1
|
Parker MT, Amar S, Campoy JA, Krause K, Tusso S, Marek M, Huettel B, Schneeberger K. Scalable eQTL mapping using single-nucleus RNA-sequencing of recombined gametes from a small number of individuals. PLoS Biol 2025; 23:e3003085. [PMID: 40279341 DOI: 10.1371/journal.pbio.3003085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/25/2025] [Indexed: 04/27/2025] Open
Abstract
Phenotypic differences between individuals of a species are often caused by differences in gene expression, which are in turn caused by genetic variation. Expression quantitative trait locus (eQTL) analysis is a methodology by which we can identify such causal variants. Scaling eQTL analysis is costly due to the expense of generating mapping populations, and the collection of matched transcriptomic and genomic information. We developed a rapid eQTL analysis approach using single-cell/nucleus RNA sequencing of gametes from a small number of heterozygous individuals. Patterns of inherited polymorphisms are used to infer the recombinant genomes of thousands of individual gametes and identify how different haplotypes correlate with variation in gene expression. Applied to Arabidopsis pollen nuclei, our approach uncovers both cis- and trans-eQTLs, ultimately mapping variation in a master regulator of sperm cell development that affects the expression of hundreds of genes. This establishes snRNA-sequencing as a powerful, cost-effective method for the mapping of meiotic recombination, addressing the scalability challenges of eQTL analysis and enabling eQTL mapping in specific cell-types.
Collapse
Affiliation(s)
- Matthew T Parker
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Samija Amar
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - José A Campoy
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kristin Krause
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sergio Tusso
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | | | | | - Korbinian Schneeberger
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
2
|
Lohani N, Singh MB, Bhalla PL. Deciphering the Vulnerability of Pollen to Heat Stress for Securing Crop Yields in a Warming Climate. PLANT, CELL & ENVIRONMENT 2025; 48:2549-2580. [PMID: 39722468 DOI: 10.1111/pce.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/13/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024]
Abstract
Climate change is leading to more frequent and severe extreme temperature events, negatively impacting agricultural productivity and threatening global food security. Plant reproduction, the process fundamental to crop yield, is highly susceptible to heatwaves, which disrupt pollen development and ultimately affect seed-set and crop yields. Recent research has increasingly focused on understanding how pollen grains from various crops react to heat stress at the molecular and cellular levels. This surge in interest over the last decade has been driven by advances in genomic technologies, such as single-cell RNA sequencing, which holds significant potential for revealing the underlying regulatory reprogramming triggered by heat stress throughout the various stages of pollen development. This review focuses on how heat stress affects gene regulatory networks, including the heat stress response, the unfolded protein response, and autophagy, and discusses the impact of these changes on various stages of pollen development. It highlights the potential of pollen selection as a key strategy for improving heat tolerance in crops by leveraging the genetic variability among pollen grains. Additionally, genome-wide association studies and population screenings have shed light on the genetic underpinnings of traits in major crops that respond to high temperatures during male reproductive stages. Gene-editing tools like CRISPR/Cas systems could facilitate precise genetic modifications to boost pollen heat resilience. The information covered in this review is valuable for selecting traits and employing molecular genetic approaches to develop heat-tolerant genotypes.
Collapse
Affiliation(s)
- Neeta Lohani
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
- Donald Danforth Plant Science Center, St. Louis, Missouri, USA
| | - Mohan B Singh
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| | - Prem L Bhalla
- Plant Molecular Biology and Biotechnology Laboratory, School of Agriculture, Food, and Ecosystem Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
3
|
Leite VG, Mansano VF, Teixeira SP. New insights into pollen release and presentation in legumes: the case of Myroxylon peruiferum, a papilionoid with non-papilionaceous flowers. JOURNAL OF PLANT RESEARCH 2025:10.1007/s10265-025-01629-5. [PMID: 40155465 DOI: 10.1007/s10265-025-01629-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025]
Abstract
The species-rich legume family displays diverse mechanisms for pollen presentation and release, including brush, piston, valvular, and explosive types, influenced by variations in floral architecture. Among papilionoids, a group characterized by flag-flowers, early-branching species often deviate from this typical pattern. This study investigates Myroxylon peruiferum L.f., an early-branching papilionoid legume native to the Brazilian Atlantic Forest, with non-papilionaceous flowers. Through detailed macromorphological, anatomical, histochemical, and ultrastructural analyses of floral organs, we reveal new insights into pollen release and presentation mechanisms in legumes. Pollen is released through an unusual process: the anther opens via an apical wide slit that gradually extends toward the base, releasing pollen in stages. Ducts in the sepals, petals, ovary, and anther secrete translucent oleoresin droplets that harden when released into the external environment. These serve multiple functions, including enhancing flower visibility, facilitating secondary pollen presentation by attaching pollen to the anther apex and petal tips, and acting as olfactory attractants due to their terpene content. M. peruiferum presents several unique traits not previously described in this subclade, including (a) oleoresin overflow through anther pores, (b) uncommon rimose anther dehiscence, and (c) a novel form of secondary pollen presentation via oleoresin drops. These findings provide important new insights into the reproductive strategy of this species and offer broader implications for legume biology.
Collapse
Affiliation(s)
- Viviane Gonçalves Leite
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil
- Rio de Janeiro Botanical Garden Research Institute, DIPEQ. Rua Pacheco Leão, RJ, 22460-030, 915, Rio de Janeiro, Brazil
| | - Vidal Freitas Mansano
- Rio de Janeiro Botanical Garden Research Institute, DIPEQ. Rua Pacheco Leão, RJ, 22460-030, 915, Rio de Janeiro, Brazil
| | - Simone Pádua Teixeira
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Av. do Café, s/n, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
4
|
Stokes M, Geitmann A. Screening methods for thermotolerance in pollen. ANNALS OF BOTANY 2025; 135:71-88. [PMID: 38712364 PMCID: PMC11979752 DOI: 10.1093/aob/mcae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Plant reproduction is highly susceptible to temperature stress. The development of the male gametophyte in particular represents a critical element in the reproductive cycle with high sensitivity to elevated temperatures. Various methods have been used to test the effect of temperature stress on pollen performance or to determine the degree of susceptibility of given species and genotypes. The information gained informs the development of new crop varieties suited to grow under warmer conditions arising through climate change and facilitates predicting the behaviour of natural populations under these conditions. The characterization of pollen performance typically employs the terms 'pollen viability' and 'pollen vigour', which, however, are not necessarily used consistently across studies. Pollen viability is a nominal parameter and is often assayed relying on cellular features as proxy to infer the capability of pollen grains to germinate and complete double fertilization. Alternatively, pollen germination can be determined through in vitro growth assays, or by monitoring the ability of pollen tubes to complete different progamic steps in vivo (ability to reach an ovule, release sperm cells, lead to seed set). Pollen vigour is an ordinal parameter that describes pollen tube growth rate or the efficiency of pollen tube growth as inferred by its morphology or growth pattern. To ensure consistent and relevant terminology, this review defines these terms and summarizes the methodologies used to assess them.
Collapse
Affiliation(s)
- Madeleine Stokes
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Anja Geitmann
- Department of Plant Science, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| |
Collapse
|
5
|
Strelin MM, Gavini SS, Soares NC, Chalcoff VR, Aizen MA, Zattara EE, Gleiser GL. Exploring the influences of resource limitation and plant aging on pollen development in Azorella nivalis Phil. (Apiaceae), a long-lived high-Andean cushion plant. PLANT BIOLOGY (STUTTGART, GERMANY) 2025; 27:154-162. [PMID: 39535519 DOI: 10.1111/plb.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Angiosperm pollen, the male gametophyte, plays a crucial role in facilitating fertilization by protecting and transporting male sperm cells to the female pistil. Despite their seemingly simple structure, pollen grains undergo intricate development to produce viable sperm cells capable of fertilizing the egg cell. Factors such as resource limitation and plant aging can disrupt normal pollen development and affect pollen performance. We investigated the influence of plant resources and aging on pollen developmental failure in Azorella nivalis Phil., an exceptionally long-lived high-Andean species that grows in a stressful alpine environment. Leveraging the modular nature of plants, we aimed to identify intra-individual sources of variation in pollen developmental failure. By using pollen viability and variation in viable pollen grain size as indicators of pollen developmental performance, we assessed whether proxies of plant resource availability and aging influenced these pollen traits at the inter-individual, inter-flower and intra-flower levels. Our findings revealed decreased pollen viability in putative resource-depleted flowers and in shoots that experienced higher levels of meristematic divisions from the zygote (i.e., greater cell depth). Additionally, we observed increased variability in the size of viable pollen grains in resource-depleted anthers. Our study suggests that resource availability and shoot aging are critical determinants shaping pollen development in long-lived plants at the intra-individual level. These findings contribute to our understanding of how differences in male fitness can arise in plants, with implications for their evolutionary trajectory.
Collapse
Affiliation(s)
- M M Strelin
- Instituto Multidisciplinario de Biología Vegetal (CONICET-UNC), Córdoba, Argentina
- Grupo de Investigación en Ecología de la Polinización, Laboratorio Ecotono, INIBIOMA (CONICET-Universidad Nacional del Comahue), Bariloche, Río Negro, Argentina
| | - S S Gavini
- Grupo de Investigación en Ecología de la Polinización, Laboratorio Ecotono, INIBIOMA (CONICET-Universidad Nacional del Comahue), Bariloche, Río Negro, Argentina
| | - N C Soares
- Grupo de Investigación en Ecología de la Polinización, Laboratorio Ecotono, INIBIOMA (CONICET-Universidad Nacional del Comahue), Bariloche, Río Negro, Argentina
| | - V R Chalcoff
- Grupo de Investigación en Ecología de la Polinización, Laboratorio Ecotono, INIBIOMA (CONICET-Universidad Nacional del Comahue), Bariloche, Río Negro, Argentina
| | - M A Aizen
- Grupo de Investigación en Ecología de la Polinización, Laboratorio Ecotono, INIBIOMA (CONICET-Universidad Nacional del Comahue), Bariloche, Río Negro, Argentina
| | - E E Zattara
- Grupo de Investigación en Ecología de la Polinización, Laboratorio Ecotono, INIBIOMA (CONICET-Universidad Nacional del Comahue), Bariloche, Río Negro, Argentina
| | - G L Gleiser
- Grupo de Investigación en Ecología de la Polinización, Laboratorio Ecotono, INIBIOMA (CONICET-Universidad Nacional del Comahue), Bariloche, Río Negro, Argentina
| |
Collapse
|
6
|
Zhang L, Ma F, Duan G, Ju Y, Yu T, Zhang Q, Sodmergen. MIKC*-type MADS transcription factors control JINGUBANG expression and the degree of pollen dormancy in Arabidopsis. PLANT PHYSIOLOGY 2024; 197:kiae576. [PMID: 39471323 DOI: 10.1093/plphys/kiae576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/04/2024] [Accepted: 09/28/2024] [Indexed: 11/01/2024]
Abstract
While pollen dormancy has been proposed to play a necessary role in sexual reproduction, it remains poorly understood. Here, we used traditional pollen germination assays to characterize dormancy. Our results underscore variation in the degree of dormancy between individual pollen grains. In addition, we provide evidence that JINGUBANG (JGB), previously defined as a negative regulator of pollen germination in Arabidopsis (Arabidopsis thaliana), is responsible for the uneven degrees of pollen dormancy, as asynchronous pollen germination in vitro reflected varied expression levels of JGB. We identified 5 cis-acting elements, including 4 CArG-boxes and the previously uncharacterized element ERE7, as essential for the initiation and enhancement of JGB expression. A 10-bp sequence between CArG-box 3 and ERE7, likely the result of an inverse DNA loop formed between CArG-box 3 and CArG-box 4, was required for robust gene expression. In addition, the pollen-specific AtMIKC*-type MADS transcription factors AGAMOUS-LIKE 30 (AGL30), AGL65, AGL66, AGL94, and AGL104 activated JGB transcription. Notably, the transactivation levels differed among the obligate AtMIKC* heterodimers tested. Our results indicate that distinct AtMIKC* complexes formed in individual pollen grains direct pollen dormancy to uneven degrees, which is likely an adaptive trait that ensures broader pollen dispersal under adverse environmental conditions.
Collapse
Affiliation(s)
- Liguang Zhang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fei Ma
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangxing Duan
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Ju
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tingqiao Yu
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Quan Zhang
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| | - Sodmergen
- Key Laboratory of Ministry of Education for Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Walters J, Barlass M, Fisher R, Isaacs R. Extreme heat exposure of host plants indirectly reduces solitary bee fecundity and survival. Proc Biol Sci 2024; 291:20240714. [PMID: 38889783 DOI: 10.1098/rspb.2024.0714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/30/2024] [Indexed: 06/20/2024] Open
Abstract
Extreme heat poses a major threat to plants and pollinators, yet the indirect consequences of heat stress are not well understood, particularly for native solitary bees. To determine how brief exposure of extreme heat to flowering plants affects bee behaviour, fecundity, development and survival we conducted a no-choice field cage experiment in which Osmia lignaria were provided blueberry (Vaccinium corymbosum), phacelia (Phacelia tanacetifolia) and white clover (Trifolium repens) that had been previously exposed to either extreme heat (37.5°C) or normal temperatures (25°C) for 4 h during early bloom. Despite a similar number of open flowers and floral visitation frequency between the two treatments, female bees provided with heat-stressed plants laid approximately 70% fewer eggs than females provided with non-stressed plants. Their progeny received similar quantities of pollen provisions between the two treatments, yet larvae consuming pollen from heat-stressed plants had significantly lower survival as larvae and adults. We also observed trends for delayed emergence and reduced adult longevity when larvae consumed heat-stressed pollen. This study is the first to document how short, field-realistic bursts of extreme heat exposure to flowering host plants can indirectly affect bee pollinators and their offspring, with important implications for crop pollination and native bee populations.
Collapse
Affiliation(s)
- Jenna Walters
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI 48824, USA
| | - McKenna Barlass
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Robin Fisher
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
- Program in Ecology, Evolution, and Behavior, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Baliyan N, Srivastava A, Rao M, Mishra AK, Bharti H, Khar A, Mangal M. Correlation of stages of microsporogenesis with bud and anther morphology in pepper genotypes through DAPI staining with different levels of mordant in cytological fixative. PROTOPLASMA 2024; 261:367-376. [PMID: 37910230 DOI: 10.1007/s00709-023-01903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023]
Abstract
The haploid and doubled haploid plants serve as valuable tools for breeders due to their ability to expedite the mapping of genes of agronomic importance, as well as accelerate the breeding cycle for generation of novel hybrids and improved homogenous varieties. Successful anther/microspore culture largely depends on the use of microspores at appropriate developmental stages at the time of culture, which can be specific for each plant species and genotype. In the present study, we described the visible morphological characteristics of flower buds and anthers at different developmental stages to identify the optimal microspore stage within the anther/buds of two pepper hybrids, Indra and Lakshmi. This information enabled us to predict the suitable microspore stage for successful haploid production. To enhance the visualization of nuclei in the pepper microspores, different concentrations of FeCl3 were employed as a mordant to Carnoy's fixative I, followed by DAPI staining. A clear and distinct nucleus was observed using DAPI staining procedures in the pepper microspores when fixed in Carnoy's solution containing ferric chloride (40-90 µl) as mordant. The use of mordant thus facilitated the efficient cytological analysis of the pepper microspores. Present results indicate that, to achieve efficient haploid production, flower buds with an average length of 4.4 to 5.02 mm for the hybrid Indra and 5.15 to 5.40 mm for the hybrid Lakshmi should be utilized. Additionally, these buds should have a calyx covering approximately 80-90% of the total bud length. We observed that in such buds, microspores are in the late-uninucleate and early binucleate stage which has been reported to be the most conducive stage for androgenesis induction in pepper.
Collapse
Affiliation(s)
- Nikita Baliyan
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arpita Srivastava
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mahesh Rao
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Ajay Kumar Mishra
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Hemlata Bharti
- Centre for Protected Cultivation Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Khar
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Manisha Mangal
- Division of Vegetable Science, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
9
|
Langedijk NSM, Kaufmann S, Vos E, Ottiger T. Evaluation of methods to assess the quality of cryopreserved Solanaceae pollen. Sci Rep 2023; 13:7344. [PMID: 37147347 PMCID: PMC10163219 DOI: 10.1038/s41598-023-34158-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
Solanaceae pollen cryopreservation is a common practice in the hybrid seed production industry worldwide, enabling effective hybridization across geographical and seasonal limitations. As pollination with low quality pollen can result in significant seed yield loss, monitoring the pollen quality has become an important risk management tool. In this study, pollen quality analysis methods were evaluated for their suitability for routine quality control of cryopreserved pollen batches. The assessments, including pollen viability, pollen germinability and pollen vigor analysis, were conducted in two locations on a diverse set of cryopreserved tomato and pepper pollen batches. While the viability obtained by Impedance Flow Cytometry (IFC) can be interpreted as the pollen's potential to germinate, the in vitro germination assay directly quantifies this functionality under given assay conditions. A linear correlation was found between pollen viability obtained by IFC and in vitro germinability. In conclusion, IFC is the most suitable tool for applications and industries requiring a high degree of automation, throughput, repeatability, and reproducibility. In vitro germination assays are suitable for studies within certain temporal and geographic limitations, due to difficulties in standardization. On the other hand, vigor assessments are not sufficiently addressing the needs of the industry due to poor reproducibility and low throughput.
Collapse
Affiliation(s)
| | | | - Ellen Vos
- Enza Zaden Seed Operations B.V., Haling 1E, 1602 DB, Enkhuizen, The Netherlands
| | - Tanja Ottiger
- Amphasys AG, Technopark Lucerne, 6039, Root D4, Switzerland
| |
Collapse
|
10
|
Pollution of the Environment and Pollen: A Review. STRESSES 2022. [DOI: 10.3390/stresses2040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bioindication of the environment is one of the actively developing directions of ecology. Information about pollutants and the level of environmental pollution can be obtained as a result of studying the biological reaction of plants to pollution. Ecological palynology is a new direction, when pollen of various woody and herbaceous species is used for bioindication of the level of environmental pollution and the presence of mutagens. The review considers the morphological variability of pollen, its fertility and viability under the influence of pollutants, the possibility of its use as a bioindicator of pollution of urban areas by emissions of vehicle transport and industry.
Collapse
|
11
|
Li H, Tiwari M, Tang Y, Wang L, Yang S, Long H, Guo J, Wang Y, Wang H, Yang Q, Jagadish SVK, Shao R. Metabolomic and transcriptomic analyses reveal that sucrose synthase regulates maize pollen viability under heat and drought stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 246:114191. [PMID: 36265405 DOI: 10.1016/j.ecoenv.2022.114191] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/20/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Maize pollen is highly sensitive to heat and drought, but few studies have investigated the combined effects of heat and drought on pollen viability. In this study, pollen's structural and physiological characteristics were determined after heat, drought, and combined stressors. Furthermore, integrated metabolomic and transcriptomic analyses of maize pollen were conducted to identify potential mechanisms of stress responses. Tassel growth and spikelet development were considerably suppressed, pollen viability was negatively impacted, and pollen starch granules were depleted during anthesis under stress. The inhibitory effects were more significant due to combined stresses than to heat or drought individually. The metabolic analysis identified 71 important metabolites in the combined stress compared to the other treatments, including sugars and their derivatives related to pollen viability. Transcriptomics also revealed that carbohydrate metabolism was significantly altered under stress. Moreover, a comprehensive metabolome-transcriptome analysis identified a central mechanism in the biosynthesis of UDP-glucose involved in reducing the activity of sucrose synthase SH-1 (shrunken 1) and sus1 (sucrose synthase 1) that suppressed sucrose transfer to UDP-glucose, leading to pollen viability exhaustion under stress. In conclusion, the lower pollen viability after heat and drought stress was associated with poor sucrose synthase activity due to the stress treatments.
Collapse
Affiliation(s)
- Hongwei Li
- National Key Laboratory of Wheat and Maize Crop Science/Henan Engineering Research Center of Crop Chemical Control/Key Laboratory of Regulating and Controlling Crop Growth and Development, Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Manish Tiwari
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA.
| | - Yulou Tang
- National Key Laboratory of Wheat and Maize Crop Science/Henan Engineering Research Center of Crop Chemical Control/Key Laboratory of Regulating and Controlling Crop Growth and Development, Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Lijuan Wang
- National Key Laboratory of Wheat and Maize Crop Science/Henan Engineering Research Center of Crop Chemical Control/Key Laboratory of Regulating and Controlling Crop Growth and Development, Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Sen Yang
- The Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences, Beijing 100101, China.
| | - Haochi Long
- National Key Laboratory of Wheat and Maize Crop Science/Henan Engineering Research Center of Crop Chemical Control/Key Laboratory of Regulating and Controlling Crop Growth and Development, Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Jiameng Guo
- National Key Laboratory of Wheat and Maize Crop Science/Henan Engineering Research Center of Crop Chemical Control/Key Laboratory of Regulating and Controlling Crop Growth and Development, Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Yongchao Wang
- National Key Laboratory of Wheat and Maize Crop Science/Henan Engineering Research Center of Crop Chemical Control/Key Laboratory of Regulating and Controlling Crop Growth and Development, Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Hao Wang
- National Key Laboratory of Wheat and Maize Crop Science/Henan Engineering Research Center of Crop Chemical Control/Key Laboratory of Regulating and Controlling Crop Growth and Development, Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - Qinghua Yang
- National Key Laboratory of Wheat and Maize Crop Science/Henan Engineering Research Center of Crop Chemical Control/Key Laboratory of Regulating and Controlling Crop Growth and Development, Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79410, USA.
| | - Ruixin Shao
- National Key Laboratory of Wheat and Maize Crop Science/Henan Engineering Research Center of Crop Chemical Control/Key Laboratory of Regulating and Controlling Crop Growth and Development, Ministry of Education, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
12
|
Mampage CB, Hughes DD, Jones LM, Metwali N, Thorne PS, Stone EA. Characterization of sub-pollen particles in size-resolved atmospheric aerosol using chemical tracers. ATMOSPHERIC ENVIRONMENT: X 2022; 15:100177. [PMID: 36186266 PMCID: PMC9521721 DOI: 10.1016/j.aeaoa.2022.100177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Pollen grains may contain allergens that exacerbate allergic respiratory diseases like asthma and rhinitis. In the presence of water, pollen grains (10-100 μm) can rupture to produce sub-pollen particles (SPP) with diameters <2.5 μm, which in comparison to intact pollen grains, have longer atmospheric lifetimes and greater penetration to the lower lung. The current study examines SPP, fungal spores, and bacteria in size-resolved atmospheric particulate matter (PM) using chemical and biological tracers. During springtime tree pollen season in Iowa City, Iowa, fine particle (PM2.5) concentrations of fructose (a pollen chemical tracer) increased on rainy sampling periods, especially during severe thunderstorms, and peaked when a tornado struck nearby. Submicron fluorescent particles, measured by single-particle fluorescence spectroscopy, were also enhanced during rain events, particularly thunderstorms in agreement with the chemical tracer measurements. PM2.5 sucrose (a pollen chemical tracer) concentrations were higher in early spring when nighttime temperatures were closer to freezing, while fructose concentrations were higher in late spring with warmer temperatures, consistent with chemical tracers being sensitive to seasonal temperature influences. The first co-located measurements of fructose and Bet v 1 (birch pollen allergen), indicated that SPP ranged in diameter from <0.25 to 2.5 μm during rainy sampling periods and that allergens and carbohydrates exhibited distinct size distributions. Meanwhile, mannitol (a fungal spore tracer) peaked on warm, dry days following rain and was primarily in supermicron particles (>1.0 μm), which is consistent with intact fungal spore diameters (1-30 μm). Bacterial endotoxins in PM also increased during extreme weather events, primarily in supermicron particles. While the concentrations of fructose, mannitol, and endotoxin all increased in PM2.5 μm during thunderstorms, the greatest relative increase in concentration was observed for fructose. Together, these observations suggest that SPP containing starch granules and allergens (Bet v 1) were released during rainy sampling periods. This study advances the use of chemical tracers to track SPP and other bioaerosols in the atmosphere, by providing new insight to their size distribution and response to extreme weather conditions.
Collapse
Affiliation(s)
| | - Dagen D. Hughes
- Department of Chemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Lillian M. Jones
- Department of Chemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Nervana Metwali
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Peter S. Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, 52242, USA
| | - Elizabeth A. Stone
- Department of Chemistry, University of Iowa, Iowa City, IA, 52242, USA
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, 52242, USA
- Corresponding author. Department of Chemistry, University of Iowa, Iowa City, IA, 52242, USA. (E.A. Stone)
| |
Collapse
|
13
|
de Los Angeles Bohórquez-Quintero M, Galvis-Tarazona DY, Arias-Moreno DM, Ojeda-Peréz ZZ, Ochatt S, Rodríguez-Molano LE. Morphological and anatomical characterization of yellow diploid potato flower for effective breeding program. Sci Rep 2022; 12:16402. [PMID: 36180534 PMCID: PMC9525687 DOI: 10.1038/s41598-022-20439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022] Open
Abstract
The diploid yellow potato (Solanum tuberosum L. Phureja Group) is an important plant genetic resource. In this study, we report for the first time the characterization of anther development and pollen formation in the cultivar Criolla Colombia. The description of morphological and histological characters of buds and flowers at different developmental stages permitted to identify ten main stages, from the differentiation of the male cells of the sporangium, meiosis, microspores formation and maturation, to the release of mature pollen. In addition, the results provide a graphic guide of the development of the anther, through the sequential and orderly formation of the epidermis, the endothecium, the middle layer and the nutritive layer or tapetum. This microanatomical information will be useful for work focused on androgenesis and identification of gene regulation in floral biology and gamete formation. Therefore, this study determined that to efficiently obtain haploids, flower buds between 5 and 8.9 mm long (stage 6 to 8) should be used, in which tetrads and microspores are in the early uninucleate and binucleate stage.
Collapse
Affiliation(s)
- María de Los Angeles Bohórquez-Quintero
- Grupo de Investigación BIOPLASMA-UPTC, Escuela de Ciencias Biológicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Daicy Yaneth Galvis-Tarazona
- Grupo de Investigación BIOPLASMA-UPTC, Escuela de Ciencias Biológicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Diana Marcela Arias-Moreno
- Grupo de Investigación BIOPLASMA-UPTC, Escuela de Ciencias Biológicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.
| | - Zaida Zarely Ojeda-Peréz
- Grupo de Investigación BIOPLASMA-UPTC, Escuela de Ciencias Biológicas, Facultad de Ciencias, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Sergio Ochatt
- Agroécologie, INRAE, Insitut Agro, Université Bourgogne, Université Bourgogne Franche-Comté, 21000, Dijon, France
| | - Luis Ernesto Rodríguez-Molano
- Facultad de Ciencias Agrarias, Departamento de Agronomía, Universidad Nacional de Colombia, Carrera 30 Núm. 45-03, Edificio 500, Bogotá D.C., Colombia
| |
Collapse
|
14
|
Xu J, Jansma SY, Wolters-Arts M, de Groot PFM, Jansen MJ, Rieu I. Long-Term Mild Heat Causes Post-Mitotic Pollen Abortion Through a Local Effect on Flowers. FRONTIERS IN PLANT SCIENCE 2022; 13:925754. [PMID: 35898227 PMCID: PMC9310381 DOI: 10.3389/fpls.2022.925754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Crop reproductive success is significantly challenged by heatwaves, which are increasing in frequency and severity globally. Heat-induced male sterility is mainly due to aborted pollen development, but it is not clear whether this is through direct or systemic effects. Here, long-term mild heat (LTMH) treatment, mimicking a heatwave, was applied locally to tomato flowers or whole plants and followed up by cytological, transcriptomic, and biochemical analyses. By analyzing pollen viability, LTMH was shown to act directly on the flowers and not via effects on other plant tissue. The meiosis to early microspore stage of pollen development was the most sensitive to LTMH and 3 days of exposure around this period was sufficient to significantly reduce pollen viability at the flower anthesis stage. Extensive cytological analysis showed that abnormalities in pollen development could first be observed after pollen mitosis I, while no deviations in tapetum development were observed. Transcriptomic and biochemical analyses suggested that pollen development suffered from tapetal ER stress and that there was a limited role for oxidative stress. Our results provide the first evidence that heat acts directly on flowers to induce pollen sterility, and that the molecular-physiological responses of developing anthers to the LTMH are different from those to severe heat shock.
Collapse
|
15
|
Rutley N, Harper JF, Miller G. Reproductive resilience: putting pollen grains in two baskets. TRENDS IN PLANT SCIENCE 2022; 27:237-246. [PMID: 34627662 DOI: 10.1016/j.tplants.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
To ensure reproductive success, flowering plants produce an excess of pollen to fertilize a limited number of ovules. Pollen grains mature into two distinct subpopulations - those that display high metabolic activity and elevated reactive oxygen species (ROS) levels immediately after hydration (high-ROS/active), and those that maintain an extended period of dormancy with low metabolic activity (low-ROS/inactive/arrested/dormant). We propose that the dormant pollen serves as a backup to provide a second chance for successful fertilization when the 'first wave' of pollen encounters an unpredictable growth condition such as heat stress. This model provides a framework for considering the role of dormancy in reproductive stress tolerance as well as strategies for mitigating pollen thermovulnerability to daytime and night-time warming that is associated with global climate change.
Collapse
Affiliation(s)
- Nicholas Rutley
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 5290002, Israel
| | - Jeffery F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada at Reno, NV 89557, USA
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
16
|
Atalay FE, Culum AA, Kaya H, Gokturk G, Yigit E. Different Plant Sporopollenin Exine Capsules and Their Multifunctional Usage. ACS APPLIED BIO MATERIALS 2022; 5:1348-1360. [PMID: 35201750 PMCID: PMC8941510 DOI: 10.1021/acsabm.2c00071] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sporopollenin exine capsules (SECs) are highly resistant to heat and various acids and bases. They are also cheap, highly porous, eco-friendly polymer biomaterials with stable microencapsulation capacity. Due to their strong and uniquely shaped exine layers, they can allow growth on metal oxide materials, as a biotemplate for use in different applications. In this study, first, a single SEC extraction method was applied to three different pollens from Pinus, Fraxinus excelsior, and Tilia. Scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, and thermogravimetric/differential thermal analysis (TGA/DTA) measurements both before and after the extraction process were performed to observe changes in surface area, morphology, porous structure, and degradation properties. The protein content and removal were analyzed by elemental and spectrophotometric analyses. Then, SECs were loaded by passive and centrifuge loading for drug delivery, and the loading capacities were analyzed by Fourier transform infrared spectroscopy and spectrophotometry. The method was successful in opening the pores and maintaining the structural integrity of SECs. It was determined that the morphology and porosity affected the encapsulation efficiency. According to the loading capacities, Tilia SECs were the most efficient SECs for both loading methods. In addition, three different SECs were hydrothermally coated with cobalt and then heat-treated to obtain a metal oxide structure. A CO3O4 supercapacitor electrode constructed using CO3O4-F. excelsior SEC powder had the best surface area parameters. The electrode showed a maximum specific capacity of 473 F/g for over 3000 continuous cycles of galvanostatic charge-discharge (GCD).
Collapse
Affiliation(s)
- Funda Ersoy Atalay
- Department of Physics, The Faculty of Science and Arts, Inonu University, 44280 Malatya, Turkey
| | - Ayse Asiye Culum
- Department of Medical Services and Techniques, Vocational School of Health Services, Malatya Turgut Ozal University, 44210 Malatya, Turkey
| | - Harun Kaya
- Faculty of Engineering and Natural Sciences, Malatya Turgut Ozal University, 44210 Malatya, Turkey
| | - Gunay Gokturk
- Department of Physics, The Faculty of Science and Arts, Inonu University, 44280 Malatya, Turkey
| | - Emel Yigit
- Department of Biology, The Faculty of Science and Arts, Inonu University, 44280 Malatya, Turkey
| |
Collapse
|
17
|
Potential of Impedance Flow Cytometry to Assess the Viability and Quantity of Cannabis sativa L. Pollen. PLANTS 2021; 10:plants10122739. [PMID: 34961212 PMCID: PMC8704011 DOI: 10.3390/plants10122739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 11/17/2022]
Abstract
Over the last decade, efforts to breed new Cannabis sativa L. cultivars with high Cannabidiol (CBD) and other non-psychoactive cannabinoids with low tetrahydrocannabinol (THC) levels have increased. In this context, the identification of the viability and quantity of pollen, which represents the fitness of male gametophytes, to accomplish successful pollination is of high importance. The present study aims to evaluate the potential of impedance flow cytometry (IFC) for the assessment of pollen viability (PV) and total number of pollen cells (TPC) in two phytocannabinoid-rich cannabis genotypes, KANADA (KAN) and A4 treated with two different chemical solutions, silver thiosulfate solution (STS) and gibberellic acid (GA3). Pollen was collected over a period of 8 to 24 days after flowering (DAF) in a greenhouse experiment. Impedance flow cytometry (IFC) technology was used with Cannabis sativa to assess the viability and quantity of pollen. The results showed that the number of flowers per plant was highest at 24 DAF for both genotypes, A4 (317.78) and KAN (189.74). TPC induced by STS was significantly higher compared to GA3 over the collection period of 8 to 24 DAF with the highest mean TPC of 1.54 × 105 at 14 DAF. STS showed significantly higher viability of pollen compared to GA3 in genotype KAN, with the highest PV of 78.18% 11 DAF. Genotype A4 also showed significantly higher PV with STS at 8 (45.66%), 14 (77.88%), 18 (79.37%), and 24 (51.92%) DAF compared to GA3. Furthermore, counting the numbers of flowers did not provide insights into the quality and quantity of pollen; the results showed that PV was highest at 18 DAF with A4; however, the number of flowers per plant was 150.33 at 18 DAF and was thus not the maximum of produced flowers within the experiment. IFC technology successfully estimated the TPC and differentiated between viable and non-viable cells over a period of 8 to 24 DAF in tested genotypes of Cannabis sativa. IFC seems to be an efficient and reliable method to estimate PV, opening new chances for plant breeding and plant production processes in cannabis.
Collapse
|
18
|
Hamza R, Roque E, Gómez-Mena C, Madueño F, Beltrán JP, Cañas LA. PsEND1 Is a Key Player in Pea Pollen Development Through the Modulation of Redox Homeostasis. FRONTIERS IN PLANT SCIENCE 2021; 12:765277. [PMID: 34777450 PMCID: PMC8586548 DOI: 10.3389/fpls.2021.765277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Redox homeostasis has been linked to proper anther and pollen development. Accordingly, plant cells have developed several Reactive Oxygen Species (ROS)-scavenging mechanisms to maintain the redox balance. Hemopexins constitute one of these mechanisms preventing heme-associated oxidative stress in animals, fungi, and plants. Pisum sativum ENDOTHECIUM 1 (PsEND1) is a pea anther-specific gene that encodes a protein containing four hemopexin domains. We report the functional characterization of PsEND1 and the identification in its promoter region of cis-regulatory elements that are essential for the specific expression in anthers. PsEND1 promoter deletion analysis revealed that a putative CArG-like regulatory motif is necessary to confer promoter activity in developing anthers. Our data suggest that PsEND1 might be a hemopexin regulated by a MADS-box protein. PsEND1 gene silencing in pea, and its overexpression in heterologous systems, result in similar defects in the anthers consisting of precocious tapetum degradation and the impairment of pollen development. Such alterations were associated to the production of superoxide anion and altered activity of ROS-scavenging enzymes. Our findings demonstrate that PsEND1 is essential for pollen development by modulating ROS levels during the differentiation of the anther tissues surrounding the microsporocytes.
Collapse
|
19
|
Mori S, Shimma S, Masuko-Suzuki H, Watanabe M, Nakanishi T, Tsukioka J, Goto K, Fukui H, Hirai N. Fluorescence from abnormally sterile pollen of the Japanese apricot. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:355-366. [PMID: 34782823 PMCID: PMC8562573 DOI: 10.5511/plantbiotechnology.21.0730a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
We observed trees of the Japanese apricot, Prunus mume 'Nanko' (Rosaceae), bearing two types of flowers: 34% had blue fluorescent pollen under UV irradiation, and 66% had non-fluorescent pollen. The fluorescent pollen grains were abnormally crushed, sterile, and devoid of intine and pollenkitt. The development of microspores within anthers was investigated: in the abnormally developed anthers, tapetal cells were vacuolated at the unicellular microspore stage, and fluorescent pollen was produced. Compounds responsible for the blue fluorescence of pollen were identified as chlorogenic acid and 1-O-feruloyl-β-D-glucose. The anthers with fluorescent pollen contained 6.7-fold higher and 3.8-fold lower amounts of chlorogenic acid and N 1,N 5,N 10-tri-p-coumaroylspermidine, respectively, compared to those with non-fluorescent pollen. The tapetal vacuolization, highly accumulated chlorogenic acid, and deficiency of N 1,N 5,N 10-tri-p-coumaroylspermidine imply that low-temperature stress during the early unicellular microspore stage caused a failure in microsporogenesis. Furthermore, potential effects of the visual difference on the bee behavior were also discussed through the colorimetry. The sterility, likely induced by low-temperature stress, and the preference of honeybees for fluorescence may reduce the pollination efficiency of P. mume.
Collapse
Affiliation(s)
- Shinnosuke Mori
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| | - Shuichi Shimma
- Graduate School of Engineering, Osaka University, Osaka, Osaka 565-0871, Japan
| | - Hiromi Masuko-Suzuki
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8577, Japan
| | - Tetsu Nakanishi
- Graduate School of Agriculture, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Junko Tsukioka
- The Garden of Medicinal Plants, Kyoto Pharmaceutical University, Kyoto, Kyoto 601-1405, Japan
| | - Katsumi Goto
- The Garden of Medicinal Plants, Kyoto Pharmaceutical University, Kyoto, Kyoto 601-1405, Japan
| | - Hiroshi Fukui
- Faculty of Agriculture, Kagawa University, Miki, Kagawa 761-0795, Japan
| | - Nobuhiro Hirai
- Graduate School of Agriculture, Kyoto University, Kyoto, Kyoto 606-8502, Japan
| |
Collapse
|
20
|
Kiyono H, Katano K, Suzuki N. Links between Regulatory Systems of ROS and Carbohydrates in Reproductive Development. PLANTS 2021; 10:plants10081652. [PMID: 34451697 PMCID: PMC8401158 DOI: 10.3390/plants10081652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/02/2022]
Abstract
To thrive on the earth, highly sophisticated systems to finely control reproductive development have been evolved in plants. In addition, deciphering the mechanisms underlying the reproductive development has been considered as a main research avenue because it leads to the improvement of the crop yields to fulfill the huge demand of foods for the growing world population. Numerous studies revealed the significance of ROS regulatory systems and carbohydrate transports and metabolisms in the regulation of various processes of reproductive development. However, it is poorly understood how these mechanisms function together in reproductive tissues. In this review, we discuss mode of coordination and integration between ROS regulatory systems and carbohydrate transports and metabolisms underlying reproductive development based on the hitherto findings. We then propose three mechanisms as key players that integrate ROS and carbohydrate regulatory systems. These include ROS-dependent programmed cell death (PCD), mitochondrial and respiratory metabolisms as sources of ROS and energy, and functions of arabinogalactan proteins (AGPs). It is likely that these key mechanisms govern the various signals involved in the sequential events required for proper seed production.
Collapse
Affiliation(s)
- Hanako Kiyono
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan; (H.K.); (K.K.)
| | - Kazuma Katano
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan; (H.K.); (K.K.)
- Research Fellow of Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-0083, Japan
| | - Nobuhiro Suzuki
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda, Tokyo 102-8554, Japan; (H.K.); (K.K.)
- Correspondence: ; Tel.: +81-3-3238-3884
| |
Collapse
|
21
|
Chaturvedi P, Wiese AJ, Ghatak A, Záveská Drábková L, Weckwerth W, Honys D. Heat stress response mechanisms in pollen development. THE NEW PHYTOLOGIST 2021; 231:571-585. [PMID: 33818773 PMCID: PMC9292940 DOI: 10.1111/nph.17380] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Indexed: 05/03/2023]
Abstract
Being rooted in place, plants are faced with the challenge of responding to unfavourable local conditions. One such condition, heat stress, contributes massively to crop losses globally. Heatwaves are predicted to increase, and it is of vital importance to generate crops that are tolerant to not only heat stress but also to several other abiotic stresses (e.g. drought stress, salinity stress) to ensure that global food security is protected. A better understanding of the molecular mechanisms that underlie the temperature stress response in pollen will be a significant step towards developing effective breeding strategies for high and stable production in crop plants. While most studies have focused on the vegetative phase of plant growth to understand heat stress tolerance, it is the reproductive phase that requires more attention as it is more sensitive to elevated temperatures. Every phase of reproductive development is affected by environmental challenges, including pollen and ovule development, pollen tube growth, male-female cross-talk, fertilization, and embryo development. In this review we summarize how pollen is affected by heat stress and the molecular mechanisms employed during the stress period, as revealed by classical and -omics experiments.
Collapse
Affiliation(s)
- Palak Chaturvedi
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Anna J. Wiese
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Arindam Ghatak
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
| | - Lenka Záveská Drábková
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| | - Wolfram Weckwerth
- Molecular Systems Biology (MOSYS)Department of Functional and Evolutionary EcologyFaculty of Life SciencesUniversity of ViennaAlthanstrasse 14Vienna1090Austria
- Vienna Metabolomics Center (VIME)University of ViennaAlthanstrasse 14Vienna1090Austria
| | - David Honys
- Laboratory of Pollen BiologyInstitute of Experimental Botany of the Czech Academy of SciencesRozvojová 263Prague 6165 02Czech Republic
| |
Collapse
|
22
|
Galán-Ávila A, García-Fortea E, Prohens J, Herraiz FJ. Microgametophyte Development in Cannabis sativa L. and First Androgenesis Induction Through Microspore Embryogenesis. FRONTIERS IN PLANT SCIENCE 2021; 12:669424. [PMID: 34113367 PMCID: PMC8186446 DOI: 10.3389/fpls.2021.669424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Development of double haploids is an elusive current breeding objective in Cannabis sativa L. We have studied the whole process of anther and pollen grain formation during meiosis, microsporogenesis, and microgametogenesis and correlated the different microgametophyte developmental stages with bud length in plants from varieties USO31 and Finola. We also studied microspore and pollen amyloplast content and studied the effect of a cold pretreatment to excised buds prior to microspore in vitro culture. Up to 476,903 microspores and pollen grains per male flower, with in vivo microspore viability rates from 53.71 to 70.88% were found. A high uniformity in the developmental stage of microspores and pollen grains contained in anthers was observed, and this allowed the identification of bud length intervals containing mostly vacuolate microspores and young bi-cellular pollen grains. The starch presence in C. sativa microspores and pollen grains follows a similar pattern to that observed in species recalcitrant to androgenesis. Although at a low frequency, cold-shock pretreatment applied on buds can deviate the naturally occurring gametophytic pathway toward an embryogenic development. This represents the first report concerning androgenesis induction in C. sativa, which lays the foundations for double haploid research in this species.
Collapse
Affiliation(s)
- Alberto Galán-Ávila
- Ploidy and Genomics S.L., Centro Europeo de Empresas Innovadoras de Valencia, Parc Tecnològic, Valencia, Spain
| | - Edgar García-Fortea
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Jaime Prohens
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| | - Francisco Javier Herraiz
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
23
|
Gajecka M, Marzec M, Chmielewska B, Jelonek J, Zbieszczyk J, Szarejko I. Changes in plastid biogenesis leading to the formation of albino regenerants in barley microspore culture. BMC PLANT BIOLOGY 2021; 21:22. [PMID: 33413097 PMCID: PMC7792217 DOI: 10.1186/s12870-020-02755-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/24/2020] [Indexed: 06/06/2023]
Abstract
BACKGROUND Microspore embryogenesis is potentially the most effective method of obtaining doubled haploids (DH) which are utilized in breeding programs to accelerate production of new cultivars. However, the regeneration of albino plants significantly limits the exploitation of androgenesis for DH production in cereals. Despite many efforts, the precise mechanisms leading to development of albino regenerants have not yet been elucidated. The objective of this study was to reveal the genotype-dependent molecular differences in chloroplast differentiation that lead to the formation of green and albino regenerants in microspore culture of barley. RESULTS We performed a detailed analysis of plastid differentiation at successive stages of androgenesis in two barley cultivars, 'Jersey' and 'Mercada' that differed in their ability to produce green regenerants. We demonstrated the lack of transition from the NEP-dependent to PEP-dependent transcription in plastids of cv. 'Mercada' that produced mostly albino regenerants in microspore culture. The failed NEP-to-PEP transition was associated with the lack of activity of Sig2 gene encoding a sigma factor necessary for transcription of plastid rRNA genes. A very low level of 16S and 23S rRNA transcripts and impaired plastid translation machinery resulted in the inhibition of photomorphogenesis in regenerating embryos and albino regenerants. Furthermore, the plastids present in differentiating 'Mercada' embryos contained a low number of plastome copies whose replication was not always completed. Contrary to 'Mercada', cv. 'Jersey' that produced 90% green regenerants, showed the high activity of PEP polymerase, the highly increased expression of Sig2, plastid rRNAs and tRNAGlu, which indicated the NEP inhibition. The increased expression of GLKs genes encoding transcription factors required for induction of photomorphogenesis was also observed in 'Jersey' regenerants. CONCLUSIONS Proplastids present in microspore-derived embryos of albino-producing genotypes did not pass the early checkpoints of their development that are required for induction of further light-dependent differentiation of chloroplasts. The failed activation of plastid-encoded RNA polymerase during differentiation of embryos was associated with the genotype-dependent inability to regenerate green plants in barley microspore culture. The better understanding of molecular mechanisms underlying formation of albino regenerants may be helpful in overcoming the problem of albinism in cereal androgenesis.
Collapse
Affiliation(s)
- Monika Gajecka
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Marek Marzec
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Beata Chmielewska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Janusz Jelonek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Justyna Zbieszczyk
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland
| | - Iwona Szarejko
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Jagiellonska 28, Katowice, 40-032, Poland.
| |
Collapse
|
24
|
Onelli E, Beretta M, Moscatelli A, Caccianiga M, Pozzi M, Stroppa N, Adamec L. The aquatic carnivorous plant Aldrovanda vesiculosa (Droseraceae) exhibits altered developmental stages in male gametophyte. PROTOPLASMA 2021; 258:71-85. [PMID: 32918205 DOI: 10.1007/s00709-020-01553-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Aldrovanda vesiculosa (Droseraceae) is a rare aquatic carnivorous plant, distributed in Europe, Asia, Africa, and Australia. Aldrovanda populations can flower prolifically under favourable conditions, but seed set is very limited. We studied the structure of Aldrovanda pollen collected from flowers in different developmental stages (opened and non-opened anthers) from both European and Australian populations to elucidate pollination traits and the basis of poor seed set on the basis of microscopic observation of pollen and anther structure. Microscopic analyses of Aldrovanda pollen showed that this plant has pollen arranged in tetrads like other species in the Droseraceae family. In hydrated pollen, cytoplasmic protrusions originate from pores located along the equatorial wall of monads, and can develop into pollen tubes. Interestingly, pollen development from microspores occurs in open anthers, suggesting a delay of the developmental stages. In addition, pollen development displays altered sperm cell formation and precocious pollen germination. Precocious germination may characterize recalcitrant pollen, which naturally do not undergo dehydration before anthesis and remain partially hydrated, particularly in aquatic and wetland plants. These alterations of male gametophyte development could affect fertilization processes, and be the reason for the low reproductive capability of Aldrovanda observed both in the field and in cultures. Generally, reduced pollen longevity and very quick germination are considered an adaptation to aquatic or wet environments.
Collapse
Affiliation(s)
- Elisabetta Onelli
- Department of Biosciences, University of Milano, Via Celoria 26, 20133, Milan, Italy
| | - Mario Beretta
- "Città Studi" Botanical Garden, Department of Biosciences, University of Milano, Via Celoria 26, 20133, Milan, Italy
| | - Alessandra Moscatelli
- Department of Biosciences, University of Milano, Via Celoria 26, 20133, Milan, Italy
| | - Marco Caccianiga
- Department of Biosciences, University of Milano, Via Celoria 26, 20133, Milan, Italy
- "Città Studi" Botanical Garden, Department of Biosciences, University of Milano, Via Celoria 26, 20133, Milan, Italy
| | - Michele Pozzi
- Department of Biosciences, University of Milano, Via Celoria 26, 20133, Milan, Italy
| | - Nadia Stroppa
- Department of Biosciences, University of Milano, Via Celoria 26, 20133, Milan, Italy
| | - Lubomír Adamec
- Institute of Botany of the Czech Academy of Sciences, Dukelská 135, CZ-379 82, Třeboň, Czech Republic.
| |
Collapse
|
25
|
Khan A, Ahmad M, Ahmed M, Iftikhar Hussain M. Rising Atmospheric Temperature Impact on Wheat and Thermotolerance Strategies. PLANTS 2020; 10:plants10010043. [PMID: 33375473 PMCID: PMC7823633 DOI: 10.3390/plants10010043] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/22/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
Temperature across the globe is increasing continuously at the rate of 0.15–0.17 °C per decade since the industrial revolution. It is influencing agricultural crop productivity. Therefore, thermotolerance strategies are needed to have sustainability in crop yield under higher temperature. However, improving thermotolerance in the crop is a challenging task for crop scientists. Therefore, this review work was conducted with the aim of providing information on the wheat response in three research areas, i.e., physiology, breeding, and advances in genetics, which could assist the researchers in improving thermotolerance. The optimum temperature for wheat growth at the heading, anthesis, and grain filling duration is 16 ± 2.3 °C, 23 ± 1.75 °C, and 26 ± 1.53 °C, respectively. The high temperature adversely influences the crop phenology, growth, and development. The pre-anthesis high temperature retards the pollen viability, seed formation, and embryo development. The post-anthesis high temperature declines the starch granules accumulation, stem reserve carbohydrates, and translocation of photosynthates into grains. A high temperature above 40 °C inhibits the photosynthesis by damaging the photosystem-II, electron transport chain, and photosystem-I. Our review work highlighted that genotypes which can maintain a higher accumulation of proline, glycine betaine, expression of heat shock proteins, stay green and antioxidant enzymes activity viz., catalase, peroxidase, super oxide dismutase, and glutathione reductase can tolerate high temperature efficiently through sustaining cellular physiology. Similarly, the pre-anthesis acclimation with heat treatment, inorganic fertilizer such as nitrogen, potassium nitrate and potassium chloride, mulches with rice husk, early sowing, presoaking of a 6.6 mM solution of thiourea, foliar application of 50 ppm dithiothreitol, 10 mg per kg of silicon at heading and zinc ameliorate the crop against the high temperature. Finally, it has been suggested that modern genomics and omics techniques should be used to develop thermotolerance in wheat.
Collapse
Affiliation(s)
- Adeel Khan
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.K.); (M.A.)
| | - Munir Ahmad
- Department of Plant Breeding and Genetics, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi 46300, Pakistan; (A.K.); (M.A.)
| | - Mukhtar Ahmed
- Department of Agricultural Research for Northern Sweden, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
- Department of Agronomy, PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
- Correspondence:
| | - M. Iftikhar Hussain
- Department of Plant Biology & Soil Science, Faculty of Biology, University of Vigo, Campus As Lagoas Marcosende, 36310 Vigo, Spain;
- CITACA, Agri-Food Research and Transfer Cluster, Campus da Auga, University of Vigo, 32004 Ourense, Spain
| |
Collapse
|
26
|
Ascari L, Cristofori V, Macrì F, Botta R, Silvestri C, De Gregorio T, Huerta ES, Di Berardino M, Kaufmann S, Siniscalco C. Hazelnut Pollen Phenotyping Using Label-Free Impedance Flow Cytometry. FRONTIERS IN PLANT SCIENCE 2020; 11:615922. [PMID: 33370424 PMCID: PMC7753158 DOI: 10.3389/fpls.2020.615922] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/13/2020] [Indexed: 05/23/2023]
Abstract
Impedance flow cytometry (IFC) is a versatile lab-on-chip technology which enables fast and label-free analysis of pollen grains in various plant species, promising new research possibilities in agriculture and plant breeding. Hazelnut is a monoecious, anemophilous species, exhibiting sporophytic self-incompatibility. Its pollen is dispersed by wind in midwinter when temperatures are still low and relative humidity is usually high. Previous research found that hazelnut can be characterized by high degrees of pollen sterility following a reciprocal chromosome translocation occurring in some cultivated genotypes. In this study, IFC was used for the first time to characterize hazelnut pollen biology. IFC was validated via dye exclusion in microscopy and employed to (i) follow pollen hydration over time to define the best pre-hydration treatment for pollen viability evaluation; (ii) test hazelnut pollen viability and sterility on 33 cultivars grown in a collection field located in central Italy, and two wild hazelnuts. The accessions were also characterized by their amount and distribution of catkins in the tree canopy. Pollen sterility rate greatly varied among hazelnut accessions, with one main group of highly sterile cultivars and a second group, comprising wild genotypes and the remaining cultivars, producing good quality pollen. The results support the hypothesis of recurring reciprocal translocation events in Corylus avellana cultivars, leading to the observed gametic semi-sterility. The measured hazelnut pollen viability was also strongly influenced by pollen hydration (R adj 2 = 0.83, P ≤ 0.0001) and reached its maximum at around 6 h of pre-hydration in humid chambers. Viable and dead pollen were best discriminated at around the same time of pollen pre-hydration, suggesting that high humidity levels are required for hazelnut pollen to maintain its functionality. Altogether, our results detail the value of impedance flow cytometry for high throughput phenotyping of hazelnut pollen. Further research is required to clarify the causes of pollen sterility in hazelnut, to confirm the role of reciprocal chromosome translocations and to investigate its effects on plant productivity.
Collapse
Affiliation(s)
- Lorenzo Ascari
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Valerio Cristofori
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Federico Macrì
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Roberto Botta
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Cristian Silvestri
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | | | | | | | | | - Consolata Siniscalco
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
27
|
Shrestha A, Mishra AK, Matoušek J, Steinbachová L, Potěšil D, Nath VS, Awasthi P, Kocábek T, Jakse J, Drábková LZ, Zdráhal Z, Honys D, Steger G. Integrated Proteo-Transcriptomic Analyses Reveal Insights into Regulation of Pollen Development Stages and Dynamics of Cellular Response to Apple Fruit Crinkle Viroid (AFCVd)-Infection in Nicotiana tabacum. Int J Mol Sci 2020; 21:E8700. [PMID: 33218043 PMCID: PMC7698868 DOI: 10.3390/ijms21228700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Tobacco (Nicotiana tabacum) pollen is a well-suited model for studying many fundamental biological processes owing to its well-defined and distinct development stages. It is also one of the major agents involved in the transmission of infectious viroids, which is the primary mechanism of viroid pathogenicity in plants. However, some viroids are non-transmissible and may be possibly degraded or eliminated during the gradual process of pollen development maturation. The molecular details behind the response of developing pollen against the apple fruit crinkle viroid (AFCVd) infection and viroid eradication is largely unknown. In this study, we performed an integrative analysis of the transcriptome and proteome profiles to disentangle the molecular cascade of events governing the three pollen development stages: early bicellular pollen (stage 3, S3), late bicellular pollen (stage 5, S5), and 6 h-pollen tube (PT6). The integrated analysis delivered the molecular portraits of the developing pollen against AFCVd infection, including mechanistic insights into the viroid eradication during the last steps of pollen development. The isobaric tags for label-free relative quantification (iTRAQ) with digital gene expression (DGE) experiments led us to reliably identify subsets of 5321, 5286, and 6923 proteins and 64,033, 60,597, and 46,640 expressed genes in S3, S5, and PT6, respectively. In these subsets, 2234, 2108 proteins and 9207 and 14,065 mRNAs were differentially expressed in pairwise comparisons of three stages S5 vs. S3 and PT6 vs. S5 of control pollen in tobacco. Correlation analysis between the abundance of differentially expressed mRNAs (DEGs) and differentially expressed proteins (DEPs) in pairwise comparisons of three stages of pollen revealed numerous discordant changes in mRNA/protein pairs. Only a modest correlation was observed, indicative of divergent transcription, and its regulation and importance of post-transcriptional events in the determination of the fate of early and late pollen development in tobacco. The functional and enrichment analysis of correlated DEGs/DEPs revealed the activation in pathways involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, and cofactor as well as vitamin metabolism, which points to the importance of these metabolic pathways in pollen development. Furthermore, the detailed picture of AFCVd-infected correlated DEGs/DEPs was obtained in pairwise comparisons of three stages of infected pollen. The AFCVd infection caused the modulation of several genes involved in protein degradation, nuclear transport, phytohormone signaling, defense response, and phosphorylation. Intriguingly, we also identified several factors including, DNA-dependent RNA-polymerase, ribosomal protein, Argonaute (AGO) proteins, nucleotide binding proteins, and RNA exonucleases, which may plausibly involve in viroid stabilization and eradication during the last steps of pollen development. The present study provides essential insights into the transcriptional and translational dynamics of tobacco pollen, which further strengthens our understanding of plant-viroid interactions and support for future mechanistic studies directed at delineating the functional role of candidate factors involved in viroid elimination.
Collapse
Affiliation(s)
- Ankita Shrestha
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Ajay Kumar Mishra
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Jaroslav Matoušek
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Lenka Steinbachová
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6-Lysolaje, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - David Potěšil
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (D.P.); (Z.Z.)
| | - Vishnu Sukumari Nath
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Praveen Awasthi
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Tomáš Kocábek
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic; (A.S.); (J.M.); (V.S.N.); (P.A.); (T.K.)
| | - Jernej Jakse
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia;
| | - Lenka Záveská Drábková
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6-Lysolaje, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Zbyněk Zdráhal
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic; (D.P.); (Z.Z.)
| | - David Honys
- Institute of Experimental Botany of the Czech Academy of Sciences, Rozvojová 263, 165 02 Prague 6-Lysolaje, Czech Republic; (L.S.); (L.Z.D.); (D.H.)
| | - Gerhard Steger
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, D-40204 Düsseldorf, Germany;
| |
Collapse
|
28
|
Brugnerotto P, Seraglio SKT, Schulz M, Gonzaga LV, Fett R, Costa ACO. Pyrrolizidine alkaloids and beehive products: A review. Food Chem 2020; 342:128384. [PMID: 33214040 DOI: 10.1016/j.foodchem.2020.128384] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/25/2020] [Accepted: 10/10/2020] [Indexed: 12/31/2022]
Abstract
Pyrrolizidine alkaloids (PA) are secondary metabolites of plants, which are mostly found in the genus Senecio, Echium, Crotalaria, and Eupatorium. The presence of 1,2-unsaturated PA in foods is a concern to food regulators around the world because these compounds have been associated to acute and chronic toxicity, mainly in the liver. The intake foods with PA/PANO usually occur through accidental ingestion of plants and their derivatives, besides to products of vegetal-animal origin, such as honey. PA/PANO are transferred to honey by their presence in nectar, honeydew, and pollen, which are collected from the flora by bees. In addition to honey, other beekeeping products, such as pollen, royal jelly, propolis, and beeswax, are also vulnerable to PA contamination. In this context, this review provides information about chemical characteristics, regulation, and toxicity, as well as summarizes and critically discusses scientific publications that evaluated PA in honeys, pollens, royal jelly, and propolis.
Collapse
Affiliation(s)
- Patricia Brugnerotto
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil.
| | | | - Mayara Schulz
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Luciano Valdemiro Gonzaga
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | - Roseane Fett
- Department of Food Science and Technology, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| | | |
Collapse
|
29
|
Gajecka M, Marzec M, Chmielewska B, Jelonek J, Zbieszczyk J, Szarejko I. Plastid differentiation during microgametogenesis determines green plant regeneration in barley microspore culture. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110321. [PMID: 31928659 DOI: 10.1016/j.plantsci.2019.110321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 05/19/2023]
Abstract
Developing plants from in vitro culture of microspores or immature pollen grains (androgenesis) is a highly genotype-dependent process whose effectiveness in cereals is significantly reduced by occurrence of albino regenerants. Here, we examined a hypothesis that the molecular differentiation of plastids in barley microspores prior to in vitro culture affects the genotype ability to regenerate green plants in culture. At the mid-to-late uninucleate (ML) stage, routinely used to initiate microspore culture, the expression of most genes involved in plastid transcription, translation and starch synthesis was significantly higher in microspores of barley cv. 'Mercada' producing 90% albino regenerants, than in cv. 'Jersey' that developed 90% green regenerants. The ML microspores of cv. 'Mercada' contained a large proportion of amyloplasts filled with starch, while in cv. 'Jersey' there were only proplastids. Using additional spring barley genotypes that differed in their ability to regenerate green plants we confirmed the correlation between plastid differentiation prior to culture and albino regeneration in culture. The expression of GBSSI gene (Granule-bound starch synthaseI) in early-mid (EM) microspores was a good marker of a genotype potential to produce green regenerants during androgenesis. Initiating culture from EM microspores that significantly improved regeneration of green plants may overcome the problem of albinism.
Collapse
Affiliation(s)
- Monika Gajecka
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Marek Marzec
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Beata Chmielewska
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Janusz Jelonek
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Justyna Zbieszczyk
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Iwona Szarejko
- Department of Genetics, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland.
| |
Collapse
|
30
|
Rutley N, Miller G. Large-Scale Analysis of Pollen Viability and Oxidative Level Using H 2DCFDA-Staining Coupled with Flow Cytometry. Methods Mol Biol 2020; 2160:167-179. [PMID: 32529435 DOI: 10.1007/978-1-0716-0672-8_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Determining pollen viability and other physiological parameters is of critical importance for evaluating the reproductive capacity of plants, both for fundamental and applied sciences. Flow cytometry is a powerful high-performance high-throughput tool for analyzing large populations of cells that has been in restricted use in plant cell research and in pollen-related studies, it has been minimized mostly for determination of DNA content. Recently, we developed a flow cytometry-based approach for robust and rapid evaluation of pollen viability that utilizes the reactive oxygen species (ROS) fluorescent reporter dye H2DCFDA (Luria et al., Plant J 98(5):942-952, 2019). This new approach revealed that pollen from Arabidopsis thaliana and Solanum lycopersicum naturally distribute into two subpopulations with different ROS levels. This method can be employed for a myriad of pollen-related studies, primarily in response to stimuli such as biotic or abiotic stress. In this chapter, we describe the protocol for H2DCFDA staining coupled with flow cytometry analysis providing specific guidelines. These guidelines are broadly applicable to many other types of cellular reporters to further develop this novel approach in the field of pollen biology.
Collapse
Affiliation(s)
- Nicholas Rutley
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
31
|
Loubert-Hudon A, Mazin BD, Chevalier É, Matton DP. The ScRALF3 secreted peptide is involved in sporophyte to gametophyte signalling and affects pollen mitosis I. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:13-20. [PMID: 31529608 DOI: 10.1111/plb.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Signalling events through small peptides are essential in multiple aspects of plant reproduction. The ScRALF3 Solanum chacoense Rapid Alkalinization Factor (RALF) peptide was previously shown to regulate multiple aspects of cell-cell communication between the surrounding sporophytic tissue and the female gametophyte during ovule development. We analysed the global expression pattern of ScRALF3 with GUS reporter gene under control of the ScRALF3 promoter and validated it with in situ hybridisation. To better understand the role of ScRALF3 we used three different RNA interference (RNAi) lines that reduced the expression of ScRALF3 during pollen development. Both expression methods showed the presence of ScRALF3 in different tissues, including stigma, style, vascular tissues and during stamen development. Down-regulation of ScRALF3 expression through RNAi showed drastic defects in early stages of pollen development, mainly on the first mitosis. These results suggest that the ScRALF3 secreted peptide regulates the transition from sporogenesis to gametogenesis in both male and female gametophytes.
Collapse
Affiliation(s)
- A Loubert-Hudon
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
| | - B D Mazin
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
| | - É Chevalier
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
| | - D P Matton
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
| |
Collapse
|
32
|
Nick P. A plea for biological descriptions: the case of reproduction biology. PROTOPLASMA 2019; 256:1461-1462. [PMID: 31617001 DOI: 10.1007/s00709-019-01445-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Peter Nick
- Botanical Institute, Karlsruher Institut für Technologie, Karlsruhe, Germany.
| |
Collapse
|
33
|
Sutthinon P, Samuels L, Meesawat U. Pollen development in male sterile mangosteen (Garcinia mangostana L.) and male fertile seashore mangosteen (Garcinia celebica L.). PROTOPLASMA 2019; 256:1545-1556. [PMID: 31201531 DOI: 10.1007/s00709-019-01397-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 05/29/2019] [Indexed: 06/09/2023]
Abstract
Mangosteen (Garcinia mangostana L.) is an economically important tropical fruit, yet the reproductive biology of this dioecious plant is complex. Male trees are not known, and female trees have sterile anthers leading to apomixis. We hypothesized that pollen abortion in mangosteen is due to altered tapetum activity during microgametogenesis. Developmental events at the cellular and sub-cellular levels during pollen development in G. mangostana were therefore examined and compared with seashore mangosteen (G. celebica L.), a closely related species with fertile anthers. In G. mangostana, the microspore mother cell had disorganized cytoplasm, including lack of Golgi apparatus and its vesicles, as well as abnormal callose wall accumulation. Globular droplets, which resembled orbicules or Ubisch bodies, were abundant in the locule, including pre-Ubisch bodies found along the tapetal plasma membrane. The tapetum of G. mangostana underwent cell death earlier than the fertile G. celebica, and during the premature death, the mitochondria had dramatically altered shapes. Low accumulation of starch in collapsed microspore mother cells and tetrad cell remnants also suggested that altered cell metabolism is related to pollen abortion in mangosteen. The present results demonstrate the importance of coordinated development between the tapetum and microspores in pollen development and provide new insights into male sterility in mangosteen (G. mangostana).
Collapse
Affiliation(s)
- Pornsawan Sutthinon
- Department of Biology, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90112, Thailand
| | - Lacey Samuels
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Upatham Meesawat
- Department of Biology, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, 90112, Thailand.
| |
Collapse
|
34
|
Schubert R, Grunewald S, von Sivers L, Hause B. Effects of Jasmonate on Ethylene Function during the Development of Tomato Stamens. PLANTS 2019; 8:plants8080277. [PMID: 31405001 PMCID: PMC6724093 DOI: 10.3390/plants8080277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/16/2019] [Accepted: 08/06/2019] [Indexed: 11/23/2022]
Abstract
The phenotype of the tomato mutant jasmonate-insensitive1-1 (jai1-1) mutated in the JA-Ile co-receptor COI1 demonstrates JA function in flower development, since it is female-sterile. In addition, jai1-1 exhibits a premature anther dehydration and pollen release, being in contrast to a delayed anther dehiscence in the JA-insensitive Arabidopsis mutant coi1-1. The double mutant jai1-1 Never ripe (jai1-1 Nr), which is in addition insensitive to ethylene (ET), showed a rescue of the jai1-1 phenotype regarding pollen release. This suggests that JA inhibits a premature rise in ET to prevent premature stamen desiccation. To elucidate the interplay of JA and ET in more detail, stamen development in jai1-1 Nr was compared to wild type, jai1-1 and Nr regarding water content, pollen vitality, hormone levels, and accumulation of phenylpropanoids and transcripts encoding known JA- and ET-regulated genes. For the latter, RT-qPCR based on nanofluidic arrays was employed. The data showed that additional prominent phenotypic features of jai1-1, such as diminished water content and pollen vitality, and accumulation of phenylpropanoids were at least partially rescued by the ET-insensitivity. Hormone levels and accumulation of transcripts were not affected. The data revealed that strictly JA-regulated processes cannot be rescued by ET-insensitivity, thereby emphasizing a rather minor role of ET in JA-regulated stamen development.
Collapse
Affiliation(s)
- Ramona Schubert
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D06120 Halle (Saale), Germany
| | - Stephan Grunewald
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D06120 Halle (Saale), Germany
| | - Lea von Sivers
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D06120 Halle (Saale), Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, D06120 Halle (Saale), Germany.
| |
Collapse
|
35
|
Luria G, Rutley N, Lazar I, Harper JF, Miller G. Direct analysis of pollen fitness by flow cytometry: implications for pollen response to stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 98:942-952. [PMID: 30758085 DOI: 10.1111/tpj.14286] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 02/04/2019] [Accepted: 02/07/2019] [Indexed: 05/18/2023]
Abstract
Sexual reproduction in flowering plants depends on the fitness of the male gametophyte during fertilization. Because pollen development is highly sensitive to hot and cold temperature extremes, reliable methods to evaluate pollen viability are important for research into improving reproductive heat stress (HS) tolerance. Here, we describe an approach to rapidly evaluate pollen viability using a reactive oxygen species (ROS) probe dichlorodihydrofluorescein diacetate (i.e. H2 DCFDA-staining) coupled with flow cytometry. In using flow cytometry to analyze mature pollen harvested from Arabidopsis and tomato flowers, we discovered that pollen distributed bimodally into 'low-ROS' and 'high-ROS' subpopulations. Pollen germination assays following fluorescence-activated cell sorting revealed that the high-ROS pollen germinated with a frequency that was 35-fold higher than the low-ROS pollen, supporting a model in which a significant fraction of a flower's pollen remains in a low metabolic or dormant state even after hydration. The ability to use flow cytometry to quantify ROS dynamics within a large pollen population was shown by dose-dependent alterations in DCF-fluorescence in response to oxidative stress or antioxidant treatments. HS treatments (35°C) increased ROS levels, which correlated with a ~60% reduction in pollen germination. These results demonstrate the potential of using flow cytometry-based approaches to investigate metabolic changes during stress responses in pollen.
Collapse
Affiliation(s)
- Gilad Luria
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Nicholas Rutley
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Itay Lazar
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 5290002, Israel
| | - Jeffery F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, USA
| | - Gad Miller
- The Mina and Everard Goodman, Faculty of Life Sciences, Bar Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
36
|
Pacini E, Dolferus R. Pollen Developmental Arrest: Maintaining Pollen Fertility in a World With a Changing Climate. FRONTIERS IN PLANT SCIENCE 2019; 10:679. [PMID: 31178886 PMCID: PMC6544056 DOI: 10.3389/fpls.2019.00679] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/06/2019] [Indexed: 05/07/2023]
Abstract
During evolution of land plants, the haploid gametophytic stage has been strongly reduced in size and the diploid sporophytic phase has become the dominant growth form. Both male and female gametophytes are parasitic to the sporophyte and reside in separate parts of the flower located either on the same plant or on different plants. For fertilization to occur, bi-cellular or tri-cellular male gametophytes (pollen grains) have to travel to the immobile female gametophyte in the ovary. To survive exposure to a hostile atmosphere, pollen grains are thought to enter a state of complete or partial developmental arrest (DA). DA in pollen is strongly associated with acquisition of desiccation tolerance (DT) to extend pollen viability during air travel, but occurrence of DA in pollen is both species-dependent and at the same time strongly dependent on the reigning environmental conditions at the time of dispersal. Several environmental stresses (heat, drought, cold, humidity) are known to affect pollen production and viability. Climate change is also posing a serious threat to plant reproductive behavior and crop productivity. It is therefore timely to gain a better understanding of how DA and pollen viability are controlled in plants and how pollen viability can be protected to secure crop yields in a changing environment. Here, we provide an overview of how DA and pollen viability are controlled and how the environment affects them. We make emphasis on what is known and areas where a deeper understanding is needed.
Collapse
Affiliation(s)
- Ettore Pacini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Rudy Dolferus
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, Australia
| |
Collapse
|
37
|
Fadón E, Herrero M, Rodrigo J. Anther and pollen development in sweet cherry (Prunus avium L.) in relation to winter dormancy. PROTOPLASMA 2019; 256:733-744. [PMID: 30506265 DOI: 10.1007/s00709-018-01332-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/21/2018] [Indexed: 05/23/2023]
Abstract
Anther and pollen development is a highly conserved process in angiosperms, but while pollen formation in annual plants occurs in a few days, in temperate woody perennials, it requires several months. How anther and pollen development is framed in terms of seasonality plays a clear part in reproductive success. In this study, seasonal anther and pollen development is characterized in two sweet cherry cultivars over 2 years, paying special attention to the period of dormancy and unveiling the role of starch in this process. We evaluated starch content from the autumn until bud burst with the help of an image analysis system fitted to a light microscope. Microscope observations allowed the temporal relationship of pollen development to the phenological stages of flower and bud development to be determined. In both cultivars and years, anther and pollen development followed the same pattern. Development was halted by dormancy, when the anthers showed no morphological changes until several weeks after chilling fulfillment, until the milder temperatures reactivated development. After dormancy, starch was accumulated in the connective tissue until tracheary element differentiation. Quantification of starch in the connective tissue of anthers revealed its importance in supporting pollen meiosis and subsequent anther growth.
Collapse
Affiliation(s)
- Erica Fadón
- Centro de Investigación y Tecnología Agroalimentaria de Aragón. Instituto Agroalimentario de Aragón - IA2 (CITA), Universidad de Zaragoza, Av. Montañana 930, 50059, Zaragoza, Spain
- Estación Experimental Aula Dei, CSIC, Av. Montañana 1005, 50059, Zaragoza, Spain
| | - María Herrero
- Estación Experimental Aula Dei, CSIC, Av. Montañana 1005, 50059, Zaragoza, Spain
| | - Javier Rodrigo
- Centro de Investigación y Tecnología Agroalimentaria de Aragón. Instituto Agroalimentario de Aragón - IA2 (CITA), Universidad de Zaragoza, Av. Montañana 930, 50059, Zaragoza, Spain.
| |
Collapse
|
38
|
Lichocka M, Rymaszewski W, Morgiewicz K, Barymow-Filoniuk I, Chlebowski A, Sobczak M, Samuel MA, Schmelzer E, Krzymowska M, Hennig J. Nucleus- and plastid-targeted annexin 5 promotes reproductive development in Arabidopsis and is essential for pollen and embryo formation. BMC PLANT BIOLOGY 2018; 18:183. [PMID: 30189843 PMCID: PMC6127919 DOI: 10.1186/s12870-018-1405-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/30/2018] [Indexed: 05/04/2023]
Abstract
BACKGROUND Pollen development is a strictly controlled post-meiotic process during which microspores differentiate into microgametophytes and profound structural and functional changes occur in organelles. Annexin 5 is a calcium- and lipid-binding protein that is highly expressed in pollen grains and regulates pollen development and physiology. To gain further insights into the role of ANN5 in Arabidopsis development, we performed detailed phenotypic characterization of Arabidopsis plants with modified ANN5 levels. In addition, interaction partners and subcellular localization of ANN5 were analyzed to investigate potential functions of ANN5 at cellular level. RESULTS Here, we report that RNAi-mediated suppression of ANN5 results in formation of smaller pollen grains, enhanced pollen lethality, and delayed pollen tube growth. ANN5 RNAi knockdown plants also displayed aberrant development during the transition from the vegetative to generative phase and during embryogenesis, reflected by delayed bolting time and reduced embryo size, respectively. At the subcellular level, ANN5 was delivered to the nucleus, nucleolus, and cytoplasm, and was frequently localized in plastid nucleoids, suggesting a likely role in interorganellar communication. Furthermore, ANN5-YFP co-immunoprecipitated with RABE1b, a putative GTPase, and interaction in planta was confirmed in plastidial nucleoids using FLIM-FRET analysis. CONCLUSIONS Our findings let us to propose that ANN5 influences basal cell homeostasis via modulation of plastid activity during pollen maturation. We hypothesize that the role of ANN5 is to orchestrate the plastidial and nuclear genome activities via protein-protein interactions however not only in maturing pollen but also during the transition from the vegetative to the generative growth and seed development.
Collapse
Affiliation(s)
- Malgorzata Lichocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Wojciech Rymaszewski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Karolina Morgiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Izabela Barymow-Filoniuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Aleksander Chlebowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Miroslaw Sobczak
- Department of Botany, Warsaw University of Life Sciences (SGGW), Warsaw, Poland
| | - Marcus A. Samuel
- Department of Biological Sciences, University of Calgary, Calgary, AB Canada
| | - Elmon Schmelzer
- Max-Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Magdalena Krzymowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Jacek Hennig
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
39
|
Grabenstein KC, Taylor SA. Breaking Barriers: Causes, Consequences, and Experimental Utility of Human-Mediated Hybridization. Trends Ecol Evol 2018; 33:198-212. [DOI: 10.1016/j.tree.2017.12.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 11/08/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
|
40
|
Baena-Díaz F, Fornoni J, Sosenski P, Weller SG, Domínguez CA. Pollen and stigma size changes during the transition from tristyly to distyly in Oxalis alpina (Oxalidaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:994-1002. [PMID: 28834046 DOI: 10.1111/plb.12615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Pollen and stigma size have the potential to influence male fitness of hermaphroditic plants, particularly in species presenting floral polymorphisms characterised by marked differences in these traits among floral morphs. In this study, we take advantage of the evolutionary transition from tristyly to distyly experienced by Oxalis alpina (Oxalidaceae), and examined whether modifications in the ancillary traits (pollen and stigma size) respond to allometric changes in other floral traits. Also, we tested whether these modifications are in accordance with what would be expected under the hypothesis that novel competitive scenarios (as in distylous-derived reproductive system) exert morph- and whorl-specific selective pressures to match the available stigmas. We measure pollen and stigma size in five populations of O. alpina representing the tristyly-distyly transition. A general reduction in pollen and stigma size occurred along the tristyly-distyly transition, and pollen size from the two anther levels within each morph converged to a similar size that was characterised by whorl-specific changes (increases or decreases) in pollen size of different anthers in each floral type. Overall, results from this study show that the evolution of distyly in this species is characterised not only by changes in sexual organ position and flower size, but also by morph-specific changes in pollen and stigma size. This evidence supports the importance of selection on pollen and stigma size, which increase fitness of remaining morphs following the evolution of distyly, and raises questions to explore on the functional value of pollen size in heterostylous systems under pollen competition.
Collapse
Affiliation(s)
- F Baena-Díaz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - J Fornoni
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - P Sosenski
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - S G Weller
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - C A Domínguez
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
41
|
Somaratne Y, Tian Y, Zhang H, Wang M, Huo Y, Cao F, Zhao L, Chen H. ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:96-110. [PMID: 28078801 DOI: 10.1111/tpj.13476] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/21/2016] [Accepted: 01/03/2017] [Indexed: 05/22/2023]
Abstract
Anther cuticle and pollen exine are the major protective barriers against various stresses. The proper functioning of genes expressed in the tapetum is vital for the development of pollen exine and anther cuticle. In this study, we report a tapetum-specific gene, Abnormal Pollen Vacuolation1 (APV1), in maize that affects anther cuticle and pollen exine formation. The apv1 mutant was completely male sterile. Its microspores were swollen, less vacuolated, with a flat and empty anther locule. In the mutant, the anther epidermal surface was smooth, shiny, and plate-shaped compared with the three-dimensional crowded ridges and randomly formed wax crystals on the epidermal surface of the wild-type. The wild-type mature pollen had elaborate exine patterning, whereas the apv1 pollen surface was smooth. Only a few unevenly distributed Ubisch bodies were formed on the apv1 mutant, leading to a more apparent inner surface. A significant reduction in the cutin monomers was observed in the mutant. APV1 encodes a member of the P450 subfamily, CYP703A2-Zm, which contains 530 amino acids. APV1 appeared to be widely expressed in the tapetum at the vacuolation stage, and its protein signal co-localized with the endoplasmic reticulum (ER) signal. RNA-Seq data revealed that most of the genes in the fatty acid metabolism pathway were differentially expressed in the apv1 mutant. Altogether, we suggest that APV1 functions in the fatty acid hydroxylation pathway which is involved in forming sporopollenin precursors and cutin monomers that are essential for the development of pollen exine and anther cuticle in maize.
Collapse
Affiliation(s)
- Yamuna Somaratne
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Youhui Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hua Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mingming Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanqing Huo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fengge Cao
- Heze Academy of Agricultural Sciences, Heze, Shandong, 274000, China
| | - Li Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huabang Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
42
|
Heidmann I, Schade-Kampmann G, Lambalk J, Ottiger M, Di Berardino M. Impedance Flow Cytometry: A Novel Technique in Pollen Analysis. PLoS One 2016; 11:e0165531. [PMID: 27832091 PMCID: PMC5104384 DOI: 10.1371/journal.pone.0165531] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/13/2016] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION An efficient and reliable method to estimate plant cell viability, especially of pollen, is important for plant breeding research and plant production processes. Pollen quality is determined by classical methods, like staining techniques or in vitro pollen germination, each having disadvantages with respect to reliability, analysis speed, and species dependency. Analysing single cells based on their dielectric properties by impedance flow cytometry (IFC) has developed into a common method for cellular characterisation in microbiology and medicine during the last decade. The aim of this study is to demonstrate the potential of IFC in plant cell analysis with the focus on pollen. METHOD Developing and mature pollen grains were analysed during their passage through a microfluidic chip to which radio frequencies of 0.5 to 12 MHz were applied. The acquired data provided information about the developmental stage, viability, and germination capacity. The biological relevance of the acquired IFC data was confirmed by classical staining methods, inactivation controls, as well as pollen germination assays. RESULTS Different stages of developing pollen, dead, viable and germinating pollen populations could be detected and quantified by IFC. Pollen viability analysis by classical FDA staining showed a high correlation with IFC data. In parallel, pollen with active germination potential could be discriminated from the dead and the viable but non-germinating population. CONCLUSION The presented data demonstrate that IFC is an efficient, label-free, reliable and non-destructive technique to analyse pollen quality in a species-independent manner.
Collapse
Affiliation(s)
- Iris Heidmann
- Enza Zaden, Research and Development B.V. P.O. Box 7, 1600AA Enkhuizen, The Netherlands
| | | | - Joep Lambalk
- Enza Zaden, Research and Development B.V. P.O. Box 7, 1600AA Enkhuizen, The Netherlands
| | - Marcel Ottiger
- Amphasys AG, Technopark Lucerne, 6039 Root D4, Switzerland
| | | |
Collapse
|