1
|
Li LL, Ma XH, Nan XW, Wang JL, Zhao J, Sun XM, Li JS, Zheng GS, Duan ZJ. Diversity of Hepatitis E Viruses in Rats in Yunnan Province and the Inner Mongolia Autonomous Region of China. Viruses 2025; 17:490. [PMID: 40284933 PMCID: PMC12031282 DOI: 10.3390/v17040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 04/29/2025] Open
Abstract
Hepatitis E virus (HEV) is one of the most common pathogens causing acute hepatitis. Rat HEV, a member of the genus Rocahepevirus, infects mainly rat but can also cause human zoonotic infection. A survey of the virome of rats via next-generation sequencing (NGS) was performed in Yunnan Province and Inner Mongolia in China. Further screening of rat HEV was conducted by nested PCR. The complete genome of six representative strains were obtained by NGS and RT-PCR. The virome analysis revealed that multiple reads were annotated as Hepeviridae. The screening results showed that HEV was detected in 9.6% (34 of 355) of the rat samples and phylogenetically classified into three lineages. The sequences from Yunnan clustered with Rocahepevirus ratti, named the YnRHEV group, and those from Inner Mongolia were separated into two lineages, named the NmRHEV-1 and NmRHEV-2 groups. Complete sequence analysis showed that YnRHEV had very high sequence identity to a human HEV strain identified in immunosuppressed patients (88.7% to 94.3%), a reminder of the risk of cross-species transmission of rodent HEV. Notably, NmRHEV-1 and the most closely related rat HEV, RtCb-HEV/HeB2014, were divergent from other HEV. The phylogenetic analyses and lower sequence identities of the complete genome suggested the NmRHEV-1 to be a novel putative genus of the subfamily Orthohepevirinae. NmRHEV-2 shared the highest sequence identities (70.6% to 72.0%) with the species Rocahepevirus eothenomi, which may represent a putative novel genotype. This study revealed high genetic diversity of Hepeviridae in rats in China and a potentially zoonotic Rocahepevirus ratti strain.
Collapse
Affiliation(s)
- Li-Li Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Beijing 102206, China; (L.-L.L.); (X.-M.S.); (J.-S.L.)
- NHC Key Laboratory for Medical Virology and Viral Diseases, Beijing 102206, China
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China;
| | - Xiao-Hua Ma
- GANSU Provincial Centers for Disease Control and Prevention, Lanzhou 730000, China;
| | - Xiao-Wei Nan
- Inner Mongolia Autonomous Region Center for Disease Control and Prevention (Inner Mongolia Autonomous Region Academy of Preventive Medicine), Hohhot 010080, China;
| | - Jing-Lin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming 650224, China;
| | - Jing Zhao
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China;
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiao-Man Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Beijing 102206, China; (L.-L.L.); (X.-M.S.); (J.-S.L.)
- NHC Key Laboratory for Medical Virology and Viral Diseases, Beijing 102206, China
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China;
| | - Jin-Song Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Beijing 102206, China; (L.-L.L.); (X.-M.S.); (J.-S.L.)
- NHC Key Laboratory for Medical Virology and Viral Diseases, Beijing 102206, China
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China;
| | - Gui-Sen Zheng
- School of Public Health, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Zhao-Jun Duan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Beijing 102206, China; (L.-L.L.); (X.-M.S.); (J.-S.L.)
- NHC Key Laboratory for Medical Virology and Viral Diseases, Beijing 102206, China
- National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China;
| |
Collapse
|
2
|
Han X, Liu Z, Jiang Z, Zhao S, Hornok S, Yang M, Liu G, Wang Y. Detection of spotted fever group rickettsiae and Coxiella burnetii in long-tailed ground squirrels ( Spermophilus undulatus) and their ectoparasites. Front Vet Sci 2025; 12:1553152. [PMID: 40115830 PMCID: PMC11923762 DOI: 10.3389/fvets.2025.1553152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/25/2025] [Indexed: 03/23/2025] Open
Abstract
Long-tailed ground squirrels (LTGRs, Spermophilus undulatus) are known as reservoirs of multiple arthropod-borne pathogens, such as Yersinia pestis and Bartonella rochalimae. However, data on the prevalence of spotted fever group rickettsiae (SFGR) and Coxiella burnetii in LTGRs and its ectoparasites are limited. In two alpine regions of Xinjiang Uygur Autonomous Region (XUAR, northwestern China), a total of 346 samples were collected from 142 LTGRs, including 142 livers and 204 pooled ectoparasites (Citellophilus tesquorum dzetysuensis: 120 pools of 484 fleas; Frontopsylla elatoides elatoides: 19 pools of 71 fleas; Neopsylla mana: 1 pool of 4 fleas; and Linognathoides urocitelli: 64 pools of 865 lice). From these samples, the DNA was extracted, followed by PCR amplification of different genetic markers. Particularly, genes encoding the outer membrane protein A and B (ompA, ompB), citrate synthase (gltA), and surface cell antigen 1 (sca1) were used to identify the SFGR. Additionly, the capsular outer membrane protein (Com1) gene and insertion sequence (IS1111) genes were used to detect Coxiella. Rickettsia sibirica subsp. sibirica, Rickettsia felis, and C. burnetii were detected in LTGRs, as well as in flea and louse pools. Rickettsia raoultii was found in LTGRs and flea pools. Furthermore, Rickettsia slovaca was also identified in the flea pools. This study provides molecular evidence for the occurrence of SFGR and C. burnetii in LTGRs and their ectoparasites. These findings suggest that R. sibirica, R. slovaca, R. raoultii, R. felis and C. burnetii are transmitted between LTGRs (as potential reservoirs) and their fleas and lice (as potential vectors).
Collapse
Affiliation(s)
- Xiaoshuang Han
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Ziheng Liu
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Zhixian Jiang
- Department of Forest, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Shanshan Zhao
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Sándor Hornok
- Department of Parasitology and Zoology, University of Veterinary Medicine, Budapest, Hungary
- HUN-REN-UVMB Climate Change: New Blood-Sucking Parasites and Vector-Borne Pathogens Research Group, Budapest, Hungary
| | - Meihua Yang
- Department of Forest, Agriculture College, Shihezi University, Shihezi, Xinjiang, China
| | - Gang Liu
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Yuanzhi Wang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
3
|
Birlem GE, Sita A, Gularte JS, de Souza da Silva D, Demoliner M, de Almeida PR, Fleck JD, Spilki FR, Dos Santos Higino SS, de Azevedo SS, Weber MN. Detection of a novel hepacivirus in wild cavies (Cavia aperea aperea). Arch Virol 2024; 170:19. [PMID: 39681797 DOI: 10.1007/s00705-024-06199-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/06/2024] [Indexed: 12/18/2024]
Abstract
Hepacivirus is a genus of RNA viruses within the family Flaviviridae of which hepatitis C virus (HCV) is the prototype. Several hepaciviruses have been identified in mammals, including rodents of multiple families. Each rodent hepacivirus described so far has been found only in members of a single rodent species. Here, we report the discovery and characterization of a putative new genotype of an unclassified rodent hepacivirus in a wild cavy (Cavia aperea aperea) that was reported previously in Proechimys semispinosus. This virus was detected in one out of 14 (7.14%) wild cavy sera tested by RT-PCR. The complete genome sequence was obtained by high-throughput sequencing using an Illumina MiSeq platform. This is the first report of a hepacivirus in a member of the family Caviidae. Our findings show that members of different rodent species and even families can be infected by hepaciviruses of the same species. The identification and characterization of novel hepaciviruses might lead to the discovery of reservoirs of viruses that are genetically related to human pathogens, and this can help to elucidate the evolutionary origins of HCV and other hepaciviruses.
Collapse
Affiliation(s)
| | - Alexandre Sita
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Juliana Schons Gularte
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, Brazil
- Laboratório de Imunologia e Biologia Molecular, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Meriane Demoliner
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | | | - Juliane Deise Fleck
- Laboratório de Microbiologia Molecular, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | | | | | - Sergio Santos de Azevedo
- Unidade Acadêmica de Medicina Veterinária, Universidade Federal de Campina Grande (UFCG), Patos, PB, Brazil
| | - Matheus Nunes Weber
- Laboratório de Imunologia e Biologia Molecular, Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
4
|
Han X, Zhao S, Liu Z, Zhang Y, Zhao G, Zhang C, Tang L, Cui L, Wang Y. Bartonella, Blechomonas and Trypanosoma in fleas from the long-tailed ground squirrel ( Spermophilus undulatus) in northwestern China. Int J Parasitol Parasites Wildl 2024; 24:100958. [PMID: 39040597 PMCID: PMC11261052 DOI: 10.1016/j.ijppaw.2024.100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/23/2024] [Accepted: 06/23/2024] [Indexed: 07/24/2024]
Abstract
Fleas are known to be vectors for a variety of pathogens in veterinary medicine. However, no information is available on the presence of Bartonella and Trypanosomatidae in fleas of the long-tailed ground squirrel (LTGR, Spermophilus undulatus). The present study shows detection of these pathogens in LTGR fleas. During 2022-2023, a total of 396 fleas were collected from 91 LTGRs in 4 alpine regions of Xinjiang Uygur Autonomous Region (northwestern China) and grouped into 54 flea pools. Flea species were identified according to morphological characteristics and molecular data. In addition, all flea samples were analyzed for Bartonella with amplification and sequencing of a 380-bp part of the gltA gene and Trypanosomatidae with targeting the 18S rRNA (850-bp) and gGAPDH (820-bp) genes. The flea species included Frontopsylla elatoides elatoides (203), Neopsylla mana (49), and Citellophilus tesquorum dzetysuensis (144). Of 54 flea pools, seven (12.96%) tested positive for Bartonella, and three (5.56%) were positive for Trypanosomatidae. Based on BLASTn and phylogenetic analyses, i) Bartonella washoensis in F. elatoides elatoides and C. tesquorum dzetysuensis, and Bartonella rochalimae in F. elatoides elatoides were identified. Interestingly, a new haplotype within the species Ba. washoensis was discovered in C. tesquorum dzetysuensis; and ii) Blechomonas luni was confirmed in C. tesquorum dzetysuensis and Trypanosoma otospermophili in F. elatoides elatoides. Two Bartonella species and two Trypanosomatidae members were discovered for the first time in fleas from LTGRs. This study broadens our understanding of the geographic distribution and potential vectors for Bartonella and Trypanosomatidae.
Collapse
Affiliation(s)
- Xiaoshuang Han
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
| | - Shanshan Zhao
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
| | - Ziheng Liu
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
| | - Yujiang Zhang
- Xinjiang Key Laboratory of Vector-borne Infectious Diseases, People's Republic of China
| | - Guoyu Zhao
- Xinjiang Key Laboratory of Vector-borne Infectious Diseases, People's Republic of China
| | - Chunju Zhang
- Tumushuk City Centers for Disease Control and Prevention, 17 Qianhai East Street, Tumushuk City, Xinjiang Uygur Autonomous Region, 843806, People's Republic of China
| | - Lijuan Tang
- Bayingol Vocational and Technical College, People's Republic of China
| | - Lin Cui
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
| | - Yuanzhi Wang
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health Security, the XPCC, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi City, Xinjiang Uygur Autonomous Region, 832002, People's Republic of China
| |
Collapse
|
5
|
Chen JT, Chen KJ, Wu KW, Yi SH, Shao JW. Identification and epidemiology of a novel Hepacivirus in domestic ducks in Hunan province, China. Front Vet Sci 2024; 11:1389264. [PMID: 38756518 PMCID: PMC11096584 DOI: 10.3389/fvets.2024.1389264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/18/2024] Open
Abstract
The genus Hepacivirus comprises a diverse range of genetically distinct viruses that infect both mammalian and non-mammalian hosts, with some posing significant risks to human and animal health. Members of the genus Hepacivirus are typically classified into fourteen species (Hepacivirus A-N), with ongoing discoveries of novel hepaciviruses like Hepacivirus P and Hepacivirus Q. In this study, a novel Hepacivirus was identified in duck liver samples collected from live poultry markets in Hunan province, China, using unbiased high-throughput sequencing and meta-transcriptomic analysis. Through sequence comparison and phylogenetic analysis, it was determined that this newly discovered Hepacivirus belongs to a new subspecies of Hepacivirus Q. Moreover, molecular screening revealed the widespread circulation of this novel virus among duck populations in various regions of Hunan province, with an overall prevalence of 13.3%. These findings significantly enhence our understanding of the genetic diversity and evolution of hepaciviruses, emphasizing the presence of genetically diverse hepaciviruses duck populations in China. Given the broad geographical distribution and relatively high positive rate, further investigations are essential to explore any potential associations between Hepacivirus Q and duck-related diseases.
Collapse
Affiliation(s)
- Jin-Tao Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Kang-Jing Chen
- School of Medical Technology, Shangqiu Medical College, Shangqiu, China
| | - Kang-Wei Wu
- Department of Microbial Testing, Hengyang Center for Disease Control & Prevention, Hengyang, China
| | - Shan-Hong Yi
- School of Life Science and Engineering, Foshan University, Foshan, China
| | - Jian-Wei Shao
- School of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
6
|
Guo L, Li B, Han P, Dong N, Zhu Y, Li F, Si H, Shi Z, Wang B, Yang X, Zhang Y. Identification of a Novel Hepacivirus in Southeast Asian Shrew ( Crocidura fuliginosa) from Yunnan Province, China. Pathogens 2023; 12:1400. [PMID: 38133285 PMCID: PMC10745850 DOI: 10.3390/pathogens12121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/18/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023] Open
Abstract
The genus Hepacivirus contains single-stranded positive-sense RNA viruses belonging to the family Flaviviridae, which comprises 14 species. These 14 hepaciviruses have been found in different mammals, such as primates, dogs, bats, and rodents. To date, Hepacivirus has not been reported in the shrew genus of Crocidura. To study the prevalence and genetic evolution of Hepacivirus in small mammals in Yunnan Province, China, molecular detection of Hepacivirus in small mammals from Yunnan Province during 2016 and 2017 was performed using reverse-transcription polymerase chain reaction (RT-PCR). Our results showed that the overall infection rate of Hepacivirus in small mammals was 0.12% (2/1602), and the host animal was the Southeast Asian shrew (Crocidura fuliginosa) (12.5%, 2/16). Quantitative real-time PCR showed that Hepacivirus had the highest viral RNA copy number in the liver. Phylogenetic analysis revealed that the hepaciviruses obtained in this study does not belong to any designated species of hepaciviruses and forms an independent clade. To conclude, a novel hepacivirus was identified for the first time in C. fuliginosa specimens from Yunnan Province, China. This study expands the host range and viral diversity of hepaciviruses.
Collapse
Affiliation(s)
- Ling Guo
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
- Chongqing Jiangbei District Center for Disease Control and Prevention, Chongqing 400020, China
| | - Bei Li
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (B.L.); (Y.Z.); (H.S.); (Z.S.)
| | - Peiyu Han
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
| | - Na Dong
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
| | - Yan Zhu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (B.L.); (Y.Z.); (H.S.); (Z.S.)
| | - Fuli Li
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
| | - Haorui Si
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (B.L.); (Y.Z.); (H.S.); (Z.S.)
| | - Zhengli Shi
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (B.L.); (Y.Z.); (H.S.); (Z.S.)
| | - Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Xinglou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650023, China
| | - Yunzhi Zhang
- Yunnan Province Key Laboratory of Anti-Pathogenic Plant Resources Screening, Yunnan Province Key University Laboratory of Zoonoses Cross-Border Prevention and Quarantine, Institute of Preventive Medicine, School of Public Health, Dali University, Dali 671000, China; (L.G.); (P.H.); (N.D.); (F.L.)
| |
Collapse
|
7
|
Severe Acute Hepatitis Outbreaks Associated with a Novel Hepacivirus in Rhizomys pruinosus in Hainan, China. J Virol 2022; 96:e0078222. [PMID: 36005760 PMCID: PMC9472637 DOI: 10.1128/jvi.00782-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the genus Hepacivirus have a broad range of hosts, with at least 14 species identified. To date, a highly pathogenic hepacivirus causing severe disease in animals has not been found. Here, by using high-throughput sequencing, a new hepacivirus was identified as the dominant and highly pathogenic virus in severe acute hepatitis outbreaks in bamboo rats (Rhizomys pruinosus), with ≈80% mortality; this virus emerged in February 2020 in two bamboo rat farms in China. Hepaciviral genome copies in bamboo rat liver were significantly higher than in other organs. Genomic sequences of hepacivirus strains from 12 sick bamboo rats were found to share 85.3 to 100% nucleotide (nt) identity and 94.9 to 100% amino acid (aa) identity and to share 79.7 to 87.8% nt and 90.4 to 97.8% aa identities with previously reported bamboo rat hepaciviruses of Vietnam and China. Sequence analysis further revealed the simultaneous circulation of genetically divergent hepacivirus variants within the two outbreaks. Phylogenetic analysis showed that hepacivirus strains from the present and previous studies formed an independent clade comprised of at least two genotypes, clearly different from all other known species, suggesting a novel species within the genus Hepacivirus. This is the first report of a non-human-infecting hepacivirus causing potentially fatal infection of bamboo rats, and the associated hepatitis in the animals potentially can be used to develop a surrogate model for the study of hepatitis C virus infection in humans and for the development of therapeutic strategies. IMPORTANCE Members of the genus Hepacivirus have a broad host range, with at least 14 species identified, but none is highly pathogenic to its host except for hepatitis C virus, which causes severe liver diseases in humans. In this study, a new liver-tropic hepacivirus species was identified by high-throughput sequencing as the pathogen associated with two outbreaks of severely acute hepatitis in hoary bamboo rats (Rhizomys pruinosus) on two farms in Hainan Province, China; this is the first reported highly pathogenic animal hepacivirus to our knowledge. Further phylogenetic analysis suggested that the hepaciviruses derived from hoary bamboo rats in either the current or previous studies represent a novel species within the genus Hepacivirus. This finding is a breakthrough that has significantly updated our understanding about the pathogenicity of animal hepaciviruses, and the hepacivirus-associated hepatitis in bamboo rats may have a use as an animal infection model to understand HCV infection and develop therapeutic strategies.
Collapse
|
8
|
de Martinis C, Cardillo L, Esposito C, Viscardi M, Barca L, Cavallo S, D'Alessio N, Martella V, Fusco G. First identification of bovine hepacivirus in wild boars. Sci Rep 2022; 12:11678. [PMID: 35804025 PMCID: PMC9270363 DOI: 10.1038/s41598-022-15928-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/01/2022] [Indexed: 11/11/2022] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic hepatitis, cirrhosis and hepatocellular carcinoma in humans. Humans were long considered the only hosts of Hepacivirus. Recently HCV-like sequences have been found in several animal species. Hepaciviruses are considered species-specific but a wider host range and a zoonotic role has been hypothesized. We report the first detection of bovine hepacivirus (BovHepV) sequences in wild boars. A total of 310 wild boars hunted in Campania region were investigated with a pan-hepacivirus nested-PCR protocol for the NS3 gene. Hepacivirus RNA was detected in 5.8% of the animals. Sequence and phylogenetic analysis showed high homology with BovHepV subtype F, with nucleotide identity of 99%. The positive wild boars were georeferenced, revealing high density of livestock farms, with no clear distinction between animal husbandry and hunting areas. These findings might suggest the ability of BovHepV to cross the host-species barrier and infect wild boars.
Collapse
Affiliation(s)
- Claudio de Martinis
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy
| | - Lorena Cardillo
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy.
| | - Claudia Esposito
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy
| | - Maurizio Viscardi
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy
| | - Lorella Barca
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Calabria Section, Cosenza, Italy
| | - Stefania Cavallo
- Department of Epidemiologic and Biostatistic Regional Observatory (OREB), Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Naples, Italy
| | - Nicola D'Alessio
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy
| | - Vito Martella
- Department of Veterinary Medicine, Aldo Moro" University, Bari, Italy
| | - Giovanna Fusco
- Unit of Exotic and Vector-Borne Diseases, Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute, 2, 80055, Portici, Naples, Italy
| |
Collapse
|
9
|
Expanded Diversity and Host Range of Bovine Hepacivirus—Genomic and Serological Evidence in Domestic and Wild Ruminant Species. Viruses 2022; 14:v14071457. [PMID: 35891438 PMCID: PMC9319978 DOI: 10.3390/v14071457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/10/2022] Open
Abstract
The hepatitis C virus (HCV)-related bovine hepacivirus (BovHepV) can cause acute as well as persistent infections in cattle. The true clinical relevance of the virus is not yet known. As reliable antibody detection methods are lacking and prevalence studies have only been conducted in cattle and few countries to date, the true distribution, genetic diversity, and host range is probably greatly underestimated. In this study, we applied several RT-PCR methods and a nano-luciferase-based immunoprecipitation system (LIPS) assay to analyze bovine serum samples from Bulgaria as well as wild ruminant sera from Germany and the Czech Republic. Using these methods, BovHepV infections were confirmed in Bulgarian cattle, with viral genomes detected in 6.9% and serological reactions against the BovHepV NS3 helicase domain in 10% of bovine serum samples. Genetic analysis demonstrated co-circulation of highly diverse BovHepV strains in Bulgarian cattle, and three novel BovHepV subtypes within the genotype 1 could be defined. Furthermore, application of a nested RT-PCR led to the first description of a BovHepV variant (genotype 2) in a wild ruminant species. The results of this study significantly enhance our knowledge of BovHepV distribution, genetic diversity, and host range.
Collapse
|
10
|
A Highly Divergent Hepacivirus Identified in Domestic Ducks Further Reveals the Genetic Diversity of Hepaciviruses. Viruses 2022; 14:v14020371. [PMID: 35215964 PMCID: PMC8879383 DOI: 10.3390/v14020371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/18/2022] Open
Abstract
Hepaciviruses represent a group of viruses that pose a significant threat to the health of humans and animals. During the last decade, new members of the genus Hepacivirus have been identified in various host species worldwide, indicating the widespread distribution of genetically diversified hepaciviruses among animals. By applying unbiased high-throughput sequencing, a novel hepacivirus, provisionally designated Hepacivirus Q, was discovered in duck liver samples collected in Guangdong province of China. Genetic analysis revealed that the complete polyprotein of Hepacivirus Q shares 23.9–46.6% amino acid identity with other representatives of the genus Hepacivirus. Considering the species demarcation criteria for hepaciviruses, Hepacivirus Q should be regarded as a novel hepacivirus species of the genus Hepacivirus within the family Flaviviridae. Phylogenetic analyses also indicate the large genetic distance between Hepacivirus Q and other known hepaciviruses. Molecular detection of this novel hepacivirus showed an overall prevalence of 15.9% in duck populations in partial areas of Guangdong province. These results expand knowledge about the genetic diversity and evolution of hepaciviruses and indicate that genetically divergent hepaciviruses are circulating in duck populations in China.
Collapse
|
11
|
An CH, Li J, Wang YT, Nie SM, Chang WH, Zhou H, Xu L, Sun YX, Shi WF, Li CX. Identification of a Novel Hepacivirus in Mongolian Gerbil (Meriones unguiculatus) from Shaanxi, China. Virol Sin 2022; 37:307-310. [PMID: 35248515 PMCID: PMC9170912 DOI: 10.1016/j.virs.2022.01.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/10/2021] [Indexed: 01/01/2023] Open
Abstract
The first hepacivirus detected in Mongolian gerbils from a plague zones in China. A novel hepacivirus closely related to hepacivirus E and F. Mongolian gerbils could be a potential animal model for hepacivirus pathogenicity. Extending the genetic diversity and host range of hepaciviruses.
Collapse
|
12
|
The Bank Vole (Clethrionomys glareolus)—Small Animal Model for Hepacivirus Infection. Viruses 2021; 13:v13122421. [PMID: 34960690 PMCID: PMC8708279 DOI: 10.3390/v13122421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 11/29/2021] [Indexed: 12/15/2022] Open
Abstract
Many people worldwide suffer from hepatitis C virus (HCV) infection, which is frequently persistent. The lack of efficient vaccines against HCV and the unavailability of or limited compliance with existing antiviral therapies is problematic for health care systems worldwide. Improved small animal models would support further hepacivirus research, including development of vaccines and novel antivirals. The recent discovery of several mammalian hepaciviruses may facilitate such research. In this study, we demonstrated that bank voles (Clethrionomys glareolus) were susceptible to bank vole-associated Hepacivirus F and Hepacivirus J strains, based on the detection of hepaciviral RNA in 52 of 55 experimentally inoculated voles. In contrast, interferon α/β receptor deficient C57/Bl6 mice were resistant to infection with both bank vole hepaciviruses (BvHVs). The highest viral genome loads in infected voles were detected in the liver, and viral RNA was visualized by in situ hybridization in hepatocytes, confirming a marked hepatotropism. Furthermore, liver lesions in infected voles resembled those of HCV infection in humans. In conclusion, infection with both BvHVs in their natural hosts shares striking similarities to HCV infection in humans and may represent promising small animal models for this important human disease.
Collapse
|
13
|
Shao JW, Guo LY, Yuan YX, Ma J, Chen JM, Liu Q. A Novel Subtype of Bovine Hepacivirus Identified in Ticks Reveals the Genetic Diversity and Evolution of Bovine Hepacivirus. Viruses 2021; 13:v13112206. [PMID: 34835012 PMCID: PMC8623979 DOI: 10.3390/v13112206] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 12/15/2022] Open
Abstract
Hepaciviruses represent a group of viruses that pose a significant threat to the health of humans and animals. New members of the genus Hepacivirus in the family Flaviviridae have recently been identified in a wide variety of host species worldwide. Similar to the Hepatitis C virus (HCV), bovine hepacivirus (BovHepV) is hepatotropic and causes acute or persistent infections in cattle. BovHepVs are distributed worldwide and classified into two genotypes with seven subtypes in genotype 1. In this study, three BovHepV strains were identified in the samples of ticks sucking blood on cattle in the Guangdong province of China, through unbiased high-throughput sequencing. Genetic analysis revealed the polyprotein-coding gene of these viral sequences herein shared 67.7–84.8% nt identity and 76.1–95.6% aa identity with other BovHepVs identified worldwide. As per the demarcation criteria adopted for the genotyping and subtyping of HCV, these three BovHepV strains belonged to a novel subtype within the genotype 1. Additionally, purifying selection was the dominant evolutionary pressure acting on the genomes of BovHepV, and genetic recombination was not common among BovHepVs. These results expand the knowledge about the genetic diversity and evolution of BovHepV distributed globally, and also indicate genetically divergent BovHepV strains were co-circulating in cattle populations in China.
Collapse
|
14
|
Tirera S, de Thoisy B, Donato D, Bouchier C, Lacoste V, Franc A, Lavergne A. The Influence of Habitat on Viral Diversity in Neotropical Rodent Hosts. Viruses 2021; 13:v13091690. [PMID: 34578272 PMCID: PMC8472065 DOI: 10.3390/v13091690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/15/2021] [Indexed: 12/23/2022] Open
Abstract
Rodents are important reservoirs of numerous viruses, some of which have significant impacts on public health. Ecosystem disturbances and decreased host species richness have been associated with the emergence of zoonotic diseases. In this study, we aimed at (a) characterizing the viral diversity in seven neotropical rodent species living in four types of habitats and (b) exploring how the extent of environmental disturbance influences this diversity. Through a metagenomic approach, we identified 77,767 viral sequences from spleen, kidney, and serum samples. These viral sequences were attributed to 27 viral families known to infect vertebrates, invertebrates, plants, and amoeba. Viral diversities were greater in pristine habitats compared with disturbed ones, and lowest in peri-urban areas. High viral richness was observed in savannah areas. Differences in these diversities were explained by rare viruses that were generally more frequent in pristine forest and savannah habitats. Moreover, changes in the ecology and behavior of rodent hosts, in a given habitat, such as modifications to the diet in disturbed vs. pristine forests, are major determinants of viral composition. Lastly, the phylogenetic relationships of four vertebrate-related viral families (Polyomaviridae, Flaviviridae, Togaviridae, and Phenuiviridae) highlighted the wide diversity of these viral families, and in some cases, a potential risk of transmission to humans. All these findings provide significant insights into the diversity of rodent viruses in Amazonia, and emphasize that habitats and the host’s dietary ecology may drive viral diversity. Linking viral richness and abundance to the ecology of their hosts and their responses to habitat disturbance could be the starting point for a better understanding of viral emergence and for future management of ecosystems.
Collapse
Affiliation(s)
- Sourakhata Tirera
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
| | - Benoit de Thoisy
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
| | - Damien Donato
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
| | | | - Vincent Lacoste
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
- Département de Virologie, Institut Pasteur, 75015 Paris, France
- Arbovirus & Emerging Viral Diseases Laboratory, Institut Pasteur du Laos, Vientiane 3560, Laos
| | - Alain Franc
- UMR BIOGECO, INRAE, University Bordeaux, 33612 Cestas, France;
- Pleiade, EPC INRIA-INRAE-CNRS, University Bordeaux, 33405 Talence, France
| | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, BP 6010, 97306 Cayenne, France; (S.T.); (B.d.T.); (D.D.); (V.L.)
- Correspondence:
| |
Collapse
|
15
|
Moreira-Soto A, Arroyo-Murillo F, Sander AL, Rasche A, Corman V, Tegtmeyer B, Steinmann E, Corrales-Aguilar E, Wieseke N, Avey-Arroyo J, Drexler JF. Cross-order host switches of hepatitis C-related viruses illustrated by a novel hepacivirus from sloths. Virus Evol 2020; 6:veaa033. [PMID: 32704383 PMCID: PMC7368370 DOI: 10.1093/ve/veaa033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The genealogy of the hepatitis C virus (HCV) and the genus Hepacivirus remains elusive despite numerous recently discovered animal hepaciviruses (HVs). Viruses from evolutionarily ancient mammals might elucidate the HV macro-evolutionary patterns. Here, we investigated sixty-seven two-toed and nine three-toed sloths from Costa Rica for HVs using molecular and serological tools. A novel sloth HV was detected by reverse transcription polymerase chain reaction (RT-PCR) in three-toed sloths (2/9, 22.2%; 95% confidence interval (CI), 5.3-55.7). Genomic characterization revealed typical HV features including overall polyprotein gene structure, a type 4 internal ribosomal entry site in the viral 5'-genome terminus, an A-U-rich region and X-tail structure in the viral 3'-genome terminus. Different from other animal HVs, HV seropositivity in two-toed sloths was low at 4.5 per cent (3/67; CI, 1.0-12.9), whereas the RT-PCR-positive three-toed sloths were seronegative. Limited cross-reactivity of the serological assay implied exposure of seropositive two-toed sloths to HVs of unknown origin and recent infections in RT-PCR-positive animals preceding seroconversion. Recent infections were consistent with only 9 nucleotide exchanges between the two sloth HVs, located predominantly within the E1/E2 encoding regions. Translated sequence distances of NS3 and NS5 proteins and host comparisons suggested that the sloth HV represents a novel HV species. Event- and sequence distance-based reconciliations of phylogenies of HVs and of their hosts revealed complex macro-evolutionary patterns, including both long-term evolutionary associations and host switches, most strikingly from rodents into sloths. Ancestral state reconstructions corroborated rodents as predominant sources of HV host switches during the genealogy of extant HVs. Sequence distance comparisons, partial conservation of critical amino acid residues associated with HV entry and selection pressure signatures of host genes encoding entry and antiviral protein orthologs were consistent with HV host switches between genetically divergent mammals, including the projected host switch from rodents into sloths. Structural comparison of HCV and sloth HV E2 proteins suggested conserved modes of hepaciviral entry. Our data corroborate complex macro-evolutionary patterns shaping the genus Hepacivirus, highlight that host switches are possible across highly diverse host taxa, and elucidate a prominent role of rodent hosts during the Hepacivirus genealogy.
Collapse
Affiliation(s)
- Andres Moreira-Soto
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,Virology-CIET, Faculty of Microbiology, University of Costa Rica, San José, Costa Rica
| | | | - Anna-Lena Sander
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Andrea Rasche
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Victor Corman
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany
| | - Birthe Tegtmeyer
- Institute for Experimental Virology, TWINCORE Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover 30625, Germany
| | - Eike Steinmann
- Department of Molecular and Medical Virology, Faculty of Medicine, Ruhr-University Bochum, Bochum 44801, Germany
| | | | - Nicolas Wieseke
- Swarm Intelligence and Complex Systems Group, Department of Computer Science, Leipzig University, Leipzig, Germany
| | | | - Jan Felix Drexler
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin 10117, Germany.,German Centre for Infection Research (DZIF), Germany
| |
Collapse
|