1
|
Faizah AN, Kobayashi D, Azerigyik FA, Matsumura R, Kai I, Maekawa Y, Higa Y, Itokawa K, Sasaki T, Mulyatno KC, Subekti S, Lusida MI, Rohmah EA, Mori Y, Ozbel Y, Sanjoba C, Phong TV, Tu TC, Kasai S, Sawabe K, Isawa H. Mosquito populations originating from nonendemic areas have the potential to transmit recently emerging Japanese encephalitis virus genotype IV. Emerg Microbes Infect 2025; 14:2438661. [PMID: 39655411 DOI: 10.1080/22221751.2024.2438661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 11/21/2024] [Accepted: 12/01/2024] [Indexed: 01/04/2025]
Abstract
Japanese encephalitis virus (JEV) genotype IV (GIV) is one of the least common and most neglected genotypes worldwide, having been identified only on a few Indonesian islands until it was recently found to be the cause of outbreaks that occurred in several Australian states in early 2022. Given the limited availability of information, the vector range for JEV GIV remains unknown; thus, understanding this range could prove invaluable for future prevention efforts in new areas. Herein, we experimentally exposed four mosquito colonies originated from various countries with no previous reports of GIV to JEV GIV strain 19CxBa-83-Cv, which was isolated from Culex vishnui Theobald collected in Bali in 2019. At 7 and 14 days post-JEV GIV exposure through a membrane feeding method, mosquito bodies, head-wings-legs, and saliva were harvested for infection, dissemination, and transmission efficiency analyses. The results showed robust transmission efficiencies of the virus by Culex tritaeniorhynchus Giles (∼74%) and Aedes albopictus Skuse (∼52%) from Japan, followed by Culex quinquefasciatus Say from Vietnam (∼35%) and Culex pipiens form molestus from Turkey (∼18%). Although significant differences were observed, we found that the four mosquito species could transmit JEV GIV. The efficiency of biological transmission of this restricted genotype by mosquitoes from various origins suggests that these mosquito species could support localized transmission if the genotype were introduced to their respective areas. This study emphasizes the importance of remaining vigilant and continuing arbovirus surveillance in all locations.
Collapse
Affiliation(s)
- Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Faustus Akankperiwen Azerigyik
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
- Department of Parasitology and Tropical Medicine, Tokyo Medical and Dental University, Bunkyo, Japan
| | - Ryo Matsumura
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
- Graduate School of Agriculture, Meiji University, Kawasaki, Japan
| | - Izumi Kai
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
- Graduate School of Agriculture, Meiji University, Kawasaki, Japan
| | - Yoshihide Maekawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Kentaro Itokawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Toshinori Sasaki
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
| | | | - Sri Subekti
- Faculty of Fisheries and Marine, Universitas Airlangga, Surabaya, Indonesia
| | - Maria Inge Lusida
- Institute of Tropical Diseases, Airlangga University, Surabaya, Indonesia
| | - Etik Ainun Rohmah
- Institute of Tropical Diseases, Airlangga University, Surabaya, Indonesia
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University, Kobe, Japan
| | - Yusuf Ozbel
- Faculty of Medicine, Ege University, Bornova, Izmir, Turkiye
| | - Chizu Sanjoba
- Laboratory of Molecular Immunology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Japan
| | - Tran Vu Phong
- Department of Medical Entomology and Zoology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Tran Cong Tu
- Department of Medical Entomology and Zoology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Shinji Kasai
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
| |
Collapse
|
2
|
Mirolo M, de le Roi M, von Dörnberg K, Kaiser F, Fayyad A, Puff C, Voigt U, Siebert U, Ludlow M, Baumgärtner W, Osterhaus A. Umatilla Virus in Zoo-Dwelling Cape Penguins with Hepatitis, Germany. Emerg Infect Dis 2024; 30:2643-2646. [PMID: 39592416 PMCID: PMC11616631 DOI: 10.3201/eid3012.240498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024] Open
Abstract
Analysis of liver tissue from a Cape penguin that died with hepatitis at a zoo in Germany revealed Umatilla virus. Testing uncovered Umatilla virus RNA in samples from 2 other deceased Cape penguins at the zoo. Our results expand knowledge of the prevalence of this virus in bird species across Germany.
Collapse
|
3
|
Characterization of a Novel Orbivirus from Cattle Reveals Active Circulation of a Previously Unknown and Pathogenic Orbivirus in Ruminants in Kenya. mSphere 2023; 8:e0048822. [PMID: 36794933 PMCID: PMC10117150 DOI: 10.1128/msphere.00488-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Arboviruses are among emerging pathogens of public and veterinary health significance. However, in most of sub-Saharan Africa, their role in the aetiologies of diseases in farm animals is poorly described due to paucity of active surveillance and appropriate diagnosis. Here, we report the discovery of a previously unknown orbivirus in cattle collected in the Kenyan Rift Valley in 2020 and 2021. We isolated the virus in cell culture from the serum of a clinically sick cow aged 2 to 3 years, presenting signs of lethargy. High-throughput sequencing revealed an orbivirus genome architecture with 10 double-stranded RNA segments and a total size of 18,731 bp. The VP1 (Pol) and VP3 (T2) nucleotide sequences of the detected virus, tentatively named Kaptombes virus (KPTV), shared maximum similarities of 77.5% and 80.7% to the mosquito-borne Sathuvachari virus (SVIV) found in some Asian countries, respectively. Screening of 2,039 sera from cattle, goats, and sheep by specific RT-PCR identified KPTV in three additional samples originating from different herds collected in 2020 and 2021. Neutralizing antibodies against KPTV were found in 6% of sera from ruminants (12/200) collected in the region. In vivo experiments with new-born and adult mice induced body tremors, hind limb paralysis, weakness, lethargy, and mortality. Taken together, the data suggest the detection of a potentially disease-causing orbivirus in cattle in Kenya. Its impact on livestock, as well as its potential economic damage, needs to be addressed in future studies using targeted surveillance and diagnostics. IMPORTANCE The genus Orbivirus contains several viruses that cause large outbreaks in wild and domestic animals. However, there is little knowledge on the contribution of orbiviruses to diseases in livestock in Africa. Here, we report the identification of a novel presumably disease-causing orbivirus in cattle, Kenya. The virus, designated Kaptombes virus (KPTV), was initially isolated from a clinically sick cow aged 2 to 3 years, presenting signs of lethargy. The virus was subsequently detected in three additional cows sampled in neighboring locations in the subsequent year. Neutralizing antibodies against KPTV were found in 10% of cattle sera. Infection of new-born and adult mice with KPTV caused severe symptoms and lead to death. Together, these findings indicate the presence of a previously unknown orbivirus in ruminants in Kenya. These data are of relevance as cattle represents an important livestock species in farming industry and often is the main source of livelihoods in rural areas of Africa.
Collapse
|
4
|
Yang Z, Li N, He Y, Meng J, Wang J. Genetic Characterization of DH13M98, Umatilla Virus, Isolated from Culex tritaeniorhynchus Giles in Yunnan Province, China. Vector Borne Zoonotic Dis 2023; 23:35-43. [PMID: 36595376 DOI: 10.1089/vbz.2022.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: In August 2013, a virus strain (DH13M98) was isolated from Culex tritaeniorhynchus Giles collected in Mangshi, the southwestern border area of Yunnan Province, China. The virus replicated and caused cytopathic effects (CPE) in Aedes albopictus (C6/36) cells, but not in baby hamster Syrian kidney (BHK-21) cells. Materials and Methods: Agarose gel electrophoresis (AGE) analysis revealed that the DH13M98 virus was a 10-segment double-stranded RNA (dsRNA) virus, with a "1-1-1-2-1-1-2-1" pattern. The full genome of the DH13M98 virus was sequenced by full-length amplification of complementary DNAs (FLAC). Results: Phylogenetic analysis of the viral RNA-dependent RNA polymerase (Pol), major subcore-shell (T2), and major core-surface (T13) protein showed that DH13M98 clustered with Umatilla virus (UMAV), and the amino acid (aa) sequences of DH13M98 shared more than 89.5% (Pol), 95% (T2), and 91.1% (T13) identity with UMAV. However, the aa identity of outer capsid protein one (OC1) of DH13M98 with other UMAV was 57.1-79.2%, suggesting that DH13M98 was UMAV, but distinct from other strains of UMAV from the United States, Japan, and Germany at OC1, and it may be a high variant strain of UMAV, even a new serotype. Conclusion: This is the first isolation of UMAV in China, which enriches the resources of virus species in China and provides new insights into the genetic diversity and geographical distribution of the virus.
Collapse
Affiliation(s)
- Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Nan Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| |
Collapse
|
5
|
Batovska J, Mee PT, Sawbridge TI, Rodoni BC, Lynch SE. Enhanced Arbovirus Surveillance with High-Throughput Metatranscriptomic Processing of Field-Collected Mosquitoes. Viruses 2022; 14:v14122759. [PMID: 36560765 PMCID: PMC9782886 DOI: 10.3390/v14122759] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/14/2022] Open
Abstract
Surveillance programs are essential for the prevention and control of mosquito-borne arboviruses that cause serious human and animal diseases. Viral metatranscriptomic sequencing can enhance surveillance by enabling untargeted, high-throughput arbovirus detection. We used metatranscriptomic sequencing to screen field-collected mosquitoes for arboviruses to better understand how metatranscriptomics can be utilised in routine surveillance. Following a significant flood event in 2016, more than 56,000 mosquitoes were collected over seven weeks from field traps set up in Victoria, Australia. The traps were split into samples of 1000 mosquitoes or less and sequenced on the Illumina HiSeq. Five arboviruses relevant to public health (Ross River virus, Sindbis virus, Trubanaman virus, Umatilla virus, and Wongorr virus) were detected a total of 33 times in the metatranscriptomic data, with 94% confirmed using reverse transcription quantitative PCR (RT-qPCR). Analysis of metatranscriptomic cytochrome oxidase I (COI) sequences enabled the detection of 12 mosquito and two biting midge species. Screening of the same traps by an established public health arbovirus surveillance program corroborated the metatranscriptomic arbovirus and mosquito species detections. Assembly of genome sequences from the metatranscriptomic data also led to the detection of 51 insect-specific viruses, both known and previously undescribed, and allowed phylogenetic comparison to past strains. We have demonstrated how metatranscriptomics can enhance surveillance by enabling untargeted arbovirus detection, providing genomic epidemiological data, and simultaneously identifying vector species from large, unsorted mosquito traps.
Collapse
Affiliation(s)
- Jana Batovska
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Peter T. Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- Correspondence: (J.B.); (P.T.M.); Tel.: +61-3-9623-1442 (J.B.); +61-3-9032-7143 (P.T.M.)
| | - Tim I. Sawbridge
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Brendan C. Rodoni
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Stacey E. Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC 3083, Australia
| |
Collapse
|
6
|
Agnihotri K, Oakey J, Smith C, Weir R, Pyke A, Melville L. Genome-scale molecular and phylogenetic characterization of Middle Point orbiviruses from Australia. J Gen Virol 2021; 102. [PMID: 34870577 DOI: 10.1099/jgv.0.001685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Middle Point orbivirus (MPOV) is an Australian arbovirus, belongs to the Yunnan orbivirus species found in China. First detected and reported from Beatrice Hill, Northern Territory (NT), MPOV has to date, only been exclusively reported from the NT, Australia. Whilst genetic characterization of MPOV has been previously described, only restricted to sequence information for segments 2 and 3 coding core protein VP2 and outer capsid protein VP3, respectively. This study presents for the first time nearly full-length genome sequences of MPOV, which represent 24 isolates collected over a span of more than 20 years from 1997 to 2018. Whilst the majority of isolates were sampled at Beatrice Hill, NT where MPOV is most frequently isolated, this report also describes the first two isolations of MPOV from Queensland (QLD), Australia. One of which is the first non-bovine isolate obtained from the mosquito vector Aedes vittiger. We further compared these MPOV sequences with known sequences of the Yunnan orbivirus and other known orbivirus sequences of mosquito origin found in Australia. The phylogenetic analyses indicate the Australian MPOV sequences are more closely related to each other than other known sequences of Yunnan orbivirus. Furthermore, MPOV sequences are closely related to sequences from the Indonesian isolate JKT-8650. The clustering of Australian sequences in the phylogenetic tree suggests the monophyletic lineage of MPOV circulating in Australia. Further, ongoing surveillance is required to assess the existence and prevalence of this or other yet undetected lineages of MPOV and other orbiviruses in Australia.
Collapse
Affiliation(s)
- Kalpana Agnihotri
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Health and Food Sciences Precinct, 39 Coopers Plains, 4108, Queensland, Australia
| | - Jane Oakey
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Health and Food Sciences Precinct, 39 Coopers Plains, 4108, Queensland, Australia
| | - Craig Smith
- Biosecurity Sciences Laboratory, Biosecurity Queensland, Department of Agriculture and Fisheries, Queensland Government, Health and Food Sciences Precinct, 39 Coopers Plains, 4108, Queensland, Australia
| | - Richard Weir
- Berrimah Veterinary Laboratory, Department of Industry, Tourism and Trade, Berrimah, 0801, Northern Territory, Australia
| | - Alyssa Pyke
- Public Health Virology, Forensic and Scientific Services, Department of Health, Queensland Government, Coopers Plains, 4108, Brisbane, Queensland, Australia
| | - Lorna Melville
- Berrimah Veterinary Laboratory, Department of Industry, Tourism and Trade, Berrimah, 0801, Northern Territory, Australia
| |
Collapse
|
7
|
Santos PD, Ziegler U, Szillat KP, Szentiks CA, Strobel B, Skuballa J, Merbach S, Grothmann P, Tews BA, Beer M, Höper D. In action-an early warning system for the detection of unexpected or novel pathogens. Virus Evol 2021; 7:veab085. [PMID: 34703624 PMCID: PMC8542707 DOI: 10.1093/ve/veab085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
Proactive approaches in preventing future epidemics include pathogen discovery prior to their emergence in human and/or animal populations. Playing an important role in pathogen discovery, high-throughput sequencing (HTS) enables the characterization of microbial and viral genetic diversity within a given sample. In particular, metagenomic HTS allows the unbiased taxonomic profiling of sequences; hence, it can identify novel and highly divergent pathogens such as viruses. Newly discovered viral sequences must be further investigated using genomic characterization, molecular and serological screening, and/or invitro and invivo characterization. Several outbreak and surveillance studies apply unbiased generic HTS to characterize the whole genome sequences of suspected pathogens. In contrast, this study aimed to screen for novel and unexpected pathogens in previously generated HTS datasets and use this information as a starting point for the establishment of an early warning system (EWS). As a proof of concept, the EWS was applied to HTS datasets and archived samples from the 2018–9 West Nile virus (WNV) epidemic in Germany. A metagenomics read classifier detected sequences related to genome sequences of various members of Riboviria. We focused the further EWS investigation on viruses belonging to the families Peribunyaviridae and Reoviridae, under suspicion of causing co-infections in WNV-infected birds. Phylogenetic analyses revealed that the reovirus genome sequences clustered with sequences assigned to the species Umatilla virus (UMAV), whereas a new peribunyavirid, tentatively named ‘Hedwig virus’ (HEDV), belonged to a putative novel genus of the family Peribunyaviridae. In follow-up studies, newly developed molecular diagnostic assays detected fourteen UMAV-positive wild birds from different German cities and eight HEDV-positive captive birds from two zoological gardens. UMAV was successfully cultivated in mosquito C6/36 cells inoculated with a blackbird liver. In conclusion, this study demonstrates the power of the applied EWS for the discovery and characterization of unexpected viruses in repurposed sequence datasets, followed by virus screening and cultivation using archived sample material. The EWS enhances the strategies for pathogen recognition before causing sporadic cases and massive outbreaks and proves to be a reliable tool for modern outbreak preparedness.
Collapse
Affiliation(s)
- Pauline Dianne Santos
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Ute Ziegler
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Kevin P Szillat
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Claudia A Szentiks
- 4Department of Wildlife Diseases, Leibniz-Institute for Zoo- and Wildlife Research (IZW), Alfred-Kowalke-Straße 17, Berlin 10315, Germany
| | - Birte Strobel
- Chemical and Veterinary Investigations Office Karlsruhe (CVUA Karlsruhe), Weissenburgerstrasse 3, Karlsruhe 76187, Germany
| | - Jasmin Skuballa
- Chemical and Veterinary Investigations Office Karlsruhe (CVUA Karlsruhe), Weissenburgerstrasse 3, Karlsruhe 76187, Germany
| | - Sabine Merbach
- State Institute for Chemical and Veterinary Analysis (CVUA) Westfalen, Zur Taubeneiche 10-12, Arnsberg 59821, Germany
| | - Pierre Grothmann
- Practice for Zoo, Game and Wild Animals, Lintiger Str. 74, Geestland 27624, Germany
| | - Birke Andrea Tews
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| | - Dirk Höper
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Diagnostic Virology, Südufer 10, Greifswald, Insel Riems 17493, Germany
| |
Collapse
|
8
|
Amoa-Bosompem M, Kobayashi D, Murota K, Faizah AN, Itokawa K, Fujita R, Osei JHN, Agbosu E, Pratt D, Kimura S, Kwofie KD, Ohashi M, Bonney JHK, Dadzie S, Sasaki T, Ohta N, Isawa H, Sawabe K, Iwanaga S. Entomological Assessment of the Status and Risk of Mosquito-borne Arboviral Transmission in Ghana. Viruses 2020; 12:v12020147. [PMID: 32012771 PMCID: PMC7077231 DOI: 10.3390/v12020147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/16/2020] [Accepted: 01/26/2020] [Indexed: 01/16/2023] Open
Abstract
Entomological surveillance is one of the tools used in monitoring and controlling vector-borne diseases. However, the use of entomological surveillance for arboviral infection vector control is often dependent on finding infected individuals. Although this method may suffice in highly endemic areas, it is not as effective in controlling the spread of diseases in low endemic and non-endemic areas. In this study, we examined the efficiency of using entomological markers to assess the status and risk of arbovirus infection in Ghana, which is considered a non-endemic country, by combining mosquito surveillance with virus isolation and detection. This study reports the presence of cryptic species of mosquitoes in Ghana, demonstrating the need to combine morphological identification and molecular techniques in mosquito surveillance. Furthermore, although no medically important viruses were detected, the importance of insect-specific viruses in understanding virus evolution and arbovirus transmission is discussed. This study reports the first mutualistic relationship between dengue virus and the double-stranded RNA Aedes aegypti totivirus. Finally, this study discusses the complexity of the virome of Aedes and Culex mosquitoes and its implication for arbovirus transmission.
Collapse
Affiliation(s)
- Michael Amoa-Bosompem
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
| | - Katsunori Murota
- Kyushu Research Station, National Institute of Animal Health, NARO, 2702 Chuzan, Kagoshima 891-0105, Japan;
| | - Astri Nur Faizah
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
- Graduate School of Agricultural and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Itokawa
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan;
| | - Ryosuke Fujita
- Laboratory of Sanitary Entomology, Kyushu University Graduate School of Bioresource and Bioenvironmental Sciences, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Esinam Agbosu
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (E.A.); (D.P.); (J.H.K.B.)
| | - Deborah Pratt
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (E.A.); (D.P.); (J.H.K.B.)
| | - Shohei Kimura
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
| | - Kofi Dadzie Kwofie
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Mitsuko Ohashi
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Joseph H. Kofi Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (E.A.); (D.P.); (J.H.K.B.)
| | - Samuel Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, College of Health Sciences, P.O. box LG 581, Legon, Accra, Ghana; (J.H.N.O.); (S.D.)
| | - Toshinori Sasaki
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
| | - Nobuo Ohta
- Faculty of Health Science, Suzuka University of Medical Science, 1001-1 Kishioka-cyo, Suzuka-shi, Mie 510-0293, Japan;
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
- Correspondence: (H.I.); (S.I.); Tel.: +81-3-5285-1111 (H.I.); +81-3-5803-5191 (S.I.)
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (D.K.); (A.N.F.); (T.S.); (K.S.)
| | - Shiroh Iwanaga
- Department of Environmental Parasitology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; (M.A.-B.); (S.K.); (K.D.K.); (M.O.)
- Correspondence: (H.I.); (S.I.); Tel.: +81-3-5285-1111 (H.I.); +81-3-5803-5191 (S.I.)
| |
Collapse
|
9
|
Batovska J, Mee PT, Lynch SE, Sawbridge TI, Rodoni BC. Sensitivity and specificity of metatranscriptomics as an arbovirus surveillance tool. Sci Rep 2019; 9:19398. [PMID: 31852942 PMCID: PMC6920425 DOI: 10.1038/s41598-019-55741-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/29/2019] [Indexed: 01/30/2023] Open
Abstract
The ability to identify all the viruses within a sample makes metatranscriptomic sequencing an attractive tool to screen mosquitoes for arboviruses. Practical application of this technique, however, requires a clear understanding of its analytical sensitivity and specificity. To assess this, five dilutions (1:1, 1:20, 1:400, 1:8,000 and 1:160,000) of Ross River virus (RRV) and Umatilla virus (UMAV) isolates were spiked into subsamples of a pool of 100 Culex australicus mosquitoes. The 1:1 dilution represented the viral load of one RRV-infected mosquito in a pool of 100 mosquitoes. The subsamples underwent nucleic acid extraction, mosquito-specific ribosomal RNA depletion, and Illumina HiSeq sequencing. The viral load of the subsamples was also measured using reverse transcription droplet digital PCR (RT-ddPCR) and quantitative PCR (RT-qPCR). Metatranscriptomic sequencing detected both RRV and UMAV in the 1:1, 1:20 and 1:400 subsamples. A high specificity was achieved, with 100% of RRV and 99.6% of UMAV assembled contigs correctly identified. Metatranscriptomic sequencing was not as sensitive as RT-qPCR or RT-ddPCR; however, it recovered whole genome information and detected 19 other viruses, including four first detections for Australia. These findings will assist arbovirus surveillance programs in utilising metatranscriptomics in routine surveillance activities to enhance arbovirus detection.
Collapse
Affiliation(s)
- Jana Batovska
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia.
| | - Peter T Mee
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia
| | - Stacey E Lynch
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia.
| | - Tim I Sawbridge
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| | - Brendan C Rodoni
- Agriculture Victoria Research, AgriBio Centre for AgriBioscience, Bundoora, Victoria, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
10
|
Atoni E, Zhao L, Karungu S, Obanda V, Agwanda B, Xia H, Yuan Z. The discovery and global distribution of novel mosquito-associated viruses in the last decade (2007-2017). Rev Med Virol 2019; 29:e2079. [PMID: 31410931 DOI: 10.1002/rmv.2079] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/10/2019] [Accepted: 07/23/2019] [Indexed: 01/21/2023]
Abstract
In the last decade, virus hunting and discovery has gained pace. This achievement has been driven by three major factors: (a) advancements in sequencing technologies, (b) scaled-up routine arbovirus surveillance strategies, and (c) the "hunt" for emerging pathogens and novel viruses. Many novel viruses have been discovered from a myriad of hosts, vectors, and environmental samples. To help promote understanding of the global diversity and distribution of mosquito-associated viruses and facilitate future studies, we review mosquito-associated viruses discovered between years 2007 and 2017, across the world. In the analyzed period, novel mosquito-associated viruses belonging to 25 families and a general group of unclassified viruses were categorized. The top three discovered novel mosquito-associated viruses belonged to families Flaviviridae (n=32), Rhabdoviridae (n=16), and Peribunyaviridae (n=14). Also, 67 unclassified viruses were reported. Majority of these novel viruses were identified from Culex spp, Anopheles spp, Aedes spp, and Mansonia spp mosquitoes, respectively. Notably, the number of these discovered novels is not representative of intercontinental virus diversity but rather is influenced by the number of studies done in the study period. Some of these newly discovered mosquito-associated viruses have medical significance, either directly or indirectly. For instance, in the study period, 14 novel mosquito-borne viruses that infect mammalian cells in vitro were reported. These viruses pose a danger to the global health security on emerging viral diseases. On the other hand, some of the newly discovered insect specific viruses described herein have potential application as future biocontrol and vaccine agents against known pathogenic arboviruses. Overall, this review outlines the crucial role played by mosquitoes as viral vectors in the global virosphere.
Collapse
Affiliation(s)
- Evans Atoni
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lu Zhao
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Samuel Karungu
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Vincent Obanda
- Veterinary Services Department, Kenya Wildlife Service, Nairobi, Kenya
| | | | - Han Xia
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
11
|
Tangudu CS, Charles J, Hurt SL, Dunphy BM, Smith RC, Bartholomay LC, Blitvich BJ. Skunk River virus, a novel orbivirus isolated from Aedes trivittatus in the United States. J Gen Virol 2019; 100:295-300. [DOI: 10.1099/jgv.0.001219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Chandra S. Tangudu
- 1Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Jermilia Charles
- 1Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Stefanie L. Hurt
- 1Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Brendan M. Dunphy
- 2Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, Iowa, USA
| | - Ryan C. Smith
- 2Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, Iowa, USA
| | - Lyric C. Bartholomay
- 2Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, Iowa, USA
- 3Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Bradley J. Blitvich
- 1Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
12
|
Kato T, Aizawa M, Takayoshi K, Yanase T, Tanaka S, Shirafuji H, Yamakawa M. Full genome sequence of a Sathuvachari virus strain isolated in the southwestern-most archipelago of Japan. Virus Genes 2018; 54:729-732. [DOI: 10.1007/s11262-018-1592-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/28/2018] [Indexed: 02/03/2023]
|
13
|
Ejiri H, Lim CK, Isawa H, Fujita R, Murota K, Sato T, Kobayashi D, Kan M, Hattori M, Kimura T, Yamaguchi Y, Takayama-Ito M, Horiya M, Posadas-Herrera G, Minami S, Kuwata R, Shimoda H, Maeda K, Katayama Y, Mizutani T, Saijo M, Kaku K, Shinomiya H, Sawabe K. Characterization of a novel thogotovirus isolated from Amblyomma testudinarium ticks in Ehime, Japan: A significant phylogenetic relationship to Bourbon virus. Virus Res 2018; 249:57-65. [PMID: 29548745 DOI: 10.1016/j.virusres.2018.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 10/17/2022]
Abstract
The genus Thogotovirus, as represented by Thogoto virus and Dhori virus, comprises a group of arthropod-borne viruses, most members of which are transmitted by ticks. Here we report the genetic and biological characterization of a new thogotovirus, designated Oz virus (OZV), isolated from the hard tick Amblyomma testudinarium in Ehime, Japan. OZV efficiently replicated and induced a cytopathic effect in Vero cells, from which enveloped pleomorphic virus particles were formed by budding. OZV could also replicate in BHK-21 and DH82 cells and caused high mortality in suckling mice after intracerebral inoculation. Phylogenetic analyses of six viral proteins indicated that OZV is clustered with Dhori and related viruses, and is most closely related in glycoprotein (GP) and matrix protein (M) sequences to Bourbon virus, a human-pathogenic thogotovirus discovered recently in the United States. Our findings emphasize the need for understanding the geographic distribution and ecology of OZV and related viruses and for reevaluation of the medical and public health importance of thogotoviruses.
Collapse
Affiliation(s)
- Hiroko Ejiri
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Division of infectious Diseases Epidemiology and Control, National Defense Medical Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Chang-Kweng Lim
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Ryosuke Fujita
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Research Promotion, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan; Isotope Imaging Laboratory, Creative Research Institution, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo 001-0021, Japan
| | - Katsunori Murota
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Research Promotion, Japan Agency for Medical Research and Development, 20F Yomiuri Shimbun Bldg. 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Tomomi Sato
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Miki Kan
- Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanban-cho, Matsuyama, Ehime 790-0003, Japan
| | - Masashi Hattori
- Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanban-cho, Matsuyama, Ehime 790-0003, Japan
| | - Toshiya Kimura
- Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanban-cho, Matsuyama, Ehime 790-0003, Japan
| | - Yukie Yamaguchi
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Mutsuyo Takayama-Ito
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Madoka Horiya
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Guillermo Posadas-Herrera
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shohei Minami
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Ryusei Kuwata
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Hiroshi Shimoda
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Disease of Animal, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Koki Kaku
- Division of infectious Diseases Epidemiology and Control, National Defense Medical Research Institute, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Hiroto Shinomiya
- Ehime Prefectural Institute of Public Health and Environmental Science, 8-234 Sanban-cho, Matsuyama, Ehime 790-0003, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
14
|
Li L, Guo X, Zhao Q, Tong Y, Fan H, Sun Q, Xing S, Zhou H, Zhang J. Investigation on Mosquito-Borne Viruses at Lancang River and Nu River Watersheds in Southwestern China. Vector Borne Zoonotic Dis 2017; 17:804-812. [PMID: 29083983 DOI: 10.1089/vbz.2017.2164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
During 2007 and 2010, an extensive entomological survey was performed to assess the distribution of mosquitoes and mosquito-borne arboviruses at Lancang River and Nu River watersheds in southwestern China. A total of 20,450 mosquitoes consisting 20 species was trapped and submitted 261 pools according to species and location. Culex tritaeniorhynchus and Anopheles sinensis were the most abundant species. Eighty-seven isolates representing 11 virus species in 8 genera were obtained from 6 mosquito species. The new isolates were identified as Getah virus (GETV), Japanese encephalitis virus (JEV), Yunnan Culex-related flavivirus (YNCxFV), Yunnan Aedes-related flavivirus (YNAeFV), Banna virus (BAV), Yunnan orbivirus (YUOV), Banna orbivirus (BAOV), Yunnan totivirus (YNToV), Nam Dinh virus (NDiV), Menghai rhabdovirus (MRV), and Anopheles minimus iridovirus (AMIV). These viruses included confirmed or potential pathogen of human disease, such as JEV, BAV, and NDiV, and several novel or reassortant arboviruses, such as YNAeFV, MRV, AMIV, and BAOV. GETV, JEV, YNCxFV, and NDiV were widely prevalent in the whole basin of the two rivers. The findings contribute to our understanding of the diversity and wide distribution of mosquito-borne arboviruses in the area, and are helpful to explore pathogenic evidence for fevers and viral encephalitis of unknown etiology.
Collapse
Affiliation(s)
- Lingli Li
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China .,2 Graduate School of Anhui Medical University , Hefei, China
| | - Xiaofang Guo
- 3 Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases , Pu'er, China
| | - Qiumin Zhao
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China
| | - Yigang Tong
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China
| | - Hang Fan
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China
| | - Qiang Sun
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China
| | - Shaozhen Xing
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China
| | - Hongning Zhou
- 3 Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases , Pu'er, China
| | - Jiusong Zhang
- 1 State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology , Beijing, China .,2 Graduate School of Anhui Medical University , Hefei, China
| |
Collapse
|
15
|
Phanitchakun T, Wilai P, Saingamsook J, Namgay R, Drukpa T, Tsuda Y, Walton C, Harbach RE, Somboon P. Culex (Culiciomyia) sasai (Diptera: Culicidae), senior synonym of Cx. spiculothorax and a new country record for Bhutan. Acta Trop 2017; 171:194-198. [PMID: 28414028 DOI: 10.1016/j.actatropica.2017.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/10/2017] [Accepted: 04/10/2017] [Indexed: 11/29/2022]
Abstract
Culex (Culiciomyia) spiculothorax was described from Thailand based on the presence of spiculation on the thorax of larvae. Adult females are characterized but are indistinguishable from those of related species, such as Cx. pallidothorax. Phylogenetic analysis of mitochondrial oxidase subunit I (COI) sequences revealed that specimens identified as Cx. spiculothorax from Thailand, Japan and Bhutan form a single clade with Cx. sasai from Japan (Kimura 2-parameter genetic distances 0-0.9%) that is clearly distinct from clades comprised of other species of subgenus Culiciomyia. Attempts to collect Cx. sasai from several locations in Japan were unsuccessful - only larvae with thoracic vesicular-like spicules identified as Cx. spiculothorax were collected. Careful examination of specimens collected near the type locality of Cx. sasai revealed the presence of spicules on the thorax. Based on these findings, Cx. spiculothorax is formally synonymized with Cx. sasai, which replaces the former as the species present in Thailand and is a new country record for Bhutan.
Collapse
Affiliation(s)
- Thanari Phanitchakun
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Parinya Wilai
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jassada Saingamsook
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Rinzin Namgay
- Vector-Borne Diseases Control Programme, Ministry of Health, Gelephu, Bhutan
| | - Tobgyel Drukpa
- Vector-Borne Diseases Control Programme, Ministry of Health, Gelephu, Bhutan
| | - Yoshio Tsuda
- Department of Medical Entomology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Catherine Walton
- School of Earth and Environment, Faculty of Science and Engineering, University of Manchester, Manchester M13 9PT, UK
| | - Ralph E Harbach
- Department of Life Sciences, Natural History Museum,Cromwell Road, London SW7 5BD, UK
| | - Pradya Somboon
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
16
|
Ejiri H, Lim CK, Isawa H, Kuwata R, Kobayashi D, Yamaguchi Y, Takayama-Ito M, Kinoshita H, Kakiuchi S, Horiya M, Kotaki A, Takasaki T, Maeda K, Hayashi T, Sasaki T, Kobayashi M, Saijo M, Sawabe K. Genetic and biological characterization of Muko virus, a new distinct member of the species Great Island virus (genus Orbivirus, family Reoviridae), isolated from ixodid ticks in Japan. Arch Virol 2015; 160:2965-77. [PMID: 26350980 DOI: 10.1007/s00705-015-2588-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/26/2015] [Indexed: 12/27/2022]
Abstract
Among the tick-borne orbiviruses (genus Orbivirus, family Reoviridae), 36 serotypes are currently classified within a single virus species, Great Island virus. In this study, we report the first characterization of a tick-borne orbivirus isolated from the tick Ixodes turdus in Japan, which we identified as a new member of the species Great Island virus. The virus isolate, designated Muko virus (MUV), replicated and induced cytopathic effects in BHK-21, Vero E6, and CCL-141 cells and caused high mortality in suckling mice after intracerebral inoculation. Full genome sequence analysis showed that MUV shared the greatest phylogenetic similarity with Tribeč virus in terms of the amino acid sequences of all viral proteins except for outer capsid protein 1 (OC1; VP4 of MUV). Analysis of genome segment 9 in MUV detected an uninterrupted open reading frame that overlaps with VP6 (Hel), which putatively encodes a molecular and functional equivalent of NS4 from Great Island virus. Our study provides new insights into the geographic distribution, genetic diversity, and evolutionary history of the members of the species Great Island virus.
Collapse
Affiliation(s)
- Hiroko Ejiri
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Chang-Kweng Lim
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuiku-ku, Tokyo, 162-8640, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| | - Ryusei Kuwata
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Yukie Yamaguchi
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuiku-ku, Tokyo, 162-8640, Japan
| | - Mutsuyo Takayama-Ito
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuiku-ku, Tokyo, 162-8640, Japan
| | - Hitomi Kinoshita
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuiku-ku, Tokyo, 162-8640, Japan
| | - Satsuki Kakiuchi
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuiku-ku, Tokyo, 162-8640, Japan
| | - Madoka Horiya
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuiku-ku, Tokyo, 162-8640, Japan
| | - Akira Kotaki
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuiku-ku, Tokyo, 162-8640, Japan
| | - Tomohiko Takasaki
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuiku-ku, Tokyo, 162-8640, Japan
| | - Ken Maeda
- Laboratory of Veterinary Microbiology, Faculty of Agriculture, Yamaguchi University, 1677-1 Yoshida, Yamaguchi, 753-8515, Japan
| | - Toshihiko Hayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Toshinori Sasaki
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Mutsuo Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Masayuki Saijo
- Department of Virology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuiku-ku, Tokyo, 162-8640, Japan
| | - Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| |
Collapse
|