1
|
Qiu Y, Qiu M, Li S, Li S, Zhu J, Tian K, Chen N. Emergence, prevalence and evolution of porcine reproductive and respiratory syndrome virus 1 in China from 1994 to 2024. Virology 2025; 605:110457. [PMID: 39999587 DOI: 10.1016/j.virol.2025.110457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
Porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) was first detected in Chinese swine herds during an epidemiological investigation since 1994. Even though PRRSV-1 has been existed in China for 30 years, much less attention was paid on PRRSV-1 than PRRSV-2. This review systematically evaluated the emergence, prevalence and evolution of Chinese PRRSV-1 from 1994 to 2024. Here we showed that PRRSV-1 has been detected in at least 28 regions of China, which can be divided into eight subgroups within subtype 1. During the evolution in Chinese swine herds, a large number of substitutions, insertions and deletions were identified. Recombination events were also commonly detected accompanying with nsp1-nsp3, nsp9-nsp10 and ORF2-ORF6 regions as the cross-over hotspots. Remarkably, Chinese PRRSV-1 isolates showed a trend of increasing in pathogenicity in recent years. At last, we discussed the differential detection methods and cross-protection strategies against PRRSV-1 isolates. Overall, PRRSV-1 has become one of the widely-spread viruses in China posing a significant threat to China's swine industry.
Collapse
Affiliation(s)
- Yuejia Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shubo Li
- Liaoning Center for Animal Disease Control and Prevention, Liaoning Agricultural Development Service Center, Shenyang, 110164, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, 471000, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China; International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou, 225009, China; Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China; Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Yang S, Cui M, Li C, Qiu M, Zhu X, Lin Y, Meng Y, Qiu Y, Qi W, Lin H, Zheng W, Zhu J, Fan K, Chen N. Isolation and Genomic Characterization of a Novel Porcine Reproductive and Respiratory Syndrome Virus 1 from Severely Diseased Piglets in China in 2024. Vet Sci 2025; 12:61. [PMID: 39852936 PMCID: PMC11769002 DOI: 10.3390/vetsci12010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025] Open
Abstract
Since the first isolation of the porcine reproductive and respiratory syndrome virus 1 (PRRSV-1) BJEU06-1 strain from a Beijing pig farm in 2006, more and more PRRSV-1 isolates have been identified in China. In this study, we performed the routine detection of PRRSV-1 using 1521 clinical samples collected in 12 provinces/cities from February 2022 to May 2024. Only three lung samples from severely diseased piglets collected in January 2024 were detected as PRRSV-1-positive (0.197%, 3/1521). A PRRSV-1 strain (AHEU2024-2671) was successfully isolated in primary alveolar macrophages (PAMs) but not in Marc-145 cells. Genome sequencing showed that the AHEU2024-2671 isolate shared the highest genome similarity (90.67%) with the SC2020-1 isolate but only 84.01% similarity with the predominant BJEU06-1 strain. Noticeably, the AHEU2024-2671-like isolates not only contained deletions in nsp2 and the GP3-GP4 overlap region, but also contained a unique 6 nt deletion between nsp12 and the ORF2 gene. Furthermore, a genome-based phylogenetic tree supported that the AHEU2024-2671-like isolates form a novel subgroup within subtype 1. Overall, this study not only supported the idea that PRRSV-1 is rapidly evolving in Chinese swine herds, but also pulled the alarm that novel PRRSV-1 isolates with potentially increased pathogenicity might already exist in China, although they are still rarely detected among Chinese pigs.
Collapse
Affiliation(s)
- Shuai Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Longyan University and Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
| | - Meng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yanhan Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yifan Meng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuejia Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wenhao Qi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
| | - Kewei Fan
- Longyan University and Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Wang YM, Deng LS, Huang BZ, Li HY, Duan JQ, Yan YX, Lai SY, Ai YR, Zhou YC, Qing Y, Xu ZW, Zhu L. Whole Genome Characterization and Pathogenicity of a SC2020-1-Like PRRSV-1 Strain Emerging in Southwest China. Transbound Emerg Dis 2024; 2024:5627927. [PMID: 40303091 PMCID: PMC12016694 DOI: 10.1155/2024/5627927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/05/2024] [Indexed: 05/02/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV), encompassing PRRSV-1 and PRRSV-2, significantly impacts the global pig industry by causing reproductive disorders and respiratory difficulties. In this paper, we isolated a novel PRRSV-1 strain, named SCPJ2023, from weaned piglets in Sichuan. Utilizing primary macrophages, we isolated SCPJ2023 and performed complete genome sequencing through metagenomic analysis. Phylogenetic analysis classified SCPJ2023 as pan-European subtype 1. SCPJ2023 showed a 95.3% similarity to SC2020-1. Amino acid analysis identified differences in Nsp2, GP3, and GP4 between SCPJ2023 and other representative strains. In vivo challenge experiments demonstrated that SCPJ2023 induced clinical symptoms in piglets, including coughing, fever, reduced appetite, and depression. Pathological examinations revealed hemorrhage and congestion, increased inflammatory cells, thickening of the alveolar wall, and collapse of the alveolar cavity in SCPJ2023-infected piglets. Altogether, our study identified a novel pathogenic isolate of PRRSV-1, expanding the newly named SC2020-1-like subgroup by identifying additional strains beyond the initial SC2020-1 isolate.
Collapse
Affiliation(s)
- Yuan-Meng Wang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Li-Shuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing-Zhou Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Han-Yu Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Jia-Qi Duan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi-Xin Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Si-Yuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan-Ru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuan-Cheng Zhou
- Key Laboratory of Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu 611130, China
- Sichuan Animal, Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Chengdu, China
| | - Yi Qing
- Chengdu Livestock and Poultry Genetic Resources Protection Center, Chengdu 610081, China
| | - Zhi-Wen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu 611130, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu 611130, China
| |
Collapse
|
4
|
Gong B, Xu H, Sun Q, Li C, Xiang L, Zhao J, Li W, Guo Z, Li J, Wang Q, Peng J, Zhou G, Leng C, Tang YD, Wu J, Liu H, An TQ, Cai X, Tian ZJ, Zhang H. Dissecting Genetic Diversity and Evolutionary Trends of Chinese PRRSV-1 Based on Whole-Genome Analysis. Transbound Emerg Dis 2024; 2024:9705539. [PMID: 40303037 PMCID: PMC12017348 DOI: 10.1155/2024/9705539] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/02/2025]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) poses a serious threat to the Chinese swine industry. The etiological agent PRRSV can be classified as either PRRSV-1 or PRRSV-2. Recent studies have revealed an increase in the rates of PRRSV-1 detection and a wider PRRSV-1 distribution. However, the PRRSV-1 genome in China has yet to be fully characterized. In this study, 24 whole PRRSV-1 genomes from different swine farms were assembled and subjected to whole-genome analysis. A phylogenetic analysis based on the complete genome and ORF5 sequences revealed that the PRRSV-1 strains from China belonged to Western European Subtype I and could be classified into seven subgroups. Statistical analysis revealed that BJEU06-1-Like PRRSV is currently the predominant PRRSV-1 strain. Moreover, a similarity analysis showed low pairwise similarity between most PRRSV-1 genomes from different pig farms. Amino acid alignments of the Nsp2 gene revealed that the BJEU06-1-Like subgroup had five discontinued aa deletions (4 + 1). The new subgroup 1 had 11 continued aa deletions and an aa insertion, the new subgroup 2 had two discontinued aa deletions (1 + 1), and, except for in the case of HKEU16, the HKEU16-Like subgroup had five discontinuous aa deletions (1 + 4). Recombination analysis revealed that the BJEU06-1-Like and NMEU09-1-Like strains participated extensively in recent recombination events. The analysis of positive selection suggested that there were 15 positively selected codons in site model, and there were five sites under positive selection in the BJEU06-1-Like subgroup in the branch-site model. The mean rate and tMRCA for PRRSV-1 strains from China were 4.11 × 10-3 substitutions/site/year and 1,969.63, respectively. Thus, it is crucial to strengthen epidemiological surveys of PRRSV-1 in China, especially those monitoring BJEU06-1-Like PRRSV.
Collapse
Affiliation(s)
- Bangjun Gong
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Hu Xu
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Qi Sun
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Chao Li
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Lirun Xiang
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Jing Zhao
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Wansheng Li
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Zhenyang Guo
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Jinhao Li
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Qian Wang
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Jinmei Peng
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Guohui Zhou
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Chaoliang Leng
- Henan Provincial Engineering and Technology Center of Animal Disease Diagnosis and Integrated ControlNanyang Normal UniversityNanyang473061China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Jianan Wu
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Huairan Liu
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Tong-Qing An
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Zhi-Jun Tian
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and PreventionHarbin Veterinary Research InstituteChinese Academy of Agricultural SciencesHarbin150001China
| |
Collapse
|
5
|
Zheng J, Wu Y, Gao X, Lin L, Chang H, Zhu G, Fang S, Li W, Ren B, Li Q, Zhang X. Characterization and Pathogenicity of the Novel Porcine Reproductive and Respiratory Syndrome Virus 1 Strain SL-01 in China. Transbound Emerg Dis 2024; 2024:6873468. [PMID: 40303187 PMCID: PMC12017043 DOI: 10.1155/2024/6873468] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/04/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2025]
Abstract
Currently, PRRSV-1 causes a large number of clinical infections in Chinese swine herds, and the prevalence of new strains has presented great challenges. In this study, the novel PRRSV-1 strain SL-01 was isolated, with a genome length of 14,978 bp, and genetic evolution analysis revealed that it belonged to a new subtype branch. Sequence homology analysis showed that the strain was only 82.2%-86.7% identical to the current classical PRRSV-1 strains. In particular, the novel strain exhibited a unique deletion pattern in Nsp2. In addition, GP3 and GP4 of the SL-01 strain showed four consecutive amino acid deletions in the highly variable regions at amino acids 243-248 and 63-68, respectively. Further challenges in piglet and pregnant sow demonstrated that the SL-01 strain could cause the piglet fever and death but less pathogenic to pregnant sow. Overall, the characterization and pathogenicity of a novel PRRSV-1 strain were first explored and provide a prevention for pig farms.
Collapse
Affiliation(s)
- Jiaying Zheng
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China
| | - Yu Wu
- State Key Laboratory of Biocontrol, Guangzhou Higher Education Mega Center, School of Life Sciences, Sun Yat-sen University, Guangzhou 510000, China
| | - Xiaopeng Gao
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China
| | | | - Hao Chang
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China
| | | | | | - Wei Li
- Wen's Food Group, Yunfu 527400, China
| | - Bohua Ren
- Wen's Food Group, Yunfu 527400, China
| | - Qunhui Li
- Wen's Food Group, Yunfu 527400, China
| | - Xiangbin Zhang
- College of Animal Science, South China Agricultural University and Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Guangzhou 510642, China
| |
Collapse
|
6
|
Li S, Qiu M, Li S, Li C, Lin H, Qiu Y, Qi W, Feng B, Cui M, Yang S, Zheng W, Shang S, Tian K, Zhu J, Lu Y, Chen N. A chimeric porcine reproductive and respiratory syndrome virus 1 strain containing synthetic ORF2-6 genes can trigger T follicular helper cell and heterologous neutralizing antibody responses and confer enhanced cross-protection. Vet Res 2024; 55:28. [PMID: 38449049 PMCID: PMC10918997 DOI: 10.1186/s13567-024-01280-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/24/2024] [Indexed: 03/08/2024] Open
Abstract
The prevalence of porcine reproductive and respiratory syndrome virus 1 (PRRSV1) isolates has continued to increase in Chinese swine herds in recent years. However, no effective control strategy is available for PRRSV1 infection in China. In this study, we generated the first infectious cDNA clone (rHLJB1) of a Chinese PRRSV1 isolate and subsequently used it as a backbone to construct an ORF2-6 chimeric virus (ORF2-6-CON). This virus contained a synthesized consensus sequence of the PRRSV1 ORF2-6 gene encoding all the envelope proteins. The ORF2-6 consensus sequence shared > 90% nucleotide similarity with four representative strains (Amervac, BJEU06-1, HKEU16 and NMEU09-1) of PRRSV1 in China. ORF2-6-CON had replication efficacy similar to that of the backbone rHLJB1 virus in primary alveolar macrophages (PAMs) and exhibited cell tropism in Marc-145 cells. Piglet inoculation and challenge studies indicated that ORF2-6-CON is not pathogenic to piglets and can induce enhanced cross-protection against a heterologous SD1291 isolate. Notably, ORF2-6-CON inoculation induced higher levels of heterologous neutralizing antibodies (nAbs) against SD1291 than rHLJB1 inoculation, which was concurrent with a higher percentage of T follicular helper (Tfh) cells in tracheobronchial lymph nodes (TBLNs), providing the first clue that porcine Tfh cells are correlated with heterologous PRRSV nAb responses. The number of SD1291-strain-specific IFNγ-secreting cells was similar in ORF2-6-CON-inoculated and rHLJB1-inoculated pigs. Overall, our findings support that the Marc-145-adapted ORF2-6-CON can trigger Tfh cell and heterologous nAb responses to confer improved cross-protection and may serve as a candidate strain for the development of a cross-protective PRRSV1 vaccine.
Collapse
Affiliation(s)
- Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yuejia Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Wenhao Qi
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Meng Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shuai Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Shaobin Shang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, 471000, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China.
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China.
| | - Yu Lu
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, 225009, China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou, 225009, China.
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, Fuzhou, 350002, China.
| |
Collapse
|
7
|
Zhang H, Ren J, Li J, Zhai C, Mao F, Yang S, Zhang Q, Liu Z, Fu X. Comparison of heterologous prime-boost immunization strategies with DNA and recombinant vaccinia virus co-expressing GP3 and GP5 of European type porcine reproductive and respiratory syndrome virus in pigs. Microb Pathog 2023; 183:106328. [PMID: 37661073 DOI: 10.1016/j.micpath.2023.106328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Vaccination is principally used to control and treat porcine reproductive and respiratory syndrome virus (PRRSV) infection. This study investigated immunogenicity and protective efficacy of heterologous prime-boost regimens in pigs, including recombinant DNA and vaccinia virus vectors coexpressing PRRSV European genotype (EU) isolate GP3 and GP5: group A, pVAX1-EU-GP3-GP5 prime and rddVTT-EU-GP3-GP5 boost; group B, rddVTT-EU-GP3-GP5 prime and pVAX1-EU-GP3-GP5 boost; group C, empty vector pVAX1; group D, E3L gene-deleted vaccinia virus E3L- VTT. Vaccine efficacy was tested in an EU-type PRRSV (Lelystad virus strain) challenge pig model based on evaluating PRRSV-specific antibody responses, neutralizing antibodies, cytokines, T lymphocyte proliferation, CD4+ and CD8+ T lymphocytes, clinical symptoms, viremia and tissue virus loads. Plasmid DNA was delivered as chitosan-DNA nanoparticles, and Quil A (Quillaja) was used to increase vaccine efficiency. All piglets were boosted 21 days post the initial inoculation (dpi) and then challenged 14 days later. At 14, 21, 28 and 35 dpi, groups A and B developed significantly higher PRRSV-specific antibody responses compared with control groups C and D. Two weeks after the boost, significant differences in neutralizing antibody and IFN-γ levels were observed between groups A, C, D and B. At 49 dpi, groups A and B had markedly increased peripheral blood CD3+CD4+ T cell levels. Following virus challenge, group A showed viremia, but organ virus loads were lower than those in other groups. Thus, a heterologous prime-boost vaccine regimen (rddVTT-EU-GP3-GP5 prime, pVAX1-EU-GP3-GP5 boost) can improve humoral- and cell-mediated immune responses to provide resistance to EU-type PRRSV infection in vivo.
Collapse
Affiliation(s)
- Hewei Zhang
- The 989th Hospital of the Joint Logistics Support Force of Chinese People's Liberation Army, Luoyang, 471031, China; College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Jingqiang Ren
- Institute of Virology, Wenzhou University, Chashan University Town, Wenzhou, 325035, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China; Key Laboratory of Special Animal Epidemic Disease, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, 130112, China.
| | - Jiachen Li
- College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Chongkai Zhai
- College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Fuchao Mao
- College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Shaozhe Yang
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Qingwei Zhang
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China
| | - Zhongyu Liu
- The 989th Hospital of the Joint Logistics Support Force of Chinese People's Liberation Army, Luoyang, 471031, China; College of Food and Drugs, Luoyang Polytechnic, Luo Yang, 471000, China; Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China.
| | - Xiuhong Fu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang, 471000, China.
| |
Collapse
|
8
|
Sun Q, Xu H, An T, Cai X, Tian Z, Zhang H. Recent Progress in Studies of Porcine Reproductive and Respiratory Syndrome Virus 1 in China. Viruses 2023; 15:1528. [PMID: 37515213 PMCID: PMC10384046 DOI: 10.3390/v15071528] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Due to the high incidence of PRRSV mutation and recombination, PRRSV infection is difficult to prevent and control in China and worldwide. Two species of PRRSV, Betaarterivirus suid 1 (PRRSV-1) and Betaarterivirus suid 2 (PRRSV-2), exist in China, and PRRSV-1 has always received less attention in China. However, the number of PRRSV-1 strains detected in China has increased recently. To date, PRRSV-1 has spread to more than 23 regions in China. Based on the phylogenetic analysis of ORF5 and the whole genome of PRRSV-1, Chinese PRRSV-1 can be divided into at least seven independent subgroups. Among them, BJEU06-1-like has become the mainstream subgroup in some regions of China. This subgroup of strains has a 5-aa (4 + 1) characteristic discontinuous deletion pattern at aa 357~aa 360 and aa 411 in Nsp2. Previous studies have indicated that the pathogenicity of PRRSV-1 in China is mild, but recent studies found that the pathogenicity of PRRSV-1 was enhanced in China. Therefore, the emergence of PRRSV-1 deserves attention, and the prevention and control of PRRSV-1 infection in China should be strengthened. PRRSV infection is usually prevented and controlled by a combination of virus monitoring, biosafety restrictions, herd management measures and vaccination. However, the use of PRRSV-1 vaccines is currently banned in China. Thus, we should strengthen the monitoring of PRRSV-1 and the biosafety management of pig herds in China. In this review, we summarize the prevalence of PRRSV-1 in China and clarify the genomic characteristics, pathogenicity, vaccine status, and prevention and control management system of PRRSV-1 in China. Consequently, the purpose of this review is to provide a basis for further development of prevention and control measures for PRRSV-1.
Collapse
Affiliation(s)
- Qi Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Hu Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Zhijun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| | - Hongliang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin 150001, China
| |
Collapse
|
9
|
Li C, Qiu M, Li S, Sun Z, Huang Z, Qi W, Qiu Y, Li J, Feng B, Zhao D, Lin H, Zheng W, Yu X, Tian K, Fan K, Zhu J, Chen N. Metagenomic and Pathogenic Assessments Identify a Pathogenic Porcine Reproductive and Respiratory Syndrome Virus 1 with New Deletions from Adult Slaughter Pig in 2022. Transbound Emerg Dis 2023; 2023:1975039. [PMID: 40303817 PMCID: PMC12016735 DOI: 10.1155/2023/1975039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2025]
Abstract
Since we first reported porcine reproductive and respiratory syndrome virus 1 (PRRSV1) wild type strains in mainland China in 2011, PRRSV1 infection has been detected in more than 20 provinces in China. During the routine investigation of PRRSV1 epidemiology in 2022, we isolated a novel PRRSV1 strain (SD1291) from an adult slaughter pig in Linyi, Shandong Province. The SD1291 could only be isolated with primary alveolar macrophages (PAMs), not with Marc-145 cells. In addition, the 2022 SD1291 isolate has higher in vitro replication efficacy than the 2014 PRRSV1 HLJB1 isolate in PAMs. Due to high genetic variation, the complete genome of SD1291 was determined by metagenomic sequencing, which showed that SD1291 shares the highest genome similarity (88.12%) with the PRRSV1 HeB47 isolate. Sequence alignment results identified a four-amino-acid deletion in nsp2 and a five-amino-acid deletion in the GP3 and GP4 overlap region of SD1291. A complete-genome-based phylogenetic tree showed that SD1291 is grouped with BJEU06-1-like PRRSV1 isolates. A piglets' challenge study showed that SD1291 can cause high fever (the highest is 41°C), reduced weight gain, mild lung consolidation, and interstitial pneumonia indicating that SD1291 is a pathogenic PRRSV1 isolate. Overall, this study first identified a novel pathogenic PRRSV1 isolate from an adult slaughter pig in China. Our findings also suggested that new PRRSV1 variants could escape the current PRRSV vaccination system and circulate in adult swine herds, which deserve more attention.
Collapse
Affiliation(s)
- Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Zhe Sun
- National Research Center for Veterinary Medicine, Luoyang 471000, China
| | - Zitao Huang
- Animal Health Supervision Institute of Fengxi District, Chaozhou 521031, China
| | - Wenhao Qi
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yuejia Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Dashi Zhao
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, Luoyang 471000, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang 471000, China
| | - Kewei Fan
- Longyan University and Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Longyan University and Fujian Provincial Key Laboratory for Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan 364012, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou 225009, China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou 225009, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Animal Pathogen Infection and Immunology of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
10
|
Xu H, Gong B, Sun Q, Li C, Zhao J, Xiang L, Li W, Guo Z, Tang YD, Leng C, Li Z, Wang Q, Zhou G, An T, Cai X, Tian ZJ, Peng J, Zhang H. Genomic Characterization and Pathogenicity of BJEU06-1-Like PRRSV-1 ZD-1 Isolated in China. Transbound Emerg Dis 2023; 2023:6793604. [PMID: 40303662 PMCID: PMC12016759 DOI: 10.1155/2023/6793604] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 03/03/2023] [Indexed: 05/02/2025]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV)-1 and PRRSV-2 have long been cocirculating in China. To date, all PRRSV-1 strains in China have been classified as subtype 1. We investigated the prevalence of PRRSV-1 in several areas of China from 2016 to 2022 and found that BJEU06-1-like strains comprised the main epidemic branch of PRRSV-1. Pathogenicity data for this subgroup are currently lacking. In this study, the Chinese BJEU06-1-like PRRSV-1 strain ZD-1 was isolated from primary alveolar macrophages (PAMs). ZD-1 has undergone no recombination and has a 5-aa discontinuous deletion in the Nsp2 protein, similar to other BJEU06-1-like strains; additionally, ZD-1 has a 26 aa C-terminal truncation in the GP3 gene. Pathogenicity studies revealed that ZD-1 causes obvious clinical symptoms: prolonged fever; reduced body weight; alveolar epithelial proliferation and moderate alveolar diaphragm widening in the lungs; diffuse lymphocytic hyperplasia in the lymph nodes; high levels of viremia in the serum; and elevated viral loads in the lungs, lymph nodes, and tonsils. These results suggested that the BJEU06-1-like PRRSV-1 strain ZD-1 is moderately pathogenic to piglets. This is the first study to evaluate the pathogenicity of the BJEU06-1-like branch in China, enriching the understanding of PRRSV-1 in China.
Collapse
Affiliation(s)
- Hu Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Bangjun Gong
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Qi Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chao Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jing Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Lirun Xiang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Wansheng Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhenyang Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yan-dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chaoliang Leng
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Henan Provincial Engineering Laboratory of Insects Bio-reactor, China-UK-NYNU-RRes Joint Laboratory of Insect Biology, Nanyang Normal University, Nanyang 473061, China
| | - Zhen Li
- Pingdingshan Center for Animal Disease Control and Prevention, Pingdingshan 467000, China
| | - Qian Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Guohui Zhou
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Tongqing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jinmei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Hongliang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, China
| |
Collapse
|
11
|
Wahyuningtyas R, Wu ML, Chung WB, Chaung HC, Chang KT. Toll-like Receptor-Mediated Immunomodulation of Th1-Type Response Stimulated by Recombinant Antigen of Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-2). Viruses 2023; 15:v15030775. [PMID: 36992483 PMCID: PMC10057405 DOI: 10.3390/v15030775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/05/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
PRRSV infects CD163-positive macrophages and skews their polarization toward an M2 phenotype, followed by T-cell inactivation. In our previous study, we found that recombinant protein A1 antigen derived from PRRSV-2 was a potential vaccine or adjuvant for immunization against PRRSV-2 infection due to its ability to repolarize macrophages into M1 subtype, thereby reducing CD163 expression for viral entry and promoting immunomodulation for Th1-type responses, except for stimulating Toll-like receptor (TLR) activation. The aim of our current study was to evaluate the effects of another two recombinant antigens, A3 (ORF6L5) and A4 (NLNsp10L11), for their ability to trigger innate immune responses including TLR activation. We isolated pulmonary alveolar macrophages (PAMs) from 8- to 12-week-old specific pathogen free (SPF) piglets and stimulated them with PRRSV (0.01 MOI and 0.05 MOI) or antigens. We also investigated the T-cell differentiation by immunological synapse activation of PAMs and CD4+ T-cells in the cocultured system. To confirm the infection of PRRSV in PAMs, we checked the expression of TLR3, 7, 8, and 9. Our results showed that the expression of TLR3, 7, and 9 were significantly upregulated in PAMs by A3 antigen induction, similar to the extent of PRRSV infection. Gene profile results showed that A3 repolarizes macrophages into the M1 subtype potently, in parallel with A1, as indicated by significant upregulation of proinflammatory genes (TNF-α, IL-6, IL-1β and IL-12). Upon immunological synapse activation, A3 potentially differentiated CD4 T cells into Th1 cells, determined by the expression of IL-12 and IFN-γ secretion. On the contrary, antigen A4 promoted regulatory T cell (T-reg) differentiation by significant upregulation of IL-10 expression. Finally, we concluded that the PRRSV-2 recombinant protein A3 provided better protection against PRRSV infection, suggested by its capability to reeducate immunosuppressive M2 macrophages into proinflammatory M1 cells. As M1 macrophages are prone to be functional antigen-presenting cells (APCs), they can call for TLR activation and Th1-type immune response within the immunological synapse.
Collapse
Affiliation(s)
- Rika Wahyuningtyas
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Mei-Li Wu
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Wen-Bin Chung
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Hso-Chi Chaung
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: (H.-C.C.); (K.-T.C.)
| | - Ko-Tung Chang
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Correspondence: (H.-C.C.); (K.-T.C.)
| |
Collapse
|
12
|
Qiu M, Li S, Ye M, Li J, Sun Z, Li X, Xu Y, Xiao Y, Li C, Feng B, Lin H, Zheng W, Yu X, Tian K, Zhu J, Chen N. Systemic Homologous Neutralizing Antibodies Are Inadequate for the Evaluation of Vaccine Protective Efficacy against Coinfection by High Virulent PEDV and PRRSV. Microbiol Spectr 2022; 10:e0257421. [PMID: 35315711 PMCID: PMC9045284 DOI: 10.1128/spectrum.02574-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
G2 porcine epidemic diarrhea virus (G2 PEDV) and highly pathogenic porcine reproductive and respiratory syndrome virus 2 (HP-PRRSV2) are two of the most prevalent swine pathogens in China's swine herds, and their coinfection occurs commonly. Several PED and PRRS vaccines have been utilized in China for decades, and systemic homologous neutralizing antibodies (shnAbs) in serum are frequently used to evaluate the protective efficacy of PED and PRRS vaccines. To develop a vaccine candidate against G2 PEDV and HP-PRRSV2 coinfection, in this study, we generated a chimeric virus (rJSTZ1712-12-S) expressing S protein of G2 PEDV using an avirulent HP-PRRSV2 rJSTZ1712-12 infectious clone as the viral vector. The rJSTZ1712-12-S strain has similar replication efficacies as the parental rJSTZ1712-12 virus. In addition, animal inoculation indicated that rJSTZ1712-12-S is not pathogenic to piglets and can induce shnAbs against both G2 PEDV and HP-PRRSV2 isolates after prime-boost immunization. However, passive transfer study in neonatal piglets deprived of sow colostrum showed that rJSTZ1712-12-S-induced shnAbs may only decrease PEDV and PRRSV viremia but cannot confer sufficient protection against dual challenge of high virulent G2 PEDV XJ1904-34 strain and HP-PRRSV2 XJ17-5 isolate. Overall, this study provides the first evidence that shnAbs confer insufficient protection against PEDV and PRRSV coinfection and are inadequate for the evaluation of protective efficacy of PED and PRRS bivalent vaccine (especially for the PED vaccine). IMPORTANCE Porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) coinfection occurs commonly and can synergistically reduce feed intake and pig growth. Vaccination is an effective strategy utilized for PED and PRRS control, and systemic homologous neutralizing antibodies (shnAbs) in serum are commonly used for protective efficacy evaluation of PED and PRRS vaccines. Currently, no commercial vaccine is available against PEDV and PRRSV coinfection. This study generated a chimeric vaccine candidate against the coinfection of prevalent PEDV and PRRSV in China. The chimeric strain can induce satisfied shnAbs against both PEDV and PRRSV after prime-boost inoculation in pigs. But the shnAbs cannot confer sufficient protection against PEDV and PRRSV coinfection in neonatal piglets. To the best of our knowledge, these findings provide the first evidence that shnAbs confer insufficient protection against PEDV and PRRSV coinfection and are inadequate for evaluating PED and PRRS bivalent vaccine protective efficacy.
Collapse
Affiliation(s)
- Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mengxue Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhe Sun
- National Research Center for Veterinary Medicine, Luoyang, Henan, China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yulin Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, Luoyang, Henan, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, Henan, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
13
|
Zhao J, Zhang R, Zhu L, Deng H, Li F, Xu L, Huan J, Sun X, Xu Z. Establishment of a peptide-based enzyme-linked immunosorbent assay for detecting antibodies against PRRSV M protein. BMC Vet Res 2021; 17:355. [PMID: 34798885 PMCID: PMC8602981 DOI: 10.1186/s12917-021-03060-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/31/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Porcine reproductive and respiratory syndrome (PRRS) is one of the most economically devastating diseases affecting the swine industry globally. Evaluation of antibody responses and neutralizing antibody titers is the most effective method for vaccine evaluation. In this study, the B cell line epitopes of PRRSV M protein were predicted, and two peptide ELISA assays were established (M-A110-129 ELISA, M-A148-174 ELISA) to detect antibodies against PRRSV M protein. Field serum samples collected from pig farms were used to validate the peptide ELISA and compare it with an indirect immunofluorescence assay. RESULTS The sensitivity and specificity of M-A110-129 ELISA and M-A148-174 ELISA were (111/125) 88.80%, (69/70) 98.57% and (122/125) 97.60%, (70/70) 100%, relative to indirect immunofluorescence assay. This peptide ELISA could detect antibodies against different genotypes of PRRSV including type 1 PRRSV, classical PRRSV, HP-PRRSV, and NADC30 like PRRSV, but not antibodies against other common swine viruses. The results of ROC analysis showed that the area under the curve (AUC) of the M-A110-129 ELISA and M-A148-174 ELISA were 0.967 and 0.996, respectively. Compared the concordance of results using two peptide ELISA assays, the IDEXX PRRSV X3 Ab ELISA and a virus neutralization test, were assessed using a series of 147 sera from pigs vaccinated with the NADC30-like PRRSV inactivated vaccine. The M-A148-174 ELISA had the best consistency, with a Cohen's kappa coefficient of 0.8772. The concordance rates of the Hipra PRRSV ELISA kit, M-A110-129 ELISA and M-A148-174 ELISA in the field seropositive detection results were 91.08, 86.32 and 95.35%, relative to indirect immunofluorescence assay. CONCLUSIONS In summary, compared with M-A110-129 ELISA, the PRRSV M-A148-174 ELISA is of value for detecting antibodies against PRRSV and the evaluation of the NADC30-like PRRSV inactivated vaccine, but the advantage is insufficient in serological early diagnosis.
Collapse
Affiliation(s)
- Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rubo Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Fengqing Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,College of Animal Science, Xichang University, Xichang, 615000, Sichuan, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianbo Huan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China. .,Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, 611130, China.
| |
Collapse
|