1
|
Zhang L, Zhou Q, Liu J, Liu M, Hu J, Bao Z, Wang M. Development of recombinase amplification assays for the rapid detection of infectious myonecrosis virus. J Invertebr Pathol 2024; 205:108143. [PMID: 38810834 DOI: 10.1016/j.jip.2024.108143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/01/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Infectious myonecrosis virus (IMNV) has affected shrimp farming in many countries, such as northeastern Brazil and southeast Asia, and poses a serious threat to the global shrimp industry. Reverse transcription enzymatic recombinant amplification technology (RT-ERA) is a rapid DNA amplification assay with high specificity in isothermal conditions and has been widely applied to the pathogen's detection. In this study, two novel ERA assays of IMNV, real-time RT-ERA and an RT-ERA combined with lateral flow dipsticks assay (RT-ERA-LFD), were developed and evaluated. The real-time RT-ERA assay could be carried out at 38-42 °C and had the highest end-point fluorescence value and the smallest Ct value at 41 °C. The brightness and width of the detection line were at a maximum at 39 °C and 30 min, and these conditions were selected in RT-ERA-LFD. Both real-time RT-ERA and RT-ERA-LFD produced positive results with IMNV standard plasmids only and showed no cross-reaction with Vibrio parahaemolyticus, which causes acute hepatopancreatic necrosis disease (VpAHPND); white spot syndrome virus (WSSV); infectious hypodermal and hematopoietic necrosis virus (IHHNV); or Ecytonucleospora hepatopenaei (EHP). Meanwhile, we compared the sensitivities of nested RT-PCR, real-time RT-PCR, real-time RT-ERA, and RT-ERA-LFD. The sensitivities of real-time RT-ERA and RT-ERA-LFD were both 101 copies/μL. The detection sensitivities of nested RT-PCR and real-time RT-PCR were 100 and 102 copies/μL, respectively. As a result, two ERA assays were determined to be specific, sensitive, and economical methods for the on-site diagnosis of IMNV infection, showing great potential for the control of IMNV infections.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China
| | - Qingqian Zhou
- Key Laboratory of Tropical Aquatic Germplasm of Hainan province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China
| | - Junjiang Liu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China
| | - Mengran Liu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China.
| | - Jingjie Hu
- Key Laboratory of Tropical Aquatic Germplasm of Hainan province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhenmin Bao
- Key Laboratory of Tropical Aquatic Germplasm of Hainan province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Mengqiang Wang
- Key Laboratory of Tropical Aquatic Germplasm of Hainan province, Sanya Oceanographic Institution, Ocean University of China, Sanya 572024, China; MOE Key Laboratory of Marine Genetics and Breeding, Ocean University of China, Qingdao 266003, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
| |
Collapse
|
2
|
Kumar SS, Jamalpure S, Ahmed AN, Taju G, Vimal S, Majeed SA, Suryakodi S, Rahamathulla S, Paknikar KM, Rajwade JM, Hameed ASS. An Indigenous, Field-Deployable, Lateral Flow Immunochromatographic Assay Rapidly Detects Infectious Myonecrosis in Shrimp, Litopenaeus vannamei. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1110-1124. [PMID: 36242690 DOI: 10.1007/s10126-022-10172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Shrimp farming is an important socioeconomic activity worldwide. Infectious myonecrosis virus (IMNV) is an important shrimp virus responsible for significant mortality (up to 70%) in Litopenaeus vannamei. We produced recombinant capsid protein (r-IMNV31) and obtained a highly specific antibody, anti-r-IMNV31, which was used in WOAH-approved ELISA and Western blot to detect IMNV. Further, anti-r-IMNV31 was employed in an indigenously developed lateral flow immunoassay (LFA) with gold nanoparticles as a visual label. Using LFA, IMNV could be detected rapidly (20 min) from tissue homogenate with high specificity, reproducibility, and sensitivity (LOD = 103 viral particles). LFA was validated with "gold standard" qRT-PCR using 60 samples with high sensitivity (100%), specificity (86%). A Cohen's kappa coefficient of 0.86 suggested "good agreement" between LFA and qRT-PCR. With a shelf-life of ~ 1 year at ambient temperature, the use of LFA in the on-site detection of IMNV by shrimp farmers will be a reality.
Collapse
Affiliation(s)
- S Santhosh Kumar
- Aquatic Animal Health Laboratory (OIE Reference Laboratory for WTD), C. Abdul Hakeem College, ( Thiruvalluvar University), Tamilnadu, 632509, Melvisharam, India
| | - Snehal Jamalpure
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, India
- Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411007, India
| | - A Nafeez Ahmed
- Aquatic Animal Health Laboratory (OIE Reference Laboratory for WTD), C. Abdul Hakeem College, ( Thiruvalluvar University), Tamilnadu, 632509, Melvisharam, India
| | - G Taju
- Aquatic Animal Health Laboratory (OIE Reference Laboratory for WTD), C. Abdul Hakeem College, ( Thiruvalluvar University), Tamilnadu, 632509, Melvisharam, India
| | - S Vimal
- Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, India
| | - S Abdul Majeed
- Aquatic Animal Health Laboratory (OIE Reference Laboratory for WTD), C. Abdul Hakeem College, ( Thiruvalluvar University), Tamilnadu, 632509, Melvisharam, India
| | - S Suryakodi
- Aquatic Animal Health Laboratory (OIE Reference Laboratory for WTD), C. Abdul Hakeem College, ( Thiruvalluvar University), Tamilnadu, 632509, Melvisharam, India
| | | | - Kishore M Paknikar
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, India
- Indian Institute of Technology, Powai, Mumbai, 400076, India
| | - Jyutika M Rajwade
- Nanobioscience Group, Agharkar Research Institute, Pune, 411004, India.
- Savitribai Phule Pune University, Ganeshkhind Road, Pune, 411007, India.
| | - A S Sahul Hameed
- Aquatic Animal Health Laboratory (OIE Reference Laboratory for WTD), C. Abdul Hakeem College, ( Thiruvalluvar University), Tamilnadu, 632509, Melvisharam, India.
| |
Collapse
|
3
|
Lee D, Yu YB, Choi JH, Jo AH, Hong SM, Kang JC, Kim JH. Viral Shrimp Diseases Listed by the OIE: A Review. Viruses 2022; 14:v14030585. [PMID: 35336992 PMCID: PMC8953307 DOI: 10.3390/v14030585] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Shrimp is one of the most valuable aquaculture species globally, and the most internationally traded seafood product. Consequently, shrimp aquaculture practices have received increasing attention due to their high value and levels of demand, and this has contributed to economic growth in many developing countries. The global production of shrimp reached approximately 6.5 million t in 2019 and the shrimp aquaculture industry has consequently become a large-scale operation. However, the expansion of shrimp aquaculture has also been accompanied by various disease outbreaks, leading to large losses in shrimp production. Among the diseases, there are various viral diseases which can cause serious damage when compared to bacterial and fungi-based illness. In addition, new viral diseases occur rapidly, and existing diseases can evolve into new types. To address this, the review presented here will provide information on the DNA and RNA of shrimp viral diseases that have been designated by the World Organization for Animal Health and identify the latest shrimp disease trends.
Collapse
Affiliation(s)
- Dain Lee
- Fish Genetics and Breeding Research Center, National Institute of Fisheries Science, Geoje 53334, Korea;
| | - Young-Bin Yu
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| | - Jae-Ho Choi
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| | - A-Hyun Jo
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si 31460, Korea; (A.-H.J.); (S.-M.H.)
| | - Su-Min Hong
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si 31460, Korea; (A.-H.J.); (S.-M.H.)
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, Korea
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| | - Jun-Hwan Kim
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan-si 31460, Korea; (A.-H.J.); (S.-M.H.)
- Correspondence: (Y.-B.Y.); (J.-H.C.); (J.-C.K.); (J.-H.K.); Tel.: +82-41-675-3773 (J.-H.K.)
| |
Collapse
|
4
|
Wang CS, Chang CY, Wen CM. Developing immunological methods for detecting Macrobrachium rosenbergii nodavirus and extra small virus using a recombinant protein preparation. JOURNAL OF FISH DISEASES 2016; 39:715-727. [PMID: 26263892 DOI: 10.1111/jfd.12404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/16/2015] [Accepted: 06/26/2015] [Indexed: 06/04/2023]
Abstract
Macrobrachium rosenbergii nodavirus (MrNV) and extra small virus (XSV) have been identified as the causative agents for white tail disease (WTD) of M. rosenbergii. In this study, the gene sequences encoding MrNV and XSV capsid proteins were separately ligated into the pGEX-4T-3 expression vector and transformed into Escherichia coli. After induction, glutathione-S-transferase (GST)-tagged MrNV and XSV fusion proteins were obtained with molecular masses of 68 and 43 kDa, respectively. Specific polyclonal antibodies for MrNV and XSV against viral recombinant proteins and infected prawn tissues were verified using Western blotting. According to immunodot blot assay results, the detection sensitivities of antibodies were approximately 5 ng μL(-1) for both recombinant proteins GST-MrNV and GST-XSV. In additional, MrNV and XSV were detected at dilution levels of 1:2560 and 1:640 in the infected prawn tissues, respectively. No cross-reactions with white spot syndrome virus or grouper nervous necrosis virus were observed using immunodot blot assays. MrNV and XSV in infected muscle tissues were detected using immunohistochemistry. Although the detection limit of the immunodot blot assay was lower than that of nested reverse transcription polymerase chain reaction, these polyclonal antibodies can be useful for confirming MrNV and XSV infections in field tests.
Collapse
Affiliation(s)
- C-S Wang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - C-Y Chang
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| | - C-M Wen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Yan DC, Liu HL, Sun HS, Wang YY. Investigation of possible presence of infectious myonecrosis virus in shrimp in China. JOURNAL OF FISH DISEASES 2014; 37:679-682. [PMID: 23866007 DOI: 10.1111/jfd.12151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/08/2013] [Accepted: 06/09/2013] [Indexed: 06/02/2023]
Affiliation(s)
- D C Yan
- College of Agriculture, Ludong University, Yantai, China; Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | | | | | | |
Collapse
|