocyte sequestration and resultant microvascular congestion in cerebral vessels. To determine whether these changes cause breakdown of the blood-brain barrier and resultant perivascular or parenchymal cerebral oedema, histology, immunohistochemistry and image analysis were used to define the prevalence of histological patterns of oedema and the expression of specific molecular pathways involved in water balance in the brain in adults with fatal falciparum malaria. METHODS The brains of 20 adult Vietnamese patients who died of severe malaria were examined for evidence of disrupted vascular integrity. Immunohistochemistry and image analysis was performed on brainstem sections for activation of the vascular endothelial growth factor (VEGF) receptor 2 and expression of the aquaporin 4 (AQP4) water channel protein. Fibrinogen immunostaining was assessed as evidence of blood-brain barrier leakage and perivascular oedema formation. Correlations were performed with clinical, biochemical and neuropathological parameters of severe malaria infection. RESULTS The presence of oedema, plasma protein leakage and evidence of VEGF signalling were heterogeneous in fatal falciparum malaria and did not correlate with pre-mortem coma. Differences in vascular integrity were observed between brain regions with the greatest prevalence of disruption in the brainstem, compared to the cortex or midbrain. There was a statistically non-significant trend towards higher AQP4 staining in the brainstem of cases that presented with coma (P = .02). CONCLUSIONS Histological evidence of cerebral oedema or immunohistochemical evidence of localised loss of vascular integrity did not correlate with the occurrence of pre-mortem coma in adults with fatal falciparum malaria. Enhanced expression of AQP4 water channels in the brainstem may, therefore, reflect a mix of both neuropathological or attempted neuroprotective responses to oedema formation.
Collapse
Affiliation(s)
- Isabelle M Medana
- Nuffield Department of Clinical Laboratory Sciences, The John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Mellergård P, Sjögren F, Hillman J. Release of VEGF and FGF in the extracellular space following severe subarachnoidal haemorrhage or traumatic head injury in humans. Br J Neurosurg 2011; 24:261-7. [PMID: 20465454 DOI: 10.3109/02688690903521605] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Microdialysate fluid from 145 severely injured NSICU-patients, 88 with subarachnoidal haemorrage (SAH), and 57 with traumatic brain injury (TBI), was collected by microdialysis during the first 7 days following impact, and levels of the neurotrophins fibroblast growth factor-2 (FGF2) and vascular endothelial growth factor (VEGF) were analysed. The study illustrates both similarities and differences in the reaction patterns of the 2 inflammatory proteins. The highest concentrations of both FGF2 and VEGF were measured on Day 2 (mean (+/- SE) values being 47.1 +/- 15.33 and 116.9 +/- 41.85 pg/ml, respectively, in the pooled patient material). The VEGF concentration was significantly higher in TBI-patients, while the FGF2 showed a tendency to be higher in SAH-patients. This is the first report presenting in some detail the human cerebral response of FGF2 and VEGF following SAH and TBI. Apart from increasing the understanding of the post-impact inflammatory response of the human brain, the study identifies potential threshold values for these chemokines that may serve as monitoring indicators in the NSICU.
Collapse
Affiliation(s)
- Pekka Mellergård
- Department of Neurosurgery, University Hospital, Linköping, Sweden.
| | | | | |
Collapse
|
25
|
Wu H, Jiang H, Lu D, Qu C, Xiong Y, Zhou D, Chopp M, Mahmood A. Induction of angiogenesis and modulation of vascular endothelial growth factor receptor-2 by simvastatin after traumatic brain injury. Neurosurgery 2011; 68:1363-71; discussion 1371. [PMID: 21307798 PMCID: PMC3119744 DOI: 10.1227/neu.0b013e31820c06b9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Our previous studies demonstrated that simvastatin reduced neuronal death, increased neurogenesis, and promoted functional recovery after traumatic brain injury (TBI). OBJECTIVE To investigate the effect of simvastatin on angiogenesis after TBI and the related signaling pathways. METHODS Saline or simvastatin (1 mg/kg) was administered orally to rats starting at day 1 after TBI or sham surgery and then daily for 14 days. Rats were sacrificed at 3 and 14 days after treatment. Brain sections and tissues were prepared for immunohistochemical staining, enzyme-linked immunosorbent assay, and Western blot analysis. Cultured rat brain microvascular endothelial cells were subjected to oxygen-glucose deprivation followed by immunocytochemical staining with phallotoxins and vascular endothelial growth factor receptor-2 (VEGFR-2). Western blot analysis was carried out to examine the simvastatin-induced activation of the v-akt murine thymoma viral oncogene homolog (Akt) signaling pathway. The expression of VEGFR-2 was detected by enzyme-linked immunosorbent assay. RESULTS Simvastatin significantly increased the length of vascular perimeter, promoted the proliferation of endothelial cells, and improved the sensorimotor function after TBI. Simvastatin stimulated endothelial cell tube formation after oxygen-glucose deprivation in vitro. VEGFR-2 expression in both brain tissues and cultured rat brain microvascular endothelial cells was enhanced after simvastatin treatment, which may be modulated by activation of Akt. Akt-dependent endothelial nitric oxide synthase phosphorylation was also induced by simvastatin in vivo and in vitro. CONCLUSION Simvastatin augments TBI-induced angiogenesis in the lesion boundary zone and hippocampus and improves functional recovery. Simvastatin also promotes angiogenesis in vitro. These beneficial effects on angiogenesis may be related to simvastatin-induced activation of the VEGFR-2/Akt/endothelial nitric oxide synthase signaling pathway.
Collapse
Affiliation(s)
- Hongtao Wu
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Hao Jiang
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
| | - Dunyue Lu
- Department of Psychiatry, State University of New York at Downstate Medical Center, Brooklyn, NY, USA
| | - Changsheng Qu
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Ye Xiong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| |
Collapse
|
26
|
Ortuzar N, Argandoña EG, Bengoetxea H, Leis O, Bulnes S, Lafuente JV. Effects of VEGF administration or neutralization on the BBB of developing rat brain. ACTA NEUROCHIRURGICA. SUPPLEMENT 2010; 106:55-59. [PMID: 19812921 DOI: 10.1007/978-3-211-98811-4_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We investigated the effects of exogenous Vascular Endothelial Growth Factor VEGF combined with an enriched environment on BBB integrity after a minimal trauma induced during the first days of the critical visual period in rats, when peak levels of endogenous VEGF secretion are reached. VEGF was administered using osmotic mini-pumps placed in middle cortical layers of P18 Long-Evansrats. Tissue changes were evaluated using conventional histology. BBB integrity was shown by immunohistochemistry techniques for EBA and GluT-1. Mini-pump implantation produced a wider cavity in anti-VEGF infused rats. In VEGF-infused rats there was a damaged region around the cannula that was smaller in rats raised in an enriched environment (EE). The administration of VEGF induced a high concentration of plasma proteins in the neuropil around the point of cannula placement and a high inflammatory reaction. VEGF-infused rats raised in an EE showed a lower degree of extravasation and better tissue preservation. Anti-VEGF administration produced a lower protein expression profile and more widespread deterioration of tissue. Double immunofluorescence for EBA and GluT-1 showed that the administration of VEGF preserves the tissue, which remains present but not fully functional. In contrast, a combination of VEGF administration and an EE partially protects the functionally damaged tissue with a higher preservation of BBB integrity.
Collapse
Affiliation(s)
- N Ortuzar
- Department of Neuroscience, LaNCE, Clinical and Experimental Neuroscience Laboratory, University of Basque Country, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Suidan GL, Dickerson JW, Chen Y, McDole JR, Tripathi P, Pirko I, Seroogy KB, Johnson AJ. CD8 T cell-initiated vascular endothelial growth factor expression promotes central nervous system vascular permeability under neuroinflammatory conditions. THE JOURNAL OF IMMUNOLOGY 2009; 184:1031-40. [PMID: 20008293 DOI: 10.4049/jimmunol.0902773] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dysregulation of the blood-brain barrier (BBB) is a hallmark feature of numerous neurologic disorders as diverse as multiple sclerosis, stroke, epilepsy, viral hemorrhagic fevers, cerebral malaria, and acute hemorrhagic leukoencephalitis. CD8 T cells are one immune cell type that have been implicated in promoting vascular permeability in these conditions. Our laboratory has created a murine model of CD8 T cell-mediated CNS vascular permeability using a variation of the Theiler's murine encephalomyelitis virus system traditionally used to study multiple sclerosis. Previously, we demonstrated that CD8 T cells have the capacity to initiate astrocyte activation, cerebral endothelial cell tight junction protein alterations and CNS vascular permeability through a perforin-dependent process. To address the downstream mechanism by which CD8 T cells promote BBB dysregulation, in this study, we assess the role of vascular endothelial growth factor (VEGF) expression in this model. We demonstrate that neuronal expression of VEGF is significantly upregulated prior to, and coinciding with, CNS vascular permeability. Phosphorylation of fetal liver kinase-1 is significantly increased early in this process indicating activation of this receptor. Specific inhibition of neuropilin-1 significantly reduced CNS vascular permeability and fetal liver kinase-1 activation, and preserved levels of the cerebral endothelial cell tight junction protein occludin. Our data demonstrate that CD8 T cells initiate neuronal expression of VEGF in the CNS under neuroinflammatory conditions, and that VEGF may be a viable therapeutic target in neurologic disease characterized by inflammation-induced BBB disruption.
Collapse
Affiliation(s)
- Georgette L Suidan
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Anti-angiogenic therapies currently revolve around targeting vascular endothelial growth factor-A (VEGF-A) or its receptors. These therapies are effective to some degree, but have low response rates and poor side-effect profiles. Part of these problems is likely to be due to their lack of specificity between pro- and anti-angiogenic isoforms, and their nonspecific effects on proactive, pleiotropic survival and maintenance roles of VEGF-A in endothelial and other cell types. An alternative approach, and one which has recently been shown to be effective in animal models of neovascularization in the eye, is to target the mechanisms by which the cell generates pro-angiogenic splice forms of VEGF-A, its receptors and, co-incidentally, by targeting the upstream processes, other oncogenes that have antagonistic splice isoforms. The concept here is to target the splicing mechanisms that control splice site choice in the VEGF-A mRNA. Recent evidence on the pharmacological possibilities of such splice factors is described.
Collapse
Affiliation(s)
- Emma S Rennel
- Microvascular Research Laboratories, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK Tel:.+44 117 982 8367 Fax: +44 117 982 8151
| | - Steven J Harper
- Microvascular Research Laboratories, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK
| | - David O Bates
- Microvascular Research Laboratories, Department of Physiology and Pharmacology, School of Veterinary Sciences, University of Bristol, Southwell Street, Bristol BS2 8EJ, UK Tel:. +44 117 982 8367 Fax: +44 117 982 8151
| |
Collapse
|
29
|
Zou YY, Lu J, Poon DJF, Kaur C, Cao Q, Teo AL, Ling EA. Combustion smoke exposure induces up-regulated expression of vascular endothelial growth factor, aquaporin 4, nitric oxide synthases and vascular permeability in the retina of adult rats. Neuroscience 2009; 160:698-709. [PMID: 19285541 DOI: 10.1016/j.neuroscience.2009.03.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 03/02/2009] [Accepted: 03/04/2009] [Indexed: 12/28/2022]
Abstract
Retinal cells respond to various experimental stimuli including hypoxia, yet it remains to be investigated whether they react to smoke inhalation. We show here that retinal cells in rats, notably the ganglion cells, Müller cells, astrocytes and blood vessels responded vigorously to a smoke challenge. The major changes included up-regulated expression of vascular endothelial growth factor (VEGF), aquaporin 4 (AQP4) and nitric oxide synthase (NOS). VEGF expression was localized in the ganglion cells, Müller cells, astrocytes and associated blood vessels. AQP4 was markedly enhanced in both astrocytes and Müller cells. Increase in vascular permeability after smoke exposure was evidenced by extravasation of serum derived rhodamine isothiocyanate which was internalized by Müller cells and ganglion cells. The tracer leakage was attenuated by aminoguanidine and N(G)-nitro-L-arginine methyl ester (L-NAME) treatment which suppressed retinal tissue NOS and nitric oxide (NO) levels concomitantly. It is suggested that VEGF, AQP4 and NO are involved in increased vascular permeability following acute smoke exposure in which hypoxia was ultimately implicated as shown by blood gases analysis. NOS inhibitors effectively reduced the vascular leakage and hence may ameliorate possible retinal edema in smoke inhalation.
Collapse
Affiliation(s)
- Y Y Zou
- Department of Pathology, Faculty of Basic Medical Sciences, Kunming Medical College, Kunming, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
30
|
Bengoetxea H, Argandoña EG, Lafuente JV. Effects of visual experience on vascular endothelial growth factor expression during the postnatal development of the rat visual cortex. Cereb Cortex 2008; 18:1630-9. [PMID: 17986606 PMCID: PMC2430152 DOI: 10.1093/cercor/bhm190] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The development of the cortical vascular network depends on functional maturation. External inputs are an essential requirement in the modeling of the visual cortex, mainly during the critical period, when the functional and structural properties of visual cortical neurons are particularly susceptible to alterations. Vascular endothelial growth factor (VEGF) is the major angiogenic factor, a key signal in the induction of vessel growth. Our study focused on the role of visual stimuli on the development of the vascular pattern correlated with VEGF levels. Vascular density and the expression of VEGF were examined in the primary visual cortex of rats reared under different visual environments (dark rearing, dark-rearing in conditions of enriched environment, enriched environment, and laboratory standard conditions) during postnatal development (before, during, and after the critical period). Our results show a restricted VEGF cellular expression to astroglial cells. Quantitative differences appeared during the critical period: higher vascular density and VEGF protein levels were found in the enriched environment group; both dark-reared groups showed lower vascular density and VEGF levels, which means that enriched environment without the physical exercise component does not exert effects in dark-reared rats.
Collapse
Affiliation(s)
- Harkaitz Bengoetxea
- Laboratory of Clinical and Experimental Neuroscience (LaNCE), Department of Neuroscience, Faculty of Medicine and Odontology, Basque Country University, Barrio Sarriena, 48940 Leioa, Spain.
| | | | | |
Collapse
|
31
|
Zhang X, Bao S, Lai D, Rapkins RW, Gillies MC. Intravitreal triamcinolone acetonide inhibits breakdown of the blood-retinal barrier through differential regulation of VEGF-A and its receptors in early diabetic rat retinas. Diabetes 2008; 57:1026-33. [PMID: 18174522 PMCID: PMC2836241 DOI: 10.2337/db07-0982] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 12/19/2007] [Indexed: 12/04/2022]
Abstract
OBJECTIVE To elucidate the mechanism of the unique beneficial effect of intravitreal steroid therapy on diabetic macular edema, we investigated the effect of locally administered triamcinolone acetonide (TA) on the expression of vascular endothelial growth factor (VEGF)-A and its receptors in retinas of rats with streptozotocin (STZ)-induced diabetes. We then correlated the expression of these proteins with breakdown of the blood-retinal barrier (BRB). RESEARCH DESIGN AND METHODS Thirty-two eyes of 16 diabetic and nondiabetic rats were divided into four groups. TA was injected into the vitreous of the right eye, and saline was injected into the left eye (control) 3.5 weeks after induction of diabetes. Retinas were harvested 48 h following treatment. mRNA and protein expression of VEGF-A, VEGF-A receptor 1 (fms-like tyrosine kinase [FLT]-1), and VEGF-A receptor 2 (fetal liver kinase [FLK]-1) were determined by real-time RT-PCR and immunohistochemistry. BRB permeability was quantitated by measuring extravasated endogenous albumin and retinal thickness. RESULTS Diabetes-induced retinal thickness and albumin extravasation were significantly reduced in TA-treated diabetic retinas to a level similar to that in sham-treated nondiabetic eyes. A close correlation between albumin leakage and increased expression of both Vegf-a and Flk-1 was noted in the diabetic retinas. TA downregulated the expression of Vegf-a and Flk-1 but upregulated the expression of Flt-1. TA did not alter the expression of these genes in nondiabetic retinas. CONCLUSIONS Intravitreal injection of TA stabilizes the BRB in association with regulation of Vegf-a, Flk-1, and Flt-1 expression in retinas in the early stages of diabetes.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Save Sight Institute, Department of Clinical Ophthalmology, University of Sydney, Sydney, Australia.
| | | | | | | | | |
Collapse
|
32
|
Morgan R, Kreipke CW, Roberts G, Bagchi M, Rafols JA. Neovascularization following traumatic brain injury: possible evidence for both angiogenesis and vasculogenesis. Neurol Res 2007; 29:375-81. [PMID: 17626733 DOI: 10.1179/016164107x204693] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Our goal was to characterize the angiogenic response following traumatic brain injury (TBI). METHODS Western analysis for vascular endothelial growth factor (VEGF) expression, double immunofluorescence labeling of endothelium and vascular endothelial growth factor receptor 2 (VEGFR2), bromodioxyuridine (BrdU) incorporation and measurement of capillary density, were all used to determine the temporal angiogenic response following TBI. RESULTS The angiogenic factors, VEGF and VEGFR2, increase following trauma. Capillary density increases and BrdU incorporation confirm the presence of newly formed vessels up to 48 hours post-injury. DISCUSSION Our results indicated that following TBI, there is a substantial increase in angiogenesis and based on morphologic characterization of BrdU-positive nuclei within the endothelium, we provide evidence for vasculogenesis following injury.
Collapse
Affiliation(s)
- Randy Morgan
- Department of Anatomy and Cell Biology, School of Medicine, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
33
|
Jinnouchi Y, Yamagishi SI, Matsui T, Takenaka K, Yoshida Y, Nakamura K, Ueda SI, Imaizumi T. Administration of pigment epithelium-derived factor (PEDF) inhibits cold injury-induced brain edema in mice. Brain Res 2007; 1167:92-100. [PMID: 17692294 DOI: 10.1016/j.brainres.2007.04.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Revised: 04/26/2007] [Accepted: 04/26/2007] [Indexed: 11/25/2022]
Abstract
Brain edema is the most life-threatening complication that occurs as a result of a number of insults to the brain. However, its therapeutic options are insufficiently effective. We have recently found that administration of pigment epithelium-derived factor (PEDF) inhibits retinal hyperpermeability in rats by counteracting biological effects of vascular endothelial growth factor (VEGF). In this study, we investigated whether PEDF could inhibit cold injury-induced brain edema in mice. Cold injury was induced by applying a pre-cooled metal probe on the parietal skull. VEGF and its receptor Flk-1 gene and/or protein expressions were up-regulated in the cold-injured brain. Cold injury induced brain edema, which was reduced by intraperitoneal injection of VEGF antibodies (Abs) or apocynin, an inhibitor of NADPH oxidase. PEDF mRNA and protein levels were up-regulated in response to cold injury. PEDF dose-dependently inhibited the brain edema, whose effect was neutralized by simultaneous treatments with anti-PEDF Abs. Although VEGF and Flk-1 gene and/or protein expressions were not suppressed by PEDF, PEDF or anti-VEGF Abs inhibited the cold injury-induced NADPH oxidase activity in the brain. Further, PEDF treatment inhibited activation of Rac-1, an essential component of NADPH oxidase in the cold-injured brain, while it did not affect mRNA levels of gp91phox, p22phox, or Rac-1. These results demonstrate that PEDF could inhibit the cold injury-induced brain edema by blocking the VEGF signaling to hyperpermeability through the suppression of NADPH oxidase via inhibition of Rac-1 activation. Our present study suggests that PEDF may be a novel therapeutic agent for the treatment of brain edema.
Collapse
Affiliation(s)
- Yuko Jinnouchi
- Department of Medicine, Division of Cardio-Vascular Medicine, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Li Y, Lu ZY, Ogle M, Wei L. Erythropoietin prevents blood brain barrier damage induced by focal cerebral ischemia in mice. Neurochem Res 2007; 32:2132-41. [PMID: 17562165 DOI: 10.1007/s11064-007-9387-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 05/14/2007] [Indexed: 10/23/2022]
Abstract
Recombinant human erythropoietin (rhEPO), a neurovascular protective agent, therapeutically supports angiogenesis after stroke by enhancing endogenous up-regulation of vascular endothelial growth factor (VEGF). Increased VEGF expression has been characterized to negatively impact the integrity of the blood brain barrier (BBB), causing brain edema and secondary injury. The present study investigated the rhEPO-induced BBB protection after stroke and how it might be achieved by affecting VEGF pathway. rhEPO treatment (5,000 U/kg, i.p., 30 min before stroke and once a day for three days after stroke) reduced Evans blue leakage and brain edema after ischemia. The expression of the BBB integrity markers, occludin, alpha-catenin and beta-catenin, in the brain was preserved in animals received rhEPO. rhEPO up-regulated VEGF expression; however, the expression of VEGF receptor-2 (fetal liver kinase receptor, Flk-1) was significantly reduced in rhEPO-treated animals three days after stroke. We propose that, disregarding increased VEGF levels, rhEPO protects against ischemia-induced BBB damage at least partly by down-regulating Flk-1 expression and the response to VEGF signaling in the acute phase after stroke.
Collapse
Affiliation(s)
- Ying Li
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 165 Ashley Ave., Charleston, SC 29425, USA
| | | | | | | |
Collapse
|