1
|
Blanch-Lázaro B, Chamings A, Ribot RFH, Bhatta TR, Berg ML, Alexandersen S, Bennett ATD. Beak and feather disease virus (BFDV) persists in tissues of asymptomatic wild Crimson Rosellas. Commun Biol 2024; 7:1017. [PMID: 39289466 PMCID: PMC11408594 DOI: 10.1038/s42003-024-06652-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2024] [Indexed: 09/19/2024] Open
Abstract
Infectious diseases can drive populations and species to extinction. Beak and feather disease virus (BFDV) is a circovirus of global conservation concern that can infect all Psittaciformes and some other species. Yet some parrot species, such as Crimson rosellas (Platycercus elegans), can live successfully with high BFDV prevalence (>40%) with no clinical signs reported in infected individuals. We assessed BFDV load in 10-12 tissues per bird, from n = 66 P. elegans, to reveal tissue tropism and BFDV persistence in tissues. Here we show that in 94% of individuals, BFDV was detected in one or more tissues. While BFDV replicated to high levels in subadults, in adults (some confirmed seropositive) the virus persisted in various tissues at much lower levels. Our findings reveal that BFDV is much more common in wild P. elegans than previously thought and suggest that current screening practices (mostly on blood) may substantially underestimate BFDV infection estimates, with implications for biosecurity and conservation programs globally.
Collapse
Affiliation(s)
- Berta Blanch-Lázaro
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia.
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, Australia.
- Australian Centre for Disease Preparedness (ACDP), CSIRO, Geelong, VIC, Australia.
| | - Anthony Chamings
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, Australia
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, Australia
| | - Raoul F H Ribot
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia
| | - Tarka Raj Bhatta
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, Australia
- Australian Rickettsial Reference Laboratory (ARRL), Barwon Health, University Hospital Geelong, Geelong, VIC, Australia
- Centre for Innovation in Infectious Disease and Immunology Research (CIIDIR), Deakin University, Geelong, VIC, Australia
| | - Mathew L Berg
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia
- Parks Victoria, Melbourne, VIC, Australia
| | - Soren Alexandersen
- Geelong Centre for Emerging Infectious Diseases, Geelong, VIC, Australia
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Barwon Health, University Hospital Geelong, Geelong, VIC, Australia
- Department of Animal and Veterinary Sciences, Aarhus University, Viborg Campus, Tjele, Denmark
| | - Andrew T D Bennett
- Centre for Integrative Ecology, Deakin University, Geelong, VIC, Australia
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, VIC, Australia
| |
Collapse
|
2
|
Robson M, Chooi KM, Blouin AG, Knight S, MacDiarmid RM. A National Catalogue of Viruses Associated with Indigenous Species Reveals High-Throughput Sequencing as a Driver of Indigenous Virus Discovery. Viruses 2022; 14:v14112477. [PMID: 36366575 PMCID: PMC9693408 DOI: 10.3390/v14112477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022] Open
Abstract
Viruses are important constituents of ecosystems, with the capacity to alter host phenotype and performance. However, virus discovery cued by disease symptoms overlooks latent or beneficial viruses, which are best detected using targeted virus detection or discovered by non-targeted methods, e.g., high-throughput sequencing (HTS). To date, in 64 publications, 701 viruses have been described associated with indigenous species of Aotearoa New Zealand. Viruses were identified in indigenous birds (189 viruses), bats (13 viruses), starfish (4 viruses), insects (280 viruses), and plants (126 viruses). HTS gave rise to a 21.9-fold increase in virus discovery rate over the targeted methods, and 72.7-fold over symptom-based methods. The average number of viruses reported per publication has also increased proportionally over time. The use of HTS has driven the described national virome recently by 549 new-to-science viruses; all are indigenous. This report represents the first catalogue of viruses associated with indigenous species of a country. We provide evidence that the application of HTS to samples of Aotearoa New Zealand's unique fauna and flora has driven indigenous virus discovery, a key step in the process to understand the role of viruses in the biological diversity and ecology of the land, sea, and air environments of a country.
Collapse
Affiliation(s)
- Merlyn Robson
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
- Bio-Protection Research Centre, Lincoln University, P.O. Box 85084, Lincoln 7674, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Kar Mun Chooi
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | | | - Sarah Knight
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Robin Marion MacDiarmid
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
- Bio-Protection Research Centre, Lincoln University, P.O. Box 85084, Lincoln 7674, New Zealand
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
- Correspondence:
| |
Collapse
|
3
|
Konicek C, Heenemann K, Cramer K, Vahlenkamp TW, Schmidt V. Case Series of Disseminated Xanthogranulomatosis in Red-crowned Parakeets (Cyanoramphus novaezelandiae) with Detection of Psittacine Adenovirus 2 (PsAdV-2). Animals (Basel) 2022; 12:ani12182316. [PMID: 36139176 PMCID: PMC9495053 DOI: 10.3390/ani12182316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Lipometabolic disorders, such as xanthogranulomatosis, are common diseases in avian medicine. Various manifestations of lipometabolic disorders and risk factors for acquiring lipometabolic diseases have been described in the past years. Xanthogranulomas are usually limited to the skin and supposed to be associated with traumatic or inflammatory injuries in that area. Disseminated xanthogranulomatosis, appearing simultaneously in several internal organs, has been recently described in psittacine birds, the cause of the diseases was not known. Here, we describe a case series of disseminated xanthogranulomatosis in another psittacine species, the Red-crowned Parakeet (Cyanoramphus novaezelandiae) and a possible association with a concurrent psittacine adenovirus 2 (PsAdV-2) infection. Viral infections that trigger lipometabolic diseases have been described in human medicine in some species of small animals and in chickens. PsAdV-2- infections are widely distributed in avian species. A possible association between PsAdV-2- infections and lipometabolic diseases in the Red-crowned Parakeet should be considered. Individual birds and flocks with both or either of these diseases should be carefully examined and monitored. Abstract Xanthogranulomatosis is a common dermatological disease in birds. This form of inflammation, possibly associated with lipometabolic disorders, can also be seen in visceral organs, which as yet has only rarely been described in avian medicine. In general, diseases related to impaired lipid metabolism are frequently reported in avian medicine, with hepatic steatosis and atherosclerosis being the most common. In human medicine, infectious agents—especially some strains of adenovirus—were implicated in contributing to lipometabolic disorders; this has also been described for chicken. Here, a case series of six Red-crowned Parakeets (Cyanoramphus novaezelandiae) is presented, all cases being characterized by psittacine adenovirus 2 (PsAdV-2) infection with or without disseminated xanthogranulomatosis. The affected individuals were examined alive by clinical examination. Total body radiographs were taken of two birds, haematology and blood biochemistry results were achieved in one bird. The birds either died immediately after clinical presentation or within two days, two individuals were euthanized due to worsening of their clinical condition. All birds underwent a post-mortem examination. While four birds were finally diagnosed with disseminated xanthogranulomatosis, all six individuals had large eosinophilic intranuclear inclusion bodies in the epithelial cells of the collecting ducts of the kidney and tested positive for PsAdV-2. Further examinations are needed to clarify to what extent PsAdV-2 might elicit lipometabolic disease in birds, or psittacines in general, and, in particular, the Red-crowned Parakeet.
Collapse
Affiliation(s)
- Cornelia Konicek
- Service for Birds and Reptiles, Clinic for Small Animal Internal Medicine, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Wien, Austria
| | - Kristin Heenemann
- Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Kerstin Cramer
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 17, 04103 Leipzig, Germany
| | - Thomas W. Vahlenkamp
- Institute of Virology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 29, 04103 Leipzig, Germany
| | - Volker Schmidt
- Clinic for Birds and Reptiles, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 17, 04103 Leipzig, Germany
- Correspondence:
| |
Collapse
|
4
|
Diverse single-stranded DNA viruses identified in New Zealand (Aotearoa) South Island robin (Petroica australis) fecal samples. Virology 2021; 565:38-51. [PMID: 34715607 DOI: 10.1016/j.virol.2021.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022]
Abstract
The South Island robin (Petroica australis) is a small passerine bird endemic to New Zealand (Aotearoa). Although its population has declined recently and it is considered 'at risk,' little research has been done to identify viruses in this species. This study aimed to survey the diversity of single-stranded DNA viruses associated with South Island robins in a small, isolated population on Nukuwaiata Island. In total, 108 DNA viruses were identified from pooled fecal samples collected from 38 individual robins sampled. These viruses belong to the Circoviridae (n = 10), Genomoviridae (n = 12), and Microviridae (n = 73) families. A number of genomes that belong to the phylum Cressdnaviricota but are otherwise unclassified (n = 13) were also identified. These results greatly expand the known viral diversity associated with South Island robins, and we identify a novel group of viruses most closely related genomoviruses.
Collapse
|
5
|
Cohen JM, Sauer EL, Santiago O, Spencer S, Rohr JR. Divergent impacts of warming weather on wildlife disease risk across climates. Science 2021; 370:370/6519/eabb1702. [PMID: 33214248 DOI: 10.1126/science.abb1702] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022]
Abstract
Disease outbreaks among wildlife have surged in recent decades alongside climate change, although it remains unclear how climate change alters disease dynamics across different geographic regions. We amassed a global, spatiotemporal dataset describing parasite prevalence across 7346 wildlife populations and 2021 host-parasite combinations, compiling local weather and climate records at each location. We found that hosts from cool and warm climates experienced increased disease risk at abnormally warm and cool temperatures, respectively, as predicted by the thermal mismatch hypothesis. This effect was greatest in ectothermic hosts and similar in terrestrial and freshwater systems. Projections based on climate change models indicate that ectothermic wildlife hosts from temperate and tropical zones may experience sharp increases and moderate reductions in disease risk, respectively, though the magnitude of these changes depends on parasite identity.
Collapse
Affiliation(s)
- Jeremy M Cohen
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA. .,Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Erin L Sauer
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA.,Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Olivia Santiago
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Samuel Spencer
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA.,Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
6
|
Martens JM, Stokes HS, Berg ML, Walder K, Bennett ATD. Seasonal fluctuation of beak and feather disease virus (BFDV) infection in wild Crimson Rosellas (Platycercus elegans). Sci Rep 2020; 10:7894. [PMID: 32398741 PMCID: PMC7217931 DOI: 10.1038/s41598-020-64631-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 04/08/2020] [Indexed: 12/29/2022] Open
Abstract
Understanding patterns of pathogen emergence can help identify mechanisms involved in transmission dynamics. Beak and feather disease virus (BFDV) poses a major threat world-wide to wild and captive parrots. Yet data from wild birds on seasonal fluctuations in prevalence and infection intensity, and thereby the potential high-risk times for virus transmission, have been lacking. We screened wild Crimson Rosellas (Platycercus elegans) for BFDV in blood and cloacal swabs. Prevalence in blood samples and cloacal swabs, as well as viral load varied with Julian date and in blood, were highest after the breeding season. Breeding birds had lower viral load and lower BFDV prevalence in blood than non-breeding birds (10.1% prevalence in breeding vs. 43.2% in non-breeding birds). BFDV prevalence was much higher in younger (<3 years) than older (≥3 years) birds for both blood samples (42.9% vs. 4.5%) and cloacal swabs (56.4% vs. 12.3%). BFDV status in blood and cloacal samples was not correlated within individuals. We show that, at least in P. elegans, BFDV infection seems to occur year-round, with seasonal changes in prevalence and load found in our samples. Our analyses suggest that the seasonal changes were associated primarily with the breeding season. We also discuss age and sex as important predictors of BFDV infection.
Collapse
Affiliation(s)
- Johanne M Martens
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, 3216, Australia.
| | - Helena S Stokes
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, 3216, Australia
| | - Mathew L Berg
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, 3216, Australia
| | - Ken Walder
- Centre for Molecular and Medical Research, School of Medicine, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, 3216, Australia
| | - Andrew T D Bennett
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, 75 Pigdons Road, Waurn Ponds, VIC, 3216, Australia
| |
Collapse
|
7
|
HEALTH ASSESSMENT OF CAPTIVE PSITTACINE SPECIES IN PRERELEASE PROGRAMS AT COSTA RICAN RESCUE CENTERS. J Zoo Wildl Med 2019; 48:1135-1145. [PMID: 29297799 DOI: 10.1638/2016-0259r.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
With stricter laws regulating the capture and possession of wild animals in Costa Rica, local wildlife-rescue centers have been overwhelmed by an influx of confiscated or relinquished illegal pets, specifically of psittacine species. As part of a nationwide health-assessment program targeting these centers, 122 birds representing five psittacine species ( Ara macao, Amazona autumnalis, Amazona auropalliata, Amazona farinosa, Aratinga finschi) and one hybrid macaw ( Ara macao × Ara ambiguus) were examined and tested between January 2011 and October 2012. Physical examination, hematology, and serum biochemical analyses were performed. Blood and feathers were tested for psittacine beak and feather disease virus (PBFDV) and avian polyomavirus (APV) via PCR. A DNA-based prevalence and sequence analysis characterized the strains of PBFDV and APV isolated. Physical abnormalities observed in 36% of the 122 birds examined were limited to thin body condition and poor feather quality. None of the feather abnormalities were characteristic of disease caused by either PBFDV or APV. Results of hematological and biochemical analyses were within normal limits except for five birds with leukocytosis and heterophilia, three birds with uric acid values above 16 mg/dl, and two additional birds with AST values above 400 IU/L. No hemoparasites were detected during blood smear examination. Overall prevalences of 9.8% (12/122) for PBFDV and 3.3% (4/122) for APV were documented, with only one bird testing positive for both PBFDV and APV. Birds from two of the eight centers were negative for both viruses. Findings from this study constitute the beginning of a standardized surveillance program for Costa Rican rescue centers, targeting the management of avian species enrolled in propagation and reintroduction programs and expanding of the spectrum of pathogen surveillance and husbandry recommendations in prerelease centers.
Collapse
|
8
|
Hygiene and biosecurity protocols reduce infection prevalence but do not improve fledging success in an endangered parrot. Sci Rep 2019; 9:4779. [PMID: 30886308 PMCID: PMC6423005 DOI: 10.1038/s41598-019-41323-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 03/01/2019] [Indexed: 12/11/2022] Open
Abstract
Emerging Infectious Diseases (EIDs) are recognised as global extinction drivers of threatened species. Unfortunately, biodiversity managers have few tested solutions to manage them when often the desperate need for solutions necessitates a response. Here we test in situ biosecurity protocols to assess the efficacy of managing Psittacine beak and feather disease (PBFD), one of the most common and emergent viral diseases in wild parrots (Psittaciformes) that is currently affecting numerous threatened species globally. In response to an outbreak of PBFD in Mauritius “echo” parakeets (Psittacula eques), managers implemented a set of biosecurity protocols to limit transmission and impact of Beak and feather disease virus (BFDV). Here we used a reciprocal design experiment on the wild population to test whether BFDV management reduced viral prevalence and viral load, and improved nestling body condition and fledge success. Whilst management reduced the probability of nestling infection by approximately 11% there was no observed impact on BFDV load and nestling body condition. In contrast to expectations there was lower fledge success in nests with added BFDV biosecurity (83% in untreated vs. 79% in treated nests). Our results clearly illustrate that management for wildlife conservation should be critically evaluated through targeted monitoring and experimental manipulation, and this evaluation should always focus on the fundamental objective of conservation.
Collapse
|
9
|
Fogell DJ, Martin RO, Bunbury N, Lawson B, Sells J, McKeand AM, Tatayah V, Trung CT, Groombridge JJ. Trade and conservation implications of new beak and feather disease virus detection in native and introduced parrots. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2018; 32:1325-1335. [PMID: 30152576 DOI: 10.1111/cobi.13214] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 03/13/2018] [Accepted: 03/23/2018] [Indexed: 06/08/2023]
Abstract
Psittacine beak and feather disease (PBFD), caused by Beak and feather disease virus (BFDV), has spread rapidly around the world, raising concerns for threatened species conservation and biosecurity associated with the global pet bird trade. The virus has been reported in several wild parrot populations, but data are lacking for many taxa and geographical areas with high parrot endemism. We aimed to advance understanding of BFDV distribution in many data-deficient areas and determine phylogenetic and biogeographic associations of the virus in 5 parrot species across Africa, the Indian Ocean islands, Asia, and Europe and focused specifically on the highly traded and invasive Psittacula krameri. Blood, feather, and tissue samples were screened for BFDV through standard polymerase chain reaction. Isolates obtained from positive individuals were then analyzed in a maximum likelihood phylogeny along with all other publically available global BFDV sequences. We detected BFDV in 8 countries where it was not known to occur previously, indicating the virus is more widely distributed than currently recognized. We documented for the first time the presence of BFDV in wild populations of P. krameri within its native range in Asia and Africa. We detected BFDV among introduced P. krameri in Mauritius and the Seychelles, raising concerns for island endemic species in the region. Phylogenetic relationships between viral sequences showed likely pathways of transmission between populations in southern Asia and western Africa. A high degree of phylogenetic relatedness between viral variants from geographically distant populations suggests recent introductions, likely driven by global trade. These findings highlight the need for effective regulation of international trade in live parrots, particularly in regions with high parrot endemism or vulnerable taxa where P. krameri could act as a reservoir host.
Collapse
Affiliation(s)
- Deborah J Fogell
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, CT2 7NZ, U.K
- Institute of Zoology, Zoological Society of London, Regents Park, London, NW1 4RY, U.K
| | - Rowan O Martin
- World Parrot Trust, Africa Programme, Glanmor House, Hayle, Cornwall, TR27 4HB, U.K
- FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| | - Nancy Bunbury
- Seychelles Islands Foundation, Victoria, Mahé, Republic of Seychelles
| | - Becki Lawson
- Institute of Zoology, Zoological Society of London, Regents Park, London, NW1 4RY, U.K
| | - James Sells
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, CT2 7NZ, U.K
| | - Alison M McKeand
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, CT2 7NZ, U.K
| | - Vikash Tatayah
- Mauritian Wildlife Foundation, Grannum Road, Vacoas, Mauritius
| | - Cao Tien Trung
- Biology Faculty, Vinh University, 182 Le Duan Street, Vinh City, Vietnam
| | - Jim J Groombridge
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Canterbury, CT2 7NZ, U.K
| |
Collapse
|
10
|
Amery-Gale J, Marenda MS, Owens J, Eden PA, Browning GF, Devlin JM. A high prevalence of beak and feather disease virus in non-psittacine Australian birds. J Med Microbiol 2017; 66:1005-1013. [DOI: 10.1099/jmm.0.000516] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jemima Amery-Gale
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Australian Wildlife Health Centre, Healesville Sanctuary, Zoos Victoria, Badger Creek, Victoria 3777, Australia
| | - Marc S. Marenda
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Werribee, Victoria 3030, Australia
| | - Jane Owens
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul A. Eden
- Australian Wildlife Health Centre, Healesville Sanctuary, Zoos Victoria, Badger Creek, Victoria 3777, Australia
| | - Glenn F. Browning
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Joanne M. Devlin
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
11
|
R. Taylor H, Dussex N, van Heezik Y. Bridging the conservation genetics gap by identifying barriers to implementation for conservation practitioners. Glob Ecol Conserv 2017. [DOI: 10.1016/j.gecco.2017.04.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
12
|
Steel O, Kraberger S, Sikorski A, Young LM, Catchpole RJ, Stevens AJ, Ladley JJ, Coray DS, Stainton D, Dayaram A, Julian L, van Bysterveldt K, Varsani A. Circular replication-associated protein encoding DNA viruses identified in the faecal matter of various animals in New Zealand. INFECTION GENETICS AND EVOLUTION 2016; 43:151-64. [PMID: 27211884 DOI: 10.1016/j.meegid.2016.05.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/13/2022]
Abstract
In recent years, innovations in molecular techniques and sequencing technologies have resulted in a rapid expansion in the number of known viral sequences, in particular those with circular replication-associated protein (Rep)-encoding single-stranded (CRESS) DNA genomes. CRESS DNA viruses are present in the virome of many ecosystems and are known to infect a wide range of organisms. A large number of the recently identified CRESS DNA viruses cannot be classified into any known viral families, indicating that the current view of CRESS DNA viral sequence space is greatly underestimated. Animal faecal matter has proven to be a particularly useful source for sampling CRESS DNA viruses in an ecosystem, as it is cost-effective and non-invasive. In this study a viral metagenomic approach was used to explore the diversity of CRESS DNA viruses present in the faeces of domesticated and wild animals in New Zealand. Thirty-eight complete CRESS DNA viral genomes and two circular molecules (that may be defective molecules or single components of multicomponent genomes) were identified from forty-nine individual animal faecal samples. Based on shared genome organisations and sequence similarities, eighteen of the isolates were classified as gemycircularviruses and twelve isolates were classified as smacoviruses. The remaining eight isolates lack significant sequence similarity with any members of known CRESS DNA virus groups. This research adds significantly to our knowledge of CRESS DNA viral diversity in New Zealand, emphasising the prevalence of CRESS DNA viruses in nature, and reinforcing the suggestion that a large proportion of CRESS DNA viruses are yet to be identified.
Collapse
Affiliation(s)
- Olivia Steel
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Simona Kraberger
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Alyssa Sikorski
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Laura M Young
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Ryan J Catchpole
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Aaron J Stevens
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Jenny J Ladley
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Dorien S Coray
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Daisy Stainton
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Anisha Dayaram
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Laurel Julian
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Katherine van Bysterveldt
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| | - Arvind Varsani
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Structural Biology Research Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Observatory 7700, South Africa; Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, USA.
| |
Collapse
|
13
|
Fogell DJ, Martin RO, Groombridge JJ. Beak and feather disease virus in wild and captive parrots: an analysis of geographic and taxonomic distribution and methodological trends. Arch Virol 2016; 161:2059-74. [PMID: 27151279 PMCID: PMC4947100 DOI: 10.1007/s00705-016-2871-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/24/2016] [Indexed: 01/15/2023]
Abstract
Psittacine beak and feather disease (PBFD) has emerged in recent years as a major threat to wild parrot populations and is an increasing concern to aviculturists and managers of captive populations. Pathological and serological tests for screening for the presence of beak and feather disease virus (BFDV) are a critical component of efforts to manage the disease and of epidemiological studies. Since the disease was first reported in the mid-1970s, screening for BFDV has been conducted in numerous wild and captive populations. However, at present, there is no current and readily accessible synthesis of screening efforts and their results. Here, we consolidate information collected from 83 PBFD- and BFDV-based publications on the primary screening methods being used and identify important knowledge gaps regarding potential global disease hotspots. We present trends in research intensity in this field and critically discuss advances in screening techniques and their applications to both aviculture and to the management of threatened wild populations. Finally, we provide an overview of estimates of BFDV prevalence in captive and wild flocks alongside a complete list of all psittacine species in which the virus has been confirmed. Our evaluation highlights the need for standardised diagnostic tests and more emphasis on studies of wild populations, particularly in view of the intrinsic connection between global trade in companion birds and the spread of novel BFDV strains into wild populations. Increased emphasis should be placed on the screening of captive and wild parrot populations within their countries of origin across the Americas, Africa and Asia.
Collapse
Affiliation(s)
- Deborah J Fogell
- Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, CT2 7NZ, UK.
| | - Rowan O Martin
- World Parrot Trust, Glanmor House, Hayle, Cornwall, TR27 4HB, UK.,Percy FitzPatrick Institute of African Ornithology, DST/NRF Centre of Excellence, University of Cape Town, Cape Town, South Africa
| | - Jim J Groombridge
- Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, CT2 7NZ, UK
| |
Collapse
|
14
|
Knafler GJ, Ortiz-Catedral L, Jackson B, Varsani A, Grueber CE, Robertson BC, Jamieson IG. Comparison of beak and feather disease virus prevalence and immunity-associated genetic diversity over time in an island population of red-crowned parakeets. Arch Virol 2015; 161:811-20. [PMID: 26699786 DOI: 10.1007/s00705-015-2717-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 12/03/2015] [Indexed: 11/30/2022]
Abstract
Pathogen outbreaks in the wild can contribute to a population's extinction risk. Concern over the effects of pathogen outbreaks in wildlife is amplified in small, threatened populations, where degradation of genetic diversity may hinder natural selection for enhanced immunocompetence. Beak and feather disease virus (BFDV) was detected for the first time in an island population of red-crowned parakeets (Cyanoramphus novaezelandiae) in 2008 on Little Barrier Island (Hauturu-o-Toi) of New Zealand. By 2013, the prevalence of the viral infection had significantly decreased within the population. We tested whether the population of red-crowned parakeets showed a selective response to BFDV, using neutral microsatellite and two immunity-associated genetic markers, the major histocompatibility complex (MHC) and Toll-like receptors (TLRs). We found evidence for selection at viral-associated TLR3; however, the ability of TLR3 to elicit an immune response in the presence of BFDV warrants confirmation. Alternatively, because red-crowned parakeet populations are prone to fluctuations in size, the decrease in BFDV prevalence over time may be attributed to the Little Barrier Island population dropping below the density threshold for viral maintenance. Our results highlight that natural processes such as adaptation for enhanced immunocompetence and/or density fluctuations are efficient mechanisms for reducing pathogen prevalence in a threatened, isolated population.
Collapse
Affiliation(s)
- Gabrielle J Knafler
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| | - Luis Ortiz-Catedral
- Ecology and Conservation Group, Institute of Natural and Mathematical Sciences, Massey University, Private Bag 102-904, Auckland, New Zealand
| | - Bethany Jackson
- College of Veterinary Medicine, Murdoch University, Perth, WA, Australia
| | - Arvind Varsani
- Centre for Integrative Ecology, Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
- Structural Biology Research Unit, Division of Medical Biochemistry, Department of Clinical Laboratory Sciences, University of Cape Town, Rondebosch, Cape Town, 7701, South Africa
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, USA
| | - Catherine E Grueber
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, Australia
- San Diego Zoo Global, San Diego, USA
| | - Bruce C Robertson
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Ian G Jamieson
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| |
Collapse
|