1
|
Xi J, Sun H, Qian Y, Chen X, Zhao L. Mechanisms of formation and consumption of VSCs in thermal dehydration of Lentinula edodes: A transcriptomic analysis utilizing WGCNA. Food Res Int 2025; 209:116264. [PMID: 40253187 DOI: 10.1016/j.foodres.2025.116264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 04/21/2025]
Abstract
The aroma of Lentinula edodes, primarily attributed to volatile sulfur compounds (VSCs), is a crucial factor influencing its commercial and culinary quality. This study investigated cellular activity and transcriptomic changes during gradient hot-air drying (40-60 °C) at various stages. AO/EB staining and tissue culture confirmed cell viability throughout the drying process. Transcriptomic analysis identified 4255 significantly different expressed genes (|log2FC| > 1, p < 0.05), including 366 associated with sulfur metabolism. WGCNA, KEGG, and GO analyses revealed that glutathione synthesis and degradation were inhibited during drying. The gene LeGGT_3 (C8R40DRAFT_1158952) was identified as a regulator of γ-GTase synthesis. Five cysteine desulfurase (C-Dase)-encoding genes were enriched in the cysteine and methionine pathways, with LeNifs_3 (C8R40DRAFT_1079603) transcriptionally modulating C-Dase activity, which positively correlates with the production of cyclic thioethers (p < 0.05). The upregulation of DNA repair genes between 4 and 8 h enhanced cyclic thioethers (e.g., lentinionine). Early drying (0-4 h) suppressed methionine biosynthesis but activated cys synthesis. Compared to fresh samples, changes in sulfur assimilation genes during 6-8 h of drying consumed VSCs. The upregulation of LeNifs_3 increased C-Dase activity, thereby promoting the formation of cyclic thioethers. This study underscores the pivotal role of LeNifs_3 in the biosynthesis of cyclic sulfides in hot-air-dried Lentinula edodes, providing valuable insights for the development of high-quality mushroom products.
Collapse
Affiliation(s)
- Jiapei Xi
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, China; Yuncheng University, Department of Life Sciences, Shanxi Technology Innovation Center of High Value-Added Echelon Utilization of Premium Agro-Products, Yuncheng 044000, China
| | - Hailan Sun
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, China
| | - Yirong Qian
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, China
| | - Xiao Chen
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, China
| | - Liyan Zhao
- Nanjing Agricultural University, College of Food Science and Technology, Nanjing 210095, China.
| |
Collapse
|
2
|
Kaźmierczak A, Tarkowská D, Plačková L, Doniak M, Doležal K. Hormonal crosstalk controls cell death induced by kinetin in roots of Vicia faba ssp. minor seedlings. Sci Rep 2023; 13:11661. [PMID: 37468550 DOI: 10.1038/s41598-023-38641-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023] Open
Abstract
Studies of vitality/mortality of cortex cells, as well as of the concentrations of ethylene (ETH), gibberellins (GAs), indolic compounds/auxins (ICs/AUXs) and cytokinins (CKs), were undertaken to explain the hormonal background of kinetin (Kin)-regulated cell death (RCD), which is induced in the cortex of the apical parts of roots of faba bean (Vicia faba ssp. minor) seedlings. Quantification was carried out with fluorescence microscopy, ETH sensors, spectrophotometry and ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC‒MS/MS). The results indicated that Kin was metabolized to the transport form, i.e., kinetin-9-glucoside (Kin9G) and kinetin riboside (KinR). KinR was then converted to cis-zeatin (cZ) in apical parts of roots with meristems, to cis-zeatin riboside (cZR) in apical parts of roots without meristems and finally to cis-zeatin riboside 5'-monophosphate (cZR5'MP), which is indicated to be a ligand of cytokinin-dependent receptors inducing CD. The process may be enhanced by an increase in the amount of dihydrozeatin riboside (DHZR) as a byproduct of the pathway of zeatin metabolism. It seems that crosstalk of ETH, ICs/AUXs, GAs and CKs with the cZR5'MP, the cis-zeatin-dependent pathway, but not the trans-zeatin-dependent pathway, is responsible for Kin-RCD, indicating that the process is very specific and offers a useful model for studies of CD hallmarks in plants.
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| | - Danuše Tarkowská
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany Academy of Sciences of the Czech Republic and Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Magdalena Doniak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Karel Doležal
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, and Faculty of Science Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
- Department of Chemical Biology and Genetics, Center of Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| |
Collapse
|
3
|
Kaźmierczak A, Siatkowska E, Li R, Bothe S, Nick P. Kinetin induces microtubular breakdown, cell cycle arrest and programmed cell death in tobacco BY-2 cells. PROTOPLASMA 2023; 260:787-806. [PMID: 36239807 PMCID: PMC10125952 DOI: 10.1007/s00709-022-01814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Plant cells can undergo regulated cell death in response to exogenous factors (often in a stress context), but also as regular element of development (often regulated by phytohormones). The cellular aspects of these death responses differ, which implies that the early signalling must be different. We use cytokinin-induced programmed cell death as paradigm to get insight into the role of the cytoskeleton for the regulation of developmentally induced cell death, using tobacco BY-2 cells as experimental model. We show that this PCD in response to kinetin correlates with an arrest of the cell cycle, a deregulation of DNA replication, a loss of plasma membrane integrity, a subsequent permeabilisation of the nuclear envelope, an increase of cytosolic calcium correlated with calcium depletion in the culture medium, an increase of callose deposition and the loss of microtubule and actin integrity. We discuss these findings in the context of a working model, where kinetin, mediated by calcium, causes the breakdown of the cytoskeleton, which, either by release of executing proteins or by mitotic catastrophe, will result in PCD.
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- Faculty of Biology and Environmental Protection, Institute of Experimental Biology, Department of Cytophysiology, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Ewa Siatkowska
- Faculty of Biology and Environmental Protection, Institute of Experimental Biology, Department of Cytophysiology, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland
| | - Ruoxi Li
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Sophie Bothe
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany
| | - Peter Nick
- Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| |
Collapse
|
4
|
Kaźmierczak A, Kornaś A, Mościpan M, Łęcka J. Influence of bisphenol A on growth and metabolism of Vicia faba ssp. minor seedlings depending on lighting conditions. Sci Rep 2022; 12:20259. [PMID: 36424469 PMCID: PMC9691730 DOI: 10.1038/s41598-022-24219-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
The effect of one of anthropogenic pollutants, i.e., 4,4'-isopropylidenediphenol, called 2,2-bis (4-hydroxyphenyl) propane (BPA), at 30 and 120 mg L-1 concentrations in the darkness (DK) or dark/light (DK/LT) on growth and selected elements of metabolism of seedlings and leaf discs of Vicia faba ssp. minor was studied. Treatment with 120 mg L-1 BPA had greater effects which were reflected by increase in the number of necrotic changes in roots and stems as well as in leaf discs and reduction of the length of roots DK and DK/LT, and volume of roots in the DK group. However, minimal and no influence on the fresh and dry weight of roots and stems in plants growing under both types of lighting conditions were observed. In both DK and DK/LT groups these effects were correlated with reduced amounts of storage and cell wall-bound sugars as well as of proteins while in the DK/LT additionally with reduced soluble sugar levels in the roots and increased amounts of hydrogen peroxide and phenols in roots and stems as well as in treatment solutions, where these compounds were released. We suggest that endogenous phenols and BPA can be metabolised in roots and stems to quinones. It seems that TB-1,4-BQ, is the one of that of the five studied quinones. We expect that the results of this paper will help to answer the following question: does the phytomeliorative and phytosanitative V. faba ssp. minor plant is enough to be resistant on negative effects, and to be useful to reduce increasing amount of BPA in the environment?
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- grid.10789.370000 0000 9730 2769Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland
| | - Andrzej Kornaś
- grid.412464.10000 0001 2113 3716Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084 Kraków, Poland
| | - Małgorzata Mościpan
- grid.460358.c0000 0001 1087 659XInstitute of Heavy Organic Synthesis “Blachownia”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland
| | - Justyna Łęcka
- grid.10789.370000 0000 9730 2769Laboratory of Environmental Threats, Department of Inorganic and Analytical Chemistry, Faculty of Chemistry, University of Łódź, Tamka 12, 91-403 Łódź, Poland
| |
Collapse
|
5
|
Kaźmierczak A, Kunikowska A, Doniak M, Kornaś A. Mechanism of kinetin-induced death of Vicia faba ssp. minor root cortex cells. Sci Rep 2021; 11:23746. [PMID: 34887458 PMCID: PMC8660813 DOI: 10.1038/s41598-021-03103-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023] Open
Abstract
Cell death (CD) may be induced by endogenous or exogenous factors and contributes to all the steps of plant development. This paper presents results related to the mechanism of CD regulation induced by kinetin (Kin) in the root cortex of Vicia faba ssp. minor. To explain the process, 6-(2-hydroxy-3-methylbenzylamino)purine (PI-55), adenine (Ad), 5'-amine-5'-deoxyadenosine (Ado) and N-(2-chloro-4-piridylo)-N'-phenylurea (CPPU) were applied to (i) block cytokinin receptors (CKs) and inhibit the activities of enzymes of CK metabolism, i.e., (ii) phosphoribosyltransferase, (iii) kinases, and (iv) oxidases, respectively. Moreover, ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA), lanthanum chloride (LaCl3), ruthenium red (RRed) and cyclosporine A (CS-A) were applied to (i) chelate extracellular calcium ions (Ca2+) as well as blocks of (ii) plasma-, (iii) endoplasmic reticulum- (ER) membrane Ca2+ ion channels and (iv) mitochondria- (MIT) Ca2+ ions release by permeability transition por (PTP), respectively. The measured physiological effectiveness of these factors was the number of living and dying cortex cells estimated with orange acridine (OA) and ethidium bromide (EB), the amounts of cytosolic Ca2+ ions with chlortetracycline (CTC) staining and the intensity of chromatin and Ca2+-CTC complex fluorescence, respectively. Moreover, the role of sorafenib, an inhibitor of RAF kinase, on the vitality of cortex cells and ethylene levels as well as the activities of RAF-like kinase and MEK2 with Syntide-2 and Mek2 as substrates were studied. The results clarified the previously presented suggestion that Kin is converted to appropriate ribotides (5'-monophosphate ribonucleotides), which cooperate with the ethylene and Ca2+ ion signalling pathways to transduce the signal of kinetin-programmed cell death (Kin-PCD). Based on the present and previously published results related to Kin-PCD, the crosstalk between ethylene and MAP kinase signalling, as well as inhibitors of CK receptors and enzymes of their metabolism, is proposed.
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland.
| | - Anita Kunikowska
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland
| | - Magdalena Doniak
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland
| | - Andrzej Kornaś
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 30-084, Kraków, Poland
| |
Collapse
|
6
|
Jiang C, Wang J, Leng HN, Wang X, Liu Y, Lu H, Lu MZ, Zhang J. Transcriptional Regulation and Signaling of Developmental Programmed Cell Death in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:702928. [PMID: 34394156 PMCID: PMC8358321 DOI: 10.3389/fpls.2021.702928] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Developmental programmed cell death (dPCD) has multiple functions in plant growth and development, and is of great value for industrial production. Among them, wood formed by xylem dPCD is one of the most widely used natural materials. Therefore, it is crucial to explore the molecular mechanism of plant dPCD. The dPCD process is tightly regulated by genetic networks and is involved in the transduction of signaling molecules. Several key regulators have been identified in diverse organisms and individual PCD events. However, complex molecular networks controlling plant dPCD remain highly elusive, and the original triggers of this process are still unknown. This review summarizes the recent progress on the transcriptional regulation and signaling of dPCD during vegetative and reproductive development. It is hoped that this review will provide an overall view of the molecular regulation of dPCD in different developmental processes in plants and identify specific mechanisms for regulating these dPCD events. In addition, the application of plants in industrial production can be improved by manipulating dPCD in specific processes, such as xylogenesis.
Collapse
Affiliation(s)
- Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jiawei Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Hua-Ni Leng
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, United States
| | - Xiaqin Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Yijing Liu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Haiwen Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
7
|
Fate of nuclear material during subsequent steps of the kinetin-induced PCD in apical parts of Vicia faba ssp. minor seedling roots. Micron 2018; 110:79-87. [PMID: 29772476 DOI: 10.1016/j.micron.2018.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/23/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
In animals during apoptosis, the best examined type of programmed cell death (PCD), three main phases are distinguished: (i) specification (signaling), (ii) killing and (iii) execution one. It has bean postulated that plant PCD also involves three subsequent phases: (i) transmission of death signals to cells (signaling), (ii) initiation of killing processes and (iii) destruction of cells. One of the most important hallmarks of animal and plant PCD are those regarding nucleus, not thoroughly studied in plants so far. To study kinetin-induced PCD (Kin-PCD) in the context of nuclear material faith, 2-cm apical parts of Vicia faba ssp. minor seedling roots were used. Applied assays involving spectrophotometry, transmission electron microscopy, fluorescence and white light microscopy allowed to examine metabolic and cytomorphologic hallmarks such as changes in DNA content, ssDNA formation and activity of acidic and basic nucleases (DNases and RNases) as well as malformations and fragmentation of nucleoli and nuclei. The obtained results concerning the PCD hallmarks and influence of ZnSO4 on Kin-PCD allowed us to confirmed presence of specification/signaling, killing and execution/degradation phases of the process and broaden the knowledge about processes affecting nuclei during PCD.
Collapse
|
8
|
Kaźmierczak A, Doniak M, Kunikowska A. Proteolytic activities in cortex of apical parts of Vicia faba ssp. minor seedling roots during kinetin-induced programmed cell death. PROTOPLASMA 2017; 254:2273-2285. [PMID: 28501974 DOI: 10.1007/s00709-017-1119-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/02/2017] [Indexed: 06/07/2023]
Abstract
Programmed cell death (PCD) is a crucial process in plant development. In this paper, proteolytically related aspects of kinetin-induced PCD in cortex cells of Vicia faba ssp. minor seedlings were examined using morphological, fluorometric, spectrophotometric, and fluorescence microscopic analyses. Cell viability estimation after 46 μM kinetin treatment of seedling roots showed that the number of dying cortex cells increased with treatment duration, reaching maximum after 72 h. Weight of the apical root segments increased with time and was about 2.5-fold greater after 96 h, while the protein content remained unchanged, compared to the control. The total and cysteine-dependent proteolytic activities fluctuated during 1-96-h treatment, which was not accompanied by the changes in the protein amount, indicating that the absolute protein amounts decreased during kinetin-induced PCD. N-ethylmaleimide (NEM), phenylmethylsulfonyl fluoride (PMSF), and Z-Leu-Leu-Nva-H (MG115), the respective cysteine, serine, and proteasome inhibitors, suppressed kinetin-induced PCD. PMSF significantly decreased serine-dependent proteolytic activities without changing the amount of proteins, unlike NEM and MG115. More pronounced effect of PMSF over NEM indicated that in the root apical segments, the most important proteolytic activity during kinetin-induced PCD was that of serine proteases, while that of cysteine proteases may be important for protein degradation in the last phase of the process. Both NEM and PMSF inhibited apoptotic-like structure formation during kinetin-induced PCD. The level of caspase-3-like activity of β1 proteasome subunit increased after kinetin treatment. Addition of proteasome inhibitor MG-115 reduced the number of dying cells, suggesting that proteasomes might play an important role during kinetin-induced PCD.
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, The University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| | - Magdalena Doniak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, The University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Anita Kunikowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, The University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| |
Collapse
|
9
|
Kaźmierczak A, Doniak M, Bernat P. Membrane-related hallmarks of kinetin-induced PCD of root cortex cells. PLANT CELL REPORTS 2017; 36:343-353. [PMID: 27942841 DOI: 10.1007/s00299-016-2085-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/24/2016] [Indexed: 05/09/2023]
Abstract
Changes in cellular membrane potential and their fluidisation are the hallmarks of cell death induction with kinetin in root cortex. Programmed cell death (PCD), one of the essential processes in plant development, is still poorly understood. In this paper, the scientific plant model, V. faba ssp. minor seedling roots after kinetin application which triggers off programmed death of cortex cells, was used to recognise membrane-related aspects of plant cell death. Spectrophotometric, reflectometric and microscopic studies showed that the PCD induced by kinetin is accompanied by higher potassium ions leakage from roots, loss of plasma and ER membrane potentials (expressed by their lower amounts and higher index of fatty acid unsaturation), malformation of nuclear envelope, lower total lipid amount and formation of their peroxides, lower amount of phospholipids and changes in their composition. The results showed that potassium ions leakage, expressed in percentage of their amounts, and loss of plasma and ER membrane potential, expressed in percentage of their fluorescence intensity, together with the nuclear chromatin double staining with ethidium bromide and acridine orange, might be direct and universal methods for detecting specific plant PCD hallmarks and estimation of PCD intensity (percentage of dying and dead cells).
Collapse
Affiliation(s)
- Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection The University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland.
| | - Magdalena Doniak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection The University of Łódź, Pomorska 141/143, 90-236, Łódź, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental ProtectionThe University of Łódź, Banacha 12/16, 90-237, Łódź, Poland
| |
Collapse
|
10
|
Latrasse D, Benhamed M, Bergounioux C, Raynaud C, Delarue M. Plant programmed cell death from a chromatin point of view. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5887-5900. [PMID: 27639093 DOI: 10.1093/jxb/erw329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Programmed cell death (PCD) is a ubiquitous genetically regulated process consisting of the activation of finely controlled signalling pathways that lead to cellular suicide. PCD can be part of a developmental programme (dPCD) or be triggered by environmental conditions (ePCD). In plant cells, as in animal cells, extensive chromatin condensation and degradation of the nuclear DNA are among the most conspicuous features of cells undergoing PCD. Changes in chromatin condensation could either reflect the structural changes required for internucleosomal fragmentation of nuclear DNA or relate to large-scale chromatin rearrangements associated with a major transcriptional switch occurring during cell death. The aim of this review is to give an update on plant PCD processes from a chromatin point of view. The first part will be dedicated to chromatin conformational changes associated with cell death observed in various developmental and physiological conditions, whereas the second part will be devoted to histone dynamics and DNA modifications associated with critical changes in genome expression during the cell death process.
Collapse
Affiliation(s)
- D Latrasse
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - M Benhamed
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - C Bergounioux
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - C Raynaud
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - M Delarue
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| |
Collapse
|
11
|
Bagniewska-Zadworna A, Arasimowicz-Jelonek M. The mystery of underground death: cell death in roots during ontogeny and in response to environmental factors. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18:171-84. [PMID: 26332667 DOI: 10.1111/plb.12391] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 08/24/2015] [Indexed: 05/26/2023]
Abstract
Programmed cell death (PCD) is an essential part of the ontogeny of roots and their tolerance/resistance mechanisms, allowing adaptation and growth under adverse conditions. It occurs not only at the cellular and subcellular level, but also at the levels of tissues, organs and even whole plants. This process involves a wide spectrum of mechanisms, from signalling and the expression of specific genes to the degradation of cellular structures. The major goals of this review were to broaden current knowledge about PCD processes in roots, and to identify mechanisms associated with both developmental and stress-associated cell death in roots. Vacuolar cell death, when cell contents are removed by a combination of an autophagy-associated process and the release of hydrolases from a collapsed vacuole, is responsible for programming self-destruction. Regardless of the conditions and factors inducing PCD, its subcellular events usually include the accumulation of autophagosome-like structures, and the formation of massive lytic compartments. In some cases these are followed by the nuclear changes of chromatin condensation and DNA fragmentation. Tonoplast disruption and vacuole implosion occur very rapidly, are irreversible and constitute a definitive step toward cell death in roots. Active cell elimination plays an important role in various biological processes in the life history of plants, leading to controlled cellular death during adaptation to changing environmental conditions, and organ remodelling throughout development and senescence.
Collapse
Affiliation(s)
- A Bagniewska-Zadworna
- Department of General Botany, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| | - M Arasimowicz-Jelonek
- Department of Plant Ecophysiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
12
|
Rybaczek D, Musiałek MW, Balcerczyk A. Caffeine-Induced Premature Chromosome Condensation Results in the Apoptosis-Like Programmed Cell Death in Root Meristems of Vicia faba. PLoS One 2015; 10:e0142307. [PMID: 26545248 PMCID: PMC4636323 DOI: 10.1371/journal.pone.0142307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/19/2015] [Indexed: 12/27/2022] Open
Abstract
We have demonstrated that the activation of apoptosis-like programmed cell death (AL-PCD) was a secondary result of caffeine (CF) induced premature chromosome condensation (PCC) in hydroxyurea-synchronized Vicia faba root meristem cells. Initiation of the apoptotic-like cell degradation pathway seemed to be the result of DNA damage generated by treatment with hydroxyurea (HU) [double-stranded breaks (DSBs) mostly] and co-treatment with HU/CF [single-stranded breaks (SSBs) mainly]. A single chromosome comet assay was successfully used to study different types of DNA damage (neutral variant–DSBs versus alkaline–DSBs or SSBs). The immunocytochemical detection of H2AXS139Ph and PARP-2 were used as markers for DSBs and SSBs, respectively. Acridine orange and ethidium bromide (AO/EB) were applied for quantitative immunofluorescence measurements of dead, dying and living cells. Apoptotic-type DNA fragmentation and positive TUNEL reaction finally proved that CF triggers AL-PCD in stressed V. faba root meristem cells. In addition, the results obtained under transmission electron microscopy (TEM) further revealed apoptotic-like features at the ultrastructural level of PCC-type cells: (i) extensive vacuolization; (ii) abnormal chromatin condensation, its marginalization and concomitant degradation; (iii) formation of autophagy-like vesicles (iv) protoplast shrinkage (v) fragmentation of cell nuclei and (vi) extensive degeneration of the cells. The results obtained have been discussed with respect to the vacuolar/autolytic type of plant-specific AL-PCD.
Collapse
Affiliation(s)
- Dorota Rybaczek
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
- * E-mail:
| | - Marcelina Weronika Musiałek
- Department of Cytophysiology, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| |
Collapse
|
13
|
Doniak M, Barciszewska MZ, Kaźmierczak J, Kaźmierczak A. The crucial elements of the 'last step' of programmed cell death induced by kinetin in root cortex of V. faba ssp. minor seedlings. PLANT CELL REPORTS 2014; 33:2063-76. [PMID: 25213134 DOI: 10.1007/s00299-014-1681-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/25/2014] [Accepted: 09/01/2014] [Indexed: 05/09/2023]
Abstract
Kinetin-induced programmed cell death, manifested by condensation, degradation and methylation of DNA and fluctuation of kinase activities and ATP levels, is an autolytic and root cortex cell-specific process. The last step of programmed cell death (PCD) induced by kinetin in the root cortex of V. faba ssp. minor seedlings was explained using morphologic (nuclear chromatin/aggregation) and metabolic (DNA degradation, DNA methylation and kinases activity) analyses. This step involves: (1) decrease in nuclear DNA content, (2) increase in the number of 4',6-diamidino-2-phenylindole (DAPI)-stained chromocenters, and decrease in chromomycin A3 (CMA3)-stained chromocenters, (3) increase in fluorescence intensity of CMA3-stained chromocenters, (4) condensation of DAPI-stained and loosening of CMA3-stained chromatin, (5) fluctuation of the level of DNA methylation, (6) fluctuation of activities of exo-/endonucleolytic Zn(2+) and Ca(2+)/Mg(2+)-dependent nucleases, (7) changes in H1 and core histone kinase activities and (8) decrease in cellular ATP amount. These results confirmed that kinetin-induced PCD was a specific process. Additionally, based on data presented in this paper (DNA condensation and ATP depletion) and previous studies [increase in vacuole, increase in amount of cytosolic calcium ions, ROS production and cytosol acidification "in Byczkowska et al. (Protoplasma 250:121-128, 2013)"], we propose that the process resembles autolytic type of cell death, the most common type of death during development of plants. Lastly, the observations also suggested that regulation of these processes might be under control of epigenetic (methylation/phosphorylation) mechanisms.
Collapse
Affiliation(s)
- Magdalena Doniak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236, Lodz, Poland,
| | | | | | | |
Collapse
|
14
|
Kunikowska A, Byczkowska A, Doniak M, Kaźmierczak A. Cytokinins résumé: their signaling and role in programmed cell death in plants. PLANT CELL REPORTS 2013; 32:771-80. [PMID: 23579381 PMCID: PMC3654191 DOI: 10.1007/s00299-013-1436-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 03/22/2013] [Accepted: 03/25/2013] [Indexed: 05/21/2023]
Abstract
Cytokinins (CKs) are a large group of plant hormones which play a crucial role in many physiological processes in plants. One of the interesting functions of CKs is the control of programmed cell death (PCD). It seems that all CKs-dependent phenomena including PCD are accompanied by special multi-step phosphorelay signaling pathway. This pathway consists of three elements: histidine kinase receptors (HKs), histidine phosphotransfer proteins (HPs) and response regulators (RRs). This review shows the résumé of the latest knowledge about CKs signaling pathways in many physiological processes in plants with special attention paid to PCD process.
Collapse
Affiliation(s)
- A. Kunikowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/133, 90236 Łódź, Poland
| | - A. Byczkowska
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/133, 90236 Łódź, Poland
| | - M. Doniak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/133, 90236 Łódź, Poland
| | - A. Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/133, 90236 Łódź, Poland
| |
Collapse
|