1
|
He Q, E Y, Li R. Protoplast Cell-Wall Regeneration: Unlocking New Potential for Genetic Improvement and Tree Breeding. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40235274 DOI: 10.1111/pce.15537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/14/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025]
Abstract
Summary statementThe recalcitrance of cell‐wall regeneration in woody plant protoplasts hinders the application of protoplast genetic transformation in woody plant. Establishing an efficient cell‐wall regeneration system for woody plant protoplasts is a key strategy for promoting the application of protoplast transformation in tree genetic improvement and breeding.
Collapse
Affiliation(s)
- Qizouhong He
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yilan E
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- School of Life Sciences, Peking University, Beijing, China
| | - Ruili Li
- State Key Laboratory of Tree Genetics and Breeding, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Stelmach-Wityk K, Szymonik K, Grzebelus E, Kiełkowska A. Development of an optimized protocol for protoplast-to-plant regeneration of selected varieties of Brassica oleracea L. BMC PLANT BIOLOGY 2024; 24:1279. [PMID: 39736572 DOI: 10.1186/s12870-024-06005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/19/2024] [Indexed: 01/01/2025]
Abstract
BACKGROUND Brassica oleracea L. is a key plant in the Brassicaceae family, known for popular vegetables like cabbage, broccoli, kale and collard. Collard (B. oleracea var. viridis) is a non-heading leafy vegetable grown in urban farms and community gardens in the United States and Europe. Improving collard and other Brassica germplasm can benefit from both traditional and new plant breeding technologies (NPBTs), such as CRISPR-Cas mediated transformation. An efficient transformation or protoplast fusion can only be achieved with a robust and reproducible protocol for protoplast-to-plant regeneration. This research focuses on optimizing in vitro culture conditions to enhance cell divisions, microcallus formation, and the regeneration of shoots and roots in four Brassica oleracea varieties, including collard. RESULTS The protocol of protoplast release, purification and immobilization was optimized to obtain a suitable number and quality of protoplasts from seven cultivars of B. oleracea. The protoplast isolation efficiency after digestion of young leaves in optimized enzyme solution reached on average 2.5 × 106 of cells per gram of fresh weight. Protoplasts were embedded in thin alginate layers and subjected to culture in three different media. Protoplasts of all studied cultivars were viable (88.2%), underwent cell wall resynthesis and re-entered mitotic divisions in the 5th day of culture. After 30 days of culture, protoplast-derived cells of all the tested cultivars formed microcallus. Six cultivars regenerated shoots, although the shoot formation efficiency strongly depended on the genotype and composition of the regeneration medium. The regeneration medium supplemented with 1 mg l-1 of NAA, 1 mg l-1 of 2iP, 0.02 mg l-1 GA3 and with 2% of mannitol showed the highest shoot formation efficiency for five cultivars of B. oleracea. CONCLUSIONS The results of this research have led to the development of a robust protoplast-to-plant regeneration protocol for four varieties of B. oleracea that could be exploited as a tool for production of transformants and somatic hybrids. Furthermore, we present the first successful regeneration of protoplast-derived plants of collard, an overlooked but valuable variety of Brassica oleracea.
Collapse
Affiliation(s)
- Katarzyna Stelmach-Wityk
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculturein Krakow, Mickiewicza 21, Krakow, 31-120, Poland.
| | - Kamil Szymonik
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculturein Krakow, Mickiewicza 21, Krakow, 31-120, Poland
| | - Ewa Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculturein Krakow, Mickiewicza 21, Krakow, 31-120, Poland
| | - Agnieszka Kiełkowska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculturein Krakow, Mickiewicza 21, Krakow, 31-120, Poland.
| |
Collapse
|
3
|
Monthony AS, Jones AMP. Enhancing Protoplast Isolation and Early Cell Division from Cannabis sativa Callus Cultures via Phenylpropanoid Inhibition. PLANTS (BASEL, SWITZERLAND) 2024; 13:130. [PMID: 38202437 PMCID: PMC10781014 DOI: 10.3390/plants13010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
De novo regeneration of Cannabis sativa L. (cannabis) using tissue culture techniques remains unreliable and infrequent. Conventional methods for the regeneration and transformation of cannabis have not achieved the reliability and replicability that need to be integrated into research and breeding programs. Protoplast systems are effective for gene expression studies and transformation and genome-editing technologies and open the possibility of somatic hybridization to create interspecific hybrids. To date, leaf-derived protoplasts have been isolated for transient gene expression studies, but protoplast-to-plant regeneration has not been reported. The present study aims to evaluate the efficacy of using a callus culture system as an abundant tissue source for protoplast isolation and lays the groundwork for a protoplast-to-plant regeneration system. Using hypocotyl-derived callus cultures, which are known to have relatively greater regenerative potential, the efficacy of protoplast isolation and initial cell division were assessed. In this study, the effect of 2-aminoindane-2-phosphonic acid (AIP), a competitive inhibitor of phenylalanine ammonia lyase (PAL), in callus culture media and the effect of subculture frequency on protoplast yield were assessed. This study found that inclusion of AIP at 1 mM resulted in a 334% increase in protoplast yield compared with AIP-free medium, representing the first known use of AIP in cannabis tissue culture. Inclusion of AIP led to a 28% decrease in total soluble phenolics and 52% decrease in tissue browning compared with the control medium. Lastly, a two-phase culture system for protoplast regeneration was tested. At a concentration of 2.0 × 105 protoplasts per mL, cell wall reconstitution and cell division were observed, providing one of the first know reports of cell division from cannabis protoplasts and setting the stage for the future development of a protoplast-to-plant regeneration system.
Collapse
Affiliation(s)
- Adrian S. Monthony
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et D’innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institut Intelligence et Données (IID), Université Laval, Québec, QC G1V 0A6, Canada
| | | |
Collapse
|
4
|
Zaranek M, Pérez-Pérez R, Milewska-Hendel A, Betekhtin A, Grzebelus E. Promotive effect of phytosulfokine - peptide growth factor - on protoplast cultures development in Fagopyrum tataricum (L.) Gaertn. BMC PLANT BIOLOGY 2023; 23:385. [PMID: 37563739 PMCID: PMC10413615 DOI: 10.1186/s12870-023-04402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Fagopyrum tataricum (Tartary buckwheat) is a valuable crop of great nutritional importance due to its high level of bioactive compounds. Excellent opportunities to obtain plants with the high level or the desired profile of valuable metabolites may be provided by in vitro cultures. Among known in vitro techniques, protoplast technology is an exciting tool for genetic manipulation to improve crop traits. In that context, protoplast fusion may be applied to generate hybrid cells between different species of Fagopyrum. To apply protoplast cultures to the aforementioned approaches in this research, we established the protoplast-to-plant system in Tartary buckwheat. RESULTS In this work, cellulase and pectinase activity enabled protoplast isolation from non-morphogenic and morphogenic callus (MC), reaching, on average, 2.3 × 106 protoplasts per g of fresh weight. However, to release protoplasts from hypocotyls, the key step was the application of driselase in the enzyme mixture. We showed that colony formation could be induced after protoplast embedding in agarose compared to the alginate matrix. Protoplasts cultured in a medium based on Kao and Michayluk supplemented with phytosulfokine (PSK) rebuilt cell walls, underwent repeated mitotic division, formed aggregates, which consequently led to callus formation. Plating efficiency, expressing the number of cell aggregate formed, in 10-day-old protoplast cultures varied from 14% for morphogenic callus to 30% for hypocotyls used as a protoplast source. However plant regeneration via somatic embryogenesis and organogenesis occurred only during the cultivation of MC-derived protoplasts. CONCLUSIONS This study demonstrated that the applied protoplast isolation approach facilitated the recovery of viable protoplasts. Moreover, the embedding of protoplasts in an agarose matrix and supplementation of a culture medium with PSK effectively stimulated cell division and further development of Tartary buckwheat protoplast cultures along with the plant regeneration. Together, these results provide the first evidence of developing a protoplast-to-plant system from the MC of Fagopyrum tataricum used as source material. These findings suggest that Tartary buckwheat's protoplast cultures have potential implications for the species' somatic hybridization and genetic improvement.
Collapse
Affiliation(s)
- Magdalena Zaranek
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska st, Katowice, 40-032, Poland
| | - Reneé Pérez-Pérez
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska st, Katowice, 40-032, Poland
| | - Anna Milewska-Hendel
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska st, Katowice, 40-032, Poland
| | - Alexander Betekhtin
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska st, Katowice, 40-032, Poland.
| | - Ewa Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, al. Mickiewicza 21, Krakow, 31-120, Poland.
| |
Collapse
|
5
|
Shoot Development through Modified Transverse Thin Cell Layer (tTCL) Culture of Phalaenopsis Hybrid Protocorms. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This first-attempt study used microtome-based methods to generate a thin cell layer culture for the micropropagation of Phal. Hwafeng Redjewel × Phal. New Cinderella. Protocorms were embedded in various agarose concentrations (8–12%, w/v) and dried from 1 to 8 h before sectioning with a microtome. Optimal conditions for slicing sections of 100 to 300 μm were achieved when the protocorms were embedded at 10% (w/v) agarose and dried for 4 h under laminar flow, and the hardness of the agarose block under these conditions reached 641.8 ± 9.5 g·cm−2. The sectioned protocorms that were cultured on an MS medium supplemented with 1.2 mg·L−1 6-benzylaminopurine and 0.1 mg·L−1 α-naphthaleneacetic acid were capable of growth and differentiated through the neoformation of protocorm-like bodies (PLBs) and/or callus before subsequent regeneration into plantlets and development into healthy plants in a nursery environment. The results of this study demonstrate that microtome-based tTCL is a reliable and promising approach for mass propagation and possible virus-free propagation objectives for Phalaenopsis.
Collapse
|
6
|
Reed KM, Bargmann BOR. Protoplast Regeneration and Its Use in New Plant Breeding Technologies. Front Genome Ed 2021; 3:734951. [PMID: 34713266 PMCID: PMC8525371 DOI: 10.3389/fgeed.2021.734951] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/11/2021] [Indexed: 11/13/2022] Open
Abstract
The development of gene-editing technology holds tremendous potential for accelerating crop trait improvement to help us address the need to feed a growing global population. However, the delivery and access of gene-editing tools to the host genome and subsequent recovery of successfully edited plants form significant bottlenecks in the application of new plant breeding technologies. Moreover, the methods most suited to achieve a desired outcome vary substantially, depending on species' genotype and the targeted genetic changes. Hence, it is of importance to develop and improve multiple strategies for delivery and regeneration in order to be able to approach each application from various angles. The use of transient transformation and regeneration of plant protoplasts is one such strategy that carries unique advantages and challenges. Here, we will discuss the use of protoplast regeneration in the application of new plant breeding technologies and review pertinent literature on successful protoplast regeneration.
Collapse
Affiliation(s)
| | - Bastiaan O. R. Bargmann
- School of Plant and Environmental Sciences, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
7
|
Dell'Orso A, Kuzminsky E, Bermejo-Bermejo V, Ruiz-Checa R, Amo RAD, Meschini R. DNA integrity and ecophysiological responses of Spanish populations of Ulmus glabra to increasing ozone levels. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1098-1107. [PMID: 34110543 DOI: 10.1007/s10646-021-02436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
Ulmus glabra is a deciduous tree with a wide distribution in the Eurosiberian region. The southernmost populations, in the Mediterranean area, are fragmented in mountain areas which act as a refugium. These small relict populations can act as sentinel of global change, including climate change and impacts of human activities such as air pollution. Besides, tropospheric ozone (O3) is an additional stress factor in the Mediterranean region affecting plant physiology and health. Moreover, oxidative stress caused by O3 could increase DNA damage in plants cells. U. glabra 4-year-old seedlings originated from a natural population growing in the Guadarrama mountain range (central Spain), were exposed in Open Top Chambers to four O3 treatments: charcoal filtered air, non-filtered air reproducing ambient levels, non-filtered air supplemented with 15 nl l-1 O3 and non- filtered air supplemented with 30 nl l-1 O3. Ozone effects on the DNA integrity through Comet assay were evaluated and eco-physiological responses were explored as well as. Comet assay showed a significant increase of DNA damage with increasing levels of O3 after only one-month exposure, when no eco-physiological symptoms of damage could be detected. Comet assay could thus be suggested as a predictive test to detect DNA damage induced in plants by other abiotic stresses as well as to identify tolerant and sensitive species or in preservation strategies of small relict populations. The discovery of a test for an early identification of stressed plants could be important to speed the selection of tolerant individuals for breeding programmes.
Collapse
Affiliation(s)
| | | | | | - Raquel Ruiz-Checa
- Área de Biodiversidad y Conservación, Dpto. de Biología, Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Móstoles, Spain
| | | | | |
Collapse
|
8
|
Hesami M, Baiton A, Alizadeh M, Pepe M, Torkamaneh D, Jones AMP. Advances and Perspectives in Tissue Culture and Genetic Engineering of Cannabis. Int J Mol Sci 2021; 22:5671. [PMID: 34073522 PMCID: PMC8197860 DOI: 10.3390/ijms22115671] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 01/20/2023] Open
Abstract
For a long time, Cannabis sativa has been used for therapeutic and industrial purposes. Due to its increasing demand in medicine, recreation, and industry, there is a dire need to apply new biotechnological tools to introduce new genotypes with desirable traits and enhanced secondary metabolite production. Micropropagation, conservation, cell suspension culture, hairy root culture, polyploidy manipulation, and Agrobacterium-mediated gene transformation have been studied and used in cannabis. However, some obstacles such as the low rate of transgenic plant regeneration and low efficiency of secondary metabolite production in hairy root culture and cell suspension culture have restricted the application of these approaches in cannabis. In the current review, in vitro culture and genetic engineering methods in cannabis along with other promising techniques such as morphogenic genes, new computational approaches, clustered regularly interspaced short palindromic repeats (CRISPR), CRISPR/Cas9-equipped Agrobacterium-mediated genome editing, and hairy root culture, that can help improve gene transformation and plant regeneration, as well as enhance secondary metabolite production, have been highlighted and discussed.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Austin Baiton
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Milad Alizadeh
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (M.H.); (A.B.); (M.P.)
| | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec City, QC G1V 0A6, Canada;
| | | |
Collapse
|
9
|
Choukaife AE, Aljerf L. Review: Assessment of the Doable Utilisation of Dendrochronology as an Element Tracer Technology in Soils Artificially Contaminated with Heavy Metals. ACTA ACUST UNITED AC 2018. [DOI: 10.15406/bij.2018.02.00037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Kuzminsky E, Meschini R, Terzoli S, Pavani L, Silvestri C, Choury Z, Scarascia-Mugnozza G. Isolation of Mesophyll Protoplasts from Mediterranean Woody Plants for the Study of DNA Integrity under Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:1168. [PMID: 27574524 PMCID: PMC4983556 DOI: 10.3389/fpls.2016.01168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/20/2016] [Indexed: 05/24/2023]
Abstract
Abiotic stresses have considerable negative impact on Mediterranean plant ecosystems and better comprehension of the genetic control of response and adaptation of trees to global changes is urgently needed. The single cell gel electrophoresis (SCGE) assay could be considered a good estimator of DNA damage in an individual eukaryotic cell. This method has been mainly employed in animal tissues, because the plant cell wall represents an obstacle for the extraction of nuclei; moreover, in Mediterranean woody species, especially in the sclerophyll plants, this procedure can be quite difficult because of the presence of sclerenchyma and hardened cells. On the other hand, these plants represent an interesting material to be studied because of the ability of these plants to tolerate abiotic stress. For instance, holm oak (Quercus ilex L.) has been selected as the model plant to identify critical levels of O3 for Southern European forests. Consequently, a quantitative method for the evaluation of cell injury of leaf tissues of this species is required. Optimal conditions for high-yield nuclei isolation were obtained by using protoplast technology and a detailed description of the method is provided and discussed. White poplar (Populus alba L.) was used as an internal control for protoplast isolation. Such a method has not been previously reported in newly fully developed leaves of holm oak. This method combined with SCGE assay represents a new tool for testing the DNA integrity of leaf tissues in higher plants under stress conditions.
Collapse
Affiliation(s)
- Elena Kuzminsky
- Laboratory of Forest Biotechnology, Department for Innovation in Biological, Agro-food and Forest systems, University of TusciaViterbo, Italy
| | - Roberta Meschini
- Laboratory of Molecular Cytogenetic and Mutagenesis, Department of Ecological and Biological Science, University of TusciaViterbo, Italy
| | - Serena Terzoli
- Laboratory of Forest Biotechnology, Department for Innovation in Biological, Agro-food and Forest systems, University of TusciaViterbo, Italy
| | - Liliana Pavani
- Laboratory of Forest Biotechnology, Department for Innovation in Biological, Agro-food and Forest systems, University of TusciaViterbo, Italy
| | - Cristian Silvestri
- Laboratory of Tissue Culture and Biotechnology of Woody Plants, Department of Agricultural and Forestry Sciences, University of TusciaViterbo, Italy
| | - Zineb Choury
- Laboratory of Forest Biotechnology, Department for Innovation in Biological, Agro-food and Forest systems, University of TusciaViterbo, Italy
| | - Giuseppe Scarascia-Mugnozza
- Laboratory of Forest Biotechnology, Department for Innovation in Biological, Agro-food and Forest systems, University of TusciaViterbo, Italy
| |
Collapse
|
11
|
Kuligowska K, Lütken H, Müller R. Towards development of new ornamental plants: status and progress in wide hybridization. PLANTA 2016; 244:1-17. [PMID: 26969022 DOI: 10.1007/s00425-016-2493-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/19/2016] [Indexed: 05/21/2023]
Abstract
The present review provides insights into the key findings of the hybridization process, crucial factors affecting the adaptation of new technologies within wide hybridization of ornamental plants and presents perspectives of further development of this strategy. Wide hybridization is one of the oldest breeding techniques that contributed enormously to the development of modern plant cultivars. Within ornamental breeding, it represents the main source of genetic variation. During the long history of wide hybridization, a number of methods were implemented allowing the evolution from a conventional breeding tool into a modern methodology. Nowadays, the research on model plants and crop species increases our understanding of reproductive isolation among distant species and partly explains the background of the traditional approaches previously used for overcoming hybridization barriers. Characterization of parental plants and hybrids is performed using molecular and cytological techniques that strongly facilitate breeding processes. Molecular markers and sequencing technologies are used for the assessment of genetic relationships among plants, as the genetic distance is typically depicted as one of the most important factors influencing cross-compatibility in hybridization processes. Furthermore, molecular marker systems are frequently applied for verification of hybrid state of the progeny. The flow cytometry and genomic in situ hybridization are used in the assessment of hybridization partners and characterization of hybrid progeny in relation to genome stabilization as well as genome recombination and introgression. In the future, new research and technologies are likely to provide more detailed information about genes and pathways responsible for interspecific reproductive isolation. Ultimately, this knowledge will enable development of strategies for obtaining compatible lines for hybrid production. Recent development in sequencing technologies and availability of sequence data will also facilitate creation of new molecular markers that will advance marker-assisted selection in hybridization process.
Collapse
Affiliation(s)
- Katarzyna Kuligowska
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 9-13, 2630, Tåstrup, Denmark.
| | - Henrik Lütken
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 9-13, 2630, Tåstrup, Denmark
| | - Renate Müller
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegård Allé 9-13, 2630, Tåstrup, Denmark
| |
Collapse
|
12
|
Sherif SM, Shukla MR, Murch SJ, Bernier L, Saxena PK. Simultaneous induction of jasmonic acid and disease-responsive genes signifies tolerance of American elm to Dutch elm disease. Sci Rep 2016; 6:21934. [PMID: 26902398 PMCID: PMC4763294 DOI: 10.1038/srep21934] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 02/03/2016] [Indexed: 01/07/2023] Open
Abstract
Dutch elm disease (DED), caused by three fungal species in the genus Ophiostoma, is the most devastating disease of both native European and North American elm trees. Although many tolerant cultivars have been identified and released, the tolerance mechanisms are not well understood and true resistance has not yet been achieved. Here we show that the expression of disease-responsive genes in reactions leading to tolerance or susceptibility is significantly differentiated within the first 144 hours post-inoculation (hpi). Analysis of the levels of endogenous plant defense molecules such as jasmonic acid (JA) and salicylic acid (SA) in tolerant and susceptible American elm saplings suggested SA and methyl-jasmonate as potential defense response elicitors, which was further confirmed by field observations. However, the tolerant phenotype can be best characterized by a concurrent induction of JA and disease-responsive genes at 96 hpi. Molecular investigations indicated that the expression of fungal genes (i.e. cerato ulmin) was also modulated by endogenous SA and JA and this response was unique among aggressive and non-aggressive fungal strains. The present study not only provides better understanding of tolerance mechanisms to DED, but also represents a first, verified template for examining simultaneous transcriptomic changes during American elm-fungus interactions.
Collapse
Affiliation(s)
- S. M. Sherif
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada,Department of Horticulture, Faculty of Agriculture, Damanhour University, Al-Gomhuria St., PO Box 22516, Damanhour, Al-Behira, Egypt
| | - M. R. Shukla
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - S. J. Murch
- Chemistry Department, University of British Columbia, Kelowna, BC, Canada
| | - L. Bernier
- Centre d’étude de la forêt (CEF) and Institut de biologie intégrative et des systèmes (IBIS), Université Laval, Québec City, QC, Canada
| | - P. K. Saxena
- Gosling Research Institute for Plant Preservation, Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada,
| |
Collapse
|