1
|
Kim J, Lal A, Kil EJ, Kwak HR, Yoon HS, Choi HS, Kim M, Ali M, Lee S. Adaptation and Codon-Usage Preference of Apple and Pear-Infecting Apple Stem Grooving Viruses. Microorganisms 2021; 9:microorganisms9061111. [PMID: 34063757 PMCID: PMC8223792 DOI: 10.3390/microorganisms9061111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 11/17/2022] Open
Abstract
Apple stem grooving virus (ASGV; genus Capillovirus) is an economically important virus. It has an approx. 6.5 kb, monopartite, linear, positive-sense, single-stranded RNA genome. The present study includes identification of 24 isolates—13 isolates from apple (Pyrus malus L.) and 11 isolates from pear (Pyrus communis L.)—from different agricultural fields in South Korea. The coat protein (CP) gene of the corresponding 23 isolates were amplified, sequenced, and analyzed. The CP sequences showed phylogenetic separation based on their host species, and not on the geography, indicating host adaptation. Further analysis showed that the ASGV isolated in this study followed host adaptation influenced and preferred by the host codon-usage.
Collapse
Affiliation(s)
- Jaedeok Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (J.K.); (A.L.); (E.-J.K.)
- Incheon International Airport Regional Office, Animal and Plant Quarantine Agency, Seoul 22382, Korea
| | - Aamir Lal
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (J.K.); (A.L.); (E.-J.K.)
| | - Eui-Joon Kil
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (J.K.); (A.L.); (E.-J.K.)
- Department of Plant Medicals, Andong National University, Andong 36729, Korea
| | - Hae-Ryun Kwak
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.-R.K.); (H.-S.C.)
| | - Hwan-Su Yoon
- Department of Biological Science, Sungkyunkwan University, Suwon 16419, Korea;
| | - Hong-Soo Choi
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.-R.K.); (H.-S.C.)
| | - Mikyeong Kim
- Crop Protection Division, National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (H.-R.K.); (H.-S.C.)
- College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 28644, Korea
- Correspondence: (M.K.); (M.A.); (S.L.); Tel.: +82-43-261-2509 (M.K.); +92-312-9959558 (M.A.); +82-31-290-7866 (S.L.); Fax: +82-43-271-4414 (M.K.); +82-31-290-7892 (S.L.)
| | - Muhammad Ali
- Department of Life Sciences, School of Science, University of Management and Technology (UMT), Johar Town, Lahore 54770, Pakistan
- Correspondence: (M.K.); (M.A.); (S.L.); Tel.: +82-43-261-2509 (M.K.); +92-312-9959558 (M.A.); +82-31-290-7866 (S.L.); Fax: +82-43-271-4414 (M.K.); +82-31-290-7892 (S.L.)
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Korea; (J.K.); (A.L.); (E.-J.K.)
- Correspondence: (M.K.); (M.A.); (S.L.); Tel.: +82-43-261-2509 (M.K.); +92-312-9959558 (M.A.); +82-31-290-7866 (S.L.); Fax: +82-43-271-4414 (M.K.); +82-31-290-7892 (S.L.)
| |
Collapse
|
2
|
Erkiş-Güngör G, Çevik B. Genetic Diversity and Phylogenetic Analysis of Citrus tristeza virus Isolates from Turkey. Adv Virol 2019; 2019:7163747. [PMID: 30906322 PMCID: PMC6393893 DOI: 10.1155/2019/7163747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/26/2018] [Indexed: 11/17/2022] Open
Abstract
The presence of Citrus tristeza virus (CTV) in Turkey has been known since the 1960s and the virus was detected in all citrus growing regions of the country. Even though serological and biological characteristics of CTV have been studied since the 1980s, molecular characteristics of CTV isolates have not been studied to date in Turkey. In this study, molecular characteristics of 15 CTV isolates collected from different citrus growing regions of Turkey were determined by amplification, cloning, and sequencing of their major coat protein (CP) genes. The sequence analysis showed that the CP genes were highly conserved among Turkish isolates. However, isolates from different regions showed more genetic variation than isolates from the same region. Turkish isolates were clustered into three phylogenetic groups showing no association with geographical origins, host, or symptoms induced in indicator plants. Phylogenetic analysis of Turkish isolates with isolates from different citrus growing regions of the world including well-characterized type isolates of previously established strain specific groups revealed that some Turkish isolates were closely related to severe quick decline or stem pitting isolates. The results demonstrated that although CTV isolates from Turkey are considered biologically mild, majority of them contain severe components potentially causing quick decline or stem pitting.
Collapse
Affiliation(s)
- Gözde Erkiş-Güngör
- Applied Sciences University of Isparta, Faculty of Agricultural Sciences and Technologies, Department of Plant Protection, 32260 Isparta, Turkey
- Ministry of Food, Agriculture and Livestock, Antalya Agricultural Quarantine Office, Virology Laboratory, 07260 Antalya, Turkey
| | - Bayram Çevik
- Applied Sciences University of Isparta, Faculty of Agricultural Sciences and Technologies, Department of Plant Protection, 32260 Isparta, Turkey
| |
Collapse
|
3
|
Jan P, Gracianne C, Fournet S, Olivier E, Arnaud J, Porte C, Bardou‐Valette S, Denis M, Petit EJ. Temporal sampling helps unravel the genetic structure of naturally occurring populations of a phytoparasitic nematode. 1. Insights from the estimation of effective population sizes. Evol Appl 2016; 9:489-501. [PMID: 26989440 PMCID: PMC4778111 DOI: 10.1111/eva.12352] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 12/14/2015] [Indexed: 12/05/2022] Open
Abstract
The sustainability of modern agriculture relies on strategies that can control the ability of pathogens to overcome chemicals or genetic resistances through natural selection. This evolutionary potential, which depends partly on effective population size (N e ), is greatly influenced by human activities. In this context, wild pathogen populations can provide valuable information for assessing the long-term risk associated with crop pests. In this study, we estimated the effective population size of the beet cyst nematode, Heterodera schachtii, by sampling 34 populations infecting the sea beet Beta vulgaris spp. maritima twice within a one-year period. Only 20 populations produced enough generations to analyze the variation in allele frequencies, with the remaining populations showing a high mortality rate of the host plant after only 1 year. The 20 analyzed populations showed surprisingly low effective population sizes, with most having N e close to 85 individuals. We attribute these low values to the variation in population size through time, systematic inbreeding, and unbalanced sex-ratios. Our results suggest that H. schachtii has low evolutionary potential in natural environments. Pest control strategies in which populations on crops mimic wild populations may help prevent parasite adaptation to host resistance.
Collapse
Affiliation(s)
- Pierre‐Loup Jan
- INRAUMR1349 IGEPPF‐35653Le Rheu CedexFrance
- INRAUMR985 ESEF‐35042Rennes CedexFrance
| | | | | | | | - Jean‐François Arnaud
- UMR CNRS 8198 Évolution, Écologie et PaléontologieUniversité Lille 1 – Sciences et Technologies59655Villeneuve d'Ascq CedexFrance
| | | | | | | | | |
Collapse
|
4
|
Finding balance: Virus populations reach equilibrium during the infection process. Virology 2015; 485:205-12. [PMID: 26291064 DOI: 10.1016/j.virol.2015.07.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/15/2015] [Accepted: 07/21/2015] [Indexed: 12/18/2022]
Abstract
Virus populations, mixtures of viral strains or species, are a common feature of viral infection, and influence many viral processes including infection, transmission, and the induction of disease. Yet, little is known of the rules that define the composition and structure of these populations. In this study, we used three distinct strains of Citrus tristeza virus (CTV) to examine the effect of inoculum composition, titer, and order, on the virus population. We found that CTV populations stabilized at the same equilibrium irrespective of how that population was introduced into a host. In addition, both field and experimental observations showed that these equilibria were relatively uniform between individual hosts of the same species and under the same conditions. We observed that the structure of the equilibria reached is determined primarily by the host, with the same inoculum reaching different equilibria in different species, and by the fitness of individual virus variants.
Collapse
|
5
|
Rubio L, Guerri J, Moreno P. Genetic variability and evolutionary dynamics of viruses of the family Closteroviridae. Front Microbiol 2013; 4:151. [PMID: 23805130 PMCID: PMC3693128 DOI: 10.3389/fmicb.2013.00151] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 05/29/2013] [Indexed: 11/15/2022] Open
Abstract
RNA viruses have a great potential for genetic variation, rapid evolution and adaptation. Characterization of the genetic variation of viral populations provides relevant information on the processes involved in virus evolution and epidemiology and it is crucial for designing reliable diagnostic tools and developing efficient and durable disease control strategies. Here we performed an updated analysis of sequences available in Genbank and reviewed present knowledge on the genetic variability and evolutionary processes of viruses of the family Closteroviridae. Several factors have shaped the genetic structure and diversity of closteroviruses. (I) A strong negative selection seems to be responsible for the high genetic stability in space and time for some viruses. (2) Long distance migration, probably by human transport of infected propagative plant material, have caused that genetically similar virus isolates are found in distant geographical regions. (3) Recombination between divergent sequence variants have generated new genotypes and plays an important role for the evolution of some viruses of the family Closteroviridae. (4) Interaction between virus strains or between different viruses in mixed infections may alter accumulation of certain strains. (5) Host change or virus transmission by insect vectors induced changes in the viral population structure due to positive selection of sequence variants with higher fitness for host-virus or vector-virus interaction (adaptation) or by genetic drift due to random selection of sequence variants during the population bottleneck associated to the transmission process.
Collapse
Affiliation(s)
- Luis Rubio
- Instituto Valenciano de Investigaciones AgrariasMoncada, Valencia, Spain
| | | | | |
Collapse
|
6
|
Davino S, Willemsen A, Panno S, Davino M, Catara A, Elena SF, Rubio L. Emergence and phylodynamics of Citrus tristeza virus in Sicily, Italy. PLoS One 2013; 8:e66700. [PMID: 23818960 PMCID: PMC3688570 DOI: 10.1371/journal.pone.0066700] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/09/2013] [Indexed: 11/19/2022] Open
Abstract
Citrus tristeza virus (CTV) outbreaks were detected in Sicily island, Italy for the first time in 2002. To gain insight into the evolutionary forces driving the emergence and phylogeography of these CTV populations, we determined and analyzed the nucleotide sequences of the p20 gene from 108 CTV isolates collected from 2002 to 2009. Bayesian phylogenetic analysis revealed that mild and severe CTV isolates belonging to five different clades (lineages) were introduced in Sicily in 2002. Phylogeographic analysis showed that four lineages co-circulated in the main citrus growing area located in Eastern Sicily. However, only one lineage (composed of mild isolates) spread to distant areas of Sicily and was detected after 2007. No correlation was found between genetic variation and citrus host, indicating that citrus cultivars did not exert differential selective pressures on the virus. The genetic variation of CTV was not structured according to geographical location or sampling time, likely due to the multiple introduction events and a complex migration pattern with intense co- and re-circulation of different lineages in the same area. The phylogenetic structure, statistical tests of neutrality and comparison of synonymous and nonsynonymous substitution rates suggest that weak negative selection and genetic drift following a rapid expansion may be the main causes of the CTV variability observed today in Sicily. Nonetheless, three adjacent amino acids at the p20 N-terminal region were found to be under positive selection, likely resulting from adaptation events.
Collapse
Affiliation(s)
| | | | | | | | - Antonino Catara
- Parco Scientifico e Tecnologico della Sicilia, Cataia, Italy
| | - Santiago F. Elena
- IBMCP, CSIC-UPV, Valencia, Spain
- The Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | | |
Collapse
|
7
|
Quito-Avila DF, Martin RR. Real-time RT-PCR for detection of Raspberry bushy dwarf virus, Raspberry leaf mottle virus and characterizing synergistic interactions in mixed infections. J Virol Methods 2011; 179:38-44. [PMID: 21968094 DOI: 10.1016/j.jviromet.2011.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 09/14/2011] [Accepted: 09/19/2011] [Indexed: 10/17/2022]
Abstract
Two TaqMan-based real-time One-Step RT-PCR assays were developed for the rapid and efficient detection of Raspberry bushy dwarf virus (RBDV) and Raspberry leaf mottle virus (RLMV), two of the most common raspberry viruses in North America and Europe. The primers and probes were designed from conserved fragments of the polymerase region of each virus and were effective for the detection of different isolates tested in this study. The RBDV assay amplified a 94bp amplicon and was able to detect as few as 30 viral copies. Whereas the RLMV assay amplified a 180bp amplicon and detected as few as 300 viral copies from plant and aphid RNA extracts. Both assays were significantly more sensitive than their corresponding conventional RT-PCR methods. The sensitivity of the RLMV assay was also tested on single aphids after a fixed acquisition access period (AAP). In addition, the assays revealed a novel synergistic interaction between the two viruses, where the concentration of RBDV was enhanced ∼400-fold when it occurred in combination with RLMV compared to its concentration in single infections. The significance of this finding and the importance of the development of real-time RT-PCR assays for the detection of RBDV and RLMV are discussed.
Collapse
Affiliation(s)
- Diego F Quito-Avila
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA.
| | | |
Collapse
|
8
|
Roy A, Brlansky RH. Population dynamics of a Florida Citrus tristeza virus isolate and aphid-transmitted subisolates: identification of three genotypic groups and recombinants after aphid transmission. PHYTOPATHOLOGY 2009; 99:1297-1306. [PMID: 19821734 DOI: 10.1094/phyto-99-11-1297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Tristeza is an important citrus disease affecting the viability and productivity of citrus worldwide. The causal agent, Citrus tristeza virus (CTV), usually occurs as a mixture of genotypes in nature, with one of the genotypes often dominating the population. CTV has a monopartite, positive-sense RNA genome of approximately 19.3 kb and exhibits over 30% diversity in the 5' half and less than 10% in the 3' half among different genotypes. A Florida CTV isolate, FS627, was selected for this study. Isolate FS627 was analyzed by reverse-transcription polymerase chain reaction (RT-PCR) using primers to three regions: 788-bp region in the 5' (697 to 1,484 nucleotides), open reading frame (ORF)1a, 696 or 718 bp from the overlapping region of the RdRp (ORF1b) and p33 (ORF2) gene, and a 672-bp major coat protein gene (ORF7) in the 3' end of the CTV genome. The presence of T36, T30, and VT genotypes in isolate FS627 was confirmed utilizing the genotype specific overlapping region of RdRp primer pairs for RT-PCR amplification followed by cloning and sequence analysis. Analysis of single-strand conformational polymorphisms and sequences of RT-PCR-amplified products of the above regions were used to determine the presence of genotypes in both the parent and aphid-transmitted (AT) subisolates. Although the parent isolate had T36 as the major genotype, T30 was the major genotype in most of the AT subisolates. Some intermediate genotypes were detected that differed from the parental or AT subisolates. These intermediate genotypes were considered to be recombinants of the T30 and T36 genotypes and also were observed in the second level of AT subisolates generated from the of first-level AT subisolates of CTV-FS627. This work provides advance information on the population dynamics in CTV mixtures and the generation of virus recombinants after aphid transmission.
Collapse
Affiliation(s)
- Avijit Roy
- Plant Pathology Department, University of Florida, Lake Alfred 33850, USA
| | | |
Collapse
|
9
|
Jiang B, Hong N, Wang GP, Hu J, Zhang JK, Wang CX, Liu Y, Fan XD. Characterization of Citrus tristeza virus strains from southern China based on analysis of restriction patterns and sequences of their coat protein genes. Virus Genes 2008; 37:185-92. [DOI: 10.1007/s11262-008-0254-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
|
10
|
Moreno P, Ambrós S, Albiach-Martí MR, Guerri J, Peña L. Citrus tristeza virus: a pathogen that changed the course of the citrus industry. MOLECULAR PLANT PATHOLOGY 2008; 9:251-68. [PMID: 18705856 PMCID: PMC6640355 DOI: 10.1111/j.1364-3703.2007.00455.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Citrus tristeza virus (CTV) (genus Closterovirus, family Closteroviridae) is the causal agent of devastating epidemics that changed the course of the citrus industry. Adapted to replicate in phloem cells of a few species within the family Rutaceae and to transmission by a few aphid species, CTV and citrus probably coevolved for centuries at the site of origin of citrus plants. CTV dispersal to other regions and its interaction with new scion varieties and rootstock combinations resulted in three distinct syndromes named tristeza, stem pitting and seedling yellows. The first, inciting decline of varieties propagated on sour orange, has forced the rebuilding of many citrus industries using tristeza-tolerant rootstocks. The second, inducing stunting, stem pitting and low bearing of some varieties, causes economic losses in an increasing number of countries. The third is usually observed by biological indexing, but rarely in the field. CTV polar virions are composed of two capsid proteins and a single-stranded, positive-sense genomic RNA (gRNA) of approximately 20 kb, containing 12 open reading frames (ORFs) and two untranslated regions (UTRs). ORFs 1a and 1b, encoding proteins of the replicase complex, are directly translated from the gRNA, and together with the 5' and 3'UTRs are the only regions required for RNA replication. The remaining ORFs, expressed via 3'-coterminal subgenomic RNAs, encode proteins required for virion assembly and movement (p6, p65, p61, p27 and p25), asymmetrical accumulation of positive and negative strands during RNA replication (p23), or suppression of post-transcriptional gene silencing (p25, p20 and p23), with the role of proteins p33, p18 and p13 as yet unknown. Analysis of genetic variation in CTV isolates revealed (1) conservation of genomes in distant geographical regions, with a limited repertoire of genotypes, (2) uneven distribution of variation along the gRNA, (3) frequent recombination events and (4) different selection pressures shaping CTV populations. Measures to control CTV damage include quarantine and budwood certification programmes, elimination of infected trees, use of tristeza-tolerant rootstocks, or cross protection with mild isolates, depending on CTV incidence and on the virus strains and host varieties predominant in each region. Incorporating resistance genes into commercial varieties by conventional breeding is presently unfeasible, whereas incorporation of pathogen-derived resistance by plant transformation has yielded variable results, indicating that the CTV-citrus interaction may be more specific and complex than initially thought. A deep understanding of the interactions between viral proteins and host and vector factors will be necessary to develop reliable and sound control measures.
Collapse
Affiliation(s)
- Pedro Moreno
- Instituto Valenciano de Investigaciones Agrarias, Cra. Moncada-Náquera Km. 4.5, Moncada, 46113- Valencia, Spain.
| | | | | | | | | |
Collapse
|
11
|
Gomes CPC, Nagata T, de Jesus WC, Neto CRB, Pappas GJ, Martin DP. Genetic variation and recombination of RdRp and HSP 70h genes of Citrus tristeza virus isolates from orange trees showing symptoms of citrus sudden death disease. Virol J 2008; 5:9. [PMID: 18199320 PMCID: PMC2244595 DOI: 10.1186/1743-422x-5-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Accepted: 01/16/2008] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Citrus sudden death (CSD), a disease that rapidly kills orange trees, is an emerging threat to the Brazilian citrus industry. Although the causal agent of CSD has not been definitively determined, based on the disease's distribution and symptomatology it is suspected that the agent may be a new strain of Citrus tristeza virus (CTV). CTV genetic variation was therefore assessed in two Brazilian orange trees displaying CSD symptoms and a third with more conventional CTV symptoms. RESULTS A total of 286 RNA-dependent-RNA polymerase (RdRp) and 284 heat shock protein 70 homolog (HSP70h) gene fragments were determined for CTV variants infecting the three trees. It was discovered that, despite differences in symptomatology, the trees were all apparently coinfected with similar populations of divergent CTV variants. While mixed CTV infections are common, the genetic distance between the most divergent population members observed (24.1% for RdRp and 11.0% for HSP70h) was far greater than that in previously described mixed infections. Recombinants of five distinct RdRp lineages and three distinct HSP70h lineages were easily detectable but respectively accounted for only 5.9 and 11.9% of the RdRp and HSP70h gene fragments analysed and there was no evidence of an association between particular recombinant mosaics and CSD. Also, comparisons of CTV population structures indicated that the two most similar CTV populations were those of one of the trees with CSD and the tree without CSD. CONCLUSION We suggest that if CTV is the causal agent of CSD, it is most likely a subtle feature of population structures within mixed infections and not merely the presence (or absence) of a single CTV variant within these populations that triggers the disease.
Collapse
Affiliation(s)
- Clarissa PC Gomes
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília. SGAN, Quadra 916, Módulo B, Av. W5 Norte, 70.790-160, Brasília-DF, Brazil
| | - Tatsuya Nagata
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília. SGAN, Quadra 916, Módulo B, Av. W5 Norte, 70.790-160, Brasília-DF, Brazil
| | - Waldir C de Jesus
- Fundecitrus, Av. Adhemar Pereira de Barros, 201, 14807-040, São Paulo, SP, Brazil
- Universidade Federal do Espírito Santo, Centro de Ciências Agrárias, Alto Universitário, S/N, 29500-000, ES, Brazil
| | - Carlos R Borges Neto
- CENARGEN, Parque Estação Biológica, Av. W5 Norte, 70770-900, Brasília, DF, Brazil
| | - Georgios J Pappas
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília. SGAN, Quadra 916, Módulo B, Av. W5 Norte, 70.790-160, Brasília-DF, Brazil
| | - Darren P Martin
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory, Cape Town, 7000, South Africa
| |
Collapse
|
12
|
Cerni S, Ruscić J, Nolasco G, Gatin Z, Krajacić M, Skorić D. Stem pitting and seedling yellows symptoms of Citrus tristeza virus infection may be determined by minor sequence variants. Virus Genes 2007; 36:241-9. [PMID: 18074213 DOI: 10.1007/s11262-007-0183-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 11/26/2007] [Indexed: 11/30/2022]
Abstract
The isolates of Citrus tristeza virus (CTV), the most destructive viral pathogen of citrus, display a high level of variability. As a result of genetic bottleneck induced by the bud-inoculation of CTV-infected material, inoculated seedlings of Citrus wilsonii Tanaka displayed different symptoms. All successfully grafted plants showed severe symptoms of stem pitting and seedling yellows, while plants in which inoculated buds died displayed mild symptoms. Since complex CTV population structure was detected in the parental host, the aim of this work was to investigate how it changed after the virus transmission, and to correlate it with observed symptoms. The coat protein gene sequence of the predominant genotype was identical in parental and grafted plants and clustered to the phylogenetic group 5 encompassing severe reference isolates. In seedlings displaying severe symptoms, the low-frequency variants clustering to other phylogenetic groups were detected, as well. Indicator plants were inoculated with buds taken from unsuccessfully grafted C. wilsonii seedlings. Surprisingly, they displayed no severe symptoms despite the presence of phylogenetic group 5 genomic variants. The results suggest that the appearance of severe symptoms in this case is probably induced by a complex CTV population structure found in seedlings displaying severe symptoms, and not directly by the predominant genomic variant.
Collapse
Affiliation(s)
- Silvija Cerni
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia.
| | | | | | | | | | | |
Collapse
|
13
|
Occurrence of genetic bottlenecks during citrus tristeza virus acquisition by Toxoptera citricida under field conditions. Arch Virol 2007; 153:259-71. [PMID: 18049792 DOI: 10.1007/s00705-007-1089-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2007] [Accepted: 09/26/2007] [Indexed: 10/22/2022]
Abstract
In this study, we address the involvement of T. citricida in strain segregation and genetic bottleneck events by comparing the nucleotide diversity of CTV coat protein (CP) gene variants present in field-grown trees with that of variants retrieved from single apterous aphids. Plant material and aphids were collected in orange orchards in the northern part of Portugal. Shoots from two trees that were found to be positive using ELISA and twenty-four apterous aphids from these same trees were selected for individual molecular assays. CTV was detected in 60% of the aphids by amplification of a 417-bp fragment of the CP gene. Analysis of molecular variance (AMOVA) of this fragment revealed that most of the variation of the virus was found among individual aphids (FSC: 0.766) within each location. Nucleotide diversity comparison between the pool of sequences obtained from a given shoot and sequences obtained from individual aphids present on that shoot showed a reduction of more than one order of magnitude in most cases. Computer simulations of random virus acquisition by single aphids showed that in 54% of the cases only a single CP gene phylogenetic group was acquired. However, a small number of aphids (e.g. 6) was enough to acquire the full complement of phylogenetic groups present.
Collapse
|
14
|
Ruiz-Ruiz S, Moreno P, Guerri J, Ambrós S. A real-time RT-PCR assay for detection and absolute quantitation of Citrus tristeza virus in different plant tissues. J Virol Methods 2007; 145:96-105. [PMID: 17573130 DOI: 10.1016/j.jviromet.2007.05.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 05/04/2007] [Accepted: 05/09/2007] [Indexed: 10/23/2022]
Abstract
A real-time RT-PCR assay using SYBR Green was developed for specific and reliable quantitative detection of Citrus tristeza virus (CTV) in infected plants. A general primer set designed from conserved sequences in ORFs 1b and 2 enabled amplification of the genomic RNA (gRNA) while excluding most subgenomic and defective RNAs. Single RT-PCR products of 204 bp (isolate T36) or 186 bp (other isolates) were obtained with no primer-dimer or non-specific amplifications detected. Melting curve analysis revealed distinct melting temperature peaks (T(m)) for severe and mild isolates. External standard curves using RNA transcripts of the selected target allowed a reproducible quantitative assay, with a wide dynamic range of detection starting with 10(2) gRNA copies and with very low variation coefficient values. This protocol enabled reliable assessments of CTV accumulation in different tissues and from different citrus species, grown in the greenhouse or under field conditions, and infected with CTV isolates differing in their pathogenicity. CTV accumulation was higher in bark and fruits than in roots or leaves and showed minimal differences among several susceptible citrus species, but it was significantly lower in sour orange. This quantitative detection assay will be a valuable tool for diagnosis and molecular studies on CTV biology.
Collapse
Affiliation(s)
- Susana Ruiz-Ruiz
- Instituto Valenciano de Investigaciones Agrarias, Cra. Moncada-Náquera Km. 4.5, Moncada, 46113 Valencia, Spain
| | | | | | | |
Collapse
|
15
|
Tzanetakis IE, Halgren A, Mosier N, Martin RR. Identification and characterization of Raspberry mottle virus, a novel member of the Closteroviridae. Virus Res 2007; 127:26-33. [PMID: 17448559 DOI: 10.1016/j.virusres.2007.03.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2007] [Revised: 03/12/2007] [Accepted: 03/13/2007] [Indexed: 11/22/2022]
Abstract
Raspberry mosaic is one of the most important viral diseases of raspberry. Four virus and virus-like agents, two of which are poorly characterized, have been implicated in the disease complex based on symptom development in Rubus indicators. Three novel viruses were identified in a red raspberry plant that caused typical raspberry mosaic symptoms when grafted onto indicators. This communication focuses on one of these viruses, Raspberry mottle virus (RMoV), a new member of the family Closteroviridae. The complete nucleotide sequence of RMoV has been determined and exceeds 17 kilobases encoding 10 genes. The genome organization of RMoV is similar to that of Beet yellows virus, the type member of the Closterovirus genus, and phylogenetic analysis using the polymerase conserved motifs and the heat shock protein 70 homolog revealed a close relationship of RMoV with Strawberry chlorotic fleck associated virus and Citrus tristeza virus, which suggests the possibility of an aphid vector. The virus was detected in symptomatic raspberry plants in production areas in mixed infections with several other viruses, indicating that RMoV may impact raspberry production.
Collapse
Affiliation(s)
- Ioannis E Tzanetakis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331, United States.
| | | | | | | |
Collapse
|
16
|
Sambade A, Ambrós S, López C, Ruiz-Ruiz S, Hermoso de Mendoza A, Flores R, Guerri J, Moreno P. Preferential accumulation of severe variants of Citrus tristeza virus in plants co-inoculated with mild and severe variants. Arch Virol 2007; 152:1115-26. [PMID: 17294089 DOI: 10.1007/s00705-006-0932-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 12/20/2006] [Indexed: 11/30/2022]
Abstract
The viral population in sweet orange plants, either healthy or pre-inoculated with the asymptomatic isolate of Citrus tristeza virus (CTV) T32, and then graft- or aphid-inoculated with the stem-pitting isolate T318, was characterized with respect to symptom expression, reaction with monoclonal antibody MCA13, single-strand conformation polymorphism (SSCP) of genes p18 and p20, bi-directional RT-PCR, and dot-blot hybridisation. All plants inoculated with T318, with or without pre-inoculation, showed stem pitting, reacted with MCA13, had the SSCP profile characteristic of this isolate, and in bi-directional RT-PCR yielded a 450-bp DNA product associated with severe isolates, indicating that T32 afforded no protection against T318. The latter isolate had two main sequence variants, the minor one of which was indistinguishable from the main T32 sequence, and both were detected in most plants that were graft-inoculated with T318. However, the T32 variant was not detected in plants that were aphid-inoculated only with T318 and also showed stem pitting. This suggested an association of symptoms with the major T318 sequence and preferential transmission of this variant by aphids. The T318-specific variant accumulated more than the T32 variant in plants in which both were replicating, suggesting a higher fitness of the former. Our results clearly emphasize the potential threat of severe CTV variants in areas where mild isolates are presently predominant.
Collapse
Affiliation(s)
- A Sambade
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Moncada, Valencia, Spain
| | | | | | | | | | | | | | | |
Collapse
|