1
|
Kaymak A, Colucci F, Ahmadipour M, Andreasi NG, Rinaldo S, Israel Z, Arkadir D, Telese R, Levi V, Zorzi G, Carpaneto J, Carecchio M, Prokisch H, Zech M, Garavaglia B, Bergman H, Eleopra R, Mazzoni A, Romito LM. Spiking Patterns in the Globus Pallidus Highlight Convergent Neural Dynamics across Diverse Genetic Dystonia Syndromes. Ann Neurol 2025; 97:826-844. [PMID: 39887724 PMCID: PMC12010065 DOI: 10.1002/ana.27185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/09/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025]
Abstract
OBJECTIVE Genetic dystonia is a complex movement disorder with diverse clinical manifestations resulting from pathogenic mutations in associated genes. A recent paradigm shift emphasizes the functional convergence among dystonia genes, hinting at a shared pathomechanism. However, the neural dynamics supporting this convergence remain largely unexplored. METHODS Herein, we analyzed microelectrode recordings acquired during pallidal deep brain stimulation surgery from 31 dystonia patients with pathogenic mutations in the AOPEP, GNAL, KMT2B, PANK2, PLA2G6, SGCE, THAP1, TOR1A, and VPS16 genes. We identified 1,694 single units whose activity was characterized by a broad set of neural features. RESULTS AOPEP, PANK2, and THAP1 displayed higher firing regularity, whereas GNAL, PLA2G6, KMT2B, and SGCE shared a large fraction of bursting neurons (> 26.6%), significantly exceeding the rate in other genes. TOR1A and VPS16 genes constituted an intermediate group, bridging these 2 groups, due to having the highest degree of spiking irregularity. Hierarchical clustering algorithms based on these dynamics confirmed the results obtained with first-order comparisons. INTERPRETATION Despite lacking common molecular pathways, dystonia genes share largely overlapping structures of neural patterns, in particular the degree of pallidal spiking regularity and bursting activity. We propose that the degree of desynchronization facilitated by pallidal neural bursts may explain the variability in deep brain stimulation (DBS) of the globus pallidus internus (GPi) surgery outcomes across genetic dystonia syndromes. Lastly, investigating the effects of genetic mutations on low-frequency pallidal activity could optimize personalized adaptive DBS treatments in patients with genetic dystonia. ANN NEUROL 2025;97:826-844.
Collapse
Affiliation(s)
- Ahmet Kaymak
- The Biorobotics InstituteScuola Superiore Sant'AnnaPisaItaly
- Department of Excellence for Robotics and AIScuola Superiore Sant'AnnaPisaItaly
| | - Fabiana Colucci
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
- Department of Neuroscience and RehabilitationUniversity of FerraraFerraraItaly
| | - Mahboubeh Ahmadipour
- The Biorobotics InstituteScuola Superiore Sant'AnnaPisaItaly
- Department of Excellence for Robotics and AIScuola Superiore Sant'AnnaPisaItaly
| | - Nico Golfrè Andreasi
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Sara Rinaldo
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Zvi Israel
- Department of NeurosurgeryHadassah Medical CenterJerusalemIsrael
- Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
| | - David Arkadir
- Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
- Department of NeurologyHadassah Medical CenterJerusalemIsrael
| | - Roberta Telese
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Vincenzo Levi
- Neurosurgery Department, Functional Neurosurgery UnitFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Giovanna Zorzi
- Department of Pediatric NeuroscienceFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Jacopo Carpaneto
- The Biorobotics InstituteScuola Superiore Sant'AnnaPisaItaly
- Department of Excellence for Robotics and AIScuola Superiore Sant'AnnaPisaItaly
| | | | - Holger Prokisch
- Institute of NeurogenomicsHelmholtz Zentrum MünchenMunichGermany
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
| | - Michael Zech
- Institute of NeurogenomicsHelmholtz Zentrum MünchenMunichGermany
- Institute of Human Genetics, School of MedicineTechnical University of MunichMunichGermany
- Institute for Advanced StudyTechnical University of MunichGarchingGermany
| | - Barbara Garavaglia
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Hagai Bergman
- Department of NeurosurgeryHadassah Medical CenterJerusalemIsrael
- Department of Medical NeuroscienceInstitute of Medical Research Israel‐Canada (IMRIC), The Hebrew University‐Hadassah Medical SchoolJerusalemIsrael
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew UniversityJerusalemIsrael
| | - Roberto Eleopra
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Alberto Mazzoni
- The Biorobotics InstituteScuola Superiore Sant'AnnaPisaItaly
- Department of Excellence for Robotics and AIScuola Superiore Sant'AnnaPisaItaly
| | - Luigi M. Romito
- Movement Disorders DepartmentFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| |
Collapse
|
2
|
Carmona-Hidalgo B, Quintero J, Rodríguez-López R, Blasco-Amaro JA, Boesch S, Reinhard C. Efficacy of deep brain stimulation in treating monogenic dystonia symptoms: protocol for a systematic review. BMJ Open 2025; 15:e083127. [PMID: 40204321 PMCID: PMC11987142 DOI: 10.1136/bmjopen-2023-083127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
INTRODUCTION Complexity leads to some dystonias being considered as rare diseases with scarce synthesised evidence. Despite the deficit of scientific evidence, deep brain stimulation (DBS) is currently an effective treatment for dystonias using different brain targets, providing significant improvement of dystonic symptoms regardless of their cause. However, there is considerable variability and non-response rate due to factors such as classification, semiology, duration, aetiology and genetic cause of the disease. This protocol presents the methodology of a planned systematic review to assess the efficacy of DBS as a treatment for monogenic dystonia symptoms, a broad spectrum of pathogenic dystonias due to variants in single genes not yet explored. METHODS AND ANALYSIS This protocol follows the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols guidelines. With the aim to test the efficacy of DBS in monogenic dystonias, the research question in population, intervention, comparator and outcomes format will cover patients with monogenic dystonia treated with DBS with a minimum of 3 months' follow-up after surgery. The outcomes will be assessed using generic and specific scales to measure the efficacy and safety of the intervention. The search will be performed in generic and specific databases and bibliographic resources from 2000. We will include systematic reviews, randomised controlled trials and primary studies in English. In this protocol, the initial search strategy in MEDLINE is presented. Additionally, the protocol provides a description of the prospective assessment of the risk of bias in the selected studies. If studies appear homogeneous and the sample of patients is sufficiently large, a meta-analysis and a subgroup analysis are planned. ETHICS AND DISSEMINATION Ethics committee approval is not required. The results of the review will be published through an open access journal. PROSPERO REGISTRATION NUMBER CRD42023448145.
Collapse
Affiliation(s)
- Beatriz Carmona-Hidalgo
- Health Technology Assessment Area (AETSA), Andalusian Public Foundation Progress and Health (FPS), Seville, Spain
| | - Javier Quintero
- Health Technology Assessment Area (AETSA), Andalusian Public Foundation Progress and Health (FPS), Seville, Spain
| | - Rocío Rodríguez-López
- Health Technology Assessment Area (AETSA), Andalusian Public Foundation Progress and Health (FPS), Seville, Spain
| | - Juan Antonio Blasco-Amaro
- Health Technology Assessment Area (AETSA), Andalusian Public Foundation Progress and Health (FPS), Seville, Spain
| | - Sylvia Boesch
- Center for Rare Movement Disorders, Department of Neurology and Neurosurgery, Medical University Innsbruck, Innsbruck, Austria
| | - Carola Reinhard
- Institute for Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
- Centre for Rare Diseases, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Nguyen MX, Brown AM, Lin T, Sillitoe RV, Gill JS. Thalamic deep brain stimulation improves movement in a cerebellar model of lesion-based status dystonicus. Neurotherapeutics 2025; 22:e00543. [PMID: 39948022 PMCID: PMC12014419 DOI: 10.1016/j.neurot.2025.e00543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/17/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Dystonia is the third most common movement disorder and an incapacitating co-morbidity in a variety of neurologic conditions. Dystonia can be caused by genetic, degenerative, idiopathic, and acquired etiologies, which are hypothesized to converge on a "dystonia network" consisting of the basal ganglia, thalamus, cerebellum, and cerebral cortex. In acquired dystonia, focal lesions to subcortical network regions lead to dystonia that can be difficult to manage with canonical treatments, including deep brain stimulation (DBS). While studies in animal models have begun to parse the contribution of individual nodes in the dystonia network, how acquired injury to the cerebellar outflow tracts instigates dystonia; and how network modulation interacts with symptom latency remain unexplored questions. Here, we present an electrolytic lesioning paradigm that bilaterally targets the cerebellar outflow tracts. We found that lesioning these tracts, at the junction of the superior cerebellar peduncles and the medial and intermediate cerebellar nuclei, resulted in transient, acute, and severe dystonia with immobility and fixed posturing similar to status dystonicus. We observed a rapid reduction in dystonia with 1 h of DBS of the centrolateral thalamic nucleus, a first order node in the network downstream of the cerebellar nuclei. In contrast, 1 h of stimulation at a second order node in the short latency, disynaptic projection from the cerebellar nuclei, the striatum, did not show similar rapid modulation of dystonia. Our study introduces a robust paradigm for inducing acute, severe dystonia, and demonstrates that targeted modulation based on network principles powerfully rescues motor behavior. These data inspire the identification of a short latency therapeutic target for acquired dystonia and status dystonicus.
Collapse
Affiliation(s)
- Megan X Nguyen
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Amanda M Brown
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Tao Lin
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Roy V Sillitoe
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
| | - Jason S Gill
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
4
|
Cif L, Demailly D, Lin JP, Barwick KE, Sa M, Abela L, Malhotra S, Chong WK, Steel D, Sanchis-Juan A, Ngoh A, Trump N, Meyer E, Vasques X, Rankin J, Allain MW, Applegate CD, Isfahani SA, Baleine J, Balint B, Bassetti JA, Baple EL, Bhatia KP, Blanchet C, Burglen L, Cambonie G, Seng EC, Bastaraud SC, Cyprien F, Coubes C, d’Hardemare V, Deciphering Developmental Disorders Study, Doja A, Dorison N, Doummar D, Dy-Hollins ME, Farrelly E, Fitzpatrick DR, Fearon C, Fieg EL, Fogel BL, Forman EB, Fox RG, Genomics England Research Consortium, Gahl WA, Galosi S, Gonzalez V, Graves TD, Gregory A, Hallett M, Hasegawa H, Hayflick SJ, Hamosh A, Hully M, Jansen S, Jeong SY, Krier JB, Krystal S, Kumar KR, Laurencin C, Lee H, Lesca G, François LL, Lynch T, Mahant N, Martinez-Agosto JA, Milesi C, Mills KA, Mondain M, Morales-Briceno H, NIHR BioResource, Ostergaard JR, Pal S, Pallais JC, Pavillard F, Perrigault PF, Petersen AK, Polo G, Poulen G, Rinne T, Roujeau T, Rogers C, Roubertie A, Sahagian M, Schaefer E, Selim L, Selway R, Sharma N, Signer R, Soldatos AG, Stevenson DA, Stewart F, Tchan M, Undiagnosed Diseases Network, Verma IC, de Vries BBA, Wilson JL, Wong DA, Zaitoun R, Zhen D, et alCif L, Demailly D, Lin JP, Barwick KE, Sa M, Abela L, Malhotra S, Chong WK, Steel D, Sanchis-Juan A, Ngoh A, Trump N, Meyer E, Vasques X, Rankin J, Allain MW, Applegate CD, Isfahani SA, Baleine J, Balint B, Bassetti JA, Baple EL, Bhatia KP, Blanchet C, Burglen L, Cambonie G, Seng EC, Bastaraud SC, Cyprien F, Coubes C, d’Hardemare V, Deciphering Developmental Disorders Study, Doja A, Dorison N, Doummar D, Dy-Hollins ME, Farrelly E, Fitzpatrick DR, Fearon C, Fieg EL, Fogel BL, Forman EB, Fox RG, Genomics England Research Consortium, Gahl WA, Galosi S, Gonzalez V, Graves TD, Gregory A, Hallett M, Hasegawa H, Hayflick SJ, Hamosh A, Hully M, Jansen S, Jeong SY, Krier JB, Krystal S, Kumar KR, Laurencin C, Lee H, Lesca G, François LL, Lynch T, Mahant N, Martinez-Agosto JA, Milesi C, Mills KA, Mondain M, Morales-Briceno H, NIHR BioResource, Ostergaard JR, Pal S, Pallais JC, Pavillard F, Perrigault PF, Petersen AK, Polo G, Poulen G, Rinne T, Roujeau T, Rogers C, Roubertie A, Sahagian M, Schaefer E, Selim L, Selway R, Sharma N, Signer R, Soldatos AG, Stevenson DA, Stewart F, Tchan M, Undiagnosed Diseases Network, Verma IC, de Vries BBA, Wilson JL, Wong DA, Zaitoun R, Zhen D, Znaczko A, Dale RC, de Gusmão CM, Friedman J, Fung VSC, King MD, Mohammad SS, Rohena L, Waugh JL, Toro C, Raymond FL, Topf M, Coubes P, Gorman KM, Kurian MA. KMT2B-related disorders: expansion of the phenotypic spectrum and long-term efficacy of deep brain stimulation. ARXIV 2025:arXiv:2502.06320v1. [PMID: 39990802 PMCID: PMC11844621] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Heterozygous mutations in KMT2B are associated with an early-onset, progressive and often complex dystonia (DYT28). Key characteristics of typical disease include focal motor features at disease presentation, evolving through a caudocranial pattern into generalized dystonia, with prominent oromandibular, laryngeal and cervical involvement. Although KMT2B-related disease is emerging as one of the most common causes of early-onset genetic dystonia, much remains to be understood about the full spectrum of the disease. We describe a cohort of 53 patients with KMT2B mutations, with detailed delineation of their clinical phenotype and molecular genetic features. We report new disease presentations, including atypical patterns of dystonia evolution and a subgroup of patients with a non-dystonic neurodevelopmental phenotype. In addition to the previously reported systemic features, our study has identified co-morbidities, including the risk of status dystonicus, intrauterine growth retardation, and endocrinopathies. Analysis of this study cohort (n = 53) in tandem with published cases (n = 80) revealed that patients with chromosomal deletions and protein truncating variants had a significantly higher burden of systemic disease (with earlier onset of dystonia) than those with missense variants. Eighteen individuals had detailed longitudinal data available after insertion of deep brain stimulation for medically refractory dystonia. Median age at deep brain stimulation was 11.5 years (range: 4.5-37.0 years). Follow-up after deep brain stimulation ranged from 0.25 to 22 years. Significant improvement of motor function and disability (as assessed by the Burke Fahn Marsden's Dystonia Rating Scales, BFMDRS-M and BFMDRS-D) was evident at ł months, 1 year and last follow-up (motor, P = 0.001, P = 0.004, and P = 0.012; disability, P = 0.009, P = 0.002 and P = 0.012). At 1 year post-deep brain stimulation, >50% of subjects showed BFMDRS-M and BFMDRS-D improvements of >30%. In the long-term deep brain stimulation cohort (deep brain stimulation inserted for >5 years, n = 8), improvement of >30% was maintained in 5/8 and 3/8 subjects for the BFMDRS-M and BFMDRS-D, respectively. The greatest BFMDRS-M improvements were observed for trunk (53.2%) and cervical (50.5%) dystonia, with less clinical impact on laryngeal dystonia. Improvements in gait dystonia decreased from 20.9% at 1 year to 1ł.2% at last assessment; no patient maintained a fully independent gait. Reduction of BFMDRS-D was maintained for swallowing (52.9%). Five patients developed mild parkinsonism following deep brain stimulation. KMT2B-related disease comprises an expanding continuum from infancy to adulthood, with early evidence of genotype-phenotype correlations. Except for laryngeal dysphonia, deep brain stimulation provides a significant improvement in quality of life and function with sustained clinical benefit depending on symptoms distribution.
Collapse
Affiliation(s)
- Laura Cif
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté demédecine, Université de Montpellier, France
| | - Diane Demailly
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté demédecine, Université de Montpellier, France
| | - Jean-Pierre Lin
- Complex Motor Disorder Service, Children’s Neurosciences Department, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Children’s Neuromodulation Group, Women and Children’s Health Institute, Faculty of life Sciences and Medicine (FOLSM), King’s Health Partners, London, UK
| | - Katy E. Barwick
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mario Sa
- Complex Motor Disorder Service, Children’s Neurosciences Department, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Lucia Abela
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Wui K. Chong
- Developmental Imaging and Biophysics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dora Steel
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Alba Sanchis-Juan
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge, UK
| | - Adeline Ngoh
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Natalie Trump
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Esther Meyer
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Julia Rankin
- Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Meredith W. Allain
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Carolyn D. Applegate
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanaz Attaripour Isfahani
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Julien Baleine
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jennifer A. Bassetti
- Division of Medical Genetics, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Emma L. Baple
- Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Institute of Biomedical and Clinical Science RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Kailash P. Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Catherine Blanchet
- Département d’Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Lydie Burglen
- Département de génétique médicale, APHP Hôpital Armand Trousseau, Paris, France
| | - Gilles Cambonie
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Emilie Chan Seng
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté demédecine, Université de Montpellier, France
| | | | - Fabienne Cyprien
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté demédecine, Université de Montpellier, France
| | - Christine Coubes
- Département de Génétique médicale, Maladies rares et médecine personnalisée, CHU Montpellier, Montpellier, France
| | - Vincent d’Hardemare
- Unité Dyspa, Neurochirurgie Pédiatrique, Hôpital Fondation Rothschild, Paris, France
| | | | - Asif Doja
- Division of Neurology, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Nathalie Dorison
- Unité Dyspa, Neurochirurgie Pédiatrique, Hôpital Fondation Rothschild, Paris, France
| | - Diane Doummar
- Neuropédiatrie, Centre de référence neurogénétique mouvement anormaux de l’enfant, Hôpital Armand Trousseau, AP-HP, Sorbonne Université, France
| | - Marisela E. Dy-Hollins
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ellyn Farrelly
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
- Department of Pediatrics, Lucile Packard Children’s Hospital at Stanford, CA, USA
| | - David R. Fitzpatrick
- Human Genetics Unit, Medical and Developmental Genetics, University of Edinburgh Western General Hospital, Edinburgh, Scotland, UK
| | - Conor Fearon
- Department of Neurology, The Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland
| | - Elizabeth L. Fieg
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brent L. Fogel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Eva B. Forman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children’s Health Ireland at Temple Street, Dublin, Ireland
| | - Rachel G. Fox
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | | | - William A. Gahl
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Victoria Gonzalez
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté demédecine, Université de Montpellier, France
| | - Tracey D. Graves
- Department of Neurology, Hinchingbrooke Hospital, North West Anglia NHS Foundation Trust, Huntingdon, UK
| | - Allison Gregory
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Harutomo Hasegawa
- Complex Motor Disorder Service, Children’s Neurosciences Department, Evelina London Children’s Hospital, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
- Children’s Neuromodulation Group, Women and Children’s Health Institute, Faculty of life Sciences and Medicine (FOLSM), King’s Health Partners, London, UK
| | - Susan J. Hayflick
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Department of Paediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marie Hully
- Département de Neurologie, APHP-Necker-Enfants Malades, Paris, France
| | - Sandra Jansen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Suh Young Jeong
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Joel B. Krier
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Sidney Krystal
- Département de Neuroradiologie, Hôpital Fondation Rothschild, Paris
| | - Kishore R. Kumar
- Translational Genomics Group, Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Department of Neurogenetics, Kolling Institute, University of Sydney and Royal North Shore Hospital, St Leonards, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Chloé Laurencin
- Département de Neurologie, Hôpital Neurologique Pierre Wertheimer, Lyon, France
| | - Hane Lee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gaetan Lesca
- Département de Génétique, Hôpital Universitaire de Lyon, Lyon, France
| | | | - Timothy Lynch
- Department of Neurology, The Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Neil Mahant
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
| | - Julian A. Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Christophe Milesi
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Kelly A. Mills
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michel Mondain
- Département d’Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Hugo Morales-Briceno
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - NIHR BioResource
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | | | - Swasti Pal
- Institute of Genetics and Genomics, Sir Ganga Ram Hospital, Rajender Nagar, New Delhi, India
| | - Juan C. Pallais
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Frédérique Pavillard
- Département d’Anesthésie-Réanimation Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Pierre-Francois Perrigault
- Département d’Anesthésie-Réanimation Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Gustavo Polo
- Département de Neurochirurgie Fonctionnelle, Hôpital Neurologique et Neurochirurgical, Pierre Wertheimer, Lyon, France
| | - Gaetan Poulen
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté demédecine, Université de Montpellier, France
| | - Tuula Rinne
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Roujeau
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
| | - Caleb Rogers
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Agathe Roubertie
- Département de Neuropédiatrie, Hôpital Universitaire de Montpellier, Montpellier, France
- INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Michelle Sahagian
- Division of Neurology, Rady Children’s Hospital San Diego, CA, USA
- Department of Neuroscience, University of California San Diego, CA, USA
| | - Elise Schaefer
- Medical Genetics, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laila Selim
- Cairo University Children Hospital, Pediatric Neurology and Metabolic division, Cairo, Egypt
| | - Richard Selway
- Department of Neurosurgery, King’s College Hospital, London, UK
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Rebecca Signer
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ariane G. Soldatos
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David A. Stevenson
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Fiona Stewart
- Department of Genetic Medicine, Belfast Health and Social Care Trust, Belfast, UK
| | - Michel Tchan
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Department of Genetics, Westmead Hospital, Westmead, NSW, Australia
| | - Undiagnosed Diseases Network
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ishwar C. Verma
- Institute of Genetics and Genomics, Sir Ganga Ram Hospital, Rajender Nagar, New Delhi, India
| | - Bert B. A. de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jenny L. Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Derek A. Wong
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Raghda Zaitoun
- Department of Paediatrics, Neurology Division, Ain Shams University Hospital, Cairo, Egypt
| | - Dolly Zhen
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Anna Znaczko
- Department of Genetic Medicine, Belfast Health and Social Care Trust, Belfast, UK
| | - Russell C. Dale
- Department of Paediatric Neurology, The Children’s Hospital at Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Claudio M. de Gusmão
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
| | - Jennifer Friedman
- Division of Neurology, Rady Children’s Hospital San Diego, CA, USA
- Department of Neuroscience, University of California San Diego, CA, USA
- Departments of Paediatrics, University of California, San Diego, CA, USA
- Rady Children’s Institute for Genomic Medicine, San Diego, CA, USA
| | - Victor S. C. Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mary D. King
- Department of Paediatric Neurology and Clinical Neurophysiology, Children’s Health Ireland at Temple Street, Dublin, Ireland
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Shekeeb S. Mohammad
- Department of Paediatric Neurology, The Children’s Hospital at Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Luis Rohena
- Division of Medical Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, TX, USA
- Department of Pediatrics, Long School of Medicine, UT Health, San Antonio, TX, USA
| | - Jeff L. Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
| | - Camilo Toro
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - F. Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Philippe Coubes
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté demédecine, Université de Montpellier, France
| | - Kathleen M. Gorman
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
5
|
Ranjan R, Chourey A, Kabir Y, García Mata HD, Tiepolo E, Fiallos Vinueza IL, Mohammed C, Mohammed SF, Thottakurichi AA. Role of Neurosurgical Interventions in the Treatment of Movement Disorders Like Parkinson's Disease, Dystonia, and Tourette Syndrome. Cureus 2024; 16:e72613. [PMID: 39610627 PMCID: PMC11603398 DOI: 10.7759/cureus.72613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 11/30/2024] Open
Abstract
This article provides an overview of neurosurgical therapies for movement disorders (MDs), including Tourette syndrome, dystonia, Parkinson's disease (PD), and others. It focuses on the benefits of these treatments and suggests directions for further research. A total of 10 years' worth of English-language PubMed articles were combed through, with an emphasis on studies conducted in North America. To manage MDs like Parkinson's disease and Tourette syndrome, the results suggest that non-invasive neuromodulation techniques, closed-loop deep brain stimulation (DBS), and other advanced therapies may become the treatment of choice in the future. Research on dystonia is being focused on improving treatment methods by investigating new areas of the brain that might be stimulated through neurosurgery and looking at gene therapy. Modern technological developments, such as non-invasive neuromodulation procedures and improved imaging, provide promising substitutes for traditional surgical approaches. This study highlights the need for continuous clinical trials for better outcomes, which is why research and development in this area must continue.
Collapse
Affiliation(s)
- Rachel Ranjan
- Neurology, St. John's Medical College, Bangalore, IND
| | | | - Yasmin Kabir
- Medicine, Royal College of Surgeons, Manama, BHR
| | | | | | | | - Cara Mohammed
- Orthopaedic Surgery, Sangre Grande Hospital, Sangre Grande, TTO
| | | | | |
Collapse
|
6
|
Duga V, Giossi R, Romito LM, Stanziano M, Levi V, Panteghini C, Zorzi G, Nardocci N. Long-Term Globus Pallidus Internus Deep Brain Stimulation in Pediatric Non-Degenerative Dystonia: A Cohort Study and a Meta-Analysis. Mov Disord 2024; 39:1131-1144. [PMID: 38646731 DOI: 10.1002/mds.29815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND The evidence in the effectiveness of deep brain stimulation in children with medication-refractory non-degenerative monogenic dystonia is heterogeneous and long-term results are sparse. OBJECTIVES The objective is to describe long-term outcomes in a single-center cohort and compare our results with a meta-analysis cohort form literature. METHODS We performed a retrospective single-center cohort study including consecutive pediatric patients with non-degenerative genetic or idiopathic dystonia treated with globus pallidus internus deep brain stimulation at our center and a systematic review and individual-patient data meta-analysis with the same inclusion criteria. The primary outcome was the change from baseline in the Burke-Fahn-Marsden Dystonia Rating Scale-movement (BFMDRS-M) score. RESULTS The clinical cohort included 25 patients with a mean study follow-up of 11.4 years. The meta-analysis cohort included 224 patients with a mean follow-up of 3 years. Overall, the BFMDRS-M mean improvements at 1 year and at last follow-up were 41% and 33% in the clinical cohort and 58.9% and 57.2% in the meta-analysis cohort, respectively. TOR1A-dystonia showed the greatest and most stable BFMDRS-M improvement in both cohorts at 1 year and at last follow-up (76.3% and 74.3% in the clinical cohort; 69.6% and 67.3% in the meta-analysis cohort), followed by SGCE-dystonia (63% and 63.9% in the meta-analysis cohort). THAP1-dystonia (70.1% and 29.8% in the clinical cohort; 52.3% and 42.0% in the meta-analysis cohort) and KMT2B-dystonia (33.3% and 41.3% in the clinical cohort; 38.0% and 26.7% in the meta-analysis cohort) showed a less pronounced or sustained response. CONCLUSION Globus pallidus deep brain stimulation long-term treatment seems effective with a possible gene-specific differential effect. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Valentina Duga
- Child Neuropsychiatry Unit, Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
- Child and Adolescent Neuropsychiatric Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Riccardo Giossi
- Poison Control Center and Clinical Pharmacology Unit, ASST Grande Ospedale Metropolitano Niguarda, Milano, Italy
- Department of Research and Clinical Development, Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Luigi Michele Romito
- Movement Disorders Unit, Neurology Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Mario Stanziano
- Neuroradiology Unit, Department of Technology and Diagnosis, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Vincenzo Levi
- Functional Neurosurgery Unit, Neurosurgery Department, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Celeste Panteghini
- Molecular Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giovanna Zorzi
- Child Neuropsychiatry Unit, Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Nardo Nardocci
- Child Neuropsychiatry Unit, Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
7
|
Nguyen MX, Brown AM, Lin T, Sillitoe RV, Gill JS. Targeting DBS to the centrolateral thalamic nucleus improves movement in a lesion-based model of acquired cerebellar dystonia in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.21.595095. [PMID: 38826430 PMCID: PMC11142135 DOI: 10.1101/2024.05.21.595095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Dystonia is the third most common movement disorder and an incapacitating co-morbidity in a variety of neurologic conditions. Dystonia can be caused by genetic, degenerative, idiopathic, and acquired etiologies, which are hypothesized to converge on a "dystonia network" consisting of the basal ganglia, thalamus, cerebellum, and cerebral cortex. In acquired dystonia, focal lesions to subcortical areas in the network - the basal ganglia, thalamus, and cerebellum - lead to a dystonia that can be difficult to manage with canonical treatments, including deep brain stimulation (DBS). While studies in animal models have begun to parse the contribution of individual nodes in the dystonia network, how acquired injury to the cerebellar outflow tracts instigates dystonia; and how network modulation interacts with symptom latency remain as unexplored questions. Here, we present an electrolytic lesioning paradigm that bilaterally targets the cerebellar outflow tracts. We found that lesioning these tracts, at the junction of the superior cerebellar peduncles and the medial and intermediate cerebellar nuclei, resulted in acute, severe dystonia. We observed that dystonia is reduced with one hour of DBS of the centrolateral thalamic nucleus, a first order node in the network downstream of the cerebellar nuclei. In contrast, one hour of stimulation at a second order node in the short latency, disynaptic projection from the cerebellar nuclei, the striatum, did not modulate the dystonia in the short-term. Our study introduces a robust paradigm for inducing acute, severe dystonia, and demonstrates that targeted modulation based on network principles powerfully rescues motor behavior. These data inspire the identification of therapeutic targets for difficult to manage acquired dystonia.
Collapse
Affiliation(s)
- Megan X. Nguyen
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| | - Amanda M. Brown
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Tao Lin
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Roy V. Sillitoe
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Jason S. Gill
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, USA
| |
Collapse
|
8
|
Sarva H, Rodriguez-Porcel F, Rivera F, Gonzalez CD, Barkan S, Tripathi S, Gatto E, Ruiz PG. The role of genetics in the treatment of dystonia with deep brain stimulation: Systematic review and Meta-analysis. J Neurol Sci 2024; 459:122970. [PMID: 38520940 DOI: 10.1016/j.jns.2024.122970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/15/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions that lead to involuntary postures or repetitive movements. Genetic mutations are being increasingly recognized as a cause of dystonia. Deep brain stimulation (DBS) is one of the limited treatment options available. However, there are varying reports on its efficacy in genetic dystonias. This systematic review of the characteristics of genetic dystonias treated with DBS and their outcomes aims to aid in the evaluation of eligibility for such treatment. METHODS We performed a PUBMED search of all papers related to genetic dystonias and DBS up until April 2022. In addition to performing a systematic review, we also performed a meta-analysis to assess the role of the mutation on DBS response. We included cases that had a confirmed genetic mutation and DBS along with pre-and post-operative BFMDRS. RESULTS Ninety-one reports met our inclusion criteria and from them, 235 cases were analyzed. Based on our analysis DYT-TOR1A dystonia had the best evidence for DBS response and Rapid-Onset Dystonia Parkinsonism was among the least responsive to DBS. CONCLUSION While our report supports the role of genetics in DBS selection and response, it is limited by the rarity of the individual genetic conditions, the reliance on case reports and case series, and the limited ability to obtain genetic testing on a large scale in real-time as opposed to retrospectively as in many cases.
Collapse
Affiliation(s)
- Harini Sarva
- Parkinson's Disease and Movement Disorders Institute, Weill Cornell Medicine, 428 E72nd Street, Suite 400, NY, NY 10021, USA.
| | | | - Francisco Rivera
- CEMIC University Institute, School of Medicine, Department of Pharmacology, Buenos Aires, Argentina
| | - Claudio Daniel Gonzalez
- CEMIC University Institute, School of Medicine, Department of Pharmacology, Buenos Aires, Argentina
| | - Samantha Barkan
- Parkinson's Disease and Movement Disorders Institute, Weill Cornell Medicine, 428 E72nd Street, Suite 400, NY, NY 10021, USA
| | - Susmit Tripathi
- Parkinson's Disease and Movement Disorders Institute, Weill Cornell Medicine, 428 E72nd Street, Suite 400, NY, NY 10021, USA
| | - Emilia Gatto
- Instituto de Neurociencias Buenos Aires, INEBA, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Pedro Garcia Ruiz
- Movement Disorders Unit, Department of Neurology, Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
9
|
Loução R, Burkhardt J, Wirths J, Kabbasch C, Dembek TA, Heiden P, Cirak S, Al-Fatly B, Treuer H, Visser-Vandewalle V, Hoevels M, Koy A. Diffusion tensor imaging in pediatric patients with dystonia. Neuroimage 2024; 287:120507. [PMID: 38244876 DOI: 10.1016/j.neuroimage.2024.120507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Childhood-onset dystonia is often progressive and severely impairs a child´s life. The pathophysiology is very heterogeneous and treatment responses vary in patients with dystonia. Factors influencing treatment effects remain to be elucidated. We hypothesize that differences in brain connectivity and fiber coherence contribute to the heterogeneity in treatment response among pediatric patients with inherited and acquired dystonia. METHODS Twenty patients with childhood-onset dystonia were retrospectively recruited including twelve patients with inherited or idiopathic, and eight patients with acquired dystonia (mean age 10 years; 8 female/12 male). Fiber density between the internal part of the globus pallidus and selective target regions, as well as the diffusion measures of fractional anisotropy (FA) and mean diffusivity (MD) were analyzed and compared between different etiologies. RESULTS Patients with acquired dystonia presented higher fiber density to the premotor cortex and putamen and lower FA values in the thalamus compared to patients with inherited/idiopathic dystonia. MD in the premotor cortex was higher in patients with acquired dystonia, while it was lower in the thalamus. CONCLUSION Diffusion MRI reveals microstructural and network alterations in patients with dystonia of different etiologies.
Collapse
Affiliation(s)
- Ricardo Loução
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany; Department of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Julia Burkhardt
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Jochen Wirths
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Christoph Kabbasch
- Department of Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Till A Dembek
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Petra Heiden
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany; Department of Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sebahattin Cirak
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Bassam Al-Fatly
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Harald Treuer
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Veerle Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Mauritius Hoevels
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, Kerpener Straße 62, Cologne 50937, Germany
| | - Anne Koy
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Gill JS, Nguyen MX, Hull M, van der Heijden ME, Nguyen K, Thomas SP, Sillitoe RV. Function and dysfunction of the dystonia network: an exploration of neural circuits that underlie the acquired and isolated dystonias. DYSTONIA 2023; 2:11805. [PMID: 38273865 PMCID: PMC10810232 DOI: 10.3389/dyst.2023.11805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Dystonia is a highly prevalent movement disorder that can manifest at any time across the lifespan. An increasing number of investigations have tied this disorder to dysfunction of a broad "dystonia network" encompassing the cerebellum, thalamus, basal ganglia, and cortex. However, pinpointing how dysfunction of the various anatomic components of the network produces the wide variety of dystonia presentations across etiologies remains a difficult problem. In this review, a discussion of functional network findings in non-mendelian etiologies of dystonia is undertaken. Initially acquired etiologies of dystonia and how lesion location leads to alterations in network function are explored, first through an examination of cerebral palsy, in which early brain injury may lead to dystonic/dyskinetic forms of the movement disorder. The discussion of acquired etiologies then continues with an evaluation of the literature covering dystonia resulting from focal lesions followed by the isolated focal dystonias, both idiopathic and task dependent. Next, how the dystonia network responds to therapeutic interventions, from the "geste antagoniste" or "sensory trick" to botulinum toxin and deep brain stimulation, is covered with an eye towards finding similarities in network responses with effective treatment. Finally, an examination of how focal network disruptions in mouse models has informed our understanding of the circuits involved in dystonia is provided. Together, this article aims to offer a synthesis of the literature examining dystonia from the perspective of brain networks and it provides grounding for the perspective of dystonia as disorder of network function.
Collapse
Affiliation(s)
- Jason S. Gill
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
| | - Megan X. Nguyen
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
| | - Mariam Hull
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Meike E. van der Heijden
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United State
| | - Ken Nguyen
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United State
| | - Sruthi P. Thomas
- H. Ben Taub Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, United States
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| | - Roy V. Sillitoe
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United State
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Development, Disease Models and Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
11
|
Li J, Li N, Wang X, Wang J, Wang X, Wang W. Long-Term Outcome of Subthalamic Deep Brain Stimulation for Generalized Isolated Dystonia. Neuromodulation 2023; 26:1653-1660. [PMID: 36028445 DOI: 10.1016/j.neurom.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/01/2022] [Accepted: 07/01/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVES Few studies have focused on subthalamic nucleus deep brain stimulation for refractory isolated dystonia, and the long-term outcomes are unclear. In this study, we evaluated the efficacy of subthalamic stimulation for generalized isolated dystonia for more than five years and explored the factors predicting clinical outcomes. MATERIALS AND METHODS A total of 16 patients with generalized isolated dystonia underwent a two-phase procedure for stimulation system implantation. After implanting the leads, we performed a test stimulation and observed the stimulation response. The severity of dystonia was assessed using a blinded rating of the Burke-Fahn-Marsden Dystonia Rating Scale based on videos recorded at scheduled times. RESULTS The mean follow-up time was 7.4 ± 2.2 years (5-12.5 years). The severity of dystonia improved significantly one year after surgery. The movement score decreased from 49.3 (40.9) points at baseline to 26.5 (43.5) points (-44.6%) at six months, 12.0 (22.5) points (-66.8%) at one year, 11.25 (17.6) points (-72.7%) at three years, and 12.5 (21.0) points (-72.6%) at the last follow-up. The improvement in motor symptoms resulted in a corresponding improvement in activities of daily living. Greater long-term outcomes were correlated with early stimulation responses, lower baseline movement scores, and female sex. When analyzed comprehensively, only the baseline movement score had meaningful predictive value for the outcome. CONCLUSIONS Our results indicate that subthalamic stimulation is effective and durable in treating generalized isolated dystonia. The subthalamic nucleus may be an alternative target for the treatment of refractory dystonia. Patients with less severe motor symptoms may benefit more from this treatment.
Collapse
Affiliation(s)
- Jiaming Li
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Nan Li
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xin Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Jing Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China
| | - Xuelian Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi'an, Shaanxi, China.
| | - Wei Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
12
|
van der Veen S, Tse GTW, Ferretti A, Garone G, Post B, Specchio N, Fung VSC, Trivisano M, Scheffer IE. Movement Disorders in Patients With Genetic Developmental and Epileptic Encephalopathies. Neurology 2023; 101:e1884-e1892. [PMID: 37748886 PMCID: PMC10663013 DOI: 10.1212/wnl.0000000000207808] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/17/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Movement disorders (MDs) are underrecognized in the developmental and epileptic encephalopathies (DEEs). There are now more than 800 genes implicated in causing the DEEs; relatively few of these rare genetic diseases are known to be associated with MDs. We identified patients with genetic DEEs who had MDs, classified the nature of their MDs, and asked whether specific patterns correlated with the underlying mechanism. METHODS We classified the type of MDs associated with specific genetic DEEs in a large international cohort of patients and analyzed whether specific patterns of MDs reflected the underlying biological dysfunction. RESULTS Our cohort comprised 77 patients with a genetic DEE with a median age of 9 (range 1-38) years. Stereotypies (37/77, 48%) and dystonia (34/77, 44%) were the most frequent MDs, followed by chorea (18/77, 23%), myoclonus (14/77, 18%), ataxia (9/77, 12%), tremor (7/77, 9%), and hypokinesia (6/77, 8%). In 47% of patients, a combination of MDs was seen. The MDs were first observed at a median age of 18 months (range day 2-35 years). Dystonia was more likely to be observed in nonambulatory patients, while ataxia was less likely. In 46% of patients, therapy was initiated with medication (34/77, 44%), deep brain stimulation (1/77, 1%), or intrathecal baclofen (1/77, 1%). We found that patients with channelopathies or synaptic vesicle trafficking defects were more likely to experience dystonia; whereas, stereotypies were most frequent in individuals with transcriptional defects. DISCUSSION MDs are often underrecognized in patients with genetic DEEs, but recognition is critical for the management of these complex neurologic diseases. Distinguishing MDs from epileptic seizures is important in tailoring patient treatment. Understanding which MDs occur with different biological mechanisms will inform early diagnosis and management.
Collapse
Affiliation(s)
- Sterre van der Veen
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Gabrielle T W Tse
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Alessandro Ferretti
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Giacomo Garone
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Bart Post
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Nicola Specchio
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Victor S C Fung
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Marina Trivisano
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia
| | - Ingrid E Scheffer
- From the University Medical Center Groningen (S.v.d.V.), the Netherlands; Austin Health (G.T.W.T.), Melbourne, Australia; Bambino Gesù Children's Hospital (A.F., M.T.); Bambino Gesù Children's Hospital (G.G.), Tor Vergata University, Rome, Italy; Radboud UMC (B.P.), Nijmegen, the Netherlands; Ospedale Pediatrico Bambino Gesù (N.S.), Rome, Italy; Westmead Hospital (V.S.C.F.); and University of Melbourne, Austin Health and Royal Children's Hospital (I.E.S.), Australia.
| |
Collapse
|
13
|
Khanom AA, Franceschini PR, Lane S, Osman-Farah J, Macerollo A. Bilateral globus pallidus internus (GPi) deep brain stimulation for cervical dystonia: Effects on motor and non-motor symptoms within 5 years follow. J Neurol Sci 2023; 452:120752. [PMID: 37542824 DOI: 10.1016/j.jns.2023.120752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/04/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
BACKGROUND Cervical Dystonia ("CD") is a movement disorder characterised by sustained muscle contractions in the neck, causing involuntary posturing. Deep brain stimulation ("DBS") of the globus pallidal internus (GPi) is advanced treatment for pharmaco-refractory patients. As CD is a rare disease, cohort studies are often limited to patients of heterogenous disease profile, small sample size or short follow-up. This study firstly aimed to measure the efficacy of GPi-DBS on motor and non-motor symptoms of CD. A secondary aim was to evaluate if clinical factors - such as age, disease duration and baseline disease severity - influence variability of motor outcomes. METHODS 37 idiopathic CD patients were recruited from movement disorders clinics at The Walton NHS Foundation Trust, Liverpool, UK. Patients were assessed pre-operatively, and 1 year, 3 years and 5 years post-operatively with the following clinical scales: Toronto Western Spasmodic Torticollis Rating Scale ("TWSTRS"), Hospital Anxiety and Depression Scale and EuroQuol-5D. RESULTS GPI-DBS significantly improved overall TWSTRS scores by 57% from baseline to 5Y FU (p < 0.001). It also significantly improved TWSTRS severity, disability, and pain sub-scores by 72%, 59% and 46% respectively. We did not find a significant improvement in mood or quality of life scores at 5 years. Similarly, clinical factors at baseline did not correlate with variability in motor outcome. CONCLUSION We concluded that GPi-DBS is an effective treatment for motor symptoms and pain in CD. There was limited effect on mood and QoL, and no clinical predictive factors of outcome were identified.
Collapse
Affiliation(s)
- Anjum Aarifa Khanom
- University of Liverpool Medical School, Liverpool, UK; The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, UK
| | - Paulo Roberto Franceschini
- The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, UK; Functional Neurosurgery Department, Universidade de Caxias do Sul, Brazil
| | - Steven Lane
- Institute of Data Health Sciences, University of Liverpool, UK
| | - Jibril Osman-Farah
- The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, UK
| | - Antonella Macerollo
- The Walton Centre NHS Foundation Trust for Neurology and Neurosurgery, Liverpool, UK; Institute of Systems, Molecular and Integrative Biology, University of Liverpool, UK.
| |
Collapse
|
14
|
Zhao M, Chen H, Yan X, Li J, Lu C, Cui B, Huo W, Cao S, Guo H, Liu S, Yang C, Liu Y, Yin F. Subthalamic deep brain stimulation for primary dystonia: defining an optimal location using the medial subthalamic nucleus border as anatomical reference. Front Aging Neurosci 2023; 15:1187167. [PMID: 37547744 PMCID: PMC10400903 DOI: 10.3389/fnagi.2023.1187167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Although the subthalamic nucleus (STN) has proven to be a safe and effective target for deep brain stimulation (DBS) in the treatment of primary dystonia, the rates of individual improvement vary considerably. On the premise of selecting appropriate patients, the location of the stimulation contacts in the dorsolateral sensorimotor area of the STN may be an important factor affecting therapeutic effects, but the optimal location remains unclear. This study aimed to define an optimal location using the medial subthalamic nucleus border as an anatomical reference and to explore the influence of the location of active contacts on outcomes and programming strategies in a series of patients with primary dystonia. Methods Data from 18 patients who underwent bilateral STN-DBS were retrospectively acquired and analyzed. Patients were assessed preoperatively and postoperatively (1 month, 3 months, 6 months, 1 year, 2 years, and last follow-up after neurostimulator initiation) using the Toronto Western Spasmodic Torticollis Rating Scale (for cervical dystonia) and the Burke-Fahn-Marsden Dystonia Rating Scale (for other types). Optimal parameters and active contact locations were determined during clinical follow-up. The position of the active contacts relative to the medial STN border was determined using postoperative stereotactic MRI. Results The clinical improvement showed a significant negative correlation with the y-axis position (anterior-posterior; A+, P-). The more posterior the electrode contacts were positioned in the dorsolateral sensorimotor area of the STN, the better the therapeutic effects. Cluster analysis of the improvement rates delineated optimal and sub-optimal groups. The optimal contact coordinates from the optimal group were 2.56 mm lateral, 0.15 mm anterior, and 1.34 mm superior relative to the medial STN border. Conclusion STN-DBS was effective for primary dystonia, but outcomes were dependent on the active contact location. Bilateral stimulation contacts located behind or adjacent to Bejjani's line were most likely to produce ideal therapeutic effects. These findings may help guide STN-DBS preoperative planning, stimulation programming, and prognosis for optimal therapeutic efficacy in primary dystonia.
Collapse
Affiliation(s)
- Mingming Zhao
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Hui Chen
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Xin Yan
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Jianguang Li
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Chao Lu
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Bin Cui
- Department of Radiology, Aerospace Center Hospital, Beijing, China
| | - Wenjun Huo
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Shouming Cao
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Hui Guo
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Shuang Liu
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Chunjuan Yang
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Ying Liu
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| | - Feng Yin
- Department of Neurosurgery, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
15
|
Novelli M, Galosi S, Zorzi G, Martinelli S, Capuano A, Nardecchia F, Granata T, Pollini L, Di Rocco M, Marras CE, Nardocci N, Leuzzi V. GNAO1-related movement disorder: An update on phenomenology, clinical course, and response to treatments. Parkinsonism Relat Disord 2023:105405. [PMID: 37142469 DOI: 10.1016/j.parkreldis.2023.105405] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 05/06/2023]
Abstract
AIM To evaluate clinical phenotype and molecular findings of 157 cases with GNAO1 pathogenic or likely pathogenic variants delineating the clinical spectrum, course, and response to treatments. METHOD Clinical phenotype, genetic data, and pharmacological and surgical treatment history of 11 novel cases and 146 previously published patients were analyzed. RESULTS Complex hyperkinetic movement disorder (MD) characterizes 88% of GNAO1 patients. Severe hypotonia and prominent disturbance of postural control seem to be hallmarks in the early stages preceding the hyperkinetic MD. In a subgroup of patients, paroxysmal exacerbations became so severe as to require admission to intensive care units (ICU). Almost all patients had a good response to deep brain stimulation (DBS). Milder phenotypes with late-onset focal/segmental dystonia, mild to moderate intellectual disability, and other minor neurological signs (i.e., parkinsonism and myoclonus) are emerging. MRI, previously considered noncontributory to a diagnosis, can show recurrent findings (i.e., cerebral atrophy, myelination and/or basal ganglia abnormalities). Fifty-eight GNAO1 pathogenic variants, including missense changes and a few recurrent splice site defects, have been reported. Substitutions at residues Gly203, Arg209 and Glu246, together with the intronic c.724-8G > A change, account for more than 50% of cases. INTERPRETATION Infantile or childhood-onset complex hyperkinetic MD (chorea and/or dystonia) with or without paroxysmal exacerbations, associated hypotonia, and developmental disorders should prompt research for GNAO1 mutations. DBS effectively controls and prevents severe exacerbations and should be considered early in patients with specific GNAO1 variants and refractory MD. Prospective and natural history studies are necessary to define genotype-phenotype correlations further and clarify neurological outcomes.
Collapse
Affiliation(s)
- Maria Novelli
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University of Rome, Italy.
| | - Giovanna Zorzi
- Department of Pediatric Neuroscience, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Simone Martinelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | | | - Tiziana Granata
- Department of Pediatric Neuroscience, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Luca Pollini
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| | - Martina Di Rocco
- Department of Human Neuroscience, Sapienza University of Rome, Italy; Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | | | - Nardo Nardocci
- Department of Pediatric Neuroscience, IRCCS Foundation Carlo Besta Neurological Institute, Milan, Italy
| | - Vincenzo Leuzzi
- Department of Human Neuroscience, Sapienza University of Rome, Italy
| |
Collapse
|
16
|
Corp DT, Morrison-Ham J, Jinnah HA, Joutsa J. The functional anatomy of dystonia: Recent developments. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 169:105-136. [PMID: 37482390 DOI: 10.1016/bs.irn.2023.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
While dystonia has traditionally been viewed as a disorder of the basal ganglia, the involvement of other key brain structures is now accepted. However, just what these structures are remains to be defined. Neuroimaging has been an especially valuable tool in dystonia, yet traditional cross-sectional designs have not been able to separate causal from compensatory brain activity. Therefore, this chapter discusses recent studies using causal brain lesions, and animal models, to converge upon the brain regions responsible for dystonia with increasing precision. This evidence strongly implicates the basal ganglia, thalamus, brainstem, cerebellum, and somatosensory cortex, yet shows that different types of dystonia involve different nodes of this brain network. Nearly all of these nodes fall within the recently identified two-way networks connecting the basal ganglia and cerebellum, suggesting dysfunction of these specific pathways. Localisation of the functional anatomy of dystonia has strong implications for targeted treatment options, such as deep brain stimulation, and non-invasive brain stimulation.
Collapse
Affiliation(s)
- Daniel T Corp
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States.
| | - Jordan Morrison-Ham
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - H A Jinnah
- Departments of Neurology, Human Genetics, and Pediatrics, Atlanta, GA, United States
| | - Juho Joutsa
- Center for Brain Circuit Therapeutics, Brigham and Women's Hospital, Boston, MA, United States; Turku Brain and Mind Center, Clinical Neurosciences, University of Turku, Turku, Finland; Turku PET Centre, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
17
|
Cif L, Demailly D, Gehin C, Chan Seng E, Dornadic M, Huby S, Poulen G, Roubertie A, Villessot M, Roujeau T, Coubes P. Deep brain stimulation effect in genetic dyskinetic cerebral palsy: The case of ADCY5- related disease. Mol Genet Metab 2023; 138:106970. [PMID: 36610259 DOI: 10.1016/j.ymgme.2022.106970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/06/2022] [Accepted: 12/11/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Cerebral Palsy (CP) represents a frequent cause of disability in childhood. Early in life, genetic disorders may present with motor dysfunction and diagnosed as CP. Establishing the primary, genetic etiology allows more accurate prognosis, genetic counselling, and planning for symptomatic interventions in homogeneous etiological groups. Deep brain stimulation (DBS) is recommended in refractory movement disorders, including isolated pediatric dystonias. For dystonia evolving in more complex associations in genetic CP, the effect of DBS is still understudied and currently only sporadically described. OBJECTIVES To report the effect of DBS applied to the globus pallidus pars interna (GPi) in children with complex movement disorders caused by pathogenic ADCY5 variants, diagnosed as dyskinetic CP previous to genetic diagnostic. METHODS We conducted a retrospective study on evolution of treatment with DBS in ADCY5-related disease. A standardized proforma including the different type of movement disorders and associated neurological signs was completed at each follow-up time, based on video recordings, as well as functional assessments used in children with CP. RESULTS Four children (mean of age, 13 ± 2.9 years) received GPi-DBS. The same de novo pathogenic missense variant (c.1252C > T, p.R418W) was identified in three out of four and a splice site variant (c.2088 + 2G > T) in one subject. Developmental delay and overlapping features including axial hypotonia, chorea, dystonic attacks, myoclonus, and cranial dyskinesia were present. The median age at DBS was 9 years and follow-up with DBS, 2.6 years. We identified a pattern of clinical response with early suppression of dystonic attacks, followed by improvement of myoclonus and facial dyskinesia. Effect on chorea was delayed and more limited. Two patients gained notable functional benefit related to sitting, standing, gait, use of upper limbs and speech. CONCLUSION ADCY5-related disease may benefit from GPi-DBS. The most significant clinical response relates to the early and sustained benefit on dystonic attacks and a variable but still positive response on the other hyperkinetic features. Genetic etiology of CP will contribute to further elucidate genotype-phenotype correlations and to refine DBS indication as network-related symptomatic interventions.
Collapse
Affiliation(s)
- Laura Cif
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Hospital, Montpellier, France.
| | - Diane Demailly
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Hospital, Montpellier, France
| | - Claire Gehin
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Hospital, Montpellier, France
| | - Emilie Chan Seng
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Hospital, Montpellier, France
| | - Morgan Dornadic
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Hospital, Montpellier, France; Département de Neurologie, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Sophie Huby
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Hospital, Montpellier, France; Département de Neurologie, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Gaetan Poulen
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Hospital, Montpellier, France
| | - Agathe Roubertie
- Department of Neuropaediatrics, Gui de Chauliac Hospital, Montpellier University Hospital, University of Montpellier, Montpellier, France
| | - Matthieu Villessot
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Hospital, Montpellier, France; Département de Neurologie, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Thomas Roujeau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Hospital, Montpellier, France
| | - Philippe Coubes
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Hospital, Montpellier, France
| |
Collapse
|
18
|
Killian O, Hutchinson M, Reilly R. Neuromodulation in Dystonia - Harnessing the Network. ADVANCES IN NEUROBIOLOGY 2023; 31:177-194. [PMID: 37338702 DOI: 10.1007/978-3-031-26220-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Adult-onset isolated focal dystonia (AOIFD) is a network disorder characterised by abnormalities of sensory processing and motor control. These network abnormalities give rise to both the phenomenology of dystonia and the epiphenomena of altered plasticity and loss of intracortical inhibition. Existing modalities of deep brain stimulation effectively modulate parts of this network but are limited both in terms of targets and invasiveness. Novel approaches using a variety of non-invasive neuromodulation techniques including transcranial stimulation and peripheral stimulation present an interesting alternative approach and may, in conjunction with rehabilitative strategies, have a role in tailored therapies targeting the underlying network abnormality behind AOIFD.
Collapse
Affiliation(s)
- Owen Killian
- The Dublin Neurological Institute, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Michael Hutchinson
- Department of Neurology, St Vincent's University Hospital, Dublin, Ireland
| | - Richard Reilly
- School of Medicine, Trinity College, The University of Dublin, Dublin, Ireland.
| |
Collapse
|
19
|
Pérez‐Dueñas B, Gorman K, Marcé‐Grau A, Ortigoza‐Escobar JD, Macaya A, Danti FR, Barwick K, Papandreou A, Ng J, Meyer E, Mohammad SS, Smith M, Muntoni F, Munot P, Uusimaa J, Vieira P, Sheridan E, Guerrini R, Cobben J, Yilmaz S, De Grandis E, Dale RC, Pons R, Peall KJ, Leuzzi V, Kurian MA. The Genetic Landscape of Complex Childhood-Onset Hyperkinetic Movement Disorders. Mov Disord 2022; 37:2197-2209. [PMID: 36054588 PMCID: PMC9804670 DOI: 10.1002/mds.29182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The objective of this study was to better delineate the genetic landscape and key clinical characteristics of complex, early-onset, monogenic hyperkinetic movement disorders. METHODS Patients were recruited from 14 international centers. Participating clinicians completed standardized proformas capturing demographic, clinical, and genetic data. Two pediatric movement disorder experts reviewed available video footage, classifying hyperkinetic movements according to published criteria. RESULTS One hundred forty patients with pathogenic variants in 17 different genes (ADCY5, ATP1A3, DDC, DHPR, FOXG1, GCH1, GNAO1, KMT2B, MICU1, NKX2.1, PDE10A, PTPS, SGCE, SLC2A1, SLC6A3, SPR, and TH) were identified. In the majority, hyperkinetic movements were generalized (77%), with most patients (69%) manifesting combined motor semiologies. Parkinsonism-dystonia was characteristic of primary neurotransmitter disorders (DDC, DHPR, PTPS, SLC6A3, SPR, TH); chorea predominated in ADCY5-, ATP1A3-, FOXG1-, NKX2.1-, SLC2A1-, GNAO1-, and PDE10A-related disorders; and stereotypies were a prominent feature in FOXG1- and GNAO1-related disease. Those with generalized hyperkinetic movements had an earlier disease onset than those with focal/segmental distribution (2.5 ± 0.3 vs. 4.7 ± 0.7 years; P = 0.007). Patients with developmental delay also presented with hyperkinetic movements earlier than those with normal neurodevelopment (1.5 ± 2.9 vs. 4.7 ± 3.8 years; P < 0.001). Effective disease-specific therapies included dopaminergic agents for neurotransmitters disorders, ketogenic diet for glucose transporter deficiency, and deep brain stimulation for SGCE-, KMT2B-, and GNAO1-related hyperkinesia. CONCLUSIONS This study highlights the complex phenotypes observed in children with genetic hyperkinetic movement disorders that can lead to diagnostic difficulty. We provide a comprehensive analysis of motor semiology to guide physicians in the genetic investigation of these patients, to facilitate early diagnosis, precision medicine treatments, and genetic counseling. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Belén Pérez‐Dueñas
- Department of Pediatric NeurologyVall d'Hebron Hospital Universitary and Vall d'Hebrón Research Institute (VHIR).BarcelonaSpain,Department of Pediatrics, Obstetrics, Gynecology, Preventative Medicine and Public HealthUniversitat Autònoma de BarcelonaBarcelonaSpain,Center for Biomedical Network Research on Rare Diseases (CIBERER) CB06/07/0063BarcelonaSpain
| | - Kathleen Gorman
- Developmental Neurosciences ProgrammeGreat Ormond Street–Institute of Child Health, University College LondonLondonUnited Kingdom,Dubowitz neuromuscular CenterGreat Ormond Street Hospital for ChildrenLondonUnited Kingdom
| | - Anna Marcé‐Grau
- Department of Pediatric NeurologyVall d'Hebron Hospital Universitary and Vall d'Hebrón Research Institute (VHIR).BarcelonaSpain
| | | | - Alfons Macaya
- Department of Pediatric NeurologyVall d'Hebron Hospital Universitary and Vall d'Hebrón Research Institute (VHIR).BarcelonaSpain,Department of Pediatrics, Obstetrics, Gynecology, Preventative Medicine and Public HealthUniversitat Autònoma de BarcelonaBarcelonaSpain,Center for Biomedical Network Research on Rare Diseases (CIBERER) CB06/07/0063BarcelonaSpain
| | - Federica R. Danti
- Unit of Child Neurology and Psychiatry, Department of Human NeuroscienceSapienza University of RomeRomeItaly
| | - Katy Barwick
- Developmental Neurosciences ProgrammeGreat Ormond Street–Institute of Child Health, University College LondonLondonUnited Kingdom
| | - Apostolos Papandreou
- Developmental Neurosciences ProgrammeGreat Ormond Street–Institute of Child Health, University College LondonLondonUnited Kingdom,Dubowitz neuromuscular CenterGreat Ormond Street Hospital for ChildrenLondonUnited Kingdom
| | - Joanne Ng
- Gene Transfer Technology GroupInstitute for Women's Health, University College LondonLondonUnited Kingdom
| | - Esther Meyer
- Developmental Neurosciences ProgrammeGreat Ormond Street–Institute of Child Health, University College LondonLondonUnited Kingdom
| | - Shekeeb S. Mohammad
- Kids Neuroscience Centre and Brain and Mind Centre, Faculty of Medicine and HealthUniversity of SydneyWestmeadNew South WalesAustralia
| | - Martin Smith
- Department of Pediatric NeurologyJohn Radcliffe HospitalOxfordUnited Kingdom
| | - Francesco Muntoni
- Developmental Neurosciences ProgrammeGreat Ormond Street–Institute of Child Health, University College LondonLondonUnited Kingdom,Dubowitz neuromuscular CenterGreat Ormond Street Hospital for ChildrenLondonUnited Kingdom
| | - Pinki Munot
- Dubowitz neuromuscular CenterGreat Ormond Street Hospital for ChildrenLondonUnited Kingdom
| | - Johanna Uusimaa
- PEDEGO Research Unit, Department of Children and Adolescents, Medical Research Center OuluOulu University Hospital, University of OuluOuluFinland
| | - Päivi Vieira
- PEDEGO Research Unit, Department of Children and Adolescents, Medical Research Center OuluOulu University Hospital, University of OuluOuluFinland
| | - Eammon Sheridan
- School of MedicineSt James's University Hospital, University of LeedsLeedsUnited Kingdom
| | - Renzo Guerrini
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Neuroscience DepartmentA. Meyer Children's Hospital, University of FlorenceFlorenceItaly
| | - Jan Cobben
- North West Thames Regional Genetic ServiceNorthwick Park HospitalLondonUnited Kingdom
| | - Sanem Yilmaz
- Department of Pediatrics, Division of Child NeurologyEge University Medical FacultyİzmirTurkey
| | - Elisa De Grandis
- Child Neuropsychiatry Unit, Istituto Giannina Gaslini, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics and Maternal and Children's SciencesUniversity of GenoaGenoaItaly
| | - Russell C. Dale
- Institute for Neuroscience and Muscle ResearchChildren's Hospital at Westmead, University of SydneySydneyNew South WalesAustralia
| | - Roser Pons
- First Department of PediatricsAgia Sofia Children's Hospital, National and Kapodistrian University of AthensAthensGreece
| | - Kathryn J. Peall
- Neuroscience and Mental Health Research InstituteInstitute of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff UniversityCardiffUnited Kingdom
| | - Vincenzo Leuzzi
- Unit of Child Neurology and Psychiatry, Department of Human NeuroscienceSapienza University of RomeRomeItaly
| | - Manju A. Kurian
- Developmental Neurosciences ProgrammeGreat Ormond Street–Institute of Child Health, University College LondonLondonUnited Kingdom,Dubowitz neuromuscular CenterGreat Ormond Street Hospital for ChildrenLondonUnited Kingdom
| |
Collapse
|
20
|
Tai CH, Chou SC, Lin CH, Lee WT, Wu RM, Tseng SH. Long-Term Outcomes of Idiopathic and Acquired Dystonia After Pallidal Deep Brain Stimulation: A Case Series. World Neurosurg 2022; 167:e575-e582. [PMID: 35995355 DOI: 10.1016/j.wneu.2022.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Among dystonia patients receiving globus pallidus internus (GPi) deep brain stimulation (DBS), long-term outcomes remain to be established. To report the long-term outcomes of GPi DBS in a patient cohort with idiopathic and acquired dystonia. METHODS In this long-term follow-up cohort, there were 4 patients with idiopathic dystonia and 2 patients with acquired dystonia. The Burke-Fahn-Marsden Dystonia Rating Scale was used to evaluate 6 consecutive patients preoperatively and at 6 months, 12 months, and the last follow-up. The relationship between etiology and clinical improvement was analyzed. Stimulation parameters were evaluated for similarities and differences among these patients. RESULTS The mean follow-up of our cohort was 65.3 months (median 40.5 months). The average improvement in the Burke-Fahn-Marsden Dystonia Rating Scale (mean ± SEM) were 56% ± 7.6, 67% ± 6.8 and 66% ± 9.7 at 6 months, 12 months, and the last follow-up, respectively. There was greater improvement during the long-term follow-up in the 4 patients with idiopathic dystonia than in the 2 patients with acquired dystonia. The 2 most ventral electrodes (contact 0 and 1) were activated in all 11 leads in this cohort. The average stimulation intensity, pulse width and frequency were 2.0 ± 0.24 mA, 252 ± 43 μs, and 99 ± 6.0 Hz, respectively. CONCLUSIONS Isolated dystonia, either monogenic or idiopathic, usually responds better to GPi DBS than to acquired dystonia. Selection of patients by dystonia etiology, accurate placement of DBS leads in GPi targets, and proper stimulation programming are crucial to achieve better long-term outcomes.
Collapse
Affiliation(s)
- Chun-Hwei Tai
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Che Chou
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Wang-Tso Lee
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Hong Tseng
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
21
|
Gelineau-Morel R, Kruer MC, Garris JF, Libdeh AA, Barbosa DAN, Coffman KA, Moon D, Barton C, Vera AZ, Bruce AB, Larsh T, Wu SW, Gilbert DL, O’Malley JA. Deep Brain Stimulation for Pediatric Dystonia: A Review of the Literature and Suggested Programming Algorithm. J Child Neurol 2022; 37:813-824. [PMID: 36053123 PMCID: PMC9912476 DOI: 10.1177/08830738221115248] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Deep brain stimulation (DBS) is an established intervention for use in pediatric movement disorders, especially dystonia. Although multiple publications have provided guidelines for deep brain stimulation patient selection and programming in adults, there are no evidence-based or consensus statements published for pediatrics. The result is lack of standardized care and underutilization of this effective treatment. To this end, we assembled a focus group of 13 pediatric movement disorder specialists and 1 neurosurgeon experienced in pediatric deep brain stimulation to review recent literature and current practices and propose a standardized approach to candidate selection, implantation target site selection, and programming algorithms. For pediatric dystonia, we provide algorithms for (1) programming for initial session and follow-up sessions, and (2) troubleshooting side effects encountered during programming. We discuss common side effects, how they present, and recommendations for management. This topical review serves as a resource for movement disorders specialists interested in using deep brain stimulation for pediatric dystonia.
Collapse
Affiliation(s)
- Rose Gelineau-Morel
- Division of Neurology, Department of Pediatrics, Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, 2401 Gillham Road, Kansas City, Missouri, 64108
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Barrow Neurological Institute, Phoenix Children’s Hospital & University of Arizona College of Medicine - Phoenix, Phoenix, AZ, 85016
| | - Jordan F Garris
- Division of Pediatric Neurology, Department of Neurology, University of Virginia, PO Box 800394, Charlottesville, VA, 22908−0394
| | - Amal Abu Libdeh
- Division of Pediatric Neurology, Department of Neurology, University of Virginia, PO Box 800394, Charlottesville, VA, 22908−0394
| | - Daniel A N Barbosa
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Drive, Edwards Bldg, Stanford, CA, 94305
| | - Keith A Coffman
- Division of Neurology, Department of Pediatrics, Children’s Mercy Hospital, University of Missouri-Kansas City School of Medicine, 2401 Gillham Road, Kansas City, Missouri, 64108
| | - David Moon
- Department of Child Neurology, Division of Neurosciences, Helen DeVos Children’s Hospital, 100 Michigan St NE, Grand Rapids, MI 49503
| | - Christopher Barton
- Department of Neurology, University of Louisville School of Medicine, Louisville, Kentucky; Division of Child Neurology, Norton Children’s Medical Group, 231 E Chestnut St, Louisville, KY 40202
| | - Alonso Zea Vera
- Department of Neurology, Children’s National Hospital, 111 Michigan Ave NW, Washington, DC, 20010
| | - Adrienne B Bruce
- Division of Pediatric Neurology, Department of Pediatrics, Prisma Health, 200 Patewood Drive A350, Greenville, SC, USA 29615; University of South Carolina School of Medicine Greenville, 607 Grove Road, Greenville, SC, 29605
| | - Travis Larsh
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Steve W Wu
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Donald L Gilbert
- Division of Neurology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, 3333 Burnet Ave, Location E4, Suite 110, Cincinnati, OH 45229
| | - Jennifer A O’Malley
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, 750 Welch Road, Suite 317, Palo Alto, California, 94304
| |
Collapse
|
22
|
Garavaglia B, Vallian S, Romito LM, Straccia G, Capecci M, Invernizzi F, Andrenelli E, Kazemi A, Boesch S, Kopajtich R, Olfati N, Shariati M, Shoeibi A, Sadr-Nabavi A, Prokisch H, Winkelmann J, Zech M. AOPEP variants as a novel cause of recessive dystonia: Generalized dystonia and dystonia-parkinsonism. Parkinsonism Relat Disord 2022; 97:52-56. [PMID: 35306330 DOI: 10.1016/j.parkreldis.2022.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The genetic basis of autosomal-recessive dystonia remains poorly understood. Our objective was to report identification of additional individuals with variants in AOPEP, a recently described gene for recessively inherited dystonic disorders (OMIM:619565). METHODS Ongoing analysis on a high-throughput genetic platform and international case-recruitment efforts were undertaken. RESULTS Novel biallelic, likely pathogenic loss-of-function alleles were identified in two pedigrees of different ethnic background. Two members of a consanguineous Iranian family shared a homozygous c.1917-1G>A essential splice-site variant and featured presentations of adolescence-onset generalized dystonia. An individual of Chinese descent, homozygous for the nonsense variant c.1909G>T (p.Glu637*), displayed childhood-onset generalized dystonia combined with later-manifesting parkinsonism. One additional Iranian patient with adolescence-onset generalized dystonia carried an ultrarare, likely protein-damaging homozygous missense variant (c.1201C>T [p.Arg401Trp]). CONCLUSIONS These findings support the implication of AOPEP in recessive forms of generalized dystonia and dystonia-parkinsonism. Biallelic AOPEP variants represent a worldwide cause of dystonic movement-disorder phenotypes and should be considered in dystonia molecular testing approaches.
Collapse
Affiliation(s)
- Barbara Garavaglia
- Department of Diagnostic and Technology, Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico "C.Besta", Milan, Italy
| | - Sadeq Vallian
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Luigi M Romito
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico "C.Besta", Milan, Italy
| | - Giulia Straccia
- Department of Clinical Neurosciences, Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico "C.Besta", Milan, Italy
| | - Marianna Capecci
- Department of Experimental and Clinical Medicine, Neurorehabilitation Clinic, University Hospital "Ospedali Riuniti di Ancona", "Politecnica delle Marche" University, Ancona, Italy
| | - Federica Invernizzi
- Department of Diagnostic and Technology, Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico "C.Besta", Milan, Italy
| | - Elisa Andrenelli
- Department of Experimental and Clinical Medicine, Neurorehabilitation Clinic, University Hospital "Ospedali Riuniti di Ancona", "Politecnica delle Marche" University, Ancona, Italy
| | - Arezu Kazemi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Islamic Republic of Iran
| | - Sylvia Boesch
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Robert Kopajtich
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Technical University of Munich, School of Medicine, Institute of Human Genetics, Munich, Germany
| | - Nahid Olfati
- Department of Neurology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Shariati
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Qaem Medical Center, Mashhad, Iran; Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
| | - Ali Shoeibi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Qaem Medical Center, Mashhad, Iran
| | - Ariane Sadr-Nabavi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Qaem Medical Center, Mashhad, Iran; Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran; Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Technical University of Munich, School of Medicine, Institute of Human Genetics, Munich, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Technical University of Munich, School of Medicine, Institute of Human Genetics, Munich, Germany; Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany; Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Technical University of Munich, School of Medicine, Institute of Human Genetics, Munich, Germany.
| |
Collapse
|
23
|
Høck AN, Jensen SR, Sværke KW, Brennum J, Jespersen B, Bergdal O, Karlsborg M, Hjermind LE, Løkkegaard A. A randomised double-blind controlled study of Deep Brain Stimulation for dystonia in STN or GPi – A long term follow-up after up to 15 years. Parkinsonism Relat Disord 2022; 96:74-79. [DOI: 10.1016/j.parkreldis.2022.02.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/17/2022] [Accepted: 02/05/2022] [Indexed: 12/25/2022]
|
24
|
Rajan R, Garg K, Saini A, Radhakrishnan DM, Carecchio M, Bk B, Singh M, Srivastava AK. GPi-DBS for KMT2B-Associated Dystonia: Systematic Review and Meta-Analysis. Mov Disord Clin Pract 2022; 9:31-37. [PMID: 35005062 DOI: 10.1002/mdc3.13374] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 10/11/2021] [Accepted: 10/30/2021] [Indexed: 12/26/2022] Open
Abstract
Background Early evidence suggests good response to pallidal deep brain stimulation (DBS) in DYT-KMT2B. Objectives We aimed to conduct a systematic review and meta-analysis to assess outcomes and identify predictors of good outcome following GPi-DBS in DYT-KMT2B. Methods We searched MEDLINE, Cochrane and MDS-abstracts databases using the MeSH terms "KMT2B and DYT28". We included studies that reported objective outcomes following GPi-DBS in DYT-KMT2B. The BFMDRS-M (Burke-Fahn-Marsden Dystonia Rating Scale- Movement) total scores pre- and post-surgery were used to quantify outcomes. We calculated pooled effects using a random effects meta-analysis and used meta-regression to identify potential effect modifiers. Multiple linear regression using individual patient data was used to identify predictors of good outcome (>50% improvement from baseline on BFMDRS-M). Results Initial searches screened 132 abstracts of which 34 full-text articles were identified to be of potential interest. Ten studies reporting 42 individual patients, met the inclusion/exclusion criteria and were included in the final review. The mean age at onset was 6.4 ± 5.7 years and 40% were male. The median follow-up was 12 months (range: 1-264 months). GPi-DBS resulted in median BFMDRS-M improvement of 42.7% (range: -103.5% to 95.9%) postoperatively. Pooled proportion of patients experiencing clinical improvement >50% on BFMDRS-M was 41% (95% CI: 27%-57%). Male gender [β: 22.6, 95% CI: 8.0-37.3, P = 0.004), and higher pre-operative BFMDRS-M score [β: 0.62, 95% CI: 0.36-0.87, P < 0.001) were independently associated with better outcome. Conclusion KMT2B-associated dystonia responds effectively to pallidal stimulation. The outcome is better in males and those with more severe dystonia at baseline.
Collapse
Affiliation(s)
- Roopa Rajan
- Department of Neurology All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Kanwaljeet Garg
- Department of Neurosurgery All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Arti Saini
- Department of Neurology All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Divya M Radhakrishnan
- Department of Neurology All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Miryam Carecchio
- Movement Disorders Unit, Department of Neuroscience University of Padua Padua Italy
| | - Binukumar Bk
- CSIR-Institute of Genomics and Integrative Biology New Delhi India
| | - Manmohan Singh
- Department of Neurosurgery All India Institute of Medical Sciences (AIIMS) New Delhi India
| | - Achal K Srivastava
- Department of Neurology All India Institute of Medical Sciences (AIIMS) New Delhi India
| |
Collapse
|
25
|
Larsh T, Wu SW, Vadivelu S, Grant GA, O'Malley JA. Deep Brain Stimulation for Pediatric Dystonia. Semin Pediatr Neurol 2021; 38:100896. [PMID: 34183138 DOI: 10.1016/j.spen.2021.100896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/26/2022]
Abstract
Dystonia is one of the most common pediatric movement disorders and can have a profound impact on the lives of children and their caregivers. Response to pharmacologic treatment is often unsatisfactory. Deep brain stimulation (DBS) has emerged as a promising treatment option for children with medically refractory dystonia. In this review we highlight the relevant literature related to DBS for pediatric dystonia, with emphasis on the background, indications, prognostic factors, challenges, and future directions of pediatric DBS.
Collapse
Affiliation(s)
- Travis Larsh
- Center for Pediatric Neurology, Neurological Institute, Cleveland Clinic, Cleveland, OH
| | - Steve W Wu
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, Cincinnati, OH
| | - Sudhakar Vadivelu
- Division of Neurosurgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Gerald A Grant
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Stanford University School of Medicine, Palo Alto, CA
| | - Jennifer A O'Malley
- Department of Neurology, Division of Child Neurology, Stanford University School of Medicine, Palo Alto, CA.
| |
Collapse
|
26
|
Mulroy E, Vijiaratnam N, De Roquemaurel A, Bhatia KP, Zrinzo L, Foltynie T, Limousin P. A practical guide to troubleshooting pallidal deep brain stimulation issues in patients with dystonia. Parkinsonism Relat Disord 2021; 87:142-154. [PMID: 34074583 DOI: 10.1016/j.parkreldis.2021.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/18/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022]
Abstract
High frequency deep brain stimulation (DBS) of the internal portion of the globus pallidus has, in the last two decades, become a mainstream therapy for the management of medically-refractory dystonia syndromes. Such increasing uptake places an onus on movement disorder physicians to become familiar with this treatment modality, in particular optimal patient selection for the procedure and how to troubleshoot problems relating to sub-optimal efficacy and therapy-related side effects. Deep brain stimulation for dystonic conditions presents some unique challenges. For example, the frequent lack of immediate change in clinical status following stimulation alterations means that programming often relies on personal experience and local practice rather than real-time indicators of efficacy. Further, dystonia is a highly heterogeneous disorder, making the development of unifying guidelines and programming algorithms for DBS in this population difficult. Consequently, physicians may feel less confident in managing DBS for dystonia as compared to other indications e.g. Parkinson's disease. In this review, we integrate our years of personal experience of the programming of DBS systems for dystonia with a critical appraisal of the literature to produce a practical guide for troubleshooting common issues encountered in patients with dystonia treated with DBS, in the hope of improving the care for these patients.
Collapse
Affiliation(s)
- Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| | - Nirosen Vijiaratnam
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexis De Roquemaurel
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Thomas Foltynie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Patricia Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| |
Collapse
|
27
|
Abel M, Pfister R, Hussein I, Alsalloum F, Onyinzo C, Kappl S, Zech M, Demmel W, Staudt M, Kudernatsch M, Berweck S. Deep Brain Stimulation in KMT2B-Related Dystonia: Case Report and Review of the Literature With Special Emphasis on Dysarthria and Speech. Front Neurol 2021; 12:662910. [PMID: 34054706 PMCID: PMC8160374 DOI: 10.3389/fneur.2021.662910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/12/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: KMT2B-related dystonia is a progressive childhood-onset movement disorder, evolving from lower-limb focal dystonia into generalized dystonia. With increasing age, children frequently show prominent laryngeal or facial dystonia manifesting in dysarthria. Bilateral deep brain stimulation of the globus pallidus internus (GPi-DBS) is reported to be an efficient therapeutic option. Especially improvement of dystonia and regaining of independent mobility is commonly described, but detailed information about the impact of GPi-DBS on dysarthria and speech is scarce. Methods: We report the 16-months outcome after bilateral GPi-DBS in an 8-year-old child with KMT2B-related dystonia caused by a de-novo c.3043C>T (p.Arg1015*) non-sense variant with special emphasis on dysarthria and speech. We compare the outcome of our patient with 59 patients identified through a PubMed literature search. Results: A remarkable improvement of voice, articulation, respiration and prosodic characteristics was seen 16 months after GPi-DBS. The patients' speech intelligibility improved. His speech became much more comprehensible not only for his parents, but also for others. Furthermore, his vocabulary and the possibility to express his feelings and wants expanded considerably. Conclusion: A positive outcome of GPi-DBS on speech and dysarthria is rarely described in the literature. This might be due to disease progression, non-effectiveness of DBS or due to inadvertent spreading of the electrical current to the corticobulbar tract causing stimulation induced dysarthria. This highlights the importance of optimal lead placement, the possibility of horizontal steering of the electrical field by applying directional stimulation with segmented leads as well as the use of the lowest possible effective stimulation intensity.
Collapse
Affiliation(s)
- Maria Abel
- Department of Neurosurgery and Epilepsy Surgery, Spine- and Scoliosis Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Robert Pfister
- Department of Neurosurgery and Epilepsy Surgery, Spine- and Scoliosis Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Iman Hussein
- Departmemt of Pediatric Neurology, Neuro-Rehabilitation and Epileptology, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Fahd Alsalloum
- Departmemt of Pediatric Neurology, Neuro-Rehabilitation and Epileptology, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Christina Onyinzo
- Department of Neurosurgery and Epilepsy Surgery, Spine- and Scoliosis Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Simon Kappl
- Departmemt of Pediatric Neurology, Neuro-Rehabilitation and Epileptology, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Michael Zech
- Helmholtz Centre Munich, Institute of Neurogenomics, Neuherberg, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Walter Demmel
- Department of Neurosurgery and Epilepsy Surgery, Spine- and Scoliosis Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Martin Staudt
- Departmemt of Pediatric Neurology, Neuro-Rehabilitation and Epileptology, Schön Klinik Vogtareuth, Vogtareuth, Germany
| | - Manfred Kudernatsch
- Department of Neurosurgery and Epilepsy Surgery, Spine- and Scoliosis Surgery, Schön Klinik Vogtareuth, Vogtareuth, Germany.,Research Institute Rehabilitation, Transition, Palliation, Paracelsus Medical University, Salzburg, Austria
| | - Steffen Berweck
- Departmemt of Pediatric Neurology, Neuro-Rehabilitation and Epileptology, Schön Klinik Vogtareuth, Vogtareuth, Germany.,Dr. Von Hauner Children's Hospital, Ludwig-Maximilians- University Munich, Munich, Germany
| |
Collapse
|
28
|
Chen W, Fan H, Lu G. The Efficacy and Predictors of Using GPi-DBS to Treat Early-Onset Dystonia: An Individual Patient Analysis. Neural Plast 2021; 2021:9924639. [PMID: 34040641 PMCID: PMC8121596 DOI: 10.1155/2021/9924639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To compare the efficacy in patients with different genotypes, identify the potential predictive factors, and summarize the complications of globus pallidus deep brain stimulation (GPi-DBS) treating early-onset dystonia. METHODS Three electronic databases (PubMed, Embase, and Cochrane databases) were searched with no publication data restriction. The primary outcomes were the improvements in Burke-Fahn-Marsden Dystonia Rating Scale motor (BFMDRS-M) and disability (BFMDRS-D) score. Pearson's correlation coefficients and a metaregression analysis were used to identify the potential predictive factors. This article was registered in Prospero (CRD42020188527). RESULTS Fifty-four studies (231 patients) were included. Patients showed significant improvement rate in BFMDRS-M (60.6%, p < 0.001) and BFMDRS-D (57.5%, p < 0.001) scores after treatment with GPi-DBS. BFMDRS-M score improved greater in the DYT-1-positive (p = 0.001) and DYT-11-positive (p = 0.008) patients compared to DYT-6-positive patients. BFMDRS-D score improved greater in the DYT-11 (+) compared to DYT-6 (+) patients (p = 0.010). The relative change of BFMDRS-M (p = 0.002) and BFMDRS-D (p = 0.010) scores was negatively correlated with preoperative BFMDRS-M score. In the metaregression analysis, the best predictive model showed that preoperative BFMDRS-M, disease duration (p = 0.047), and the age at symptom onset (p = 0.027) were important. CONCLUSION Patients with early-onset dystonia have a significant effect after GPi-DBS treatment, and DYT-1 (+) and DYT-11 (+) patients are better candidates for GPi-DBS. Lower preoperative score, later age of onset, and an earlier age at surgery probably predict better clinical outcomes.
Collapse
Affiliation(s)
- Wenxiu Chen
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Houyou Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi, China
| | - Guohui Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
29
|
The importance of genetic testing for dystonia patients and translational research. J Neural Transm (Vienna) 2021; 128:473-481. [PMID: 33876307 PMCID: PMC8099821 DOI: 10.1007/s00702-021-02329-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/22/2021] [Indexed: 12/28/2022]
Abstract
Genetic testing through a variety of methods is a fundamental but underutilized approach for establishing the precise genetic diagnosis in patients with heritable forms of dystonia. Our knowledge of numerous dystonia-related genes, variants that they may contain, associated clinical presentations, and molecular disease mechanism may have significant translational potential for patients with genetically confirmed dystonia or their family members. Importantly, genetic testing permits the assembly of patient cohorts pertinent for dystonia-related research and developing therapeutics. Here we review the genetic testing approaches relevant to dystonia patients, and summarize and illustrate the multifold benefits of establishing an accurate molecular diagnosis for patients imminently or for translational research in the long run.
Collapse
|
30
|
Kilic-Berkmen G, Wright LJ, Perlmutter JS, Comella C, Hallett M, Teller J, Pirio Richardson S, Peterson DA, Cruchaga C, Lungu C, Jinnah HA. The Dystonia Coalition: A Multicenter Network for Clinical and Translational Studies. Front Neurol 2021; 12:660909. [PMID: 33897610 PMCID: PMC8060489 DOI: 10.3389/fneur.2021.660909] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
Dystonia is a movement disorder characterized by sustained or intermittent muscle contractions causing abnormal postures, repetitive movements, or both. Research in dystonia has been challenged by several factors. First, dystonia is uncommon. Dystonia is not a single disorder but a family of heterogenous disorders with varied clinical manifestations and different causes. The different subtypes may be seen by providers in different clinical specialties including neurology, ophthalmology, otolaryngology, and others. These issues have made it difficult for any single center to recruit large numbers of subjects with specific types of dystonia for research studies in a timely manner. The Dystonia Coalition is a consortium of investigators that was established to address these challenges. Since 2009, the Dystonia Coalition has encouraged collaboration by engaging 56 sites across North America, Europe, Asia, and Australia. Its emphasis on collaboration has facilitated establishment of international consensus for the definition and classification of all dystonias, diagnostic criteria for specific subtypes of dystonia, standardized evaluation strategies, development of clinimetrically sound measurement tools, and large multicenter studies that document the phenotypic heterogeneity and evolution of specific types of dystonia.
Collapse
Affiliation(s)
- Gamze Kilic-Berkmen
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Laura J. Wright
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Joel S. Perlmutter
- Department of Neurology, Radiology, Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, MO, United States
| | - Cynthia Comella
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, United States
| | - Jan Teller
- Dystonia Medical Research Foundation, Chicago, IL, United States
| | - Sarah Pirio Richardson
- Department of Neurology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - David A. Peterson
- Institute for Neural Computation, University of California, San Diego, La Jolla, CA, United States
| | - Carlos Cruchaga
- Department of Psychiatry, Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University School of Medicine, St. Louis, MO, United States
| | - Codrin Lungu
- Division of Clinical Research, National Institute of Neurological Disorders and Stroke (NINDS), National Institute of Health (NIH), Bethesda, MD, United States
| | - H. A. Jinnah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
31
|
Kim HJ, Jeon B. Arching deep brain stimulation in dystonia types. J Neural Transm (Vienna) 2021; 128:539-547. [PMID: 33740122 DOI: 10.1007/s00702-021-02304-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/11/2020] [Indexed: 12/29/2022]
Abstract
Although medical treatment including botulinum toxic injection is the first-line treatment for dystonia, response is insufficient in many patients. In these patients, deep brain stimulation (DBS) can provide significant clinical improvement. Mounting evidence indicates that DBS is an effective and safe treatment for dystonia, especially for idiopathic and inherited isolated generalized/segmental dystonia, including DYT-TOR1A. Other inherited dystonia and acquired dystonia also respond to DBS to varying degrees. For Meige syndrome (craniofacial dystonia), other focal dystonia, and some rare inherited dystonia, further evidences are still needed to evaluate the role of DBS. Because short disease duration at DBS surgery and absence of fixed musculoskeletal deformity are associated with better outcome, DBS should be considered as early as possible when indicated after careful evaluation including genetic work-up. This review will focus on the factors to be considered in DBS for patients with dystonia and the outcome of DBS in the different types of dystonia.
Collapse
Affiliation(s)
- Han-Joon Kim
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Beomseok Jeon
- Department of Neurology and Movement Disorder Center, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.
| |
Collapse
|
32
|
Ng AR, Jamora RDG, Rosales RL. X-linked dystonia Parkinsonism: crossing a new threshold. J Neural Transm (Vienna) 2021; 128:567-573. [PMID: 33721107 DOI: 10.1007/s00702-021-02324-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/28/2021] [Indexed: 12/22/2022]
Abstract
X-linked dystonia parkinsonism (XDP) is a neurodegenerative disorder that has received significant interest on several fronts. Although much still remains to be elucidated regarding the disease cause, a robust amount of data has been produced in recent years compared to when it was first described in 1976. The debilitating nature of the overlapping dystonia and parkinsonism that characterizes this disorder has fueled much of the interest in unraveling its cause, clinical presentation, symptom progression, treatment and impact on the afflicted patients as well as their caregivers. Having made several significant advances in genetic studies, neuropathology, neurophysiology and clinical characterization, we are entering a new threshold in the study of this disorder, hopefully bringing us closer to potential treatments and possible cures. This review will focus on new information gathered regarding the motor and non-motor features of XDP, deep brain stimulation (DBS) as a potential treatment for XDP and the utility of the recently validated XDP-Movement Disorder Society of the Philippines (MDSP)-rating scale.
Collapse
Affiliation(s)
- Arlene R Ng
- Movement Disorders Service and Section of Neurology, Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines. .,Institute for Neurosciences, St. Luke's Medical Center Global City, Rizal Drive cor. 32nd Ave, Bonifacio Global City, 1634, Taguig City, Philippines.
| | - Roland Dominic G Jamora
- Movement Disorders Service and Section of Neurology, Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines.,Department of Neurosciences, College of Medicine-Philippine General Hospital, University of the Philippines Manila, Manila, Philippines.,Institute for Neurosciences, St. Luke's Medical Center Global City, Rizal Drive cor. 32nd Ave, Bonifacio Global City, 1634, Taguig City, Philippines
| | - Raymond L Rosales
- Movement Disorders Service and Section of Neurology, Institute for Neurosciences, St. Luke's Medical Center, Quezon City, Philippines.,Department of Neurology and Psychiatry, University of Santo Tomas Hospital, Manila, Philippines.,Center for Neurodiagnostic and Therapeutic Services, Metropolitan Medical Center, Manila, Philippines
| |
Collapse
|
33
|
Tisch S, Kumar KR. Pallidal Deep Brain Stimulation for Monogenic Dystonia: The Effect of Gene on Outcome. Front Neurol 2021; 11:630391. [PMID: 33488508 PMCID: PMC7820073 DOI: 10.3389/fneur.2020.630391] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/09/2020] [Indexed: 11/13/2022] Open
Abstract
Globus pallidus internus deep brain stimulation (GPi DBS) is the most effective intervention for medically refractory segmental and generalized dystonia in both children and adults. Predictive factors for the degree of improvement after GPi DBS include shorter disease duration and dystonia subtype with idiopathic isolated dystonia usually responding better than acquired combined dystonias. Other factors contributing to variability in outcome may include body distribution, pattern of dystonia and DBS related factors such as lead placement and stimulation parameters. The responsiveness to DBS appears to vary between different monogenic forms of dystonia, with some improving more than others. The first observation in this regard was reports of superior DBS outcomes in DYT-TOR1A (DYT1) dystonia, although other studies have found no difference. Recently a subgroup with young onset DYT-TOR1A, more rapid progression and secondary worsening after effective GPi DBS, has been described. Myoclonus dystonia due to DYT-SCGE (DYT11) usually responds well to GPi DBS. Good outcomes following GPi DBS have also been documented in X-linked dystonia Parkinsonism (DYT3). In contrast, poorer, more variable DBS outcomes have been reported in DYT-THAP1 (DYT6) including a recent larger series. The outcome of GPi DBS in other monogenic isolated and combined dystonias including DYT-GNAL (DYT25), DYT-KMT2B (DYT28), DYT-ATP1A3 (DYT12), and DYT-ANO3 (DYT24) have been reported with varying results in smaller numbers of patients. In this article the available evidence for long term GPi DBS outcome between different genetic dystonias is reviewed to reappraise popular perceptions of expected outcomes and revisit whether genetic diagnosis may assist in predicting DBS outcome.
Collapse
Affiliation(s)
- Stephen Tisch
- Department of Neurology, St Vincent's Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Kishore Raj Kumar
- Molecular Medicine Laboratory and Neurology Department, Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney, Sydney, NSW, Australia
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| |
Collapse
|
34
|
Latorre A, Cocco A, Bhatia KP, Erro R, Antelmi E, Conte A, Rothwell JC, Rocchi L. Defective Somatosensory Inhibition and Plasticity Are Not Required to Develop Dystonia. Mov Disord 2020; 36:1015-1021. [PMID: 33332649 DOI: 10.1002/mds.28427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/21/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Dystonia may have different neuroanatomical substrates and pathophysiology. This is supported by studies on the motor system showing, for instance, that plasticity is abnormal in idiopathic dystonia, but not in dystonia secondary to basal ganglia lesions. OBJECTIVE The aim of this study was to test whether somatosensory inhibition and plasticity abnormalities reported in patients with idiopathic dystonia also occur in patients with dystonia caused by basal ganglia damage. METHODS Ten patients with acquired dystonia as a result of basal ganglia lesions and 12 healthy control subjects were recruited. They underwent electrophysiological testing at baseline and after a single 45-minute session of high-frequency repetitive somatosensory stimulation. Electrophysiological testing consisted of somatosensory temporal discrimination, somatosensory-evoked potentials (including measurement of early and late high-frequency oscillations and the spatial inhibition ratio of N20/25 and P14 components), the recovery cycle of paired-pulse somatosensory-evoked potentials, and primary motor cortex short-interval intracortical inhibition. RESULTS Unlike previous reports of patients with idiopathic dystonia, patients with acquired dystonia did not differ from healthy control subjects in any of the electrophysiological measures either before or after high-frequency repetitive somatosensory stimulation, except for short-interval intracortical inhibition, which was reduced at baseline in patients compared to control subjects. CONCLUSIONS The data show that reduced somatosensory inhibition and enhanced cortical plasticity are not required for the clinical expression of dystonia, and that the abnormalities reported in idiopathic dystonia are not necessarily linked to basal ganglia damage. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Anna Latorre
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Antoniangela Cocco
- Department of Neurology, IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Neuroscience, Catholic University, Milan, Italy
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Roberto Erro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, Italy
| | - Elena Antelmi
- Neurology Unit, Movement Disorders Division, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza, University of Rome, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
35
|
Cif L, Demailly D, Lin JP, Barwick KE, Sa M, Abela L, Malhotra S, Chong WK, Steel D, Sanchis-Juan A, Ngoh A, Trump N, Meyer E, Vasques X, Rankin J, Allain MW, Applegate CD, Attaripour Isfahani S, Baleine J, Balint B, Bassetti JA, Baple EL, Bhatia KP, Blanchet C, Burglen L, Cambonie G, Seng EC, Bastaraud SC, Cyprien F, Coubes C, d’Hardemare V, Deciphering Developmental Disorders Study, Doja A, Dorison N, Doummar D, Dy-Hollins ME, Farrelly E, Fitzpatrick DR, Fearon C, Fieg EL, Fogel BL, Forman EB, Fox RG, Genomics England Research Consortium, Gahl WA, Galosi S, Gonzalez V, Graves TD, Gregory A, Hallett M, Hasegawa H, Hayflick SJ, Hamosh A, Hully M, Jansen S, Jeong SY, Krier JB, Krystal S, Kumar KR, Laurencin C, Lee H, Lesca G, François LL, Lynch T, Mahant N, Martinez-Agosto JA, Milesi C, Mills KA, Mondain M, Morales-Briceno H, NIHR BioResource, Ostergaard JR, Pal S, Pallais JC, Pavillard F, Perrigault PF, Petersen AK, Polo G, Poulen G, Rinne T, Roujeau T, Rogers C, Roubertie A, Sahagian M, Schaefer E, Selim L, Selway R, Sharma N, Signer R, Soldatos AG, Stevenson DA, Stewart F, Tchan M, Undiagnosed Diseases Network, Verma IC, de Vries BBA, Wilson JL, Wong DA, Zaitoun R, Zhen D, et alCif L, Demailly D, Lin JP, Barwick KE, Sa M, Abela L, Malhotra S, Chong WK, Steel D, Sanchis-Juan A, Ngoh A, Trump N, Meyer E, Vasques X, Rankin J, Allain MW, Applegate CD, Attaripour Isfahani S, Baleine J, Balint B, Bassetti JA, Baple EL, Bhatia KP, Blanchet C, Burglen L, Cambonie G, Seng EC, Bastaraud SC, Cyprien F, Coubes C, d’Hardemare V, Deciphering Developmental Disorders Study, Doja A, Dorison N, Doummar D, Dy-Hollins ME, Farrelly E, Fitzpatrick DR, Fearon C, Fieg EL, Fogel BL, Forman EB, Fox RG, Genomics England Research Consortium, Gahl WA, Galosi S, Gonzalez V, Graves TD, Gregory A, Hallett M, Hasegawa H, Hayflick SJ, Hamosh A, Hully M, Jansen S, Jeong SY, Krier JB, Krystal S, Kumar KR, Laurencin C, Lee H, Lesca G, François LL, Lynch T, Mahant N, Martinez-Agosto JA, Milesi C, Mills KA, Mondain M, Morales-Briceno H, NIHR BioResource, Ostergaard JR, Pal S, Pallais JC, Pavillard F, Perrigault PF, Petersen AK, Polo G, Poulen G, Rinne T, Roujeau T, Rogers C, Roubertie A, Sahagian M, Schaefer E, Selim L, Selway R, Sharma N, Signer R, Soldatos AG, Stevenson DA, Stewart F, Tchan M, Undiagnosed Diseases Network, Verma IC, de Vries BBA, Wilson JL, Wong DA, Zaitoun R, Zhen D, Znaczko A, Dale RC, de Gusmão CM, Friedman J, Fung VSC, King MD, Mohammad SS, Rohena L, Waugh JL, Toro C, Raymond FL, Topf M, Coubes P, Gorman KM, Kurian MA. KMT2B-related disorders: expansion of the phenotypic spectrum and long-term efficacy of deep brain stimulation. Brain 2020; 143:3242-3261. [PMID: 33150406 PMCID: PMC7719027 DOI: 10.1093/brain/awaa304] [Show More Authors] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/28/2020] [Accepted: 07/13/2020] [Indexed: 12/31/2022] Open
Abstract
Heterozygous mutations in KMT2B are associated with an early-onset, progressive and often complex dystonia (DYT28). Key characteristics of typical disease include focal motor features at disease presentation, evolving through a caudocranial pattern into generalized dystonia, with prominent oromandibular, laryngeal and cervical involvement. Although KMT2B-related disease is emerging as one of the most common causes of early-onset genetic dystonia, much remains to be understood about the full spectrum of the disease. We describe a cohort of 53 patients with KMT2B mutations, with detailed delineation of their clinical phenotype and molecular genetic features. We report new disease presentations, including atypical patterns of dystonia evolution and a subgroup of patients with a non-dystonic neurodevelopmental phenotype. In addition to the previously reported systemic features, our study has identified co-morbidities, including the risk of status dystonicus, intrauterine growth retardation, and endocrinopathies. Analysis of this study cohort (n = 53) in tandem with published cases (n = 80) revealed that patients with chromosomal deletions and protein truncating variants had a significantly higher burden of systemic disease (with earlier onset of dystonia) than those with missense variants. Eighteen individuals had detailed longitudinal data available after insertion of deep brain stimulation for medically refractory dystonia. Median age at deep brain stimulation was 11.5 years (range: 4.5-37.0 years). Follow-up after deep brain stimulation ranged from 0.25 to 22 years. Significant improvement of motor function and disability (as assessed by the Burke Fahn Marsden's Dystonia Rating Scales, BFMDRS-M and BFMDRS-D) was evident at 6 months, 1 year and last follow-up (motor, P = 0.001, P = 0.004, and P = 0.012; disability, P = 0.009, P = 0.002 and P = 0.012). At 1 year post-deep brain stimulation, >50% of subjects showed BFMDRS-M and BFMDRS-D improvements of >30%. In the long-term deep brain stimulation cohort (deep brain stimulation inserted for >5 years, n = 8), improvement of >30% was maintained in 5/8 and 3/8 subjects for the BFMDRS-M and BFMDRS-D, respectively. The greatest BFMDRS-M improvements were observed for trunk (53.2%) and cervical (50.5%) dystonia, with less clinical impact on laryngeal dystonia. Improvements in gait dystonia decreased from 20.9% at 1 year to 16.2% at last assessment; no patient maintained a fully independent gait. Reduction of BFMDRS-D was maintained for swallowing (52.9%). Five patients developed mild parkinsonism following deep brain stimulation. KMT2B-related disease comprises an expanding continuum from infancy to adulthood, with early evidence of genotype-phenotype correlations. Except for laryngeal dysphonia, deep brain stimulation provides a significant improvement in quality of life and function with sustained clinical benefit depending on symptoms distribution.
Collapse
Affiliation(s)
- Laura Cif
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Diane Demailly
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Jean-Pierre Lin
- Complex Motor Disorder Service, Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Children’s Neuromodulation Group, Women and Children’s Health Institute, Faculty of life Sciences and Medicine (FOLSM), King’s Health Partners, London, UK
| | - Katy E Barwick
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Mario Sa
- Complex Motor Disorder Service, Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Lucia Abela
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sony Malhotra
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Wui K Chong
- Developmental Imaging and Biophysics, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Dora Steel
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Alba Sanchis-Juan
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Haematology, NHS Blood and Transplant Centre, University of Cambridge, Cambridge, UK
| | - Adeline Ngoh
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Natalie Trump
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Esther Meyer
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Julia Rankin
- Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Meredith W Allain
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Carolyn D Applegate
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sanaz Attaripour Isfahani
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Julien Baleine
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jennifer A Bassetti
- Division of Medical Genetics, Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA
| | - Emma L Baple
- Clinical Genetics, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
- Institute of Biomedical and Clinical Science RILD Wellcome Wolfson Centre, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Catherine Blanchet
- Département d’Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Lydie Burglen
- Département de génétique médicale, APHP Hôpital Armand Trousseau, Paris, France
| | - Gilles Cambonie
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Emilie Chan Seng
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | | | - Fabienne Cyprien
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Christine Coubes
- Département de Génétique médicale, Maladies rares et médecine personnalisée, CHU Montpellier, Montpellier, France
| | - Vincent d’Hardemare
- Unité Dyspa, Neurochirurgie Pédiatrique, Hôpital Fondation Rothschild, Paris, France
| | | | - Asif Doja
- Division of Neurology, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Nathalie Dorison
- Unité Dyspa, Neurochirurgie Pédiatrique, Hôpital Fondation Rothschild, Paris, France
| | - Diane Doummar
- Neuropédiatrie, Centre de référence neurogénétique mouvement anormaux de l’enfant, Hôpital Armand Trousseau, AP-HP, Sorbonne Université, France
| | - Marisela E Dy-Hollins
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ellyn Farrelly
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
- Department of Pediatrics, Lucile Packard Children’s Hospital at Stanford, CA, USA
| | - David R Fitzpatrick
- Human Genetics Unit, Medical and Developmental Genetics, University of Edinburgh Western General Hospital, Edinburgh, Scotland, UK
| | - Conor Fearon
- Department of Neurology, The Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland
| | - Elizabeth L Fieg
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brent L Fogel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Eva B Forman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Rachel G Fox
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | | | - William A Gahl
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Serena Galosi
- Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | - Victoria Gonzalez
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Tracey D Graves
- Department of Neurology, Hinchingbrooke Hospital, North West Anglia NHS Foundation Trust, Huntingdon, UK
| | - Allison Gregory
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Harutomo Hasegawa
- Complex Motor Disorder Service, Children's Neurosciences Department, Evelina London Children's Hospital, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Children’s Neuromodulation Group, Women and Children’s Health Institute, Faculty of life Sciences and Medicine (FOLSM), King’s Health Partners, London, UK
| | - Susan J Hayflick
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
- Department of Paediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Ada Hamosh
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marie Hully
- Département de Neurologie, APHP-Necker-Enfants Malades, Paris, France
| | - Sandra Jansen
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Suh Young Jeong
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Joel B Krier
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sidney Krystal
- Département de Neuroradiologie, Hôpital Fondation Rothschild, Paris
| | - Kishore R Kumar
- Translational Genomics Group, Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Department of Neurogenetics, Kolling Institute, University of Sydney and Royal North Shore Hospital, St Leonards, NSW, Australia
- Molecular Medicine Laboratory, Concord Hospital, Sydney, NSW, Australia
| | - Chloé Laurencin
- Département de Neurologie, Hôpital Neurologique Pierre Wertheimer, Lyon, France
| | - Hane Lee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Gaetan Lesca
- Département de Génétique, Hôpital Universitaire de Lyon, Lyon, France
| | | | - Timothy Lynch
- Department of Neurology, The Dublin Neurological Institute at the Mater Misericordiae University Hospital, Dublin, Ireland
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Neil Mahant
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
| | - Julian A Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Christophe Milesi
- Unité de Soins Intensifs et Réanimation Pédiatrique et Néonatale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Kelly A Mills
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michel Mondain
- Département d’Oto-Rhino-Laryngologie et Chirurgie Cervico-Faciale, Hôpital Universitaire de Montpellier, Montpellier, France
| | - Hugo Morales-Briceno
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - NIHR BioResource
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - John R Ostergaard
- Centre for Rare Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Swasti Pal
- Institute of Genetics and Genomics, Sir Ganga Ram Hospital, Rajender Nagar, New Delhi, India
| | - Juan C Pallais
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Frédérique Pavillard
- Département d’Anesthésie-Réanimation Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | - Pierre-Francois Perrigault
- Département d’Anesthésie-Réanimation Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, Montpellier, France
| | | | - Gustavo Polo
- Département de Neurochirurgie Fonctionnelle, Hôpital Neurologique et Neurochirurgical, Pierre Wertheimer, Lyon, France
| | - Gaetan Poulen
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Tuula Rinne
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Thomas Roujeau
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
| | - Caleb Rogers
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Agathe Roubertie
- Département de Neuropédiatrie, Hôpital Universitaire de Montpellier, Montpellier, France
- INSERM U1051, Institut des Neurosciences de Montpellier, Montpellier, France
| | - Michelle Sahagian
- Division of Neurology, Rady Children's Hospital San Diego, CA, USA
- Department of Neuroscience, University of California San Diego, CA, USA
| | - Elise Schaefer
- Medical Genetics, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Laila Selim
- Cairo University Children Hospital, Pediatric Neurology and Metabolic division, Cairo, Egypt
| | - Richard Selway
- Department of Neurosurgery, King's College Hospital, London, UK
| | - Nutan Sharma
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Rebecca Signer
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ariane G Soldatos
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - David A Stevenson
- Division of Medical Genetics, Department of Pediatrics, Stanford University, Palo Alto, CA, USA
| | - Fiona Stewart
- Department of Genetic Medicine, Belfast Health and Social Care Trust, Belfast, UK
| | - Michel Tchan
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Department of Genetics, Westmead Hospital, Westmead, NSW, Australia
| | - Undiagnosed Diseases Network
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ishwar C Verma
- Institute of Genetics and Genomics, Sir Ganga Ram Hospital, Rajender Nagar, New Delhi, India
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jenny L Wilson
- Division of Pediatric Neurology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, USA
| | - Derek A Wong
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Raghda Zaitoun
- Department of Paediatrics, Neurology Division, Ain Shams University Hospital, Cairo, Egypt
| | - Dolly Zhen
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - Anna Znaczko
- Department of Genetic Medicine, Belfast Health and Social Care Trust, Belfast, UK
| | - Russell C Dale
- Department of Paediatric Neurology, The Children's Hospital at Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Claudio M de Gusmão
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Department of Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Jennifer Friedman
- Division of Neurology, Rady Children's Hospital San Diego, CA, USA
- Department of Neuroscience, University of California San Diego, CA, USA
- Departments of Paediatrics, University of California, San Diego, CA, USA
- Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Victor S C Fung
- Movement Disorders Unit, Department of Neurology, Westmead Hospital, Westmead, NSW, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Mary D King
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
- UCD School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Shekeeb S Mohammad
- Department of Paediatric Neurology, The Children's Hospital at Westmead, NSW, Australia
- Faculty of Medicine and Health, Sydney Medical School, University of Sydney, Sydney NSW, Australia
| | - Luis Rohena
- Division of Medical Genetics, Department of Pediatrics, San Antonio Military Medical Center, San Antonio, TX, USA
- Department of Pediatrics, Long School of Medicine, UT Health, San Antonio, TX, USA
| | - Jeff L Waugh
- Division of Pediatric Neurology, Department of Pediatrics, University of Texas Southwestern, Dallas, TX, USA
| | - Camilo Toro
- Undiagnosed Diseases Program, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - F Lucy Raymond
- NIHR BioResource, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Maya Topf
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, University of London, London, UK
| | - Philippe Coubes
- Département de Neurochirurgie, Unité des Pathologies Cérébrales Résistantes, Unité de Recherche sur les Comportements et Mouvements Anormaux, Hôpital Gui de Chauliac, Centre Hospitalier Régional Montpellier, Montpellier, France
- Faculté de médecine, Université de Montpellier, France
| | - Kathleen M Gorman
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| | - Manju A Kurian
- Molecular Neurosciences, Developmental Neurosciences, UCL Great Ormond Street Institute of Child Health, London, UK
- Department of Neurology, Great Ormond Street Hospital, London, UK
| |
Collapse
|
36
|
Burns MR, Chiu SY, Patel B, Mitropanopoulos SG, Wong JK, Ramirez-Zamora A. Advances and Future Directions of Neuromodulation in Neurologic Disorders. Neurol Clin 2020; 39:71-85. [PMID: 33223090 DOI: 10.1016/j.ncl.2020.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
"Deep brain stimulation is a safe and effective therapy for the management of a variety of neurologic conditions with Food and Drug Administration or humanitarian exception approval for Parkinson disease, dystonia, tremor, and obsessive-compulsive disorder. Advances in neurophysiology, neuroimaging, and technology have driven increasing interest in the potential benefits of neurostimulation in other neuropsychiatric conditions including dementia, depression, pain, Tourette syndrome, and epilepsy, among others. New anatomic or combined targets are being investigated in these conditions to improve symptoms refractory to medications or standard stimulation."
Collapse
Affiliation(s)
- Matthew R Burns
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA
| | - Shannon Y Chiu
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA
| | - Bhavana Patel
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA
| | - Sotiris G Mitropanopoulos
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA
| | - Joshua K Wong
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA
| | - Adolfo Ramirez-Zamora
- The Fixel Institute for Neurological Diseases, Department of Neurology, The University of Florida, 3009 Williston Road, Gainesville, FL 32608, USA.
| |
Collapse
|
37
|
Bledsoe IO, Viser AC, San Luciano M. Treatment of Dystonia: Medications, Neurotoxins, Neuromodulation, and Rehabilitation. Neurotherapeutics 2020; 17:1622-1644. [PMID: 33095402 PMCID: PMC7851280 DOI: 10.1007/s13311-020-00944-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2020] [Indexed: 02/24/2023] Open
Abstract
Dystonia is a complex disorder with numerous presentations occurring in isolation or in combination with other neurologic symptoms. Its treatment has been significantly improved with the advent of botulinum toxin and deep brain stimulation in recent years, though additional investigation is needed to further refine these interventions. Medications are of critical importance in forms of dopa-responsive dystonia but can be beneficial in other forms of dystonia as well. Many different rehabilitative paradigms have been studied with variable benefit. There is growing interest in noninvasive stimulation as a potential treatment, but with limited long-term benefit shown to date, and additional research is needed. This article reviews existing evidence for treatments from each of these categories. To date, there are many examples of incomplete response to available treatments, and improved therapies are needed.
Collapse
Affiliation(s)
- Ian O. Bledsoe
- Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California, San Francisco, 1635 Divisadero St., Suite 520, San Francisco, CA 94115 USA
| | - Aaron C. Viser
- Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California, San Francisco, 1635 Divisadero St., Suite 520, San Francisco, CA 94115 USA
| | - Marta San Luciano
- Weill Institute for Neurosciences, Movement Disorder and Neuromodulation Center, University of California, San Francisco, 1635 Divisadero St., Suite 520, San Francisco, CA 94115 USA
| |
Collapse
|
38
|
Macerollo A, Sajin V, Bonello M, Barghava D, Alusi SH, Eldridge PR, Osman-Farah J. Deep brain stimulation in dystonia: State of art and future directions. J Neurosci Methods 2020; 340:108750. [DOI: 10.1016/j.jneumeth.2020.108750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 01/03/2023]
|
39
|
Hale AT, Monsour MA, Rolston JD, Naftel RP, Englot DJ. Deep brain stimulation in pediatric dystonia: a systematic review. Neurosurg Rev 2020; 43:873-880. [PMID: 30397842 PMCID: PMC6500764 DOI: 10.1007/s10143-018-1047-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 01/12/2023]
Abstract
While deep brain stimulation (DBS) treatment is relatively rare in children, it may have a role in dystonia to reduce motor symptoms and disability. Pediatric DBS studies are sparse and limited by small sample size, and thus, outcomes are poorly understood. Thus, we performed a systematic review of the literature including studies of DBS for pediatric (age < 21) dystonia. Patient demographics, disease causes and characteristics, motor scores, and disability scores were recorded at baseline and at last post-operative follow-up. We identified 19 studies reporting DBS outcomes in 76 children with dystonia. Age at surgery was 13.8 ± 3.9 (mean ± SD) years, and 58% of individuals were male. Post-operative follow-up duration was 2.8 ± 2.8 years. Sixty-eight percent of patients had primary dystonia (PD), of whom 56% had a pathological mutation in DYT1 (DYT1+). Across all patients, regardless of dystonia type, 43.8 ± 36% improvement was seen in Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS) motor (-M) scores after DBS, while 43.7 ± 31% improvement was observed in BFMDRS disability (-D) scores. Patients with PD were more likely to experience ≥ 50% improvement (56%) in BFMDRS-M scores compared to patients with secondary causes of dystonia (21%, p = 0.004). DYT1+ patients were more likely to achieve ≥ 50% improvement (65%) in BFMDRS-D than DTY1- individuals (29%, p = 0.02), although there was no difference in BFMDRS-M ≥ 50% improvement rates between DYT1+ (66%) or DYT1- (43%) children (p = 0.11). While DBS is less common in pediatric patients, individuals with severe dystonia may receive worthwhile benefit with neuromodulation treatment.
Collapse
Affiliation(s)
- Andrew T Hale
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA.
- Medical Scientist Training Program, Vanderbilt University School of Medicine, 2200 Pierce Ave. 610 Robinson Research Building, Nashville, TN, 37232, USA.
| | - Meredith A Monsour
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John D Rolston
- Department of Neurosurgery, University of Utah, Salt Lake City, UT, USA
| | - Robert P Naftel
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Pediatric Neurosurgery, Monroe Carell Jr. Children's Hospital of Vanderbilt University, Nashville, TN, USA
| | - Dario J Englot
- Department of Neurological Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Institute for Surgery and Engineering, Vanderbilt University Medical Center and Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
40
|
Besa Lehmann V, Rosenbaum M, Bulman DE, Read T, Verhagen Metman L. A Case Report of Myoclonus-Dystonia with Isolated Myoclonus Phenotype and Novel Mutation Successfully Treated with Deep Brain Stimulation. Neurol Ther 2020; 9:187-191. [PMID: 32274660 PMCID: PMC7229070 DOI: 10.1007/s40120-020-00186-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Myoclonus-dystonia is an inherited disorder characterized by a combination of myoclonic jerks and dystonia. Mutations in the epsilon-sarcoglycan gene (SGCE) represent the main known genetic cause. In the last few years, deep brain stimulation (DBS) has shown significant promise in treating these patients. There is only one report in the literature of a patient with positive SGCE mutation and isolated myoclonus phenotype who has been successfully treated with DBS. CASE PRESENTATION We present a case of a 16-year-old young man with a history of quick jerks since childhood. They progressed gradually over the years involving the entire body and interfering with most of his daily activities. He had no dystonia. Genetic testing identified a single base deletion in exon 3 of the SGCE gene, considered very likely pathogenic. After unsuccessfully trying several oral medications, he underwent DBS of the globus pallidus internus (GPi). His Unified Myoclonus Rating Scale score during rest and with action improved by 92.8% and 82.6%, respectively. DISCUSSION The striking effect of DBS on myoclonic jerks confirms the superior benefit of DBS over oral medications. Further study is needed to determine the role of mutation status in predicting DBS response, especially considering that myoclonus-dystonia is genetically heterogeneous. CONCLUSION Our case confirms the poor response to oral medications and supports the use of GPi DBS for patients with genetically confirmed myoclonus-dystonia and isolated-myoclonus phenotype. In addition, our case represents familial myoclonus-dystonia due to a novel SGCE mutation.
Collapse
Affiliation(s)
| | - Marc Rosenbaum
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Dennis E Bulman
- Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Tara Read
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Leo Verhagen Metman
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
41
|
Combined occurrence of deleterious TOR1A and ANO3 variants in isolated generalized dystonia. Parkinsonism Relat Disord 2020; 73:55-56. [DOI: 10.1016/j.parkreldis.2020.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 11/19/2022]
|
42
|
Artusi CA, Dwivedi A, Romagnolo A, Bortolani S, Marsili L, Imbalzano G, Sturchio A, Keeling EG, Zibetti M, Contarino MF, Fasano A, Tagliati M, Okun MS, Espay AJ, Lopiano L, Merola A. Differential response to pallidal deep brain stimulation among monogenic dystonias: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2020; 91:426-433. [PMID: 32079672 DOI: 10.1136/jnnp-2019-322169] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/19/2019] [Accepted: 01/27/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Genetic subtypes of dystonia may respond differentially to deep brain stimulation of the globus pallidus pars interna (GPi DBS). We sought to compare GPi DBS outcomes among the most common monogenic dystonias. METHODS This systematic review and meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses and Meta-analysis of Observational Studies in Epidemiology guidelines. We searched PubMed for studies on genetically confirmed monogenic dystonia treated with GPi DBS documenting pre-surgical and post-surgical assessments using the Burke-Fahn-Marsden Dystonia Rating Scale Motor Score (BFMMS) and Burke-Fahn-Marsden Disability Score (BFMDS). We performed (i) meta-analysis for each gene mutation; (ii) weighted ordinary linear regression analyses to compare BFMMS and BFMDS outcomes between DYT-TOR1A and other monogenic dystonias, adjusting for age and disease duration and (iii) weighted linear regression analysis to estimate the effect of age, sex and disease duration on GPi DBS outcomes. Results were summarised with mean change and 95% CI. RESULTS DYT-TOR1A (68%, 38.4 points; p<0.001), DYT-THAP1 (37% 14.5 points; p<0.001) and NBIA/DYT-PANK2 (27%, 21.4 points; p<0.001) improved in BFMMS; only DYT-TOR1A improved in BFMDS (69%, 9.7 points; p<0.001). Improvement in DYT-TOR1A was significantly greater than in DYT-THAP1 (BFMMS -31%), NBIA/DYT-PANK2 (BFMMS -35%; BFMDS -53%) and CHOR/DYT-ADCY5 (BFMMS -36%; BFMDS -42%). Worse motor outcomes were associated with longer dystonia duration and older age at dystonia onset in DYT-TOR1A, longer dystonia duration in DYT/PARK-TAF1 and younger age at dystonia onset in DYT-SGCE. CONCLUSIONS GPi DBS outcomes vary across monogenic dystonias. These data serve to inform patient selection and prognostic counselling.
Collapse
Affiliation(s)
- Carlo Alberto Artusi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Alok Dwivedi
- Texas Tech University Health Sciences Center El Paso, El Paso, Texas, USA
| | - Alberto Romagnolo
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Sara Bortolani
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Luca Marsili
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Gabriele Imbalzano
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Andrea Sturchio
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | | | - Maurizio Zibetti
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Maria Fiorella Contarino
- Department of Neurology, Haga Teaching Hospital, The Hague, The Netherlands.,Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic. Division of Neurology, Toronto Western Hospital, Toronto, Ontario, Canada.,Krembil Research Institute, Toronto, Ontario, Canada
| | - Michele Tagliati
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, California, USA
| | - M S Okun
- Department of Neurology, University of Florida, Gainesville, Florida, USA
| | - Alberto J Espay
- Department of Neurology, University of Cincinnati, Cincinnati, Ohio, USA
| | - Leonardo Lopiano
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Aristide Merola
- Department of Neurology, Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
43
|
Reich MM, Horn A, Lange F, Roothans J, Paschen S, Runge J, Wodarg F, Pozzi NG, Witt K, Nickl RC, Soussand L, Ewert S, Maltese V, Wittstock M, Schneider GH, Coenen V, Mahlknecht P, Poewe W, Eisner W, Helmers AK, Matthies C, Sturm V, Isaias IU, Krauss JK, Kühn AA, Deuschl G, Volkmann J. Probabilistic mapping of the antidystonic effect of pallidal neurostimulation: a multicentre imaging study. Brain 2020; 142:1386-1398. [PMID: 30851091 DOI: 10.1093/brain/awz046] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/12/2018] [Accepted: 01/08/2019] [Indexed: 11/13/2022] Open
Abstract
Deep brain stimulation of the internal globus pallidus is a highly effective and established therapy for primary generalized and cervical dystonia, but therapeutic success is compromised by a non-responder rate of up to 25%, even in carefully-selected groups. Variability in electrode placement and inappropriate stimulation settings may account for a large proportion of this outcome variability. Here, we present probabilistic mapping data on a large cohort of patients collected from several European centres to resolve the optimal stimulation volume within the pallidal region. A total of 105 dystonia patients with pallidal deep brain stimulation were enrolled and 87 datasets (43 with cervical dystonia and 44 with generalized dystonia) were included into the subsequent 'normative brain' analysis. The average improvement of dystonia motor score was 50.5 ± 30.9% in cervical and 58.2 ± 48.8% in generalized dystonia, while 19.5% of patients did not respond to treatment (<25% benefit). We defined probabilistic maps of anti-dystonic effects by aggregating individual electrode locations and volumes of tissue activated (VTA) in normative atlas space and ranking voxel-wise for outcome distribution. We found a significant relation between motor outcome and the stimulation volume, but not the electrode location per se. The highest probability of stimulation induced motor benefit was found in a small volume covering the ventroposterior globus pallidus internus and adjacent subpallidal white matter. We then used the aggregated VTA-based outcome maps to rate patient individual VTAs and trained a linear regression model to predict individual outcomes. The prediction model showed robustness between the predicted and observed clinical improvement, with an r2 of 0.294 (P < 0.0001). The predictions deviated on average by 16.9 ± 11.6 % from observed dystonia improvements. For example, if a patient improved by 65%, the model would predict an improvement between 49% and 81%. Results were validated in an independent cohort of 10 dystonia patients, where prediction and observed benefit had a correlation of r2 = 0.52 (P = 0.02) and a mean prediction error of 10.3% (±8.9). These results emphasize the potential of probabilistic outcome brain mapping in refining the optimal therapeutic volume for pallidal neurostimulation and advancing computer-assisted planning and programming of deep brain stimulation.
Collapse
Affiliation(s)
- Martin M Reich
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany.,Beth Israel Deaconess Medical Center, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Andreas Horn
- Charite-Universitätsmedizin Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Germany
| | - Florian Lange
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| | - Jonas Roothans
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| | | | | | - Fritz Wodarg
- University Kiel, Department of Radiology, Germany
| | - Nicolo G Pozzi
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| | - Karsten Witt
- University Kiel, Department of Neurology, Germany.,University Oldenburg, Department of Neurology, Germany
| | - Robert C Nickl
- Julius-Maximilians-University, Department of Neurosurgery, Germany
| | - Louis Soussand
- Beth Israel Deaconess Medical Center, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Siobhan Ewert
- Charite-Universitätsmedizin Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Germany
| | - Virgina Maltese
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| | | | - Gerd-Helge Schneider
- Charite-Universitätsmedizin Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Germany
| | - Volker Coenen
- Freiburg University Medical Center, Department of Stereotactic and Functional Neurosurgery, Germany
| | | | - Werner Poewe
- Department of Neurology, Innsbruck Medical University, Austria
| | - Wilhelm Eisner
- Department of Neurosurgery, Innsbruck Medical University, Austria
| | | | - Cordula Matthies
- Julius-Maximilians-University, Department of Neurosurgery, Germany
| | - Volker Sturm
- Julius-Maximilians-University, Department of Neurosurgery, Germany
| | - Ioannis U Isaias
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| | | | - Andrea A Kühn
- Charite-Universitätsmedizin Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Germany
| | | | - Jens Volkmann
- Julius-Maximilians-University Würzburg, Department of Neurology, Germany
| |
Collapse
|
44
|
Abstract
The dystonias are a large and heterogenous group of disorders characterized by excessive muscle contractions leading to abnormal postures and/or repetitive movements. Their clinical manifestations vary widely, and there are many potential causes. Despite the heterogeneity, helpful treatments are available for the vast majority of patients. Symptom-based therapies include oral medications, botulinum toxins, and surgical interventions. For some subtypes of dystonia, specific mechanism-based treatments are available. Advances in understanding the biological basis for many types of dystonia have led to numerous recent clinical trials, so additional treatments are likely to become available in the very near future.
Collapse
|
45
|
Zittel S, Hidding U, Trumpfheller M, Baltzer VL, Gulberti A, Schaper M, Biermann M, Buhmann C, Engel AK, Gerloff C, Westphal M, Stadler J, Köppen JA, Pötter-Nerger M, Moll CKE, Hamel W. Pallidal lead placement in dystonia: leads of non-responders are contained within an anatomical range defined by responders. J Neurol 2020; 267:1663-1671. [PMID: 32067124 PMCID: PMC7293687 DOI: 10.1007/s00415-020-09753-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 01/10/2023]
Abstract
Background Deep brain stimulation (DBS) within the pallidum represents an effective and well-established treatment for isolated dystonia. However, clinical outcome after surgery may be variable with limited response in 10–25% of patients. The effect of lead location on clinical improvement is still under debate. Objective To identify stimulated brain regions associated with the most beneficial clinical outcome in dystonia patients. Methods 18 patients with cervical and generalized dystonia with chronic DBS of the internal pallidum were investigated. Patients were grouped according to their clinical improvement into responders, intermediate responders and non-responders. Magnetic resonance and computed tomography images were co-registered, and the volume of tissue activated (VTA) with respect to the pallidum of individual patients was analysed. Results VTAs in responders (n = 11), intermediate responders (n = 3) and non-responders (n = 4) intersected with the posterior internal (GPi) and external (GPe) pallidum and the subpallidal area. VTA heat maps showed an almost complete overlap of VTAs of responders, intermediate and non-responders. VTA coverage of the GPi was not higher in responders. In contrast, VTAs of intermediate and non-responders covered the GPi to a significantly larger extent in the left hemisphere (p < 0.01). Conclusions DBS of ventral parts of the posterior GPi, GPe and the adjacent subpallidal area containing pallidothalamic output projections resulted in favourable clinical effects. Of note, non-responders were also stimulated within the same area. This suggests that factors other than mere lead location (e.g., clinical phenotype, genetic background) have determined clinical outcome in the present cohort. Electronic supplementary material The online version of this article (10.1007/s00415-020-09753-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Simone Zittel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Ute Hidding
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | - Alessandro Gulberti
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Schaper
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maxine Biermann
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Buhmann
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Manfred Westphal
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Johannes A Köppen
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Monika Pötter-Nerger
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian K E Moll
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Wolfgang Hamel
- Department of Neurosurgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
46
|
Abstract
The clinical use of deep brain stimulation (DBS) is among the most important advances in the clinical neurosciences in the past two decades. As a surgical tool, DBS can directly measure pathological brain activity and can deliver adjustable stimulation for therapeutic effect in neurological and psychiatric disorders correlated with dysfunctional circuitry. The development of DBS has opened new opportunities to access and interrogate malfunctioning brain circuits and to test the therapeutic potential of regulating the output of these circuits in a broad range of disorders. Despite the success and rapid adoption of DBS, crucial questions remain, including which brain areas should be targeted and in which patients. This Review considers how DBS has facilitated advances in our understanding of how circuit malfunction can lead to brain disorders and outlines the key unmet challenges and future directions in the DBS field. Determining the next steps in DBS science will help to define the future role of this technology in the development of novel therapeutics for the most challenging disorders affecting the human brain.
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW This article provides a summary of the state of the art in the diagnosis, classification, etiologies, and treatment of dystonia. RECENT FINDINGS Although many different clinical manifestations of dystonia have been recognized for decades, it is only in the past 5 years that a broadly accepted approach has emerged for classifying them into specific subgroups. The new classification system aids clinical recognition and diagnosis by focusing on key clinical features that help distinguish the many subtypes. In the past few years, major advances have been made in the discovery of new genes as well as advances in our understanding of the biological processes involved. These advances have led to major changes in strategies for diagnosis of the inherited dystonias. An emerging trend is to move away from heavy reliance on the phenotype to target diagnostic testing toward a broader approach that involves large gene panels or whole exome sequencing. SUMMARY The dystonias are a large family of phenotypically and etiologically diverse disorders. The diagnosis of these disorders depends on clinical recognition of characteristic clinical features. Symptomatic treatments are useful for all forms of dystonia and include oral medications, botulinum toxins, and surgical procedures. Determination of etiology is becoming increasingly important because the number of disorders is growing and more specific and sometimes disease-modifying therapies now exist.
Collapse
|
48
|
Danielsson A, Carecchio M, Cif L, Koy A, Lin JP, Solders G, Romito L, Lohmann K, Garavaglia B, Reale C, Zorzi G, Nardocci N, Coubes P, Gonzalez V, Roubertie A, Collod-Beroud G, Lind G, Tedroff K. Pallidal Deep Brain Stimulation in DYT6 Dystonia: Clinical Outcome and Predictive Factors for Motor Improvement. J Clin Med 2019; 8:jcm8122163. [PMID: 31817799 PMCID: PMC6947218 DOI: 10.3390/jcm8122163] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Pallidal deep brain stimulation is an established treatment in dystonia. Available data on the effect in DYT-THAP1 dystonia (also known as DYT6 dystonia) are scarce and long-term follow-up studies are lacking. In this retrospective, multicenter follow-up case series of medical records of such patients, the clinical outcome of pallidal deep brain stimulation in DYT-THAP1 dystonia, was evaluated. The Burke Fahn Marsden Dystonia Rating Scale served as an outcome measure. Nine females and 5 males were enrolled, with a median follow-up of 4 years and 10 months after implant. All benefited from surgery: dystonia severity was reduced by a median of 58% (IQR 31-62, p = 0.001) at last follow-up, as assessed by the Burke Fahn Marsden movement subscale. In the majority of individuals, there was no improvement of speech or swallowing, and overall, the effect was greater in the trunk and limbs as compared to the cranio-cervical and orolaryngeal regions. No correlation was found between disease duration before surgery, age at surgery, or preoperative disease burden and the outcome of deep brain stimulation. Device- and therapy-related side-effects were few. Accordingly, pallidal deep brain stimulation should be considered in clinically impairing and pharmaco-resistant DYT-THAP1 dystonia. The method is safe and effective, both short- and long-term.
Collapse
Affiliation(s)
- Annika Danielsson
- Department of Women’s and Children’s Health, Karolinska Institutet, 17176 Stockholm, Sweden;
- Sachs’ Children and Youth Hospital, Stockholm South General Hospital, 11883 Stockholm, Sweden
- Correspondence: ; Tel.: +46-708-182785
| | - Miryam Carecchio
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20131 Milan, Italy; (M.C.); (G.Z.); (N.N.)
- Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
- Department of Neuroscience, University of Padua, 35128 Padua, Italy
| | - Laura Cif
- Département de Neurochirurgie, Unité de Recherche sur les Comportements et Mouvements Anormaux, (URCMA), Centre hospitalier universitaire de Montpellier, 34090 Montpellier, France; (L.C.); (P.C.); (V.G.)
| | - Anne Koy
- Faculty of Medicine, University of Cologne and Deparment of Pediatrics, University Hospital Cologne, 50924 Cologne, Germany;
| | - Jean-Pierre Lin
- Complex Motor Disorders Services, Evelina London Children’s Hospital, Children’s Neuromodulation, Children and Women’s Health Institute, King’s Health Partners, London SE1 7EH, UK;
| | - Göran Solders
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; (G.S.); (G.L.)
- Department of Neurology, Karolinska University Hospital, 14186 Stockholm, Sweden
| | - Luigi Romito
- Department of Movement Disorders, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy;
| | - Katja Lohmann
- Institute of Neurogenetics, University of Luebeck, 23562 Luebeck, Germany;
| | - Barbara Garavaglia
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (B.G.); (C.R.)
| | - Chiara Reale
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy; (B.G.); (C.R.)
| | - Giovanna Zorzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20131 Milan, Italy; (M.C.); (G.Z.); (N.N.)
| | - Nardo Nardocci
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20131 Milan, Italy; (M.C.); (G.Z.); (N.N.)
| | - Philippe Coubes
- Département de Neurochirurgie, Unité de Recherche sur les Comportements et Mouvements Anormaux, (URCMA), Centre hospitalier universitaire de Montpellier, 34090 Montpellier, France; (L.C.); (P.C.); (V.G.)
| | - Victoria Gonzalez
- Département de Neurochirurgie, Unité de Recherche sur les Comportements et Mouvements Anormaux, (URCMA), Centre hospitalier universitaire de Montpellier, 34090 Montpellier, France; (L.C.); (P.C.); (V.G.)
| | - Agathe Roubertie
- Département de Neuropédiatrie, Centre hospitalier universitaire de Montpellier, 34295 Montpellier, France;
- INSERM U 1051, Institut des Neuroscience de Montpellier, 34091 Montpellier, France
| | | | - Göran Lind
- Department of Clinical Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden; (G.S.); (G.L.)
| | - Kristina Tedroff
- Department of Women’s and Children’s Health, Karolinska Institutet, 17176 Stockholm, Sweden;
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
49
|
Jinnah H, Sun YV. Dystonia genes and their biological pathways. Neurobiol Dis 2019; 129:159-168. [DOI: 10.1016/j.nbd.2019.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/05/2019] [Accepted: 05/17/2019] [Indexed: 12/27/2022] Open
|
50
|
Yoo D, Kim HJ, Chae JH, Paek SH, Jeon B. Successful Pallidal Deep Brain Stimulation in a Patient with Childhood-Onset Generalized Dystonia with ANO3 Mutation. J Mov Disord 2019; 12:190-191. [PMID: 31309772 PMCID: PMC6763713 DOI: 10.14802/jmd.19016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/26/2019] [Indexed: 11/24/2022] Open
Affiliation(s)
- Dallah Yoo
- Department of Neurology, Movement Disorder Center, Parkinson Study Group, Neuroscience Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Han-Joon Kim
- Department of Neurology, Movement Disorder Center, Parkinson Study Group, Neuroscience Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jong-Hee Chae
- Department of Pediatrics, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Movement Disorder Center, Neuroscience Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, Movement Disorder Center, Parkinson Study Group, Neuroscience Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|