1
|
Sumran G, Sharma M, Aggarwal R. Insight into the therapeutic potential of pyrazole-thiazole hybrids: A comprehensive review. Arch Pharm (Weinheim) 2024; 357:e2400576. [PMID: 39367561 DOI: 10.1002/ardp.202400576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
Several pyrazole-thiazole hybrids featuring two potentially bioactive pharmacophores with or without linker have been synthesized using the molecular hybridization approach as target structures by medicinal chemists to modulate multiple drug targets simultaneously. The presented review aims to provide an overview of the diversified and wide array of pharmacological activities of these hybrids bestowing anticancer, antifungal, antibacterial, analgesic, anti-inflammatory, antioxidant, antitubercular, antiviral, antiparasitic, and miscellaneous activities. The structure-activity relationships and potential mechanism of action are also reviewed to shed light on the development of more effective and biotargeted candidates. This review focuses on the latest research advances in the biological profile of pyrazole-thiazole hybrids reported from 2015 to the present, providing medicinal researchers with a comprehensive platform to rationally design and develop more promising pyrazole-thiazole hybrids.
Collapse
Affiliation(s)
- Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, Haryana, India
| | - Manisha Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
- CSIR-National Institute of Science Communication and Policy Research, New Delhi, India
| |
Collapse
|
2
|
Said MF, George RF, Fayed W, F Soliman AA, Refaey RH. Investigations of new N1-substituted pyrazoles as anti-inflammatory and analgesic agents having COX inhibitory activity. Future Med Chem 2024; 16:349-368. [PMID: 38288554 DOI: 10.4155/fmc-2023-0302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024] Open
Abstract
Background: The search is ongoing for ideal anti-inflammatory and analgesic agents with promising potency and reasonable selectivity. Methods: New N1-substituted pyrazoles with or without an acetamide linkage were synthesized and evaluated for their anti-inflammatory and analgesic activities. COX inhibitory testing, molecular docking, molecular dynamics simulation and antiproliferative activity assessments were performed. Results: All compounds exhibited anti-inflammatory activity up to 90.40% inhibition. They also exhibited good analgesic activity with up to 100% protection. N1-benzensulfonamides 3d, 6c and 6h were preferentially selective agents toward COX-2. Compound 3d showed good cytotoxicity against MCF-7 and HTC116 cancer cell lines. Molecular modeling studies predicted the binding pattern of the most active compounds. Molecular dynamics confirmed the docking results. All compounds showed remarkable pharmacokinetic properties.
Collapse
Affiliation(s)
- Mona F Said
- Pharmaceutical Chemistry Department, Cairo University, Cairo, 11562, Egypt
| | - Riham F George
- Pharmaceutical Chemistry Department, Cairo University, Cairo, 11562, Egypt
| | - Walid Fayed
- Pharmacognosy Department, Drug Bioassay-Cell Culture, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Ahmed A F Soliman
- Pharmacognosy Department, Drug Bioassay-Cell Culture, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Rana H Refaey
- Pharmaceutical Chemistry Department, October University for Modern Sciences & Arts
| |
Collapse
|
3
|
Design, synthesis of new anti-inflammatory agents with a pyrazole core: COX-1/COX-2 inhibition assays, anti-inflammatory, ulcerogenic, histopathological, molecular Modeling, and ADME studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130554] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Haroon M, de Barros Dias MCH, Santos ACDS, Pereira VRA, Barros Freitas LA, Balbinot RB, Kaplum V, Nakamura CV, Alves LC, Brayner FA, Leite ACL, Akhtar T. The design, synthesis, and in vitro trypanocidal and leishmanicidal activities of 1,3-thiazole and 4-thiazolidinone ester derivatives. RSC Adv 2021; 11:2487-2500. [PMID: 35424158 PMCID: PMC8693751 DOI: 10.1039/d0ra06994a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/25/2020] [Indexed: 11/21/2022] Open
Abstract
Chagas and leishmaniasis are both neglected tropical diseases, whose inefficient therapies have made them remain the cause for millions of deaths worldwide. Given this, we synthesized 27 novel 1,3-thiazoles and 4-thiazolidinones using bioisosteric and esterification strategies to develop improved and safer drug candidates. After an easy, rapid and low-cost synthesis with satisfactory yields, compounds were structurally characterized. Then, in vitro assays were performed, against Leishmania infantum and Leishmania amazonensis promastigotes, Trypanosoma cruzi trypomastigotes and amastigotes, for selected compounds to determine IC50 and SI, with cytotoxicity on LLC-MK2 cell lines. Overall, 1,3-thiazoles exhibited better trypanocidal activity than 4-thiazolidinones. The compound 1f, an ortho-bromobenzylidene-substituted 1,3-thiazole (IC50 = 0.83 μM), is the most potent of them all. In addition, compounds had negligible cytotoxicity in mammalian cells (CC50 values > 50 μM). Also noteworthy is the examination of the cell death mechanism of T. cruzi, which showed that compound 1f induced necrosis and apoptosis in the parasite. Scanning electron microscopy analysis demonstrated that the treatment of Trypanosoma cruzi trypomastigote cells with the compound 1f at different IC50 concentrations promoted alterations in the shape, flagella and body surface, inducing parasite death. Together, our data revealed a novel series of 1,3-thiazole structure-based compounds with promising activity against Trypanosoma cruzi and Leishmania spp., broadening ways for scaffold optimization. Chagas and leishmaniasis are both neglected tropical diseases, whose inefficient therapies have made them remain the cause for millions of deaths worldwide.![]()
Collapse
Affiliation(s)
- Muhammad Haroon
- Department of Chemistry
- Mirpur University of Science and Technology (MUST), Mirpur
- 10250-Mirpur
- Pakistan
| | - Mabilly Cox Holanda de Barros Dias
- Laboratório de Planejamento em química medicinal
- Department of Pharmaceutical Sciences
- Health Sciences Centre
- Federal University of Pernambuco
- Recife
| | | | | | - Luiz Alberto Barros Freitas
- Laboratório de Planejamento em química medicinal
- Department of Pharmaceutical Sciences
- Health Sciences Centre
- Federal University of Pernambuco
- Recife
| | - Rodolfo Bento Balbinot
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos
- State University of Maringá
- Paraná
- Brazil
| | - Vanessa Kaplum
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos
- State University of Maringá
- Paraná
- Brazil
| | - Celso Vataru Nakamura
- Laboratório de Inovação Tecnológica no Desenvolvimento de Fármacos e Cosméticos
- State University of Maringá
- Paraná
- Brazil
| | - Luiz Carlos Alves
- Laboratório de Imunopatologia Keizo Asami (LIKA)
- Recife
- Brazil
- Instituto Aggeu Magalhães
- Fundação Oswaldo Cruz
| | - Fábio André Brayner
- Laboratório de Imunopatologia Keizo Asami (LIKA)
- Recife
- Brazil
- Instituto Aggeu Magalhães
- Fundação Oswaldo Cruz
| | - Ana Cristina Lima Leite
- Laboratório de Planejamento em química medicinal
- Department of Pharmaceutical Sciences
- Health Sciences Centre
- Federal University of Pernambuco
- Recife
| | - Tashfeen Akhtar
- Department of Chemistry
- Mirpur University of Science and Technology (MUST), Mirpur
- 10250-Mirpur
- Pakistan
| |
Collapse
|
5
|
Sahiba N, Sethiya A, Soni J, Agarwal DK, Agarwal S. Saturated Five-Membered Thiazolidines and Their Derivatives: From Synthesis to Biological Applications. Top Curr Chem (Cham) 2020; 378:34. [PMID: 32206929 PMCID: PMC7101601 DOI: 10.1007/s41061-020-0298-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 03/07/2020] [Indexed: 02/06/2023]
Abstract
In past decades, interdisciplinary research has been of great interest for scholars. Thiazolidine motifs behave as a bridge between organic synthesis and medicinal chemistry and compel researchers to explore new drug candidates. Thiazolidine motifs are very intriguing heterocyclic five-membered moieties present in diverse natural and bioactive compounds having sulfur at the first position and nitrogen at the third position. The presence of sulfur enhances their pharmacological properties, and, therefore, they are used as vehicles in the synthesis of valuable organic combinations. They show varied biological properties viz. anticancer, anticonvulsant, antimicrobial, anti-inflammatory, neuroprotective, antioxidant activity and so on. This diversity in the biological response makes it a highly prized moiety. Based on literature studies, various synthetic approaches like multicomponent reaction, click reaction, nano-catalysis and green chemistry have been employed to improve their selectivity, purity, product yield and pharmacokinetic activity. In this review article, we have summarized systematic approaches for the synthesis of thiazolidine and its derivatives, along with their pharmacological activity, including advantages of green synthesis, atom economy, cleaner reaction profile and catalyst recovery which will help scientists to probe and stimulate the study of these scaffolds.
Collapse
Affiliation(s)
- Nusrat Sahiba
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| | - Ayushi Sethiya
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| | - Jay Soni
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| | - Dinesh K. Agarwal
- Department of Pharmacy, B. N. University, MLSU, Udaipur, 313001 India
| | - Shikha Agarwal
- Department of Chemistry, Synthetic Organic Chemistry Laboratory, MLSU, Udaipur, 313001 India
| |
Collapse
|
6
|
Ragab FAEF, Mohammed EI, Abdel Jaleel GA, Selim AAMAER, Nissan YM. Synthesis of Hydroxybenzofuranyl-pyrazolyl and Hydroxyphenyl-pyrazolyl Chalcones and Their Corresponding Pyrazoline Derivatives as COX Inhibitors, Anti-inflammatory and Gastroprotective Agents. Chem Pharm Bull (Tokyo) 2020; 68:742-752. [PMID: 32741915 DOI: 10.1248/cpb.c20-00193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Five new series of hydroxybenzofuranyl-pyrazolyl chalcones 3a,b, hydroxyphenyl-pyrazolyl chalcones 6a-c and their corresponding pyrazolylpyrazolines 4a, d, 7a-c and 8a-f have been synthesized and evaluated for their in vitro cyclooxygenase (COX)-1 and COX-2 inhibitory activity. All the synthesized compounds exhibited dual COX-1 and COX-2 inhibitory activity with obvious selectivity against COX-2. The pyrazolylpyrazolines 4a-d and 8a-f bearing two vicinal aryl moieties in the pyrazoline nucleus showed more selectivity towards COX-2. Within these two series, derivatives 4c, d and 8d-f bearing the benzenesulfonamide group were the most selective. Compounds 4a-d and 8a-f were further subjected to in vivo anti-inflammatory screening, ulcerogenic liability and showed good anti-inflammatory activity with no ulcerogenic effect. In addition compounds 4c and 8d as examples showed prostaglandin (PG)E2 inhibition % 44.23 and 51.4 respectively, tumor necrosis factor α (TNFα) inhibition % 33.48 and 41.41 respectively and gastroprotective effect in ethanol induced rodent gastric ulcer model. In addition, to explore the binding mode and selectivity of our compounds, 8d and celecoxib were docked into the active site of COX-1 and COX-2. It was found that compound 8d exhibited a binding pattern and interactions similar to that of celecoxib with COX-2 active site, while bitter manner of interaction than celecoxib to COX-1 active site.
Collapse
Affiliation(s)
| | | | | | | | - Yassin Mohammed Nissan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA)
| |
Collapse
|
7
|
Leite ACL, Espíndola JWP, de Oliveira Cardoso MV, de Oliveira Filho GB. Privileged Structures in the Design of Potential Drug Candidates for Neglected Diseases. Curr Med Chem 2019; 26:4323-4354. [DOI: 10.2174/0929867324666171023163752] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/15/2017] [Accepted: 09/19/2017] [Indexed: 11/22/2022]
Abstract
Background:
Privileged motifs are recurring in a wide range of biologically
active compounds that reach different pharmaceutical targets and pathways and could represent
a suitable start point to access potential candidates in the neglected diseases field.
The current therapies to treat these diseases are based in drugs that lack of the desired effectiveness,
affordable methods of synthesis and allow a way to emergence of resistant
strains. Due the lack of financial return, only few pharmaceutical companies have been
investing in research for new therapeutics for neglected diseases (ND).
Methods:
Based on the literature search from 2002 to 2016, we discuss how six privileged
motifs, focusing phthalimide, isatin, indole, thiosemicarbazone, thiazole, and thiazolidinone
are particularly recurrent in compounds active against some of neglected diseases.
Results:
It was observed that attention was paid particularly for Chagas disease, malaria,
tuberculosis, schistosomiasis, leishmaniasis, dengue, African sleeping sickness (Human
African Trypanosomiasis - HAT) and toxoplasmosis. It was possible to verify that, among
the ND, antitrypanosomal and antiplasmodial activities were between the most searched.
Besides, thiosemicarbazone moiety seems to be the most versatile and frequently explored
scaffold. As well, phthalimide, isatin, thiazole, and thiazolidone nucleus have been also
explored in the ND field.
Conclusion:
Some described compounds, appear to be promising drug candidates, while
others could represent a valuable inspiration in the research for new lead compounds.
Collapse
Affiliation(s)
- Ana Cristina Lima Leite
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | - José Wanderlan Pontes Espíndola
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| | | | - Gevanio Bezerra de Oliveira Filho
- Departamento de Ciencias Farmaceuticas, Centro de Ciencias da Saude, Universidade Federal de Pernambuco, 50740-520, Recife, PE, Brazil
| |
Collapse
|
8
|
Taher ES, Ibrahim TS, Fares M, Al-Mahmoudy AMM, Radwan AF, Orabi KY, El-Sabbagh OI. Novel benzenesulfonamide and 1,2-benzisothiazol-3(2H)-one-1,1-dioxide derivatives as potential selective COX-2 inhibitors. Eur J Med Chem 2019; 171:372-382. [PMID: 30928709 DOI: 10.1016/j.ejmech.2019.03.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/01/2019] [Accepted: 03/16/2019] [Indexed: 02/07/2023]
Abstract
Two new series of 1,2-benzisothiazol-3(2H)-one-1,1-dioxide derivatives containing either five membered heterocyclic rings or aryl hydrazones were synthesized and evaluated for their in vitro COX-1/COX-2 inhibitory activity. In vivo anti-inflammatory evaluation revealed that benzenesulfonamides bearing pyrazole moiety 19, 20 and its cyclized form 23 exhibited the highest anti-inflammatory activity with comparable potency to celecoxib. Furthermore, the ulcerogenic activity evaluation showed that compounds 19, 20 and 23 exerted the minimal ulcer index in comparison to indomethacin as a reference drug. Docking studies of the most selective COX-2 derivatives were also carried out against COX-2 active site. Benzenesulfonamide derivatives 19 and 20 displayed higher predicted binding affinities inside the COX-2 active site. Molecular modelling simulation and drug likeness studies showed good agreement with the obtained biological evaluation.
Collapse
Affiliation(s)
- Ehab S Taher
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 71524, Assiut, Egypt.
| | - Tarek S Ibrahim
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, King Abdulaziz University, 21589, Saudi Arabia; Pharmaceutical Organic Chemistry Department Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed Fares
- School of Chemistry, University of Wollongong, Wollongong, 2522, NSW, Australia; School of Chemistry, The University of Sydney, 2006, NSW, Australia
| | - Amany M M Al-Mahmoudy
- Pharmaceutical Organic Chemistry Department Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt
| | - Abdullah F Radwan
- Biochemistry Department, Faculty of Pharmacy, Egyptian Russian University, 11829, Cairo, Egypt
| | - Khaled Y Orabi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Health Sciences Center, Kuwait University, 13110, Safat, Kuwait
| | - Osama I El-Sabbagh
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Taif University, 11099, Taif, Saudi Arabia; Medicinal Chemistry Department, Faculty of Pharmacy, Zagazig University, 44519, Zagazig, Egypt
| |
Collapse
|
9
|
El-Shoukrofy MS, Abd El Razik HA, AboulWafa OM, Bayad AE, El-Ashmawy IM. Pyrazoles containing thiophene, thienopyrimidine and thienotriazolopyrimidine as COX-2 selective inhibitors: Design, synthesis, in vivo anti-inflammatory activity, docking and in silico chemo-informatic studies. Bioorg Chem 2019; 85:541-557. [DOI: 10.1016/j.bioorg.2019.02.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 10/27/2022]
|
10
|
Hassan GS, Abdel Rahman DE, Abdelmajeed EA, Refaey RH, Alaraby Salem M, Nissan YM. New pyrazole derivatives: Synthesis, anti-inflammatory activity, cycloxygenase inhibition assay and evaluation of mPGES. Eur J Med Chem 2019; 171:332-342. [PMID: 30928706 DOI: 10.1016/j.ejmech.2019.03.052] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 10/27/2022]
Abstract
New pyrazole derivatives 2-5 were synthesized and evaluated for their COX-1 and COX-2 inhibitory activity in vitro. All compounds showed good inhibitory activity at a nanomolar level and most compounds exhibited selectivity towards COX-2 inhibition. Compounds 2a, 3b, 4a, 5b and 5e exhibited IC50 towards COX-2 enzyme of 19.87, 39.43, 61.24, 38.73 and 39.14 nM, respectively. Furthermore, compounds 3b, 4a, 5b and 5e exhibited a selectivity index of 22.21, 14.35, 17.47 and 13.10, respectively. The most active compounds were further subjected to in vivo anti-inflammatory assay. The tested compounds showed better or comparable activity to celecoxib as positive control. In order to explore their binding mode and selectivity behaviour, molecular docking in the active site of COX-2 was carried out for these derivatives. Analysis of the docked poses of the compounds showed that they adopt similar conformations to the highly selective COX-2 inhibitor, SC-558. The docking pose of compound 3b was confirmed by molecular dynamics. All the tested compounds exhibited potent inhibitory effect on the production of PGE2, in addition to their inhibition of COX-2 enzyme.
Collapse
Affiliation(s)
- Ghaneya S Hassan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo 11562, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo 11829, Egypt
| | - Doaa E Abdel Rahman
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo 11562, Egypt
| | - Esraa A Abdelmajeed
- National Cancer Institute, Cairo University, FomElkhalig, Kasr Elaini St., Cairo 11796, Egypt
| | - Rana H Refaey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt.
| | - M Alaraby Salem
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Yassin M Nissan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elini St., Cairo 11562, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
11
|
Nirwan S, Chahal V, Kakkar R. Thiazolidinones: Synthesis, Reactivity, and Their Biological Applications. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3514] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sonam Nirwan
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Varun Chahal
- Department of Chemistry University of Delhi Delhi 110007 India
| | - Rita Kakkar
- Department of Chemistry University of Delhi Delhi 110007 India
| |
Collapse
|
12
|
Tageldin GN, Fahmy SM, Ashour HM, Khalil MA, Nassra RA, Labouta IM. Design, synthesis and evaluation of some pyrazolo[3,4-d]pyrimidine derivatives bearing thiazolidinone moiety as anti-inflammatory agents. Bioorg Chem 2018; 80:164-173. [DOI: 10.1016/j.bioorg.2018.06.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/21/2022]
|
13
|
Synthesis, molecular modeling and biological screening of some pyrazole derivatives as antileishmanial agents. Future Med Chem 2018; 10:2325-2344. [DOI: 10.4155/fmc-2018-0058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Aim: Novel open chain and cyclized derivatives containing pyrazole scaffold were designed, synthesized and evaluated as antileishmanial compounds. Methodology & results: In silico reverse docking experiment suggested Leishmania major pteridine reductase (Lm-PTR1) as a putative target for the synthesized compounds. In vitro antileishmanial screening against L. major promastigotes and amastigotes using miltefosine and amphotericin B as references showed that the majority of the compounds displayed activity higher than miltefosine. Compounds 3i and 5 showed the highest antileishmanial activity with IC50 values of 1.45 ± 0.08 μM and 2.30 ± 0.09 μM, respectively, for the amastigote form. In silico drug-likeness and toxicity predictions showed acceptable profiles for most of the compounds, which were validated by experimental toxicity studies. Conclusion: This study offers promising entities for antileishmanial activity.
Collapse
|
14
|
Liaras K, Fesatidou M, Geronikaki A. Thiazoles and Thiazolidinones as COX/LOX Inhibitors. Molecules 2018; 23:E685. [PMID: 29562646 PMCID: PMC6017610 DOI: 10.3390/molecules23030685] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 12/11/2022] Open
Abstract
Inflammation is a natural process that is connected to various conditions and disorders such as arthritis, psoriasis, cancer, infections, asthma, etc. Based on the fact that cyclooxygenase isoenzymes (COX-1, COX-2) are responsible for the production of prostaglandins that play an important role in inflammation, traditional treatment approaches include administration of non-steroidal anti-inflammatory drugs (NSAIDs), which act as selective or non-selective COX inhibitors. Almost all of them present a number of unwanted, often serious, side effects as a consequence of interference with the arachidonic acid cascade. In search for new drugs to avoid side effects, while maintaining high potency over inflammation, scientists turned their interest to the synthesis of dual COX/LOX inhibitors, which could provide numerous therapeutic advantages in terms of anti-inflammatory activity, improved gastric protection and safer cardiovascular profile compared to conventional NSAIDs. Τhiazole and thiazolidinone moieties can be found in numerous biologically active compounds of natural origin, as well as synthetic molecules that possess a wide range of pharmacological activities. This review focuses on the biological activity of several thiazole and thiazolidinone derivatives as COX-1/COX-2 and LOX inhibitors.
Collapse
Affiliation(s)
- Konstantinos Liaras
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| | - Maria Fesatidou
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| | - Athina Geronikaki
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University, 54124 Thessaloniki, Greece.
| |
Collapse
|
15
|
Yu C, Shen S, Jiang L, Li J, Lu Y, Li T, Yao C. NHC-catalyzed regiodivergent syntheses of difunctionalized 3-pyrazolidinones from α-bromoenal and monosubstituted hydrazine. Org Biomol Chem 2017; 15:9149-9155. [PMID: 29058746 DOI: 10.1039/c7ob02041d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A formal [3 + 2] annulation of α-bromoenal with monosubstituted hydrazine could give 1,5 or 2,5-difunctionalized 3-pyrazolidinone regiodivergently by tuning the structure of the N-Heterocyclic Carbene (NHC) catalyst. Moderate to high yields, mild reaction conditions, good regioselectivity and potential biological significance of the final product have made this protocol attractive for the assembly of 3-pyrazolidinone.
Collapse
Affiliation(s)
- Chenxia Yu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
16
|
Safaei-Ghomi J, Nazemzadeh SH, Shahbazi-Alavi H. Nano-CdZr4(PO4)6 as a reusable and robust catalyst for the synthesis of bis-thiazolidinones by a multicomponent reaction of aldehydes, ethylenediamine and thioglycolic acid. J Sulphur Chem 2016. [DOI: 10.1080/17415993.2016.1267176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Javad Safaei-Ghomi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Seyed Hadi Nazemzadeh
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Hossein Shahbazi-Alavi
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Iran
- Young Researchers and Elite Club, Kashan Branch, Islamic Azad University, Kashan, Iran
| |
Collapse
|
17
|
Somakala K, Amir M, Sharma V, Wakode S. Synthesis and pharmacological evaluation of pyrazole derivatives containing sulfonamide moiety. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1694-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|