1
|
Peng Z, Lv H, Zhang H, Zhao L, Li H, He Y, Zhao K, Qiao H, Song Y, Bian C. Molecular Epidemic Characteristics and Genetic Evolution of Porcine Circovirus Type 2 in Henan, China. Vet Sci 2025; 12:343. [PMID: 40284845 PMCID: PMC12031534 DOI: 10.3390/vetsci12040343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
The widespread distribution and genetic diversity of porcine circovirus type 2 (PCV2) seriously threatens the swine industry worldwide. This study investigates the molecular epidemiology of PCV2 in Henan Province (2020-2023) through PCR screening (385 samples) and whole-genome sequencing (34 strains). The overall detection rate was 71.17% (274/385), with annual rates of 81.16% (112/138) in 2020, 72.41% (84/116) in 2021, 62.50% (55/88) in 2022, and 53.49% (23/43) in 2023, indicating a declining trend. Phylogenetic analysis revealed the dominance of the PCV2d genotype, comprising 82.4% (28/34) of sequenced strains. Evolutionary analysis identified strong negative selection pressure on ORF2, with an elevated substitution rate of 1.098 × 10-3 ssy. These findings provide critical insights into the predominance and adaptive evolution of PCV2d, and significantly improve our understanding of its genetic diversity and evolutionary dynamics.
Collapse
Affiliation(s)
- Zhifeng Peng
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (Z.P.); (H.L.); (H.Z.); (L.Z.); (K.Z.); (H.Q.)
| | - Huifang Lv
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (Z.P.); (H.L.); (H.Z.); (L.Z.); (K.Z.); (H.Q.)
| | - Han Zhang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (Z.P.); (H.L.); (H.Z.); (L.Z.); (K.Z.); (H.Q.)
| | - Li Zhao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (Z.P.); (H.L.); (H.Z.); (L.Z.); (K.Z.); (H.Q.)
| | - Huawei Li
- Institute of Animal Product Quality and Safety Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China;
| | - Yanyu He
- The School of Food Technology and Nature Science, Massey University, Palmerston North 4410, New Zealand;
| | - Kangdi Zhao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (Z.P.); (H.L.); (H.Z.); (L.Z.); (K.Z.); (H.Q.)
- College of Marine Sciences, South China Agriculture University, Guangzhou 510642, China
| | - Hongxing Qiao
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (Z.P.); (H.L.); (H.Z.); (L.Z.); (K.Z.); (H.Q.)
| | - Yuzhen Song
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (Z.P.); (H.L.); (H.Z.); (L.Z.); (K.Z.); (H.Q.)
| | - Chuanzhou Bian
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China; (Z.P.); (H.L.); (H.Z.); (L.Z.); (K.Z.); (H.Q.)
| |
Collapse
|
2
|
Yan YR, Sun YH. Genotypic diversity and immunological implications of porcine circovirus: Inspiration from PCV1 to PCV4. Microb Pathog 2024; 196:106997. [PMID: 39369754 DOI: 10.1016/j.micpath.2024.106997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 09/16/2024] [Accepted: 10/02/2024] [Indexed: 10/08/2024]
Abstract
Porcine circovirus (PCV) is a group of DNA viruses that cause diseases in pigs, with multiple genotypes ranging from PCV1 to PCV4. PCV1 is generally considered non-pathogenic, while PCV2 can cause severe immune system damage, especially associated with porcine multisystemic wasting syndrome (PMWS). PCV2 has a genetic homology of about 68 % but differs from PCV1 in antigenicity and phenotype. PCV3 and PCV4 have lower genetic homology with PCV1 and PCV2, with limited research available on their pathogenicity. During virus infection, the host's innate immune system detects PCVs through pattern recognition receptors (PRRs) like TLRs and NLRs. PCV disrupts immune pathways, including interferon and NF-κB pathways, aiding viral replication and causing immunosuppression. This review systematically compares the characteristics and pathogenicity of different genotypes of PCV and their interactions with the host's immune system, aiming to better understand the mechanisms of PCV infection and provide a theoretical basis for prevention and treatment.
Collapse
Affiliation(s)
- You-Rong Yan
- Jiangsu Agri-animal Husbandry Vocational College, No. 8 Fenghuang East Road, Hailing District, Taizhou City, Jiangsu Province, 225300, China.
| | - Ying-Hui Sun
- Shanghai Academy of Agricultural Sciences, No.2901 Beidi Road, Minhang District, Shanghai, 201106, China
| |
Collapse
|
3
|
Yang J, Kim CH, Jang G, Lee C. Molecular epidemiological surveillance and complete genome analysis of porcine circoviruses in wild boars ( Sus scrofa) in Gyeongnam Province, South Korea. J Vet Sci 2024; 25:e79. [PMID: 39608773 DOI: 10.4142/jvs.24252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024] Open
Abstract
IMPORTANCE Porcine circovirus (PCV) is a global concern due to its financial impact on the pig industry. Molecular epidemiology of PCV2 and PCV3 in wild boars is essential for understanding viral dispersal and evolution in the wild boar population. OBJECTIVE This study aimed to assess the prevalence and genotypic traits of PCV2 and PCV3 in wild boars in the Gyeongnam region. METHODS Serum samples from wild boars in Gyeongnam Province were screened for PCV2 and PCV3, and polymerase chain reaction-positive samples were further subjected to genotyping and whole-genome sequencing of PCV2 and PCV3. RESULTS Thirty-eight samples tested positive for PCV2, 7 for PCV3, and 2 for PCV2 and PCV3 (coinfection). PCV2d and PCV3b are the dominant genotypes, causing PCV2 and PCV3 coinfections. Wild boar PCV2 and PCV3 viruses closely resemble their corresponding genotypic strains circulating in South Korea. CONCLUSIONS AND RELEVANCE The circulation of PCV2 and/or PCV3 in wild species poses an additional challenge for commercial pig farming due to potential contact with infected wild boars. Our findings highlight the necessity for active monitoring and surveillance of wild boars and the enforcement of stringent biosecurity measures on commercial swine farms to mitigate the risk of PCV spillover to the domestic pig population.
Collapse
Affiliation(s)
- Jisoo Yang
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Korea
| | | | - Guehwan Jang
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
4
|
Pan H, Huan C, Hou Y, Yan P, Yang F, Jiang L, Gao S. Porcine IGFBP3 promotes porcine circovirus type 2 replication via PERK/eIF2α mediated DNA damage. Vet Microbiol 2023; 287:109897. [PMID: 37922860 DOI: 10.1016/j.vetmic.2023.109897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
The infection of porcine circovirus type 2 (PCV2) triggers activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK) pathway and leads to DNA damage. Insulin-like growth factor-binding protein 3 (IGFBP3) may interact with the endoplasmic reticulum (ER). It remains unclear whether IGFBP3 regulates DNA damage via ER stress to mediate PCV2 replication. In this study, we observed an upregulation of porcine IGFBP3 expression during PCV2 infection, and overexpression of IGFBP3 enhanced the expression of PCV2 Cap protein, PCV2 DNA copy number, and viral titers in PK-15 B6 cells and 3D4/21 cells. Additionally, overexpression of IGFBP3 induced an increase in the DNA damage marker γH2AX by activating the PERK/eIF2α pathway without concomitant activation of ATF4, IRE1α, and ATF6α/GRP78 pathways in PK-15 B6 cells and 3D4/21 cells. Knockdown of IGFBP3 had a reverse effect on PCV2 replication in PK-15 B6 cells and 3D4/21 cells. Furthermore, treatment with etoposide enhanced PCV2 replication while KU57788 decreased it. GSK2606414 and salubrinal limited both DNA damage and viral replication. Therefore, our findings suggest that porcine IGFBP3 promotes PCV2 replication through the PERK/eIF2α pathway-mediated induction of DNA damage in PK-15 B6 cells and 3D4/21 cells. Our study provides a basis for exploring novel antiviral strategies via the extensive understanding of the relationships between host cellular proteins and viral replication.
Collapse
Affiliation(s)
- Haochun Pan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Changchao Huan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Yutong Hou
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Ping Yan
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Fan Yang
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Luyao Jiang
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China
| | - Song Gao
- Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, Jiangsu, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, Jiangsu, China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, Jiangsu, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou 225009, Jiangsu, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, China.
| |
Collapse
|
5
|
Han C, Xu W, Wang J, Hou X, Zhou S, Song Q, Liu X, Li H. Porcine Circovirus 2 Increases the Frequency of Transforming Growth Factor-β via the C35, S36 and V39 Amino Acids of the ORF4. Viruses 2023; 15:1602. [PMID: 37515288 PMCID: PMC10383414 DOI: 10.3390/v15071602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Porcine circovirus 2 (PCV2) is one of the most important endemic swine pathogens, inducing immunosuppression in pigs and predisposing them to secondary bacterial or viral infections. Our previous studies show that PCV2 infection stimulated pig intestinal epithelial cells (IPEC-J2) to produce the secretory transforming growth factor-β (TGF-β), which, in turn, caused CD4+ T cells to differentiate into regulatory T cells (Tregs). This may be one of the key mechanisms by which PCV2 induces immunosuppression. Here, we attempt to identify the viral proteins that affect the TGF-β secretion, as well as the key amino acids that are primarily responsible for this occurrence. The three amino acids C35, S36 and V39 of the ORF4 protein are the key sites at which PCV2 induces a large amount of TGF-β production in IPEC-J2 and influences the frequency of Tregs. This may elucidate the regulatory effect of PCV2 on the Tregs differentiation from the perspective of virus structure and intestinal epithelial cell interaction, laying a theoretical foundation for improving the molecular mechanism of PCV2-induced intestinal mucosal immunosuppression in piglets.
Collapse
Affiliation(s)
- Cheng Han
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Weicheng Xu
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Jianfang Wang
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Xiaolin Hou
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Shuanghai Zhou
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Qinye Song
- College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Xuewei Liu
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| | - Huanrong Li
- College of Animal Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Beijing 102206, China
| |
Collapse
|
6
|
Sirisereewan C, Nguyen TC, Janetanakit T, Kedkovid R, Thanawongnuwech R. Emergence of novel porcine circovirus 2d strains in Thailand, 2019-2020. Front Vet Sci 2023; 10:1170499. [PMID: 37408832 PMCID: PMC10318142 DOI: 10.3389/fvets.2023.1170499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
Porcine circovirus 2 (PCV2) has been recognized as a causative agent of porcine circovirus diseases (PCVDs) affecting the global swine industry. In this study, the genetic diversity of PCV2 strains circulating in Thailand between 2019 and 2020 was investigated using 742 swine clinical samples from 145 farms. The results showed PCV2-positive rates of 54.2% (402/742) and 81.4% (118/145) at the sample and farm levels, respectively. Genetic analysis of 51 Thai PCV2 genomic sequences showed that 84.3% (43/51) was PCV2d, 13.7% (7/51) was PCV2b and 1.9% (1/51) was PCV2b/2d recombinant virus. Surprisingly, the majority of the Thai PCV2d sequences from this study (69.77%, 30/43) formed a novel cluster on a phylogenetic tree and contained a unique 133HDAM136 on the ORF2 deduced amino acid sequence, which is in one of the previously identified immunoreactive domains strongly involved in virus neutralization. The PCV2b/2d recombinant virus also carried 133HDAM136. The emergence of the novel PCV2d strains predominating in Thailand was discussed. This study highlights the need for further investigations on the spreading of these PCV2d strains in other regions and the efficacy of current commercial vaccines.
Collapse
Affiliation(s)
- Chaitawat Sirisereewan
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanh Che Nguyen
- The International Graduate Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Taveesak Janetanakit
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals and One Health Research Cluster, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Roongtham Kedkovid
- Department of Veterinary Medicine, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Swine Reproduction, Chulalongkorn University, Bangkok, Thailand
| | - Roongroje Thanawongnuwech
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Emerging and Re-emerging Infectious Diseases in Animals and One Health Research Cluster, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Chen S, Li X, Zhang L, Zheng J, Yang L, Niu G, Zhang H, Ren Y, Qian J, Sun C, Ren L. Phylogenetic and Structural Analysis of Porcine Circovirus Type 2 from 2016 to 2021 in Jilin Province, China. Microorganisms 2023; 11:microorganisms11040983. [PMID: 37110406 PMCID: PMC10145682 DOI: 10.3390/microorganisms11040983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Porcine circovirus disease (PCVD) caused by porcine circovirus type 2 (PCV2) is widely distributed in pig farms. Up until now, nine genotypes of PCV2, PCV2a to 2i, have been identified in diseased pigs worldwide. This study analyzed 302 samples collected in the Jilin Province of China from 2016 to 2021, followed by genetic analysis of the PCV2 isolates. Meanwhile, the antigen epitopes, amino acid mutations, 3D structure of the PCV2 isolates and commercially available vaccine strains were evaluated and compared. The results showed that the predominant genotypes of PCV2 were PCV2b, followed by PCV2e and PCV2d in Jilin Province during 2016-2021. Although mutations were detected in the isolates, no recombination occurred in the PCV2 isolates, indicating a stable genotype of PCV2 in Jilin Province during these years. Moreover, the B cell epitopes in the Cap and Rep proteins of eighteen PCV2 isolates and T cell epitopes in the Cap of the isolates were changed compared to three currently used vaccine strains. The mutations in the Cap and Rep proteins did not affect their spatial conformation. Therefore, bivalent or multivalent vaccines with different genotypes of PCV2 might improve the protective effect of vaccines.
Collapse
Affiliation(s)
- Si Chen
- College of Animal Sciences, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xue Li
- College of Animal Sciences, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Liying Zhang
- College of Animal Sciences, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Jiawei Zheng
- College of Animal Sciences, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Lin Yang
- College of Animal Sciences, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Guyu Niu
- College of Animal Sciences, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Huimin Zhang
- College of Animal Sciences, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Ying Ren
- Public Computer Education and Research Center, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Jing Qian
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Changjiang Sun
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Linzhu Ren
- College of Animal Sciences, Key Laboratory for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| |
Collapse
|
8
|
Noppiboon S, Lapanusorn N, Ekkpongpaisit P, Slack S, Frank S, Hocharoen L. A Simple and Cost-Efficient Platform for a Novel Porcine Circovirus Type 2d (PCV2d) Vaccine Manufacturing. Vaccines (Basel) 2023; 11:169. [PMID: 36680014 PMCID: PMC9865830 DOI: 10.3390/vaccines11010169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/18/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Porcine circovirus type 2d (PCV2d) is becoming the predominant PCV genotype and considerably affects the global pig industry. Nevertheless, currently, no commercial PCV2d vaccine is available. Preventing and controlling the disease caused by PCV2d is therefore based on other genotype-based vaccines. However, their production platforms are laborious, limited in expression level, and relatively expensive for veterinary applications. To address these challenges, we have developed a simple and cost-efficient platform for a novel PCV2d vaccine production process, using fed-batch E. coli fermentation followed by cell disruption and filtration, and a single purification step via cation exchange chromatography. The process was developed at bench scale and then pilot scale, where the PCV2d subunit protein yield was approximately 0.93 g/L fermentation volume in a short production time. Moreover, we have successfully implemented this production process at two different sites, in Southeast Asia and Europe. This demonstrates transferability and the high potential for successful industrial production.
Collapse
Affiliation(s)
- Sarawuth Noppiboon
- Bioprocess Research and Innovation Centre, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Neeracha Lapanusorn
- Bioprocess Research and Innovation Centre, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Pisit Ekkpongpaisit
- Bioprocess Research and Innovation Centre, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Sarah Slack
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Stefanie Frank
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK
| | - Lalintip Hocharoen
- Bioprocess Research and Innovation Centre, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| |
Collapse
|
9
|
Du S, Xu F, Lin Y, Wang Y, Zhang Y, Su K, Li T, Li H, Song Q. Detection of Porcine Circovirus Type 2a and Pasteurella multocida Capsular Serotype D in Growing Pigs Suffering from Respiratory Disease. Vet Sci 2022; 9:vetsci9100528. [PMID: 36288141 PMCID: PMC9607208 DOI: 10.3390/vetsci9100528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/11/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
In order to diagnose a respiratory disease in a pig farm, the lungs, spleen, and lymph nodes of three dead pigs were collected for pathogen detection by PCR and isolation on the basis of preliminary clinical diagnosis. The virus isolate was identified by gene sequence analysis and Immunoperoxidase monolayer assay (IPMA). The bacterial isolate was identified by biochemical tests, 16S rDNA sequence analysis, and species- and serotype-specific PCR, and the pathogenicity was analyzed. Porcine circovirus type 2a (PCV2a) genotype from the lungs, spleen, and lymph nodes and Pasteurella (P.) multocida capsular serotypes D from the lungs were found. The PCV2a isolates could specifically bound the anti-PCV2-Cap polyclonal antibody. The 16S rDNA sequence of P. multocida isolates had 99.9% identity with that of the strain from cattle, and the isolate was highly pathogenic to mice. The results showed that the co-infection of PCV2a and P. Multocida capsular serotypes D should be responsible for the disease. The uncommon PCV2a is still prevalent in some pig farms besides the dominant PCV2d genotype. This study could provide important etiological information for effective control and treatment of the disease in pig farms.
Collapse
Affiliation(s)
- Shuailong Du
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Fan Xu
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yidan Lin
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yawen Wang
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Yanan Zhang
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Kai Su
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Tanqing Li
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
| | - Huanrong Li
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- Correspondence: (H.L.); (Q.S.); Tel.: +86-136-8149-3570 (H.L.); +86-135-8220-3502 (Q.S.)
| | - Qinye Song
- Hebei Veterinary Biotechnology Innovation Center, College of Veterinary Medicine, Hebei Agricultural University, Baoding 071000, China
- Correspondence: (H.L.); (Q.S.); Tel.: +86-136-8149-3570 (H.L.); +86-135-8220-3502 (Q.S.)
| |
Collapse
|
10
|
Jang G, Kim J, Park C, Song K, Kang W, Yang K, Lee C. Pathogenicity of a novel classical swine fever LOM vaccine‐derived virus isolated on Jeju Island, South Korea. Vet Med Sci 2022; 8:2434-2443. [DOI: 10.1002/vms3.903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Guehwan Jang
- College of Veterinary Medicine and Virus Vaccine Research Center Gyeongsang National University Jinju Republic of Korea
| | - Joo‐Ah Kim
- Livestock Affairs Division Jeju Special Self‐Governing Province Jeju Republic of Korea
| | - Changnam Park
- Veterinary Research Institute Jeju Special Self‐Governing Province Jeju Republic of Korea
| | - Kyungok Song
- Veterinary Research Institute Jeju Special Self‐Governing Province Jeju Republic of Korea
| | - Won‐Myoung Kang
- Veterinary Research Institute Jeju Special Self‐Governing Province Jeju Republic of Korea
| | - Kyungsu Yang
- Farm & Pharm Veterinary Hospital Jeju Republic of Korea
| | - Changhee Lee
- College of Veterinary Medicine and Virus Vaccine Research Center Gyeongsang National University Jinju Republic of Korea
| |
Collapse
|
11
|
Doan HTT, Do RT, Thao PTP, Le XTK, Nguyen KT, Hien NTT, Duc LM, Pham LTK, Le TH. Molecular genotypic analysis of porcine circovirus type 2 reveals the predominance of PCV2d in Vietnam (2018-2020) and the association between PCV2h, the recombinant forms, and Vietnamese vaccines. Arch Virol 2022; 167:2011-2026. [PMID: 35794492 DOI: 10.1007/s00705-022-05517-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/16/2022] [Indexed: 12/14/2022]
Abstract
We conducted nucleotide and amino acid sequence alignment and phylogenetic analysis of porcine circovirus ORF2 (Cap protein) from 17 PCV2-positive clinical samples from nine different northern Vietnamese provinces (Mar 2018-Nov 2020), four local vaccines, and 77 reference strains. We identified one PCV2a (1/17 = 5.9%), five PCV2b (5/17 = 29.9%), and 11 PCV2d (11/17 = 64.7%) isolates, while only PCV2d was detected in 2020. Timeline analysis indicated an increasing predominance of PCV2d nationwide (2018-2020). With strong nodal support (98% for nucleotides and 74% for amino acids), the phylogenetic tree topology revealed a distinct PCV2h clade including recombinant/intermediate strains and local vaccines. The Cap protein sequences from 11 PCV2d field strains had the 2d-genotype-typical motif 86SNPLSV91 in loop CD, the motif TGID in loop GH-HI, and the motif 230PLNPK234 in loop CT. The PCV2h isolates (and vaccines) had the 86SNPLSV91, SAID, and 230L(N/H)PK234 motifs. Selection pressure analysis indicated positive selection at seven sites: A68N in immunoreactive region (IRR)-A; 119G and 130V in IRR-B; and 167L, T190(A/S), 194D and 202F in IRR-C. We identified PCV2h as the genotype of the recombinant strains, which resulted from intergenotype recombination of PCV2a, PCV2b, and PCV2d. The current data provide new information about the diversity, distribution, and dominance of the PCV2 genotype in Vietnam.
Collapse
Affiliation(s)
- Huong Thi Thanh Doan
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam. .,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam.
| | - Roan Thi Do
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam.,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | - Pham Thi Phuong Thao
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam.,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | - Xuyen Thi Kim Le
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam.,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | - Khue Thi Nguyen
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam.,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | - Nguyen Thi Thu Hien
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam.,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | - Luu Minh Duc
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam.,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | - Linh Thi Khanh Pham
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam.,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam
| | - Thanh Hoa Le
- Immunology Department, Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam. .,Graduate University of Science and Technology (GUST), Vietnam Academy of Science and Technology (VAST), 18. Hoang Quoc Viet Rd., Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
12
|
Genetic Diversity of Porcine Circovirus 2 in Wild Boar and Domestic Pigs in Ukraine. Viruses 2022; 14:v14050924. [PMID: 35632666 PMCID: PMC9142977 DOI: 10.3390/v14050924] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022] Open
Abstract
Porcine circovirus type 2 (PCV2) is responsible for a number of porcine circovirus-associated diseases (PCVAD) that can severely impact domestic pig herds. For a non-enveloped virus with a small genome (1.7 kb ssDNA), PCV2 is remarkably diverse, with eight genotypes (a–h). New genotypes of PCV2 can spread through the migration of wild boar, which are thought to infect domestic pigs and spread further through the domestic pig trade. Despite a large swine population, the diversity of PCV2 genotypes in Ukraine has been under-sampled, with few PCV2 genome sequences reported in the past decade. To gain a deeper understanding of PCV2 genotype diversity in Ukraine, samples of blood serum were collected from wild boars (n = 107) that were hunted in Ukraine during the November–December 2012 hunting season. We found 34/107 (31.8%) prevalence of PCV2 by diagnostic PCR. For domestic pigs, liver samples (n = 16) were collected from a commercial market near Kharkiv in 2019, of which 6 out of 16 (37%) samples were positive for PCV2. We sequenced the genotyping locus ORF2, a gene encoding the PCV2 viral capsid (Cap), for 11 wild boar and six domestic pig samples in Ukraine using an Oxford Nanopore MinION device. Of 17 samples with resolved genotypes, the PCV2 genotype b was the most common in wild boar samples (10 out of 11, 91%), while the domestic pigs were infected with genotypes b and d. We also detected genotype b/d and b/a co-infections in wild boars and domestic pigs, respectively, and for the first time in Ukraine we detected genotype f in a wild boar from Poltava. Building a maximum-likelihood phylogeny, we identified a sublineage of PCV2 genotype b infections in both wild and domestic swine, suggesting a possible epizootic cluster and an ecological interaction between wild boar and domestic pig populations in northeastern Ukraine.
Collapse
|
13
|
Epidemiology and Genetic Diversity of PCV2 Reveals That PCV2e Is an Emerging Genotype in Southern China: A Preliminary Study. Viruses 2022; 14:v14040724. [PMID: 35458454 PMCID: PMC9026887 DOI: 10.3390/v14040724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022] Open
Abstract
Porcine circovirus-associated disease (PCVAD), caused by porcine circovirus type 2 (PCV2), has ravaged the pig industry, causing huge economic loss. At present, PCV2b and PCV2d are highly prevalent genotypes worldwide, while in China, in addition to PCV2b and PCV2d, a newly emerged PCV2e genotype detected in the Fujian province has attracted attention, indicating that PCV2 genotypes in China are more abundant. A preliminary study was conducted to better understand the genetic diversity and prevalence of PCV2 genotypes in southern China. We collected 79 random lung samples from pigs with respiratory signs, from 2018 to 2021. We found a PCV2-positivity rate of 29.1%, and frequent co-infections of PCV2 with PCV3, Streptococcus suis (S. suis), and other porcine pathogens. All PCV2-positive samples were sequenced and subjected to whole-genome analysis. Phylogenetic analysis, based on the PCV2 ORF2 gene and complete genomes, found that PCV2 strains identified in this study belonged to genotypes PCV2a (1), PCV2b (6), PCV2d (10), and PCV2e (6). Importantly, PCV2e was identified for the first time in some provinces, including Guangdong and Jiangxi. Additionally, we found two positively selected sites in the ORF2 region, located on the previously reported antigenic epitopes. Moreover, codon 63, one of the positively selected sites, has different types of amino acids in different genotypes. In conclusion, this study shows that PCV2e is an emerging genotype circulating in southern China, which warrants urgent, specific surveillance to aid the development of prevention and control strategies in China.
Collapse
|