1
|
Koshy CM, Sugumar S. Isolation, characterization, and genome analysis of novel bacteriophage - Stenotrophomonas phageCM1. Microb Pathog 2023; 185:106403. [PMID: 37879452 DOI: 10.1016/j.micpath.2023.106403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
A common environmental bacteria called Stenotrophomonas maltophilia has become an organism responsible for significant nosocomial infection, mortality in immunocompromised patients, and significantly increasing morbidity and is challenging to treat due to the antibiotic resistance activity of the organism. and bacteriophage therapy is one of the promising treatments against the organism. In this research, we isolated, identified, and characterized Stenotrophomonas phage CM1 against S. maltophilia. Stenotrophomonas phage CM1 head was measured to have a diameter of around 224.25 nm and a tail length of about 159 nm. The phage was found to have noticeable elongated tail spikes around 125 nm in length, the Myoviridae family of viruses, which is categorized under the order Caudovirales. The ideal pH for growth was around 7, demonstrated good thermal stability when incubated at 37-60 °C for 30 min or 60 min, and phage infectivity decreased marginally after 30 min of incubation at 1-5% chloroform concentration. Phage was 3,19,518 base pairs long and had an averaged G + C composition of 43.9 %; 559 open-reading frames (ORFs) were found in the bacteriophage genome, in which 508 of them are hypothetical proteins, 22 of them are other known proteins, 29 of them are tRNAs, and one of them is restriction enzyme. A phylogenetic tree was reconstructed, demonstrating that CM1 shares a close evolutionary relationship with other Stenotrophomonas phages.
Collapse
Affiliation(s)
- Calmly M Koshy
- Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, 603203, India.
| | - Shobana Sugumar
- Department of Genetic Engineering, Faculty of Engineering and Technology, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
2
|
Noreika A, Rutkiene R, Dumalakienė I, Vilienė R, Laurynėnas A, Povilonienė S, Skapas M, Meškys R, Kaliniene L. Insights into the Alcyoneusvirus Adsorption Complex. Int J Mol Sci 2023; 24:ijms24119320. [PMID: 37298271 DOI: 10.3390/ijms24119320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
The structures of the Caudovirales phage tails are key factors in determining the host specificity of these viruses. However, because of the enormous structural diversity, the molecular anatomy of the host recognition apparatus has been elucidated in only a number of phages. Klebsiella viruses vB_KleM_RaK2 (RaK2) and phiK64-1, which form a new genus Alcyoneusvirus according to the ICTV, have perhaps one of the most structurally sophisticated adsorption complexes of all tailed viruses described to date. Here, to gain insight into the early steps of the alcyoneusvirus infection process, the adsorption apparatus of bacteriophage RaK2 is studied in silico and in vitro. We experimentally demonstrate that ten proteins, gp098 and gp526-gp534, previously designated as putative structural/tail fiber proteins (TFPs), are present in the adsorption complex of RaK2. We show that two of these proteins, gp098 and gp531, are essential for attaching to Klebsiella pneumoniae KV-3 cells: gp531 is an active depolymerase that recognizes and degrades the capsule of this particular host, while gp098 is a secondary receptor-binding protein that requires the coordinated action of gp531. Finally, we demonstrate that RaK2 long tail fibers consist of nine TFPs, seven of which are depolymerases, and propose a model for their assembly.
Collapse
Affiliation(s)
- Algirdas Noreika
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| | - Rasa Rutkiene
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| | - Irena Dumalakienė
- Department of Immunology, State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08410 Vilnius, Lithuania
| | - Rita Vilienė
- Department of Immunology, State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08410 Vilnius, Lithuania
| | - Audrius Laurynėnas
- Department of Bioanalysis, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| | - Simona Povilonienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| | - Martynas Skapas
- Department of Characterisation of Materials Structure, Center for Physical Sciences and Technology, Saulėtekio Av. 3, LT-10257 Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| | - Laura Kaliniene
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio Av. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
3
|
Two Novel Yersinia pestis Bacteriophages with a Broad Host Range: Potential as Biocontrol Agents in Plague Natural Foci. Viruses 2022; 14:v14122740. [PMID: 36560744 PMCID: PMC9785759 DOI: 10.3390/v14122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Bacteriophages (phages) have been successfully used as disinfectors to kill bacteria in food and the environment and have been used medically for curing human diseases. The objective of this research was to elucidate the morphological and genomic characteristics of two novel Yersinia pestis phages, vB_YpeM_ MHS112 (MHS112) and vB_YpeM_GMS130 (GMS130), belonging to the genus Gaprivervirus, subfamily Tevenvirinae, family Myoviridae. Genome sequencing showed that the sizes of MHS112 and GMS130 were 170507 and 168552 bp, respectively. A total of 303 and 292 open reading frames with 2 tRNA and 3 tRNA were predicted in MHS112 and GMS130, respectively. The phylogenetic relationships were analysed among the two novel Y. pestis phages, phages in the genus Gaprivervirus, and several T4-like phages infecting the Yersinia genus. The bacteriophage MHS112 and GMS130 exhibited a wider lytic host spectrum and exhibited comparative temperature and pH stability. Such features signify that these phages do not need to rely on Y. pestis as their host bacteria in the ecological environment, while they could be based on more massive Enterobacteriales species to propagate and form ecological barriers against Y. pestis pathogens colonised in plague foci. Such characteristics indicated that the two phages have potential as biocontrol agents for eliminating the endemics of animal plague in natural plague foci.
Collapse
|
4
|
Kim J, Chae JP, Kim GH, Kim JW, Lee NG, Moon JO, Yoon SS. Isolation, characterization, and genomic analysis of the novel T4-like bacteriophage ΦCJ20. Food Sci Biotechnol 2021; 30:735-744. [PMID: 34123469 DOI: 10.1007/s10068-021-00906-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 11/29/2022] Open
Abstract
Pathogenic Escherichia coli infections have been consistently reported annually. The basic characteristics and genome of the newly isolated ΦCJ20 from swine feces was analyzed. To determine basic characteristics, dotting assays and double-layer agar assays were conducted. Bacteriophage particles were analyzed via transmission electron microscopy. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis was performed to determine the sizes of major structural proteins. The complete genome of the phage was analyzed. Bacteriophage particles were identified as Myoviridae, with a head measuring 110.57 ± 1.89 nm and a contractile tail measuring 107.97 ± 3.20 nm and were found to infect E. coli. Major structural proteins of ΦCJ20 showed two well-pronounced bands of approximately 53.6 and 70.9 kDa. The genome size of ΦCJ20 was 169,884 bp, and 118 of 307 open reading frames were annotated. This study provides a baseline for the development of E. coli infection treatment strategies. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-021-00906-y.
Collapse
Affiliation(s)
- Jaegon Kim
- Department of Biological Science and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Jong Pyo Chae
- Institute of Biotechnology, CJ CheilJedang, Suwon, Gyeonggi-do 16495 Republic of Korea
| | - Gyeong-Hwuii Kim
- Department of Biological Science and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Jae-Won Kim
- Institute of Biotechnology, CJ CheilJedang, Suwon, Gyeonggi-do 16495 Republic of Korea
| | - Na-Gyeong Lee
- Department of Biological Science and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Jun-Ok Moon
- Institute of Biotechnology, CJ CheilJedang, Suwon, Gyeonggi-do 16495 Republic of Korea
| | - Sung-Sik Yoon
- Department of Biological Science and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| |
Collapse
|
5
|
Korf IHE, Kittler S, Bierbrodt A, Mengden R, Rohde C, Rohde M, Kroj A, Lehnherr T, Fruth A, Flieger A, Lehnherr H, Wittmann J. In Vitro Evaluation of a Phage Cocktail Controlling Infections with Escherichia coli. Viruses 2020; 12:v12121470. [PMID: 33352791 PMCID: PMC7768485 DOI: 10.3390/v12121470] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Worldwide, poultry industry suffers from infections caused by avian pathogenic Escherichia coli. Therapeutic failure due to resistant bacteria is of increasing concern and poses a threat to human and animal health. This causes a high demand to find alternatives to fight bacterial infections in animal farming. Bacteriophages are being especially considered for the control of multi-drug resistant bacteria due to their high specificity and lack of serious side effects. Therefore, the study aimed on characterizing phages and composing a phage cocktail suitable for the prevention of infections with E. coli. Six phages were isolated or selected from our collections and characterized individually and in combination with regard to host range, stability, reproduction, and efficacy in vitro. The cocktail consisting of six phages was able to inhibit formation of biofilms by some E. coli strains but not by all. Phage-resistant variants arose when bacterial cells were challenged with a single phage but not when challenged by a combination of four or six phages. Resistant variants arising showed changes in carbon metabolism and/or motility. Genomic comparison of wild type and phage-resistant mutant E28.G28R3 revealed a deletion of several genes putatively involved in phage adsorption and infection.
Collapse
Affiliation(s)
- Imke H. E. Korf
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (C.R.); (J.W.)
- Correspondence:
| | - Sophie Kittler
- Institute for Food Quality and Food Safety, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, 30173 Hannover, Germany;
| | | | - Ruth Mengden
- Food Inspection, Animal Welfare and Veterinary Service of the Land of Bremen, Border Control Post Bremerhaven, Senator-Borttscheller-Straße 8, 27568 Bremerhaven, Germany;
| | - Christine Rohde
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (C.R.); (J.W.)
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz-Centre for Infection Research (HZI), Inhoffenstraße 7, 38124 Braunschweig, Germany;
| | - Andrea Kroj
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (A.K.); (T.L.); (H.L.)
| | - Tatiana Lehnherr
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (A.K.); (T.L.); (H.L.)
| | - Angelika Fruth
- Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany; (A.F.); (A.F.)
| | - Antje Flieger
- Robert Koch Institute, Burgstraße 37, 38855 Wernigerode, Germany; (A.F.); (A.F.)
| | - Hansjörg Lehnherr
- PTC Phage Technology Center GmbH, Siemensstraße 42, 59199 Bönen, Germany; (A.K.); (T.L.); (H.L.)
| | - Johannes Wittmann
- Leibniz Institute DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany; (C.R.); (J.W.)
| |
Collapse
|
6
|
Isaev A, Drobiazko A, Sierro N, Gordeeva J, Yosef I, Qimron U, Ivanov NV, Severinov K. Phage T7 DNA mimic protein Ocr is a potent inhibitor of BREX defence. Nucleic Acids Res 2020; 48:5397-5406. [PMID: 32338761 PMCID: PMC7261183 DOI: 10.1093/nar/gkaa290] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/08/2020] [Accepted: 04/16/2020] [Indexed: 11/12/2022] Open
Abstract
BREX (for BacteRiophage EXclusion) is a superfamily of common bacterial and archaeal defence systems active against diverse bacteriophages. While the mechanism of BREX defence is currently unknown, self versus non-self differentiation requires methylation of specific asymmetric sites in host DNA by BrxX (PglX) methyltransferase. Here, we report that T7 bacteriophage Ocr, a DNA mimic protein that protects the phage from the defensive action of type I restriction-modification systems, is also active against BREX. In contrast to the wild-type phage, which is resistant to BREX defence, T7 lacking Ocr is strongly inhibited by BREX, and its ability to overcome the defence could be complemented by Ocr provided in trans. We further show that Ocr physically associates with BrxX methyltransferase. Although BREX+ cells overproducing Ocr have partially methylated BREX sites, their viability is unaffected. The result suggests that, similar to its action against type I R-M systems, Ocr associates with as yet unidentified BREX system complexes containing BrxX and neutralizes their ability to both methylate and exclude incoming phage DNA.
Collapse
Affiliation(s)
- Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia
| | - Alena Drobiazko
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia
| | - Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products S.A., Neuchatel 2000, Switzerland
| | - Julia Gordeeva
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia
| | - Ido Yosef
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., Neuchatel 2000, Switzerland
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia
- Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
- Institute of Gene Biology, Russian Academy of Sciences, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov str., 119334 Moscow, Russia
| |
Collapse
|
7
|
Šimoliūnienė M, Truncaitė L, Petrauskaitė E, Zajančkauskaitė A, Meškys R, Skapas M, Kaupinis A, Valius M, Šimoliūnas E. Pantoeaagglomerans-Infecting Bacteriophage vB_PagS_AAS21: A Cold-Adapted Virus Representing a Novel Genus within the Family Siphoviridae. Viruses 2020; 12:E479. [PMID: 32340233 PMCID: PMC7232348 DOI: 10.3390/v12040479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022] Open
Abstract
A novel cold-adapted siphovirus, vB_PagS_AAS21 (AAS21), was isolated in Lithuania using Pantoea agglomerans as the host for phage propagation. AAS21 has an isometric head (~85 nm in diameter) and a non-contractile flexible tail (~174 × 10 nm). With a genome size of 116,649 bp, bacteriophage AAS21 is the largest Pantoea-infecting siphovirus sequenced to date. The genome of AAS21 has a G+C content of 39.0% and contains 213 putative protein-encoding genes and 29 genes for tRNAs. A comparative sequence analysis revealed that 89 AAS21 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. In total, 63 AAS21 ORFs were functionally annotated, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. Proteomic analysis led to the experimental identification of 19 virion proteins, including 11 that were predicted by bioinformatics approaches. Based on comparative phylogenetic analysis, AAS21 cannot be assigned to any genus currently recognized by ICTV and may represents a new branch of viruses within the family Siphoviridae.
Collapse
Affiliation(s)
- Monika Šimoliūnienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.P.); (A.Z.); (R.M.)
| | - Lidija Truncaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.P.); (A.Z.); (R.M.)
| | - Emilija Petrauskaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.P.); (A.Z.); (R.M.)
| | - Aurelija Zajančkauskaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.P.); (A.Z.); (R.M.)
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.P.); (A.Z.); (R.M.)
| | - Martynas Skapas
- Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania;
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Center, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (M.Š.); (E.P.); (A.Z.); (R.M.)
| |
Collapse
|
8
|
Gordeeva J, Morozova N, Sierro N, Isaev A, Sinkunas T, Tsvetkova K, Matlashov M, Truncaite L, Morgan RD, Ivanov NV, Siksnys V, Zeng L, Severinov K. BREX system of Escherichia coli distinguishes self from non-self by methylation of a specific DNA site. Nucleic Acids Res 2019; 47:253-265. [PMID: 30418590 PMCID: PMC6326788 DOI: 10.1093/nar/gky1125] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/24/2018] [Indexed: 01/09/2023] Open
Abstract
Prokaryotes evolved numerous systems that defend against predation by bacteriophages. In addition to well-known restriction-modification and CRISPR-Cas immunity systems, many poorly characterized systems exist. One class of such systems, named BREX, consists of a putative phosphatase, a methyltransferase and four other proteins. A Bacillus cereus BREX system provides resistance to several unrelated phages and leads to modification of specific motif in host DNA. Here, we study the action of BREX system from a natural Escherichia coli isolate. We show that while it makes cells resistant to phage λ infection, induction of λ prophage from cells carrying BREX leads to production of viruses that overcome the defense. The induced phage DNA contains a methylated adenine residue in a specific motif. The same modification is found in the genome of BREX-carrying cells. The results establish, for the first time, that immunity to BREX system defense is provided by an epigenetic modification.
Collapse
Affiliation(s)
- Julia Gordeeva
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia
| | - Natalya Morozova
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia.,Peter the Great St Petersburg State Polytechnic University, St Petersburg 195251, Russia
| | - Nicolas Sierro
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel 2000, Switzerland
| | - Artem Isaev
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia
| | - Tomas Sinkunas
- Institute of Biotechnology, Vilnius University, Sauletekio Avenue 7, Vilnius 10257, Lithuania
| | - Ksenia Tsvetkova
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia
| | | | - Lidija Truncaite
- Institute of Biochemistry, Vilnius University, Sauletekio Avenue 7, Vilnius 10257, Lithuania
| | | | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., Neuchâtel 2000, Switzerland
| | - Virgis Siksnys
- Institute of Biotechnology, Vilnius University, Sauletekio Avenue 7, Vilnius 10257, Lithuania
| | - Lanying Zeng
- Department of Biochemistry and Biophysics, Center for Phage Technology, Texas A&M University, College Station, TX 77843, USA
| | - Konstantin Severinov
- Skolkovo Institute of Science and Technology, Moscow 143028, Russia.,Peter the Great St Petersburg State Polytechnic University, St Petersburg 195251, Russia.,Waksman Institute of Microbiology, Piscataway, NJ 08854, USA
| |
Collapse
|
9
|
Šimoliūnas E, Šimoliūnienė M, Kaliniene L, Zajančkauskaitė A, Skapas M, Meškys R, Kaupinis A, Valius M, Truncaitė L. Pantoea Bacteriophage vB_PagS_Vid5: A Low-Temperature Siphovirus That Harbors a Cluster of Genes Involved in the Biosynthesis of Archaeosine. Viruses 2018; 10:v10110583. [PMID: 30366363 PMCID: PMC6266253 DOI: 10.3390/v10110583] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/12/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022] Open
Abstract
A novel low-temperature siphovirus, vB_PagS_Vid5 (Vid5), was isolated in Lithuania using Pantoea agglomerans isolate for the phage propagation. The 61,437 bp genome of Vid5 has a G–C content of 48.8% and contains 99 probable protein encoding genes and one gene for tRNASer. A comparative sequence analysis revealed that 46 out of 99 Vid5 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. In total, 33 Vid5 ORFs were given a putative functional annotation, including those coding for the proteins responsible for virion morphogenesis, phage-host interactions, and DNA metabolism. In addition, a cluster of genes possibly involved in the biosynthesis of 7-deazaguanine derivatives was identified. Notably, one of these genes encodes a putative preQ0/preQ1 transporter, which has never been detected in bacteriophages to date. A proteomic analysis led to the experimental identification of 11 virion proteins, including nine that were predicted by bioinformatics approaches. Based on the phylogenetic analysis, Vid5 cannot be assigned to any genus currently recognized by ICTV, and may represent a new one within the family of Siphoviridae.
Collapse
Affiliation(s)
- Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Monika Šimoliūnienė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Laura Kaliniene
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Aurelija Zajančkauskaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Martynas Skapas
- Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania.
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| | - Lidija Truncaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
10
|
Alterations in gp37 Expand the Host Range of a T4-Like Phage. Appl Environ Microbiol 2017; 83:AEM.01576-17. [PMID: 28939606 DOI: 10.1128/aem.01576-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/19/2017] [Indexed: 01/21/2023] Open
Abstract
The use of phages as antibacterial agents is limited by their generally narrow host ranges. The aim of this study was to make a T4-like phage, WG01, obtain the host range of another T4-like phage, QL01, by replacing its host-determinant gene region with that of QL01. This process triggered a direct expansion of the WG01 host range. The offspring of WG01 obtained the host ranges of both QL01 and WG01, as well as the ability to infect eight additional host bacteria in comparison to the wild-type strains. WQD had the widest host range; therefore, the corresponding fragments, named QD, could be used for constructing a homologous sequence library. Moreover, after a sequencing analysis of gene 37, we identified two different mechanisms responsible for the expanded host range: (i) the first generation of WG01 formed chimeras without mutations, and (ii) the second generation of WG01 mutants formed from the chimeras. The expansion of the host range indicated that regions other than the C-terminal region may indirectly change the receptor specificity by altering the supportive capacity of the binding site. Additionally, we also found the novel means by which subsequent generations expanded their host ranges, namely, by exchanging gene 37 to acquire a wider temperature range for lysis. The method developed in this work offers a quick way to change or expand the host range of a phage. Future clinical applications for screening phages against a given clinical isolate could be achieved after acquiring more suitable homologous sequences.IMPORTANCE T4-like phages have been established as safe in numerous phage therapy applications. The primary drawbacks to the use of phages as therapeutic agents include their highly specific host ranges. Thus, changing or expanding the host range of T4-like phages is beneficial for selecting phages for phage therapy. In this study, the host range of the T4-like phage WG01 was expanded using genetic manipulation. The WG01 derivatives acquired a novel means of expanding their host ranges by acquiring a wider temperature range for lysis. A region was located that had the potential to be used as a sequence region for homologous sequence recombination.
Collapse
|
11
|
Kaliniene L, Šimoliūnas E, Truncaitė L, Zajančkauskaitė A, Nainys J, Kaupinis A, Valius M, Meškys R. Molecular Analysis of Arthrobacter Myovirus vB_ArtM-ArV1: We Blame It on the Tail. J Virol 2017; 91:e00023-17. [PMID: 28122988 PMCID: PMC5375659 DOI: 10.1128/jvi.00023-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 01/23/2017] [Indexed: 11/20/2022] Open
Abstract
This is the first report on a myophage that infects Arthrobacter A novel virus, vB_ArtM-ArV1 (ArV1), was isolated from soil using Arthrobacter sp. strain 68b for phage propagation. Transmission electron microscopy showed its resemblance to members of the family Myoviridae: ArV1 has an isometric head (∼74 nm in diameter) and a contractile, nonflexible tail (∼192 nm). Phylogenetic and comparative sequence analyses, however, revealed that ArV1 has more genes in common with phages from the family Siphoviridae than it does with any myovirus characterized to date. The genome of ArV1 is a linear, circularly permuted, double-stranded DNA molecule (71,200 bp) with a GC content of 61.6%. The genome includes 101 open reading frames (ORFs) yet contains no tRNA genes. More than 50% of ArV1 genes encode unique proteins that either have no reliable identity to database entries or have homologues only in Arthrobacter phages, both sipho- and myoviruses. Using bioinformatics approaches, 13 ArV1 structural genes were identified, including those coding for head, tail, tail fiber, and baseplate proteins. A further 6 ArV1 ORFs were annotated as encoding putative structural proteins based on the results of proteomic analysis. Phylogenetic analysis based on the alignment of four conserved virion proteins revealed that Arthrobacter myophages form a discrete clade that seems to occupy a position somewhat intermediate between myo- and siphoviruses. Thus, the data presented here will help to advance our understanding of genetic diversity and evolution of phages that constitute the order CaudoviralesIMPORTANCE Bacteriophages, which likely originated in the early Precambrian Era, represent the most numerous population on the planet. Approximately 95% of known phages are tailed viruses that comprise three families: Podoviridae (with short tails), Siphoviridae (with long noncontractile tails), and Myoviridae (with contractile tails). Based on the current hypothesis, myophages, which may have evolved from siphophages, are thought to have first emerged among Gram-negative bacteria, whereas they emerged only later among Gram-positive bacteria. The results of the molecular characterization of myophage vB_ArtM-ArV1 presented here conform to the aforementioned hypothesis, since, at a glance, bacteriophage vB_ArtM-ArV1 appears to be a siphovirus that possesses a seemingly functional contractile tail. Our work demonstrates that such "chimeric" myophages are of cosmopolitan nature and are likely characteristic of the ecologically important soil bacterial genus Arthrobacter.
Collapse
Affiliation(s)
- Laura Kaliniene
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Lidija Truncaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Aurelija Zajančkauskaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Juozas Nainys
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
12
|
Jurczak-Kurek A, Gąsior T, Nejman-Faleńczyk B, Bloch S, Dydecka A, Topka G, Necel A, Jakubowska-Deredas M, Narajczyk M, Richert M, Mieszkowska A, Wróbel B, Węgrzyn G, Węgrzyn A. Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Sci Rep 2016; 6:34338. [PMID: 27698408 PMCID: PMC5048108 DOI: 10.1038/srep34338] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/13/2016] [Indexed: 12/31/2022] Open
Abstract
A large scale analysis presented in this article focuses on biological and physiological variety of bacteriophages. A collection of 83 bacteriophages, isolated from urban sewage and able to propagate in cells of different bacterial hosts, has been obtained (60 infecting Escherichia coli, 10 infecting Pseudomonas aeruginosa, 4 infecting Salmonella enterica, 3 infecting Staphylococcus sciuri, and 6 infecting Enterococcus faecalis). High biological diversity of the collection is indicated by its characteristics, both morphological (electron microscopic analyses) and biological (host range, plaque size and morphology, growth at various temperatures, thermal inactivation, sensitivity to low and high pH, sensitivity to osmotic stress, survivability upon treatment with organic solvents and detergents), and further supported by hierarchical cluster analysis. By the end of the research no larger collection of phages from a single environmental source investigated by these means had been found. The finding was confirmed by whole genome analysis of 7 selected bacteriophages. Moreover, particular bacteriophages revealed unusual biological features, like the ability to form plaques at low temperature (4 °C), resist high temperature (62 °C or 95 °C) or survive in the presence of an organic solvents (ethanol, acetone, DMSO, chloroform) or detergent (SDS, CTAB, sarkosyl) making them potentially interesting in the context of biotechnological applications.
Collapse
Affiliation(s)
- Agata Jurczak-Kurek
- Department of Molecular Evolution University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Tomasz Gąsior
- Laboratory of Molecular Biology (affiliated with University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Sylwia Bloch
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Aleksandra Dydecka
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Gracja Topka
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Agnieszka Necel
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Magdalena Jakubowska-Deredas
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Malwina Richert
- Laboratory of Electron Microscopy, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Agata Mieszkowska
- Department of Molecular Evolution University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Borys Wróbel
- Department of Genetics and Marine Biotechnology, Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, 81-712 Sopot, Poland
- Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University in Poznań, Umultowska 89, 61-614, Poznań, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, and University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology (affiliated with University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Wita Stwosza 59, 80-308 Gdańsk, Poland
| |
Collapse
|
13
|
Xu J, Chen M, He L, Zhang S, Ding T, Yao H, Lu C, Zhang W. Isolation and characterization of a T4-like phage with a relatively wide host range within Escherichia coli. J Basic Microbiol 2015; 56:405-21. [PMID: 26697952 DOI: 10.1002/jobm.201500440] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 12/02/2015] [Indexed: 01/05/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) causes colibacillosis in poultry, resulting in severe economic losses worldwide. Coliphages represent alternative antibacterial substitutes based on high lytic efficiency and few side-effects. However, the complete genome sequences information of APEC phages are limited, and knowledge of undesired genes and the narrow host range restrict their applications. In this study, we isolated a virulent phage QL01, with a relatively broad lytic spectrum (41 of 78 APEC strains). Transmission electron micrography showed it belonged to the family Myoviridae with an elongated head and a contractile tail. Whole genome sequencing revealed a linear double-stranded DNA (170,527 kb; GC content, 39.6%) with 275 possible ORFs. Comparative genome analysis revealed high homology between QL01 and other T4-like phages. However, it also showed some unique features, for example, ORF142 and ORF143, which encode IP9 and IP8, respectively, and may counteract host resistance only exist in a few T4-like phages such as IME08 and vB_EcoM_VR5. Furthermore, phage therapy in artificially infected ducks showed a 26.67% decrease in mortality compared with the untreated group. Our study indicates the potential antibacterial function of phage QL01 against APEC infections and highlights unique molecular features underlying the relatively broad host range.
Collapse
Affiliation(s)
- Juntian Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Mianmian Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Lingchen He
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Shuqing Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Tianyun Ding
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| | - Wei Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing City, Jiangsu Province, China
| |
Collapse
|
14
|
Incomplete LPS Core-Specific Felix01-Like Virus vB_EcoM_VpaE1. Viruses 2015; 7:6163-81. [PMID: 26633460 PMCID: PMC4690856 DOI: 10.3390/v7122932] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/10/2015] [Accepted: 11/18/2015] [Indexed: 12/21/2022] Open
Abstract
Bacteriophages represent a valuable source for studying the mechanisms underlying virus-host interactions. A better understanding of the host-specificity of viruses at the molecular level can promote various phage applications, including bacterial diagnostics, antimicrobial therapeutics, and improve methods in molecular biology. In this study, we describe the isolation and characterization of a novel coliphage, vB_EcoM_VpaE1, which has different host specificity than its relatives. Morphology studies, coupled with the results of genomic and proteomic analyses, indicate that vB_EcoM_VpaE1 belongs to the newly proposed genus Felix01likevirus in the family Myoviridae. The genus Felix01likevirus comprises a group of highly similar phages that infect O-antigen-expressing Salmonella and Escherichia coli (E. coli) strains. Phage vB_EcoM_VpaE1 differs from the rest of Felix01-like viruses, since it infects O-antigen-deficient E. coli strains with an incomplete core lipopolysaccharide (LPS). We show that vB_EcoM_VpaE1 can infect mutants of E. coli that contain various truncations in their LPS, and can even recognize LPS that is truncated down to the inner-core oligosaccharide, showing potential for the control of rough E. coli strains, which usually emerge as resistant mutants upon infection by O-Ag-specific phages. Furthermore, VpaE1 can replicate in a wide temperature range from 9 to 49 °C, suggesting that this virus is well adapted to harsh environmental conditions. Since the structural proteins of such phages tend to be rather robust, the receptor-recognizing proteins of VpaE1 are an attractive tool for application in glycan analysis, bacterial diagnostics and antimicrobial therapeutics.
Collapse
|
15
|
Kaliniene L, Zajančkauskaitė A, Šimoliūnas E, Truncaitė L, Meškys R. Low-temperature bacterial viruses VR - a small but diverse group of E. coli phages. Arch Virol 2015; 160:1367-70. [PMID: 25753428 DOI: 10.1007/s00705-015-2388-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 02/28/2015] [Indexed: 11/28/2022]
Abstract
The complete genome sequences of four low-temperature Escherichia coli-specific tevenviruses, vb_EcoM-VR5, vb_EcoM-VR20, vb_EcoM-VR25 and vb_EcoM-VR26, were determined. Genomic comparisons including recently described genomes of vb_EcoM-VR7 and JS98 as well as phage T4 allowed the identification of two genetic groups that were consistent with defined host-range phenotypes. Group A included the broad-host-range phages vb_EcoM-VR5 and JS98, while group B included vb_EcoM-VR7, vb_EcoM-VR20, vb_EcoM-VR25 and vb_EcoM-VR26, which all had somewhat limited host ranges. All four sequenced phages had genomes that were similar in length (~170 kb) and GC content (~40 %), and, with the exception of vb_EcoM-VR5, at the nucleotide level, they were much more closely related to each other than either was to any other tevenvirus currently characterized. Nevertheless, the overall genome organization of vb_EcoM-VR5, vb_EcoM-VR20, vb_EcoM-VR25 and vb_EcoM-VR26 was comparable to that seen in tevenviruses.
Collapse
Affiliation(s)
- Laura Kaliniene
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Mokslininkų 12, 08662, Vilnius, Lithuania,
| | | | | | | | | |
Collapse
|
16
|
Ji X, Zhang C, Fang Y, Zhang Q, Lin L, Tang B, Wei Y. Isolation and characterization of glacier VMY22, a novel lytic cold-active bacteriophage of Bacillus cereus. Virol Sin 2015; 30:52-8. [PMID: 25680445 DOI: 10.1007/s12250-014-3529-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/21/2015] [Indexed: 01/10/2023] Open
Abstract
As a unique ecological system with low temperature and low nutrient levels, glaciers are considered a "living fossil" for the research of evolution. In this work, a lytic cold-active bacteriophage designated VMY22 against Bacillus cereus MYB41-22 was isolated from Mingyong Glacier in China, and its characteristics were studied. Electron microscopy revealed that VMY22 has an icosahedral head (59.2 nm in length, 31.9 nm in width) and a tail (43.2 nm in length). Bacteriophage VMY22 was classified as a Podoviridae with an approximate genome size of 18 to 20 kb. A one-step growth curve revealed that the latent and the burst periods were 70 and 70 min, respectively, with an average burst size of 78 bacteriophage particles per infected cell. The pH and thermal stability of bacteriophage VMY22 were also investigated. The maximum stability of the bacteriophage was observed to be at pH 8.0 and it was comparatively stable at pH 5.0-9.0. As VMY22 is a cold-active bacteriophage with low production temperature, its characterization and the relationship between MYB41-22 and Bacillus cereus bacteriophage deserve further study.
Collapse
Affiliation(s)
- Xiuling Ji
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Šulčius S, Šimoliūnas E, Staniulis J, Koreivienė J, Baltrušis P, Meškys R, Paškauskas R. Characterization of a lytic cyanophage that infects the bloom-forming cyanobacterium Aphanizomenon flos-aquae. FEMS Microbiol Ecol 2014; 91:1-7. [DOI: 10.1093/femsec/fiu012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
18
|
Šimoliūnas E, Kaliniene L, Stasilo M, Truncaitė L, Zajančkauskaitė A, Staniulis J, Nainys J, Kaupinis A, Valius M, Meškys R. Isolation and characterization of vB_ArS-ArV2 - first Arthrobacter sp. infecting bacteriophage with completely sequenced genome. PLoS One 2014; 9:e111230. [PMID: 25333962 PMCID: PMC4205034 DOI: 10.1371/journal.pone.0111230] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/26/2014] [Indexed: 02/05/2023] Open
Abstract
This is the first report on a complete genome sequence and biological characterization of the phage that infects Arthrobacter. A novel virus vB_ArS-ArV2 (ArV2) was isolated from soil using Arthrobacter sp. 68b strain for phage propagation. Based on transmission electron microscopy, ArV2 belongs to the family Siphoviridae and has an isometric head (∼63 nm in diameter) with a non-contractile flexible tail (∼194×10 nm) and six short tail fibers. ArV2 possesses a linear, double-stranded DNA genome (37,372 bp) with a G+C content of 62.73%. The genome contains 68 ORFs yet encodes no tRNA genes. A total of 28 ArV2 ORFs have no known functions and lack any reliable database matches. Proteomic analysis led to the experimental identification of 14 virion proteins, including 9 that were predicted by bioinformatics approaches. Comparative phylogenetic analysis, based on the amino acid sequence alignment of conserved proteins, set ArV2 apart from other siphoviruses. The data presented here will help to advance our understanding of Arthrobacter phage population and will extend our knowledge about the interaction between this particular host and its phages.
Collapse
Affiliation(s)
- Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Laura Kaliniene
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Miroslav Stasilo
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Lidija Truncaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Aurelija Zajančkauskaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Juozas Staniulis
- Laboratory of Plant Viruses, Institute of Botany, Nature Research Centre, Vilnius, Lithuania
| | - Juozas Nainys
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
19
|
Šimoliūnas E, Kaliniene L, Truncaitė L, Zajančkauskaitė A, Staniulis J, Kaupinis A, Ger M, Valius M, Meškys R. Klebsiella phage vB_KleM-RaK2 - a giant singleton virus of the family Myoviridae. PLoS One 2013; 8:e60717. [PMID: 23593293 PMCID: PMC3622015 DOI: 10.1371/journal.pone.0060717] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/01/2013] [Indexed: 11/19/2022] Open
Abstract
At 346 kbp in size, the genome of a jumbo bacteriophage vB_KleM-RaK2 (RaK2) is the largest Klebsiella infecting myovirus genome sequenced to date. In total, 272 out of 534 RaK2 ORFs lack detectable database homologues. Based on the similarity to biologically defined proteins and/or MS/MS analysis, 117 of RaK2 ORFs were given a functional annotation, including 28 RaK2 ORFs coding for structural proteins that have no reliable homologues to annotated structural proteins in other organisms. The electron micrographs revealed elaborate spike-like structures on the tail fibers of Rak2, suggesting that this phage is an atypical myovirus. While head and tail proteins of RaK2 are mostly myoviridae-related, the bioinformatics analysis indicate that tail fibers/spikes of this phage are formed from podovirus-like peptides predominantly. Overall, these results provide evidence that bacteriophage RaK2 differs profoundly from previously studied viruses of the Myoviridae family.
Collapse
Affiliation(s)
- Eugenijus Šimoliūnas
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Laura Kaliniene
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
- * E-mail:
| | - Lidija Truncaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Aurelija Zajančkauskaitė
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Juozas Staniulis
- Laboratory of Plant Viruses, Institute of Botany, Nature Research Centre, Vilnius, Lithuania
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Marija Ger
- Proteomics Centre, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| | - Rolandas Meškys
- Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
20
|
Genome of low-temperature T4-related bacteriophage vB_EcoM-VR7. Arch Virol 2011; 156:1913-6. [PMID: 21830070 DOI: 10.1007/s00705-011-1084-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 07/26/2011] [Indexed: 10/17/2022]
Abstract
The complete genome sequence of the T4-related low-temperature Escherichia coli bacteriophage vB_EcoM-VR7 was determined. The genome sequence is 169,285 bp long, with a G+C content of 40.3%. Overall, 95% of the phage genome is coding. It encodes 293 putative protein-encoding open reading frames (ORFs) and tRNA(Met). More than half (59%) of the genomic DNA lacks significant homology with the DNA of T4, but once translated, 72% of the vB_EcoM-VR7 genome (211 ORFs) encodes protein homologues of T4 genes. Overall, 46 vB_EcoM-VR7 ORFs have no homologues in T4 but are derived from other T4-related phages, nine ORFs show similarities to bacterial or non-T4-related phage genes, and 27 ORFs are unique to vB_EcoM-VR7. This phage lacks several T4 enzymes involved in host DNA degradation; however, there is extensive representation of the DNA replication, recombination and repair enzymes as well as the viral capsid and tail structural genes.
Collapse
|
21
|
Amor DR, Fort J. Virus infection speeds: theory versus experiment. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2010; 82:061905. [PMID: 21230688 DOI: 10.1103/physreve.82.061905] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2010] [Revised: 11/15/2010] [Indexed: 05/23/2023]
Abstract
In order to explain the speed of Vesicular Stomatitis Virus (VSV) infections, we develop a simple model that improves previous approaches to the propagation of virus infections. For VSV infections, we find that the delay time elapsed between the adsorption of a viral particle into a cell and the release of its progeny has a very important effect. Moreover, this delay time makes the adsorption rate essentially irrelevant in order to predict VSV infection speeds. Numerical simulations are in agreement with the analytical results. Our model satisfactorily explains the experimentally measured speeds of VSV infections.
Collapse
Affiliation(s)
- Daniel R Amor
- Complex Systems Laboratory, Departament de Física, Universitat de Girona, 17071 Girona, Catalonia, Spain
| | | |
Collapse
|