1
|
Single and repeated bisphenol A treatment induces ROS, Aβ and hyperphosphorylated-tau accumulation, and insulin pathways disruption, through HDAC2 and PTP1B overexpression, leading to SN56 cholinergic apoptotic cell death. Food Chem Toxicol 2022; 170:113500. [DOI: 10.1016/j.fct.2022.113500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022]
|
2
|
Abstract
The enzyme acetylcholinesterase (AChE) is a serine hydrolase whose primary function is to degrade acetylcholine (ACh) and terminate neurotransmission. Apart from its role in synaptic transmission, AChE has several "non-classical" functions in non-neuronal cells. AChE is involved in cellular growth, apoptosis, drug resistance pathways, response to stress signals and inflammation. The observation that the functional activity of AChE is altered in human tumors (relative to adjacent matched normal tissue) has raised several intriguing questions about its role in the pathophysiology of human cancers. Published reports show that AChE is a vital regulator of oncogenic signaling pathways involving proliferation, differentiation, cell-cell adhesion, migration, invasion and metastasis of primary tumors. The objective of this book chapter is to provide a comprehensive overview of the contributions of the AChE-signaling pathway in the growth of progression of human cancers. The AChE isoforms, AChE-T, AChE-R and AChE-S are robustly expressed in human cancer cell lines as well in human tumors (isolated from patients). Traditionally, AChE-modulators have been used in the clinic for treatment of neurodegenerative disorders. Emerging studies reveal that these drugs could be repurposed for the treatment of human cancers. The discovery of potent, selective AChE ligands will provide new knowledge about AChE-regulatory pathways in human cancers and foster the hope of novel therapies for this disease.
Collapse
Affiliation(s)
- Stephen D Richbart
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Justin C Merritt
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States
| | - Nicholas A Nolan
- West Virginia University Medical School, Morgantown, WV, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Toxicology Research Cluster, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, United States.
| |
Collapse
|
3
|
Moyano P, García JM, García J, Anadon MJ, Naval MV, Frejo MT, Sola E, Pelayo A, Pino JD. Manganese increases Aβ and Tau protein levels through proteasome 20S and heat shock proteins 90 and 70 alteration, leading to SN56 cholinergic cell death following single and repeated treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110975. [PMID: 32678756 DOI: 10.1016/j.ecoenv.2020.110975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Manganese (Mn) produces cholinergic neuronal loss in basal forebrain (BF) region that was related to cognitive dysfunction induced after single and repeated Mn treatment. All processes that generate cholinergic neuronal loss in BF remain to be understood. Mn exposure may produce the reduction of BF cholinergic neurons by increasing amyloid beta (Aβ) and phosphorylated Tau (pTau) protein levels, altering heat shock proteins' (HSPs) expression, disrupting proteasome P20S activity and generating oxidative stress. These mechanisms, described to be altered by Mn in regions different than BF, could lead to the memory and learning process alteration produced after Mn exposure. The research performed shows that single and repeated Mn treatment of SN56 cholinergic neurons from BF induces P20S inhibition, increases Aβ and pTau protein levels, produces HSP90 and HSP70 proteins expression alteration, and oxidative stress generation, being the last two effects mediated by NRF2 pathway alteration. The increment of Aβ and pTau protein levels was mediated by HSPs and proteasome dysfunction. All these mechanisms mediated the cell decline observed after Mn treatment. Our results are relevant because they may assist to reveal the processes leading to the neurotoxicity and cognitive alterations observed after Mn exposure.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacolgy, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - María Victoria Naval
- Department of Pharmacology, Pharmacognosy and Botany, Pharmacy School, Complutense University of Madrid, 28040, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Emma Sola
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
4
|
Cortés‐Gómez M, Llorens‐Álvarez E, Alom J, del Ser T, Avila J, Sáez‐Valero J, García‐Ayllón M. Tau phosphorylation by glycogen synthase kinase 3β modulates enzyme acetylcholinesterase expression. J Neurochem 2020; 157:2091-2105. [PMID: 32955735 PMCID: PMC8359467 DOI: 10.1111/jnc.15189] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
Abstract
In Alzheimer's disease (AD), the enzyme acetylcholinesterase (AChE) co‐localizes with hyperphosphorylated tau (P‐tau) within neurofibrillary tangles. Having demonstrated that AChE expression is increased in the transgenic mouse model of tau Tg‐VLW, here we examined whether modulating phosphorylated tau levels by over‐expressing wild‐type human tau and glycogen synthase kinase‐3β (GSK3β) influences AChE expression. In SH‐SY5Y neuroblastoma cells expressing higher levels of P‐tau, AChE activity and protein increased by (20% ± 2%) and (440% ± 150%), respectively. Western blots and qPCR assays showed that this increment mostly corresponded to the cholinergic ACHE‐T variant, for which the protein and transcript levels increased ~60% and ~23%, respectively. Moreover, in SH‐SY5Y cells differentiated into neurons by exposure to retinoic acid (10 µM), over‐expression of GSK3β and tau provokes an imbalance in cholinergic activity with a decrease in the neurotransmitter acetylcholine in the cell (45 ± 10%). Finally, we obtained cerebrospinal fluid (CSF) from AD patients enrolled on a clinical trial of tideglusib, an irreversible GSK3β inhibitor. In CSF of patients that received a placebo, there was an increase in AChE activity (35 ± 16%) respect to basal levels, probably because of their treatment with AChE inhibitors. However, this increase was not observed in tideglusib‐treated patients. Moreover, CSF levels of P‐tau at the beginning measured by commercially ELISA kits correlated with AChE activity. In conclusion, this study shows that P‐tau can modulate AChE expression and it suggests that AChE may possibly increase in the initial phases of AD.
Collapse
Affiliation(s)
- María‐Ángeles Cortés‐Gómez
- Hospital General Universitario de ElcheFISABIOUnidad de InvestigaciónElcheSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández‐CSICSant Joan d’AlacantSpain
| | - Esther Llorens‐Álvarez
- Hospital General Universitario de ElcheFISABIOUnidad de InvestigaciónElcheSpain
- Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández‐CSICSant Joan d’AlacantSpain
| | - Jordi Alom
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Servicio de NeurologíaHospital General Universitario de ElcheFISABIOElcheSpain
| | - Teodoro del Ser
- Alzheimer’s Disease Investigation Research UnitCIEN FoundationQueen Sofia Foundation Alzheimer Research CenterMadridSpain
| | - Jesús Avila
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Department of Molecular NeuropathologyCentro de Biología Molecular 'Severo Ochoa'CBMSOCSIC‐UAMMadridSpain
| | - Javier Sáez‐Valero
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández‐CSICSant Joan d’AlacantSpain
| | - María‐Salud García‐Ayllón
- Hospital General Universitario de ElcheFISABIOUnidad de InvestigaciónElcheSpain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)MadridSpain
- Instituto de Neurociencias de AlicanteUniversidad Miguel Hernández‐CSICSant Joan d’AlacantSpain
| |
Collapse
|
5
|
Moyano P, Sanjuan J, García JM, Anadon MJ, Naval MV, Sola E, García J, Frejo MT, Pino JD. Dysregulation of prostaglandine E2 and BDNF signaling mediated by estrogenic dysfunction induces primary hippocampal neuronal cell death after single and repeated paraquat treatment. Food Chem Toxicol 2020; 144:111611. [PMID: 32738378 DOI: 10.1016/j.fct.2020.111611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/05/2020] [Accepted: 07/13/2020] [Indexed: 01/01/2023]
Abstract
Paraquat (PQ) produces hippocampal neuronal cell death and cognitive dysfunctions after unique and continued exposure, but the mechanisms are not understood. Primary hippocampal wildtype or βAPP-Tau silenced cells were co-treated with PQ with or without E2, N-acetylcysteine (NAC), NS-398 (cyclooxygenase-2 inhibitor), MF63 (PGES-1 inhibitor) and/or recombinant brain-derived neurotrophic factor (BDNF) during one- and fourteen-days to studied PQ effect on prostaglandin E2 (PGE2) and BDNF signaling and their involvement in hyperphosphorylated Tau (pTau) and amyloid-beta (Aβ) protein formation, and oxidative stress generation, that lead to neuronal cell loss through estrogenic disruption, as a possible mechanism of cognitive dysfunctions produced by PQ. Our results indicate that PQ overexpressed cyclooxygenase-2 that leads to an increase of PGE2 and alters the expression of EP1-3 receptor subtypes. PQ induced also a decrease of proBDNF and mature BDNF levels and altered P75NTR and tropomyosin receptor kinase B (TrkB) expression. PQ induced PGE2 and BDNF signaling dysfunction, mediated through estrogenic disruption, leading to Aβ and pTau proteins synthesis, oxidative stress generation and finally to cell death. Our research provides relevant information to explain PQ hippocampal neurotoxic effects, indicating a probable explanation of the cognitive dysfunction observed and suggests new therapeutic strategies to protect against PQ toxic effects.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Javier Sanjuan
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Maria Victoria Naval
- Department of Pharmacology, Pharmacognosy and Botany, Pharmacy School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Emma Sola
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Jimena García
- Department of Pharmacology, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
6
|
Fronza MG, Baldinotti R, Fetter J, Sacramento M, Sousa FSS, Seixas FK, Collares T, Alves D, Praticò D, Savegnago L. QTC-4-MeOBnE Rescues Scopolamine-Induced Memory Deficits in Mice by Targeting Oxidative Stress, Neuronal Plasticity, and Apoptosis. ACS Chem Neurosci 2020; 11:1259-1269. [PMID: 32227985 DOI: 10.1021/acschemneuro.9b00661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cognitive decline and memory impairment induced by disruption of cholinergic neurons and oxidative brain damage are among the earliest pathological hallmark signatures of Alzheimer's disease. Scopolamine is a postsynaptic muscarinic receptor blocker which causes impairment of cholinergic transmission resulting in cognitive deficits. Herein we investigated the effect of QTC-4-MeOBnE (1-(7-chloroquinolin-4-yl)-N-(4-methoxybenzyl)-5-methyl-1H-1,2,3-triazole-4-carboxamide) on memory impairments in mice chronically treated with scopolamine and the molecular mechanisms involved. Administration of scopolamine (1 mg/kg) for 15 days resulted in significant impairments in working and short-term memory in mice, as assessed by the novel object recognition and the Y-maze paradigms. However, both deficits were prevented if mice receiving the scopolamine were also treated with QTC-4-MeOBnE. This effect was associated with an increase in antioxidant enzymes (superoxide dismutase and catalase), a reduction in lipid peroxidation, and an increase in Nrf2 expression. Moreover, brains from QTC-4-MeOBnE treated mice had a significant decrease in acetylcholinesterase activity and glycogen synthase kinase-3β levels but an increase in brain-derived neurotrophic factor and Bcl-2 expression levels. Taken together our findings demonstrate that the beneficial effect of QTC-4-MeOBnE in a mouse model of scopolamine-induced memory impairment is mediated via the involvement of different molecular pathways including oxidative stress, neuroplasticity, neuronal vulnerability, and apoptosis. Our study provides further evidence on the promising therapeutic potential of QTC-4-MeOBnE as a multifactorial disease modifying drug in AD and related dementing disorders.
Collapse
Affiliation(s)
- Mariana G. Fronza
- Neurobiotechnology Research Group - GPN, Federal University of Pelotas - UFPel, Technological Development Center, Pelotas, RS 96160-000, Brazil
| | - Rodolfo Baldinotti
- Neurobiotechnology Research Group - GPN, Federal University of Pelotas - UFPel, Technological Development Center, Pelotas, RS 96160-000, Brazil
| | - Jenifer Fetter
- Neurobiotechnology Research Group - GPN, Federal University of Pelotas - UFPel, Technological Development Center, Pelotas, RS 96160-000, Brazil
| | - Manoela Sacramento
- Laboratory of Clean Organic Synthesis - LASOL, Federal University of Pelotas - UFPel, Chemical, Pharmaceutical and Food Science Center, Pelotas, RS 96160-000, Brazil
| | - Fernanda Severo Sabedra Sousa
- Oncology Research Group - GPO, CDTec, Federal University of Pelotas - UFPel, Technological Development Center, Pelotas, RS 96160-000, Brazil
| | - Fabiana K. Seixas
- Oncology Research Group - GPO, CDTec, Federal University of Pelotas - UFPel, Technological Development Center, Pelotas, RS 96160-000, Brazil
| | - Tiago Collares
- Oncology Research Group - GPO, CDTec, Federal University of Pelotas - UFPel, Technological Development Center, Pelotas, RS 96160-000, Brazil
| | - Diego Alves
- Laboratory of Clean Organic Synthesis - LASOL, Federal University of Pelotas - UFPel, Chemical, Pharmaceutical and Food Science Center, Pelotas, RS 96160-000, Brazil
| | - Domenico Praticò
- Alzheimer’s Center at Temple − ACT, Temple University, Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Lucielli Savegnago
- Neurobiotechnology Research Group - GPN, Federal University of Pelotas - UFPel, Technological Development Center, Pelotas, RS 96160-000, Brazil
| |
Collapse
|
7
|
Moyano P, Sanjuan J, García JM, Anadon MJ, Lobo M, Pelayo A, García J, Frejo MT, Del Pino J. Primary hippocampal estrogenic dysfunction induces synaptic proteins alteration and neuronal cell death after single and repeated paraquat exposure. Food Chem Toxicol 2019; 136:110961. [PMID: 31715309 DOI: 10.1016/j.fct.2019.110961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 11/05/2019] [Accepted: 11/08/2019] [Indexed: 01/12/2023]
Abstract
The extensively utilized herbicide Paraquat (PQ) was reported to generate cognitive disorders and hippocampal neuronal cell death after unique and extended exposure. Although, most of the mechanisms that mediate these actions remain unknown. We researched whether PQ induces synaptic protein disruption, Tau and amyloid beta protein formation, oxidative stress generation, and hippocampal neuronal cell loss through anti-estrogen action in primary hippocampal neurons, after day and two weeks PQ treatment, as a probable mechanism of such learning and memory impairment. Our results reveal that PQ did not alter estrogen receptors (ERα and ERβ) gene expression, yet it decreased ER activation, which led to synaptic proteins disruption and amyloid beta proteins generation and Tau proteins hyperphosphorylation. Estrogenic signaling disruption induced by PQ also downregulated the NRF2 pathway leading to oxidative stress generation. Finally, PQ exposure induced cell death mediated by ER dysfunction partially through oxidative stress and amyloid beta proteins generation and Tau proteins hyperphosphorylation. The results presented provide a therapeutic strategy to protect against PQ toxic effects, possibly giving an explanation for the learning and memory impairment generated following PQ exposure.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Javier Sanjuan
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - María José Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Margarita Lobo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medical School, Complutense University of Madrid, 28041, Madrid, Spain
| | - Jimena García
- Department of Pharmacology, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Veterinary School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
8
|
Wang H, Zhang H. Reconsideration of Anticholinesterase Therapeutic Strategies against Alzheimer's Disease. ACS Chem Neurosci 2019; 10:852-862. [PMID: 30521323 DOI: 10.1021/acschemneuro.8b00391] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is well-known as a severe neurodegeneration disease involving complicated etiologies, and cholinesterase inhibition remain the prevailing mode of clinical intervention in AD management. Although most clinically applied cholinesterase inhibitors (ChEIs) achieve limited clinical outcomes, research on the central cholinergic system is still thriving. Recently, an impressive amount of knowledge regarding novel acetylcholinesterase functions, as well as the close association between the central cholinergic system and other key elements for AD pathogenesis, has accumulated, highlighting that this field still has great potential for future drug development. In contrast to the overwhelmingly disappointing clinical therapeutic effects of various disease-modifying drug candidates, interesting evidence has continued to emerge over the past 20 years from the wealth of preclinical and clinical data on the usage of ChEIs, indicating underestimated clinical benefits due to physician ambivalence, a lack of persistent treatment, and inappropriate medication times or doses. Here we pinpoint several topics fit for future attention, focusing on the updated cholinergic hypothesis, especially the pleiotropic relationships with key pathogenetic signaling pathways and functions in AD, as well as possible novel therapeutic strategies, including novel ChEIs and cholinesterase inhibition-based innovative multifunctional therapeutic candidates. We intend to strengthen the future value of the precise application of cholinergic drugs, especially novel ChEIs, as a cornerstone pharmacological approach to AD treatment, either alone or in combination with other targets, to relieve symptoms and to modify disease progression.
Collapse
Affiliation(s)
- Huan Wang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Haiyan Zhang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| |
Collapse
|
9
|
Friedman JR, Richbart SD, Merritt JC, Brown KC, Nolan NA, Akers AT, Lau JK, Robateau ZR, Miles SL, Dasgupta P. Acetylcholine signaling system in progression of lung cancers. Pharmacol Ther 2019; 194:222-254. [PMID: 30291908 PMCID: PMC6348061 DOI: 10.1016/j.pharmthera.2018.10.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The neurotransmitter acetylcholine (ACh) acts as an autocrine growth factor for human lung cancer. Several lines of evidence show that lung cancer cells express all of the proteins required for the uptake of choline (choline transporter 1, choline transporter-like proteins) synthesis of ACh (choline acetyltransferase, carnitine acetyltransferase), transport of ACh (vesicular acetylcholine transport, OCTs, OCTNs) and degradation of ACh (acetylcholinesterase, butyrylcholinesterase). The released ACh binds back to nicotinic (nAChRs) and muscarinic receptors on lung cancer cells to accelerate their proliferation, migration and invasion. Out of all components of the cholinergic pathway, the nAChR-signaling has been studied the most intensely. The reason for this trend is due to genome-wide data studies showing that nicotinic receptor subtypes are involved in lung cancer risk, the relationship between cigarette smoke and lung cancer risk as well as the rising popularity of electronic cigarettes considered by many as a "safe" alternative to smoking. There are a small number of articles which review the contribution of the other cholinergic proteins in the pathophysiology of lung cancer. The primary objective of this review article is to discuss the function of the acetylcholine-signaling proteins in the progression of lung cancer. The investigation of the role of cholinergic network in lung cancer will pave the way to novel molecular targets and drugs in this lethal malignancy.
Collapse
Affiliation(s)
- Jamie R Friedman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Nicholas A Nolan
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Austin T Akers
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Jamie K Lau
- Biology Department, Center for the Sciences, Box 6931, Radford University, Radford, Virginia 24142
| | - Zachary R Robateau
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, 1700 Third Avenue, Huntington, WV 25755.
| |
Collapse
|
10
|
Moyano P, Frejo MT, Anadon MJ, García JM, Díaz MJ, Lobo M, Sola E, García J, Del Pino J. SN56 neuronal cell death after 24 h and 14 days chlorpyrifos exposure through glutamate transmission dysfunction, increase of GSK-3β enzyme, β-amyloid and tau protein levels. Toxicology 2018; 402-403:17-27. [DOI: 10.1016/j.tox.2018.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022]
|
11
|
Heinrich R, Hertz R, Zemel E, Mann I, Brenner L, Massarweh A, Berlin S, Perlman I. ATF3 Regulates the Expression of AChE During Stress. Front Mol Neurosci 2018; 11:88. [PMID: 29681794 PMCID: PMC5897425 DOI: 10.3389/fnmol.2018.00088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/06/2018] [Indexed: 12/22/2022] Open
Abstract
Acetylcholinesterase (AChE) expresses in non-cholinergic cells, but its role(s) there remain unknown. We have previously attributed a pro-apoptotic role for AChE in stressed retinal photoreceptors, though by unknown mechanism. Here, we examined its promoter only to find that it includes a binding sequence for the activating transcription factor 3 (ATF3); a prototypical mediator of apoptosis. This suggests that expression of AChE could be regulated by ATF3 in the retina. Indeed, ATF3 binds the AChE-promoter to down-regulate its expressions in vitro. Strikingly, retinas of “blinded” mice display hallmarks of apoptosis, almost exclusively in the outer nuclear layer (ONL); coinciding with elevated levels of AChE and absence of ATF3. A mirror image is observed in the inner nuclear layer (INL), namely prominent levels of ATF3 and lack of AChE as well as lack of apoptosis. We conclude that segregated patterns of expressions of ATF3 reflect its ability to repress apoptosis in different layers of the retina—a novel mechanism behind apoptosis.
Collapse
Affiliation(s)
- Ronit Heinrich
- Department of Neuroscience, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and The Rappaport Institute, Haifa, Israel
| | - Rivka Hertz
- Department of Neuroscience, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and The Rappaport Institute, Haifa, Israel
| | - Esther Zemel
- Department of Neuroscience, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and The Rappaport Institute, Haifa, Israel
| | - Irit Mann
- Department of Neuroscience, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and The Rappaport Institute, Haifa, Israel
| | - Liat Brenner
- Department of Neuroscience, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and The Rappaport Institute, Haifa, Israel
| | - Amir Massarweh
- Department of Neuroscience, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and The Rappaport Institute, Haifa, Israel
| | - Shai Berlin
- Department of Neuroscience, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and The Rappaport Institute, Haifa, Israel
| | - Ido Perlman
- Department of Neuroscience, Ruth & Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology and The Rappaport Institute, Haifa, Israel
| |
Collapse
|
12
|
Valuskova P, Farar V, Janisova K, Ondicova K, Mravec B, Kvetnansky R, Myslivecek J. Brain region-specific effects of immobilization stress on cholinesterases in mice. Stress 2017; 20:36-43. [PMID: 27873537 DOI: 10.1080/10253890.2016.1263836] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Brain acetylcholinesterase (AChE) variant AChER expression increases with acute stress, and this persists for an extended period, although the timing, strain and laterality differences, have not been explored previously. Acute stress transiently increases acetylcholine release, which in turn may increase activity of cholinesterases. Also the AChE gene contains a glucocorticoid response element (GRE), and stress-inducible AChE transcription and activity changes are linked to increased glucocorticoid levels. Corticotropin-releasing hormone knockout (CRH-KO) mice have basal glucocorticoid levels similar to wild type (WT) mice, but much lower levels during stress. Hence we hypothesized that CRH is important for the cholinesterase stress responses, including butyrylcholinesterase (BChE). We used immobilization stress, acute (30 or 120 min) and repeated (120 min daily × 7) in 48 male mice (24 WT and 24 CRH-KO) and determined AChER, AChE and BChE mRNA expression and AChE and BChE activities in left and right brain areas (as cholinergic signaling shows laterality). Immobilization decreased BChE mRNA expression (right amygdala, to 0.5, 0.3 and 0.4, × control respectively) and AChER mRNA expression (to 0.5, 0.4 and 0.4, × control respectively). AChE mRNA expression increased (1.3, 1.4 and 1.8-fold, respectively) in the left striatum (Str). The AChE activity increased in left Str (after 30 min, 1.2-fold), decreased in right parietal cortex with repeated stress (to 0.5 × control). BChE activity decreased after 30 min in the right CA3 region (to 0.4 × control) but increased (3.8-fold) after 120 min in the left CA3 region. The pattern of changes in CRH-KO differed from that in WT mice.
Collapse
Affiliation(s)
- Paulina Valuskova
- a Institute of Physiology, 1st Faculty of Medicine , Charles University , Prague , Czech Republic
| | - Vladimir Farar
- b Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine , Charles University , Prague , Czech Republic
| | - Katerina Janisova
- a Institute of Physiology, 1st Faculty of Medicine , Charles University , Prague , Czech Republic
| | - Katarina Ondicova
- c Institute of Pathophysiology, Faculty of Medicine , Comenius University , Bratislava , Slovakia
- d Institute of Experimental Endocrinology Centre of Excellence for Cardiovascular Research and CENDO Slovak Academy of Sciences , Bratislava , Slovakia
| | - Boris Mravec
- d Institute of Experimental Endocrinology Centre of Excellence for Cardiovascular Research and CENDO Slovak Academy of Sciences , Bratislava , Slovakia
- e Institute of Physiology, Faculty of Medicine , Comenius University , Bratislava , Slovakia
| | - Richard Kvetnansky
- d Institute of Experimental Endocrinology Centre of Excellence for Cardiovascular Research and CENDO Slovak Academy of Sciences , Bratislava , Slovakia
| | - Jaromir Myslivecek
- a Institute of Physiology, 1st Faculty of Medicine , Charles University , Prague , Czech Republic
| |
Collapse
|
13
|
Montenegro MF, Cabezas-Herrera J, Campoy FJ, Muñoz-Delgado E, Vidal CJ. Lipid rafts of mouse liver contain nonextended and extended acetylcholinesterase variants along with M3 muscarinic receptors. FASEB J 2016; 31:544-555. [PMID: 28148778 DOI: 10.1096/fj.201600609r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/11/2016] [Indexed: 12/25/2022]
Abstract
The observation of acetylcholinesterase (AChE) type H (AChEH), which is the predominant AChE variant in visceral organs and immune cells, in lipid rafts of muscle supports functional reasons for the raft targeting of glypiated AChEH The search for these reasons revealed that liver AChE activity is mostly confined to rafts and that the liver is able to make N-extended AChE variants and target them to rafts. These results prompted us to test whether AChE and muscarinic receptors existed in the same raft. Isolation of flotillin-2-rich raft fractions by their buoyancy in sucrose gradients, followed by immunoadsorption and matrix-assisted laser desorption ionization-time of flight-mass spectrometry application, gave the following results: 1) most hepatic AChE activity emanates from AChE-H mRNA, and its product, glypiated AChEH, accumulates in rafts; 2) N-extended N-AChE readthrough variant, nonglypiated N-AChEH, and N-AChE tailed variant were all identified in liver rafts; and 3) M3 AChRs were observed in rafts, and coprecipitation of raft-confined N-AChE and M3 receptors by using anti-M3 antibodies showed that enzyme and receptor reside in the same raft unit. A raft domain that harbors tightly packed muscarinic receptor and AChE may represent a molecular device that, by means of which, the intensity and duration of cholinergic inputs are regulated.-Montenegro, M. F., Cabezas-Herrera, J., Campoy, F. J., Muñoz-Delgado, E., Vidal, C. J. Lipid rafts of mouse liver contain nonextended and extended acetylcholinesterase variants along with M3 muscarinic receptors.
Collapse
Affiliation(s)
- María Fernanda Montenegro
- Departamento de Bioquímica y Biología Molecular-A, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain; and
| | - Juan Cabezas-Herrera
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - F Javier Campoy
- Departamento de Bioquímica y Biología Molecular-A, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain; and
| | - Encarnación Muñoz-Delgado
- Departamento de Bioquímica y Biología Molecular-A, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain; and
| | - Cecilio J Vidal
- Departamento de Bioquímica y Biología Molecular-A, Instituto Murciano de Investigación Biosanitaria (IMIB), Universidad de Murcia, Regional Campus of International Excellence "Campus Mare Nostrum," Murcia, Spain; and
| |
Collapse
|
14
|
Del Pino J, Zeballos G, Anadon MJ, Díaz MJ, Moyano P, Díaz GG, García J, Lobo M, Frejo MT. Muscarinic M1 receptor partially modulates higher sensitivity to cadmium-induced cell death in primary basal forebrain cholinergic neurons: A cholinesterase variants dependent mechanism. Toxicology 2016; 361-362:1-11. [PMID: 27377441 DOI: 10.1016/j.tox.2016.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/23/2016] [Accepted: 06/30/2016] [Indexed: 11/26/2022]
Abstract
Cadmium is a toxic compound reported to produce cognitive dysfunctions, though the mechanisms involved are unknown. In a previous work we described how cadmium blocks cholinergic transmission and induces greater cell death in primary cholinergic neurons from the basal forebrain. It also induces cell death in SN56 cholinergic neurons from the basal forebrain through M1R blockage, alterations in the expression of AChE variants and GSK-3β, and an increase in Aβ and total and phosphorylated Tau protein levels. It was observed that the silencing or blockage of M1R altered ChAT activity, GSK-3β, AChE splice variants gene expression, and Aβ and Tau protein formation. Furthermore, AChE-S variants were associated with the same actions modulated by M1R. Accordingly, we hypothesized that cholinergic transmission blockage and higher sensitivity to cadmium-induced cell death of primary basal forebrain cholinergic neurons is mediated by M1R blockage, which triggers this effect through alteration of the expression of AChE variants. To prove this hypothesis, we evaluated, in primary culture from the basal forebrain region, whether M1R silencing induces greater cell death in cholinergic neurons than cadmium does, and whether in SN56 cells M1R mediates the mechanisms described so as to play a part in the cadmium induction of cholinergic transmission blockage and cell death in this cell line through alteration of the expression of AChE variants. Our results prove that M1R silencing by cadmium partially mediates the greater cell death observed on basal forebrain cholinergic neurons. Moreover, all previously described mechanisms for blocking cholinergic transmission and inducing cell death on SN56 cells after cadmium exposure are partially mediated by M1R through the alteration of AChE expression. Thus, our results may explain cognitive dysfunctions observed in cadmium toxicity.
Collapse
Affiliation(s)
- Javier Del Pino
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain.
| | - Gabriela Zeballos
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María José Anadon
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - María Jesús Díaz
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - Paula Moyano
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Gloria Gómez Díaz
- Department of Toxicology and Legal Medicine, Medical School, Complutense University of Madrid, 28041 Madrid, Spain
| | - Jimena García
- Department of Pharmacology, Health Sciences School, Alfonso X University, 28691 Madrid, Spain
| | - Margarita Lobo
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| | - María Teresa Frejo
- Department of Toxicology and Pharmacology, Veterinary School, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
15
|
Campoy FJ, Vidal CJ, Muñoz-Delgado E, Montenegro MF, Cabezas-Herrera J, Nieto-Cerón S. Cholinergic system and cell proliferation. Chem Biol Interact 2016; 259:257-265. [PMID: 27083142 DOI: 10.1016/j.cbi.2016.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/31/2022]
Abstract
The cholinergic system, comprising acetylcholine, the proteins responsible for acetylcholine synthesis and release, acetylcholine receptors and cholinesterases, is expressed by most human cell types. Acetylcholine is a neurotransmitter, but also a local signalling molecule which regulates basic cell functions, and cholinergic responses are involved in cell proliferation and apoptosis. So, activation of nicotinic and muscarinic receptors has a proliferative and anti-apoptotic effect in many cells. The content of choline acetyltransferase, acetylcholine receptors and cholinesterases is altered in many tumours, and cholinesterase content correlates with patient survival in some cancers. During apoptosis, acetylcholinesterase is induced and appears in the nuclei. Acetylcholinesterase participates in the regulation of cell proliferation and apoptosis through hydrolysis of acetylcholine and by other catalytic and non catalytic mechanisms, in a variant-specific manner. This review gathers information on the role of cholinergic system and specially acetylcholinesterase in cell proliferation and apoptosis.
Collapse
Affiliation(s)
- F J Campoy
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain.
| | - C J Vidal
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - E Muñoz-Delgado
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - M F Montenegro
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - J Cabezas-Herrera
- Molecular Therapy and Biomarker Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, E-30120 El Palmar, Murcia, Spain
| | - S Nieto-Cerón
- Molecular Therapy and Biomarker Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, E-30120 El Palmar, Murcia, Spain
| |
Collapse
|
16
|
Pino JD, Moyano P, Anadon MJ, García JM, Díaz MJ, García J, Frejo MT. Acute and long-term exposure to chlorpyrifos induces cell death of basal forebrain cholinergic neurons through AChE variants alteration. Toxicology 2015. [DOI: 10.1016/j.tox.2015.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Cadmium-induced cell death of basal forebrain cholinergic neurons mediated by muscarinic M1 receptor blockade, increase in GSK-3β enzyme, β-amyloid and tau protein levels. Arch Toxicol 2015; 90:1081-92. [DOI: 10.1007/s00204-015-1540-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 05/05/2015] [Indexed: 01/02/2023]
|
18
|
Du A, Xie J, Guo K, Yang L, Wan Y, OuYang Q, Zhang X, Niu X, Lu L, Wu J, Zhang X. A novel role for synaptic acetylcholinesterase as an apoptotic deoxyribonuclease. Cell Discov 2015; 1:15002. [PMID: 27462404 PMCID: PMC4851313 DOI: 10.1038/celldisc.2015.2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/27/2015] [Indexed: 12/28/2022] Open
Abstract
In addition to terminating neurotransmission by hydrolyzing acetylcholine, synaptic acetylcholinesterase (AChES) has been found to have a pro-apoptotic role. However, the underlying mechanism has rarely been investigated. Here, we report a nuclear translocation-dependent role for AChES as an apoptotic deoxyribonuclease (DNase). AChES polypeptide binds to and cleaves naked DNA at physiological pH in a Ca(2+)-Mg(2+)-dependent manner. It also cleaves chromosomal DNA both in pre-fixed and in apoptotic cells. In the presence of a pan-caspase inhibitor, the cleavage still occurred after nuclear translocation of AChES, implying that AChES-DNase acts in a CAD- and EndoG-independent manner. AChE gene knockout impairs apoptotic DNA cleavage; this impairment is rescued by overexpression of the wild-type but not (aa 32-138)-deleted AChES. Furthermore, in comparison with the nuclear-localized wild-type AChES, (aa 32-138)-deleted AChES loses the capacity to initiate apoptosis. These observations confirm that AChES mediates apoptosis via its DNase activity.
Collapse
Affiliation(s)
- Aiying Du
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Jing Xie
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Kaijie Guo
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Lei Yang
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Yihan Wan
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Qi OuYang
- Department of Pathology, School of Basic Medical Sciences, Fudan University , Shanghai, China
| | - Xuejin Zhang
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Xin Niu
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Lu Lu
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Jun Wu
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| | - Xuejun Zhang
- The State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai, China
| |
Collapse
|
19
|
Xi HJ, Wu RP, Liu JJ, Zhang LJ, Li ZS. Role of acetylcholinesterase in lung cancer. Thorac Cancer 2015; 6:390-8. [PMID: 26273392 PMCID: PMC4511315 DOI: 10.1111/1759-7714.12249] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/07/2015] [Indexed: 12/14/2022] Open
Abstract
Acetylcholinesterase (AChE) plays a key role in catalytic hydrolysis of cholinergic neurotransmitters. Intensive research has proven the involvement of this protein in novel functions, such as cell adhesion, differentiation, and proliferation. In addition, several recent studies have indicated that acetylcholinesterase is potentially a marker and regulator of apoptosis. Importantly, AChE is also a promising tumor suppressor. In this review, we briefly summarize the involvement of AChE in apoptosis and cancer, focusing on the role of AChE in lung cancer, as well as the therapeutic consideration of AChE for cancer therapy.
Collapse
Affiliation(s)
- Hui-Jun Xi
- Digestive Endoscopy Center, Changhai Hospital, Second Military Medical University Shanghai, China
| | - Ren-Pei Wu
- Digestive Endoscopy Center, Changhai Hospital, Second Military Medical University Shanghai, China
| | - Jing-Jing Liu
- School of Nursing, Second Military Medical University Shanghai, China
| | - Ling-Juan Zhang
- Department of Nursing, Changhai Hospital, Second Military Medical University Shanghai, China
| | - Zhao-Shen Li
- Digestive Endoscopy Center, Changhai Hospital, Second Military Medical University Shanghai, China ; Department of Gastroenterology, Changhai Hospital, Second Military Medical University Shanghai, China
| |
Collapse
|
20
|
Zimmermann M. Neuronal AChE splice variants and their non-hydrolytic functions: redefining a target of AChE inhibitors? Br J Pharmacol 2014; 170:953-67. [PMID: 23991627 DOI: 10.1111/bph.12359] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 08/04/2013] [Accepted: 08/12/2013] [Indexed: 12/11/2022] Open
Abstract
AChE enzymatic inhibition is a core focus of pharmacological intervention in Alzheimer's disease (AD). Yet, AChE has also been ascribed non-hydrolytic functions, which seem related to its appearance in various isoforms. Neuronal AChE presents as a tailed form (AChE-T) predominantly found on the neuronal synapse, and a facultatively expressed readthough form (AChE-R), which exerts short to medium-term protective effects. Notably, this latter form is also found in the periphery. While these non-hydrolytic functions of AChE are most controversially discussed, there is evidence for them being additional targets of AChE inhibitors. This review aims to provide clarification as to the role of these AChE splice variants and their interplay with other cholinergic parameters and their being targets of AChE inhibition: AChE-R is particularly involved in the mediation of (anti-)apoptotic events in cholinergic cells, involving adaptation of various cholinergic parameters and a time-dependent link to the expression of neuroprotective factors. The AChE-T C-terminus is central to AChE activity regulation, while isolated AChE-T C-terminal fragments mediate toxic effects via the α7 nicotinic acetylcholine receptor. There is direct evidence for roles of AChE-T and AChE-R in neurodegeneration and neuroprotection, with these roles involving AChE as a key modulator of the cholinergic system: in vivo data further encourages the use of AChE inhibitors in the treatment of neurodegenerative conditions such as AD since effects on both enzymatic activity and the enzyme's non-hydrolytic functions can be postulated. It also suggests that novel AChE inhibitors should enhance protective AChE-R, while avoiding the concomitant up-regulation of AChE-T.
Collapse
Affiliation(s)
- M Zimmermann
- Department of Pharmacology, School of Pharmacy, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
21
|
Hicks DA, Makova NZ, Gough M, Parkin ET, Nalivaeva NN, Turner AJ. The amyloid precursor protein represses expression of acetylcholinesterase in neuronal cell lines. J Biol Chem 2013; 288:26039-26051. [PMID: 23897820 DOI: 10.1074/jbc.m113.461269] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The toxic role of amyloid β peptides in Alzheimer's disease is well documented. Their generation is via sequential β- and γ-secretase cleavage of the membrane-bound amyloid precursor protein (APP). Other APP metabolites include the soluble ectodomains sAPPα and sAPPβ and also the amyloid precursor protein intracellular domain (AICD). In this study, we examined whether APP is involved in the regulation of acetylcholinesterase (AChE), which is a key protein of the cholinergic system and has been shown to accelerate amyloid fibril formation and increase their toxicity. Overexpression of the neuronal specific isoform, APP695, in the neuronal cell lines SN56 and SH-SY5Y substantially decreased levels of AChE mRNA, protein, and catalytic activity. Although similar decreases in mRNA levels were observed of the proline-rich anchor of AChE, PRiMA, no changes were seen in mRNA levels of the related enzyme, butyryl-cholinesterase, nor of the high-affinity choline transporter. A γ-secretase inhibitor did not affect AChE transcript levels or enzyme activity in SN56 (APP695) or SH-SY5Y (APP695) cells, showing that regulation of AChE by APP does not require the generation of AICD or amyloid β peptide. Treatment of wild-type SN56 cells with siRNA targeting APP resulted in a significant up-regulation in AChE mRNA levels. Mutagenesis studies suggest that the observed transcriptional repression of AChE is mediated by the E1 region of APP, specifically its copper-binding domain, but not the C-terminal YENTPY motif. In conclusion, AChE is regulated in two neuronal cell lines by APP in a manner independent of the generation of sAPPα, sAPPβ, and AICD.
Collapse
Affiliation(s)
- David A Hicks
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Natalia Z Makova
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Mallory Gough
- the Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, United Kingdom, and
| | - Edward T Parkin
- the Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YQ, United Kingdom, and
| | - Natalia N Nalivaeva
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom,; the I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg 194223, Russia
| | - Anthony J Turner
- From the School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom,.
| |
Collapse
|
22
|
Mis K, Matkovic U, Pirkmajer S, Sciancalepore M, Lorenzon P, Mars T, Grubic Z. Acetylcholinesterase and agrin: different functions, similar expression patterns, multiple roles. Chem Biol Interact 2012; 203:297-301. [PMID: 23117006 DOI: 10.1016/j.cbi.2012.10.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/16/2012] [Accepted: 10/17/2012] [Indexed: 12/31/2022]
Abstract
Acetylcholinesterase (AChE) and agrin play unique functional roles in the neuromuscular junction (NMJ). AChE is a cholinergic and agrin a synaptogenetic component. In spite of their different functions, they share several common features: their targeting is determined by alternative splicing; unlike most other NMJ components they are expressed in both, muscle and motor neuron and both reside on the synaptic basal lamina of the NMJ. Also, both were reported to play various nonjunctional roles. However, while the origin of basal lamina bound agrin is undoubtedly neural, the neural origin of AChE, which is anchored to the basal lamina with collagenic tail ColQ, is elusive. Hypothesizing that motor neuron proteins targeted to the NMJ basal lamina share common temporal pattern of expression, which is coordinated with the formation of basal lamina, we compared expression of agrin isoforms with the expression of AChE-T and ColQ in the developing rat spinal cord at the stages before and after the formation of NMJ basal lamina. Cellular origin of AChE-T and agrin was determined by in situ hybridization and their quantitative levels by RT PCR. We found parallel increase in expression of the synaptogenetic (agrin 8) isoform of agrin and ColQ after the formation of basal lamina supporting the view that ColQ bound AChE and agrin 8 isoform are destined to the basal lamina. Catalytic AChE-T subunit and agrin isoforms 19 and 0 followed different expression patterns. In accordance with the reports of other authors, our investigations also revealed various alternative functions for AChE and agrin. We have already demonstrated participation of AChE in myoblast apoptosis; here we present the evidence that agrin promotes the maturation of heavy myosin chains and the excitation-contraction coupling. These results show that common features of AChE and agrin extend to their capacity to play multiple roles in muscle development.
Collapse
Affiliation(s)
- Katarina Mis
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | | | | | | | | | | | | |
Collapse
|
23
|
Masha'our RS, Heinrich R, Garzozi HJ, Perlman I. Acetylcholinesterase (AChE) is an important link in the apoptotic pathway induced by hyperglycemia in Y79 retinoblastoma cell line. Front Mol Neurosci 2012; 5:69. [PMID: 22685426 PMCID: PMC3368359 DOI: 10.3389/fnmol.2012.00069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 05/14/2012] [Indexed: 01/26/2023] Open
Abstract
Acetylcholinesterase (AChE) expression was found to be induced in the mammalian CNS, including the retina, by different types of stress leading to cellular apoptosis. Here, we tested possible involvement of AChE in hyperglycemia-induced apoptosis in a retinal cell line. Y79 retinoblastoma cells were incubated in starvation media (1% FBS and 1 mg/ml glucose) for 16–24 h, and then exposed to hyperglycemic environment by raising extracellular glucose concentrations to a final level of 3.5 mg/ml or 6 mg/ml. Similar levels of mannitol were used as control for hyperosmolarity. Cells were harvested at different time intervals for analysis of apoptosis and AChE protein expression. Apoptosis was detected by the cleavage of Poly ADP-ribose polymerase (PARP) using western blot, and by Terminal deoxynucleotidyl-transferase-mediated dUTP nick-end-labeling (TUNEL) assay. AChE protein expression and activity was detected by western blot and by the Karnovsky and Roots method, respectively. MissionTM shRNA for AChE was used to inhibit AChE protein expression. Treating Y79 cells with 3.5 mg/ml of glucose, but not with 3.5 mg/ml mannitol, induced apoptosis which was confirmed by TUNEL assay and by cleavage of PARP. A part of the signaling pathway accompanying the apoptotic process involved up-regulation of the AChE-R variant and an N-extended AChE variant as verified at the mRNA and protein level. Inhibition of AChE protein expression by shRNA protected Y79 cell from entering the apoptotic pathway. Our data suggest that expression of an N-extended AChE variant, most probably an R isoform, is involved in the apoptotic pathway caused by hyperglycemia in Y79 cells.
Collapse
|
24
|
Bronicki LM, Jasmin BJ. Trans-acting factors governing acetylcholinesterase mRNA metabolism in neurons. Front Mol Neurosci 2012; 5:36. [PMID: 22461767 PMCID: PMC3309972 DOI: 10.3389/fnmol.2012.00036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 03/06/2012] [Indexed: 11/13/2022] Open
Abstract
The most characterized function of acetylcholinesterase (AChE) is to terminate cholinergic signaling at neuron-neuron and neuro-muscular synapses. In addition, AChE is causally or casually implicated in neuronal development, stress-response, cognition, and neurodegenerative diseases. Given the importance of AChE, many studies have focused on identifying the molecular mechanisms that govern its expression. Despite these efforts, post-transcriptional control of AChE mRNA expression is still relatively unclear. Here, we review the trans-acting factors and cis-acting elements that are known to control AChE pre-mRNA splicing, mature mRNA stability and translation. Moreover, since the Hu/ELAV family of RNA-binding proteins (RBPs) have emerged in recent years as “master” post-transcriptional regulators, we discuss the possibility that predominantly neuronal ELAVs (nELAVs) play multiple roles in regulating splicing, stability, localization, and translation of AChE mRNA.
Collapse
Affiliation(s)
- Lucas M Bronicki
- Faculty of Medicine, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa ON, Canada
| | | |
Collapse
|
25
|
Zhang B, Yang L, Yu L, Lin B, Hou Y, Wu J, Huang Q, Han Y, Guo L, Ouyang Q, Zhang B, Lu L, Zhang X. Acetylcholinesterase is associated with apoptosis in β cells and contributes to insulin-dependent diabetes mellitus pathogenesis. Acta Biochim Biophys Sin (Shanghai) 2012; 44:207-16. [PMID: 22236578 DOI: 10.1093/abbs/gmr121] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Acetylcholinesterase (AChE) expression is pivotal during apoptosis. Indeed, AChE inhibitors partially protect cells from apoptosis. Insulin-dependent diabetes mellitus (IDDM) is characterized in part by pancreatic β-cell apoptosis. Here, we investigated the role of AChE in the development of IDDM and analyzed protective effects of AChE inhibitors. Multiple low-dose streptozotocin (MLD-STZ) administration resulted in IDDM in a mouse model. Western blot analysis, cytochemical staining, and immunofluorescence staining were used to detect AChE expression in MIN6 cells, primary β cells, and apoptotic pancreatic β cells of MLD-STZ-treated mice. AChE inhibitors were administered intraperitoneally to the MLD-STZ mice for 30 days. Blood glucose, plasma insulin, and creatine levels were measured, and glucose tolerance tests were performed. The effects of AChE inhibitors on MIN6 cells were also evaluated. AChE expression was induced in the apoptotic MIN6 cells and primary β cells in vitro and pancreatic islets in vivo when treated with STZ. Induction and progressive accumulation of AChE in the pancreatic islets were associated with apoptotic β cells during IDDM development. The administration of AChE inhibitors effectively decreased hyperglycemia and incidence of diabetes, and restored plasma insulin levels and plasma creatine clearance in the MLD-STZ mice. AChE inhibitors partially protected MIN6 cells from the damage caused by STZ treatment. Induction and accumulation of AChE in pancreatic islets and the protective effects of AChE inhibitors on the onset and development of IDDM indicate a close relationship between AChE and IDDM.
Collapse
Affiliation(s)
- Bao Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Graduate Student School of Chinese Academy of Sciences, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Berson A, Soreq H. It all starts at the ends: multifaceted involvement of C- and N-terminally modified cholinesterases in Alzheimer's disease. Rambam Maimonides Med J 2010; 1:e0014. [PMID: 23908786 PMCID: PMC3678781 DOI: 10.5041/rmmj.10014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Alzheimer's disease (AD), premature demise of acetylcholine-producing neurons and the consequent decline of cholinergic transmission associate with the prominent cognitive impairments of affected individuals. However, the enzymatic activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are altered rather late in the disease progress. This raised questions regarding the causal involvement of AChE and BChE in AD. Importantly, single nucleotide polymorphisms (SNPs), alternative splicing, and alternate promoter usage generate complex expression of combinatorial cholinesterase (ChE) variants, which called for testing the roles of specific variants in AD pathogenesis. We found accelerated amyloid fibril formation in engineered mice with enforced over-expression of the AChE-S splice variant which includes a helical C-terminus. In contrast, the AChE-R variant, which includes a naturally unfolded C-terminus, attenuated the oligomerization of amyloid fibrils and reduced amyloid plaque formation and toxicity. An extended N-terminus generated by an upstream promoter enhanced the damage caused by N-AChE-S, which in cell cultures induced caspases and GSK3 activation, tau hyperphosphorylation, and apoptosis. In the post-mortem AD brain, we found reduced levels of the neuroprotective AChE-R and increased levels of the neurotoxic N-AChE-S, suggesting bimodal contribution to AD progress. Finally, local unwinding of the α-helical C-terminal BChE peptide and loss of function of the pivotal tryptophan at its position 541 impair amyloid fibril attenuation by the common BChE-K variant carrying the A539T substitution, in vitro. Together, our results point to causal yet diverse involvement of the different ChEs in the early stages of AD pathogenesis. Harnessing the neuroprotective variants while reducing the levels of damaging ones may hence underlie the development of novel therapeutics.
Collapse
|