1
|
Melatonin Regulates the Daily Levels of Plasma Amino Acids, Acylcarnitines, Biogenic Amines, Sphingomyelins, and Hexoses in a Xenograft Model of Triple Negative Breast Cancer. Int J Mol Sci 2022; 23:ijms23169105. [PMID: 36012374 PMCID: PMC9408859 DOI: 10.3390/ijms23169105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/04/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022] Open
Abstract
Metabolic dysregulation as a reflection of specific metabolite production and its utilization is a common feature of many human neoplasms. Melatonin, an indoleamine that is highly available during darkness, has a variety of metabolic functions in solid tumors. Because plasma metabolites undergo circadian changes, we investigated the role of melatonin on the profile of amino acids (AAs), biogenic amines, carnitines, sphingolipids, and hexoses present in the plasma of mice bearing xenograft triple negative breast cancer (MDA-MB-231 cells) over 24 h. Plasma concentrations of nine AAs were reduced by melatonin, especially during the light phase, with a profile closer to that of non-breast cancer (BC) animals. With respect to acylcarnitine levels, melatonin reduced 12 out of 24 molecules in BC-bearing animals compared to their controls, especially at 06:00 h and 15:00 h. Importantly, melatonin reduced the concentrations of asymmetric dimethylarginine, carnosine, histamine, kynurenine, methionine sulfoxide, putrescine, spermidine, spermine, and symmetric dimethylarginine, which are associated with the BC metabolite sets. Melatonin also led to reduced levels of sphingomyelins and hexoses, which showed distinct daily variations over 24 h. These results highlight the role of melatonin in controlling the levels of plasma metabolites in human BC xenografts, which may impact cancer bioenergetics, in addition to emphasizing the need for a more accurate examination of its metabolomic changes at different time points.
Collapse
|
2
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
3
|
Kaiser A, Agostinelli E. Hypusinated EIF5A as a feasible drug target for Advanced Medicinal Therapies in the treatment of pathogenic parasites and therapy-resistant tumors. Amino Acids 2022; 54:501-511. [DOI: 10.1007/s00726-021-03120-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
|
4
|
Huang Y, Liu DE, An J, Liu B, Sun L, Fu H, Yan S, Sun W, Gao H. Reactive Oxygen Species Self-Sufficient Multifunctional Nanoplatform for Synergistic Chemo-Photodynamic Therapy with Red/Near-Infrared Dual-Imaging. ACS APPLIED BIO MATERIALS 2020; 3:9135-9144. [PMID: 35019591 DOI: 10.1021/acsabm.0c01419] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Developing multifunctional nanoplatforms that combine controlled drug release, therapy, and real-time monitoring of intracellular distribution of therapeutic agents can provide a solution for practical precision cancer therapy. Herein, a daylight activatable and red to near-infrared (NIR) dual-imaging guided multifunctional anticancer nanoplatform based on diselenium-conjugated and aggregation-induced emission fluorogen (AIEgen)-cross-linked oligoethylenimine polymer loaded with cisplatin (Pt) and biscyclometalated iridium(III) (Ir(III)) complex (Pt&Ir@P NPs) is reported. Upon short-time daylight irradiation, the nanoplatform generates reactive oxygen species (ROS), which help them to escape from endo/lysosomes via enhanced lysosomal membrane permeability. Meanwhile, the chemotherapeutic drug cisplatin and the photosensitizer (PS) Ir(III) complex are released via breaking the ROS-labile diselenium bond. The released PS, together with AIEgen, respond to the continuous long-time daylight irradiation and produce more ROS, inducing photodynamic therapy (PDT) and damaging the nucleus. Along with PDT, selenium liberates cisplatin and exerts chemotherapy in the presence of endogenous spermine. In addition, the red/NIR emitting Ir(III) complex and the engineered AIEgen act as dual-imaging agents for real-time monitoring the distribution of PS and polymer. This daylight responsive multifunctional nanoplatform for efficient anticancer therapy and imaging could provide an intriguing strategy for developing theranostic antitumor platforms.
Collapse
Affiliation(s)
- Yongkang Huang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - De-E Liu
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Jinxia An
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Bingqing Liu
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Liya Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Hao Fu
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Shuzhen Yan
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| | - Wenfang Sun
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58108-6050, United States
| | - Hui Gao
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, P. R. China
| |
Collapse
|
5
|
AMD1 is required for the maintenance of leukemic stem cells and promotes chronic myeloid leukemic growth. Oncogene 2020; 40:603-617. [PMID: 33203990 DOI: 10.1038/s41388-020-01547-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022]
Abstract
Polyamines are critical elements in mammals, but it remains unknown whether adenosyl methionine decarboxylase (AMD1), a rate-limiting enzyme in polyamine synthesis, is required for myeloid leukemia. Here, we found that leukemic stem cells (LSCs) were highly differentiated, and leukemia progression was severely impaired in the absence of AMD1 in vivo. AMD1 was highly upregulated as chronic myeloid leukemia (CML) progressed from the chronic phase to the blast crisis phase, and was associated with the poor prognosis of CML patients. In addition, the pharmacological inhibition of AMD1 by AO476 treatment resulted in a robust reduction of the progression of leukemic cells both in vitro and in vivo. Mechanistically, AMD1 depletion induced loss of mitochondrial membrane potential and accumulation of reactive oxygen species (ROS), resulting in the differentiation of LSCs via oxidative stress and aberrant activation of unfolded protein response (UPR) pathway, which was partially rescued by the addition of polyamine. These results indicate that AMD1 is an essential element in the progression of myeloid leukemia and could be an attractive target for the treatment of the disease.
Collapse
|
6
|
Oropeza-Almazán Y, Blatter LA. Mitochondrial calcium uniporter complex activation protects against calcium alternans in atrial myocytes. Am J Physiol Heart Circ Physiol 2020; 319:H873-H881. [PMID: 32857593 DOI: 10.1152/ajpheart.00375.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Cardiac alternans, defined as beat-to-beat alternations in action potential duration, cytosolic Ca transient (CaT) amplitude, and cardiac contraction is associated with atrial fibrillation (AF) and sudden cardiac death. At the cellular level, cardiac alternans is linked to abnormal intracellular calcium handling during excitation-contraction coupling. We investigated how pharmacological activation or inhibition of cytosolic Ca sequestration via mitochondrial Ca uptake and mitochondrial Ca retention affects the occurrence of pacing-induced CaT alternans in isolated rabbit atrial myocytes. Cytosolic CaTs were recorded using Fluo-4 fluorescence microscopy. Alternans was quantified as the alternans ratio (AR = 1 - CaTsmall/CaTlarge, where CaTsmall and CaTlarge are the amplitudes of the small and large CaTs of a pair of alternating CaTs). Inhibition of mitochondrial Ca sequestration via mitochondrial Ca uniporter complex (MCUC) with Ru360 enhanced the severity of CaT alternans (AR increase) and lowered the pacing frequency threshold for alternans. In contrast, stimulation of MCUC mediated mitochondrial Ca uptake with spermine-rescued alternans (AR decrease) and increased the alternans pacing threshold. Direct measurement of mitochondrial [Ca] in membrane permeabilized myocytes with Fluo-4 loaded mitochondria revealed that spermine enhanced and accelerated mitochondrial Ca uptake. Stimulation of mitochondrial Ca retention by preventing mitochondrial Ca efflux through the mitochondrial permeability transition pore with cyclosporin A also protected from alternans and increased the alternans pacing threshold. Pharmacological manipulation of MCUC activity did not affect sarcoplasmic reticulum Ca load. Our results suggest that activation of Ca sequestration by mitochondria protects from CaT alternans and could be a potential therapeutic target for cardiac alternans and AF prevention.NEW & NOTEWORTHY This study provides conclusive evidence that mitochondrial Ca uptake and retention protects from Ca alternans, whereas uptake inhibition enhances Ca alternans. The data suggest pharmacological mitochondrial Ca cycling modulation as a potential therapeutic strategy for alternans-related cardiac arrhythmia prevention.
Collapse
Affiliation(s)
| | - Lothar A Blatter
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
7
|
Bettini S, Syrgiannis Z, Pagano R, D Ord Ević L, Salvatore L, Prato M, Giancane G, Valli L. Perylene Bisimide Aggregates as Probes for Subnanomolar Discrimination of Aromatic Biogenic Amines. ACS APPLIED MATERIALS & INTERFACES 2019; 11:17079-17089. [PMID: 30978000 DOI: 10.1021/acsami.9b04101] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Perylene bisimide derivatives show peculiar physical chemical features, such as a highly conjugated system, high extinction coefficients and elevated fluorescence quantum yields, making them suitable for the development of optical sensors of compounds of interest. In particular, they are characterized by the tendency to aggregate into π-π stacked supramolecular structures. In this contribution, the behavior of the PBI derivative N, N'-bis(2-(trimethylammonium)ethylene)perylene bisimide dichloride was investigated both in aqueous solution and on solid support. The electronic communication between PBI aggregates and biogenic amines was exploited in order to discriminate aromatic amines down to subnanomolar concentrations by observing PBI fluorescence variations in the presence of various amines and at different concentrations. The experimental findings were corroborated by density functional theory calculations. In particular, phenylethylamine and tyramine were demonstrated to be selectively detected down to 10-10 M concentration. Then, in order to develop a surface plasmon resonance (SPR) device, PBI was deposited onto a SPR support by means of the layer-by-layer method. PBI was deposited in the aggregated form and was demonstrated to preserve the capability to discriminate, selectively and with an outstanding analytical sensitivity, tyramine in the vapor phase and even if mixed with other aromatic amines.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Engineering for Innovation , Campus University Ecotekne , Via per Monteroni , I-73100 Lecce , Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM , Via G. Giusti, 9 , I-50121 Firenze , Italy
| | - Zois Syrgiannis
- Center of Excellence for Nanostructured Materials (CENMAT) and INSTM, Unit of Trieste, Department of Chemical and Pharmaceutical Sciences , University of Trieste , via L. Giorgieri 1 , 34127 Trieste , Italy
| | - Rosanna Pagano
- Department of Biological and Environmental Sciences and Technologies, DISTEBA , University of Salento , Via per Arnesano , I-73100 Lecce , Italy
| | - Luka D Ord Ević
- Center of Excellence for Nanostructured Materials (CENMAT) and INSTM, Unit of Trieste, Department of Chemical and Pharmaceutical Sciences , University of Trieste , via L. Giorgieri 1 , 34127 Trieste , Italy
| | - Luca Salvatore
- Department of Engineering for Innovation , Campus University Ecotekne , Via per Monteroni , I-73100 Lecce , Italy
| | - Maurizio Prato
- Center of Excellence for Nanostructured Materials (CENMAT) and INSTM, Unit of Trieste, Department of Chemical and Pharmaceutical Sciences , University of Trieste , via L. Giorgieri 1 , 34127 Trieste , Italy
- Basque Foundation for Science, Ikerbasque , 48013 Bilbao , Spain
- Carbon Nanobiotechnology Laboratory , CIC biomaGUNE , Paseo de Miramón 182 , 20009 Donostia-San Sebastian , Spain
| | - Gabriele Giancane
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM , Via G. Giusti, 9 , I-50121 Firenze , Italy
- Department of Cultural Heritage , Università del Salento , Via D. Birago, 48 , I-73100 Lecce , Italy
| | - Ludovico Valli
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM , Via G. Giusti, 9 , I-50121 Firenze , Italy
- Department of Biological and Environmental Sciences and Technologies, DISTEBA , University of Salento , Via per Arnesano , I-73100 Lecce , Italy
| |
Collapse
|
8
|
Zhou J, Tang L, Wang JS. Assessment of the adverse impacts of aflatoxin B 1 on gut-microbiota dependent metabolism in F344 rats. CHEMOSPHERE 2019; 217:618-628. [PMID: 30447610 DOI: 10.1016/j.chemosphere.2018.11.044] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
The adverse impacts of AFB1 on gut-microbiota dependent metabolism in F344 rats were assessed via ultra-high performance liquid chromatography (UHPLC)-profiling and UHPLC-mass spectrometry (MS) metabolomic analyses. UHPLC-profiling analysis found 1100 raw peaks from the fecal samples collected at week 4, of which 335 peaks showed peak shape qualified for quantitation. A total of 24, 40 and 71 peaks were significantly decreased (>2-fold, p < 0.05) among the exposure groups treated with 5, 25, and 75 μg AFB1 kg-1 body weight (B. W.), respectively. Supervised orthogonal partial least squares projection to latent structures-discriminant analysis revealed 11 differential peaks that may be used to predict AFB1-induced adverse changes of the metabolites. UHPLC-MS based metabolomic analysis discovered 494 features that were significantly altered by AFB1, and 234 of them were imputatively identified using Human Metabolome Data Base (HMDB). Metabolite set enrichment analysis showed that the highly disrupted metabolic pathways were: protein biosynthesis, pantothenate and CoA biosynthesis, betaine metabolism, cysteine metabolism, and methionine metabolism. Eight features were rated as indicative metabolites for AFB1 exposure: 3-decanol, xanthylic acid, norspermidine, nervonyl carnitine, pantothenol, threitol, 2-hexanoyl carnitine, and 1-nitrohexane. These data suggest that AFB1 could significantly reduce the variety of nutrients in gut and disrupt a number of gut-microbiota dependent metabolic pathways, which may contribute to the AFB1-associated stunted growth, liver diseases and the immune toxic effects that have been observed in animal models and human populations.
Collapse
Affiliation(s)
- Jun Zhou
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - Lili Tang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - Jia-Sheng Wang
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, United States; Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
9
|
Wang L, Liu Y, Qi C, Shen L, Wang J, Liu X, Zhang N, Bing T, Shangguan D. Oxidative degradation of polyamines by serum supplement causes cytotoxicity on cultured cells. Sci Rep 2018; 8:10384. [PMID: 29991686 PMCID: PMC6039494 DOI: 10.1038/s41598-018-28648-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/10/2018] [Indexed: 12/26/2022] Open
Abstract
Serum is a common supplement for cell culture due to it containing the essential active components for the growth and maintenance of cells. However, the knowledges of the active components in serum are incomplete. Apart from the direct influence of serum components on cultured cells, the reaction of serum components with tested drugs cannot be ignored, which usually results in the false conclusion on the activity of the tested drugs. Here we report the toxicity effect of polyamines (spermidine and spermine) on cultured cells, especially on drug-resistant cancer cell lines, which resulted from the oxidative degradation of polyamines by amine oxidases in serum supplement. Upon adding spermidine or spermine, high concentration of H2O2, an enzyme oxidation product of polyamines, was generated in culture media containing ruminant serum, such as fetal bovine serum (FBS), calf serum, bovine serum, goat serum or horse serum, but not in the media containing human serum. Drug-resistant cancer cell lines showed much higher sensitivity to the oxidation products of polyamines (H2O2 and acrolein) than their wild cell lines, which was due to their low antioxidative capacity.
Collapse
Affiliation(s)
- Linlin Wang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Liu
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Qi
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Luyao Shen
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Junyan Wang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangjun Liu
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhang
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Tao Bing
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Dihua Shangguan
- Department Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. .,University of the Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Sreedhar A, Zhao Y. Dysregulated metabolic enzymes and metabolic reprogramming in cancer cells. Biomed Rep 2017; 8:3-10. [PMID: 29399334 PMCID: PMC5772474 DOI: 10.3892/br.2017.1022] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022] Open
Abstract
Tumor cells carry various genetic and metabolic alterations, which directly contribute to their growth and malignancy. Links between metabolism and cancer are multifaceted. Metabolic reprogramming, such as enhanced aerobic glycolysis, mutations in the tricarboxylic acid (TCA) cycle metabolic enzymes, and dependence on lipid and glutamine metabolism are key characteristics of cancer cells. Understanding these metabolic alterations is crucial for development of novel anti-cancer therapeutic strategies. In the present review, the broad importance of metabolism in tumor biology is discussed, and the current knowledge on dysregulated metabolic enzymes involved in the vital regulatory steps of glycolysis, the TCA cycle, the pentose phosphate pathway, and lipid, amino acid, and mitochondrial metabolism pathways are reviewed.
Collapse
Affiliation(s)
- Annapoorna Sreedhar
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center Shreveport, LA 71130-3932, USA
| | - Yunfeng Zhao
- Department of Pharmacology, Toxicology and Neuroscience, LSU Health Sciences Center Shreveport, LA 71130-3932, USA
| |
Collapse
|
11
|
Zhang R, Ma XN, Liu K, Zhang L, Yao M. Exogenous spermine preserves mitochondrial bioenergetics via regulating Src kinase signaling in the spinal cord. Mol Med Rep 2017; 16:3619-3626. [PMID: 28765886 DOI: 10.3892/mmr.2017.7030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2017] [Accepted: 07/10/2017] [Indexed: 11/06/2022] Open
Abstract
Regulation of mitochondrial metabolism is becoming an important target in inhibiting necrosis and apoptosis following secondary spinal cord injury, and physiological compounds that reduce mitochondrial dysfunction are regarded as efficient protective reagents following injury. It has been demonstrated that spermine, a polyamine composed of four primary amines, may be taken up by a mitochondria‑specific uniporter and may preserve mitochondrial bioenergetics, suggesting that it may be important in the pathophysiology of mitochondria. However, the protective mechanism has not yet been definitively clarified. In the present study, isolated spinal cord mitochondria were incubated with spermine to evaluate its physiological functions and Src kinase activities. The results revealed that spermine increased oxidative phosphorylation, attenuated mitochondrial swelling and maintained the membrane potential. An inhibitor of Src kinases, amino‑5-(4‑chlorophenyl)‑7‑(t‑butyl)pyrazolo[3,4‑d]pyrimidine (PP2), markedly reduced the effects of spermine. However, inhibition of tyrosine phosphatases by vanadate led to marginal increases in the effects of spermine. Therefore, the present study hypothesized that tyrosine phosphorylation sites are present in the subunits of respiratory chains and mitochondrial permeability transition pore proteins, which may be modified via phosphorylation and dephosphorylation. Furthermore, spermine may upregulate the phosphorylation of Src kinases, and PP2 and vanadate conversely regulate Src phosphorylation. The results of the present study suggest that spermine is a strategic regulator within mitochondria that may activate Src kinases in the spinal cord, and tyrosine phosphorylation signaling is a primary regulatory pathway of mitochondrial metabolism.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xin-Nan Ma
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Kai Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Lei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Meng Yao
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
12
|
Bioconjugation of gold-polymer core–shell nanoparticles with bovine serum amine oxidase for biomedical applications. Colloids Surf B Biointerfaces 2015. [DOI: 10.1016/j.colsurfb.2015.06.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Cervelli M, Polticelli F, Angelucci E, Di Muzio E, Stano P, Mariottini P. Pacific oyster polyamine oxidase: a protein missing link in invertebrate evolution. Amino Acids 2015; 47:949-61. [PMID: 25655384 DOI: 10.1007/s00726-015-1924-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/15/2015] [Indexed: 12/30/2022]
Abstract
Polyamine oxidases catalyse the oxidation of polyamines and acetylpolyamines and are responsible for the polyamine interconversion metabolism in animal cells. Polyamine oxidases from yeast can oxidize spermine, N(1)-acetylspermine, and N(1)-acetylspermidine, while in vertebrates two different enzymes, namely spermine oxidase and acetylpolyamine oxidase, specifically catalyse the oxidation of spermine, and N(1)-acetylspermine/N(1)-acetylspermidine, respectively. In this work we proved that the specialized vertebrate spermine and acetylpolyamine oxidases have arisen from an ancestor invertebrate polyamine oxidase with lower specificity for polyamine substrates, as demonstrated by the enzymatic activity of the mollusc polyamine oxidase characterized here. This is the first report of an invertebrate polyamine oxidase, the Pacific oyster Crassostrea gigas (CgiPAO), overexpressed as a recombinant protein. This enzyme was biochemically characterized and demonstrated to be able to oxidase both N(1)-acetylspermine and spermine, albeit with different efficiency. Circular dichroism analysis gave an estimation of the secondary structure content and modelling of the three-dimensional structure of this protein and docking studies highlighted active site features. The availability of this pluripotent enzyme can have applications in crystallographic studies and pharmaceutical biotechnologies, including anticancer therapy as a source of hydrogen peroxide able to induce cancer cell death.
Collapse
Affiliation(s)
- Manuela Cervelli
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy,
| | | | | | | | | | | |
Collapse
|
14
|
Grancara S, Zonta F, Ohkubo S, Brunati AM, Agostinelli E, Toninello A. Pathophysiological implications of mitochondrial oxidative stress mediated by mitochondriotropic agents and polyamines: the role of tyrosine phosphorylation. Amino Acids 2015; 47:869-83. [PMID: 25792113 DOI: 10.1007/s00726-015-1964-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/11/2015] [Indexed: 12/23/2022]
Abstract
Mitochondria, once merely considered as the "powerhouse" of cells, as they generate more than 90 % of cellular ATP, are now known to play a central role in many metabolic processes, including oxidative stress and apoptosis. More than 40 known human diseases are the result of excessive production of reactive oxygen species (ROS), bioenergetic collapse and dysregulated apoptosis. Mitochondria are the main source of ROS in cells, due to the activity of the respiratory chain. In normal physiological conditions, ROS generation is limited by the anti-oxidant enzymatic systems in mitochondria. However, disregulation of the activity of these enzymes or interaction of respiratory complexes with mitochondriotropic agents may lead to a rise in ROS concentrations, resulting in oxidative stress, mitochondrial permeability transition (MPT) induction and triggering of the apoptotic pathway. ROS concentration is also increased by the activity of amine oxidases located inside and outside mitochondria, with oxidation of biogenic amines and polyamines. However, it should also be recalled that, depending on its concentration, the polyamine spermine can also protect against stress caused by ROS scavenging. In higher organisms, cell signaling pathways are the main regulators in energy production, since they act at the level of mitochondrial oxidative phosphorylation and participate in the induction of the MPT. Thus, respiratory complexes, ATP synthase and transition pore components are the targets of tyrosine kinases and phosphatases. Increased ROS may also regulate the tyrosine phosphorylation of target proteins by activating Src kinases or phosphatases, preventing or inducing a number of pathological states.
Collapse
Affiliation(s)
- Silvia Grancara
- Department of Biomedical Sciences, University of Padova, Viale U. Bassi 58B, 35131, Padua, Italy
| | | | | | | | | | | |
Collapse
|
15
|
Agostinelli E, Vianello F, Magliulo G, Thomas T, Thomas TJ. Nanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review). Int J Oncol 2015; 46:5-16. [PMID: 25333509 DOI: 10.3892/ijo.2014.2706] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 09/01/2014] [Indexed: 11/06/2022] Open
Abstract
Nanotechnology for cancer gene therapy is an emerging field. Nucleic acids, polyamine analogues and cytotoxic products of polyamine oxidation, generated in situ by an enzyme-catalyzed reaction, can be developed for nanotechnology-based cancer therapeutics with reduced systemic toxicity and improved therapeutic efficacy. Nucleic acid-based gene therapy approaches depend on the compaction of DNA/RNA to nanoparticles and polyamine analogues are excellent agents for the condensation of nucleic acids to nanoparticles. Polyamines and amine oxidases are found in higher levels in tumours compared to that of normal tissues. Therefore, the metabolism of polyamines spermidine and spermine, and their diamine precursor, putrescine, can be targets for antineoplastic therapy since these naturally occurring alkylamines are essential for normal mammalian cell growth. Intracellular polyamine concentrations are maintained at a cell type-specific set point through the coordinated and highly regulated interplay between biosynthesis, transport, and catabolism. In particular, polyamine catabolism involves copper-containing amine oxidases. Several studies showed an important role of these enzymes in developmental and disease-related processes in animals through the control of polyamine homeostasis in response to normal cellular signals, drug treatment, and environmental and/or cellular stress. The production of toxic aldehydes and reactive oxygen species (ROS), H2O2 in particular, by these oxidases suggests a mechanism by which amine oxidases can be exploited as antineoplastic drug targets. The combination of bovine serum amine oxidase (BSAO) and polyamines prevents tumour growth, particularly well if the enzyme has been conjugated with a biocompatible hydrogel polymer. The findings described herein suggest that enzymatically formed cytotoxic agents activate stress signal transduction pathways, leading to apoptotic cell death. Consequently, superparamagnetic nanoparticles or other advanced nanosystem based on directed nucleic acid assemblies, polyamine-induced DNA condensation, and bovine serum amine oxidase may be proposed for futuristic anticancer therapy utilizing nucleic acids, polyamines and BSAO. BSAO based nanoparticles can be employed for the generation of cytotoxic polyamine metabolites.
Collapse
Affiliation(s)
- Enzo Agostinelli
- Istituto Pasteur-Fondazione Cenci Bolognetti Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University of Rome and CNR, Institute of Biology and Molecular Pathology, 00185 Rome, Italy
| | - Fabio Vianello
- Department of Comparative Biomedicine and Food Science, University of Padua, 35020 Legnaro, Italy and Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Palacky University in Olomouc, Olomouc 77146, Czech Republic
| | - Giuseppe Magliulo
- Department Organi di Senso, Sapienza University of Rome, 00185 Rome, Italy
| | - Thresia Thomas
- Formerly Department of Environmental and Occupational Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, Piscataway, NJ 08854, USA
| | - T J Thomas
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
16
|
Valdés A, García-Cañas V, Simó C, Ibáñez C, Micol V, Ferragut JA, Cifuentes A. Comprehensive foodomics study on the mechanisms operating at various molecular levels in cancer cells in response to individual rosemary polyphenols. Anal Chem 2014; 86:9807-15. [PMID: 25188358 DOI: 10.1021/ac502401j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this work, the contribution of carnosic acid (CA) and carnosol (CS), two major compounds present in rosemary, against colon cancer HT-29 cells proliferation is investigated using a comprehensive Foodomics approach. The Foodomics study reveals that CA induces transcriptional activation of genes that encode detoxifying enzymes and altered the expression of genes linked to transport and biosynthesis of terpenoids in the colon cancer cell line. Functional analysis highlighted the activation of the ROS metabolism and alteration of several genes involved in pathways describing oxidative degradation of relevant endogenous metabolites, providing new evidence about the transcriptional change induced by CA in HT-29 cells. Metabolomics analysis showed that the treatment with CA affected the intracellular levels of glutathione. Elevated levels of GSH provided additional evidence to transcriptomic results regarding chemopreventive response of cells to CA treatment. Moreover, the Foodomics approach was useful to establish the links between decreased levels of N-acetylputrescine and its degradation pathway at the gene level. The findings from this work and the predictions based on microarray data will help explore novel metabolic processes and potential signaling pathways to further elucidate the effect of CA in colon cancer cells.
Collapse
Affiliation(s)
- Alberto Valdés
- Laboratory of Foodomics, Institute of Food Science Research (CIAL), CSIC , Nicolas Cabrera 9, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Isolation of Biogenic Amines Using Paramagnetic Microparticles Off-Line Coupled with Ion Exchange Liquid Chromatography. Chromatographia 2014. [DOI: 10.1007/s10337-014-2731-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Li N, Bo CW, Zou CP, Ma WH, Zheng Z, An YH. Efficacy of continuous hyperthermic peritoneal perfusion chemotherapy for malignant seroperitoneum. Shijie Huaren Xiaohua Zazhi 2013; 21:3757-3761. [DOI: 10.11569/wcjd.v21.i33.3757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To compare the curative effect and adverse effects of continuous hyperthermic peritoneal perfusion chemotherapy versus simple intraperitoneal chemotherapy in the management of malignant seroperitoneum secondary to gastrointestinal tumors.
METHODS: Eighty-four inpatients with malignant seroperitoneum secondary to gastrointestinal tumors treated at our hospital between October 2010 and February 2013 were enrolled in the study. They were randomly and equally divided into either a study group to undergo continuous hyperthermic peritoneal perfusion chemotherapy or a control group to receive intraperitoneal chemotherapy. The differences in curative effect, quality of life and adverse effects were compared between the two groups.
RESULTS: The rate of ascites control was significantly higher in the study group than in the control group (88.33% vs 59.52%, P < 0.05). The rate of improvement of quality of life was also higher in the study group (88.1% vs 53.76%, P < 0.05). Adverse effects included mild nausea and vomiting, temporary abdominal pain, CTCAE grade Ⅰ-Ⅱ bone marrow depression (BMD), and no grade Ⅲ-Ⅳ BMD was identified. No significant differences in adverse effect were observed between the two groups.
CONCLUSION: Continuous hyperthermic peritoneal perfusion chemotherapy is superior to simple intraperitoneal chemotherapy in the management of malignant seroperitoneum in terms of ascite control, improvement of quality of life, and adverse effects.
Collapse
|
19
|
Amendola R, Cervelli M, Tempera G, Fratini E, Varesio L, Mariottini P, Agostinelli E. Spermine metabolism and radiation-derived reactive oxygen species for future therapeutic implications in cancer: an additive or adaptive response. Amino Acids 2013; 46:487-98. [PMID: 23999645 DOI: 10.1007/s00726-013-1579-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 08/07/2013] [Indexed: 02/07/2023]
Abstract
Destruction of cells by irradiation-induced radical formation is one of the most frequent interventions in cancer therapy. An alternative to irradiation-induced radical formation is in principle drug-induced formation of radicals, and the formation of toxic metabolites by enzyme catalyzed reactions. Thus, combination therapy targeting polyamine metabolism could represent a promising strategy to fight hyper-proliferative disease. The aim of this work is to discuss and evaluate whether the presence of a DNA damage provoked by enzymatic ROS overproduction may act as an additive or adaptive response upon radiation and combination of hyperthermia with lysosomotropic compounds may improve the cytocidal effect of polyamines oxidation metabolites. Low level of X-irradiations delivers challenging dose of damage and an additive or adaptive response with the chronic damage induced by spermine oxidase overexpression depending on the deficiency of the DNA repair mechanisms. Since reactive oxygen species lead to membrane destabilization and cell death, we discuss the effects of BSAO and spermine association in multidrug resistant cells that resulted more sensitive to spermine metabolites than their wild-type counterparts, due to an increased mitochondrial activity. Since mammal spermine oxidase is differentially activated in a tissue specific manner, and cancer cells can differ in term of DNA repair capability, it could be of interest to open a scientific debate to use combinatory treatments to alter spermine metabolism and deliver differential response.
Collapse
|
20
|
Clark GF, Schust DJ. Manifestations of immune tolerance in the human female reproductive tract. Front Immunol 2013; 4:26. [PMID: 23407606 PMCID: PMC3570961 DOI: 10.3389/fimmu.2013.00026] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/22/2013] [Indexed: 12/22/2022] Open
Abstract
Like other mucosal surfaces (e.g., the gastrointestinal tract, the respiratory tract), the human female reproductive tract acts as an initial barrier to foreign antigens. In this role, the epithelial surface and subepithelial immune cells must balance protection against pathogenic insults against harmful inflammatory reactions and acceptance of particular foreign antigens. Two common examples of these acceptable foreign antigens are the fetal allograft and human semen/sperm. Both are purposely deposited into the female genital tract and appropriate immunologic response to these non-self antigens is essential to the survival of the species. In light of the weight of this task, it is not surprising that multiple, redundant and overlapping mechanisms are involved. For instance, cells at the immunologic interface between self (female reproductive tract epithelium) and non-self (placental trophoblast cells or human sperm) express glycosylation patterns that mimic those on many metastatic cancer cells and successful pathogens. The cytokine/chemokine milieu at this interface is altered through endocrine and immunologic mechanisms to favor tolerance of non-self. The “foreign” cells themselves also play an integral role in their own immunologic acceptance, since sperm and placental trophoblast cells are unusual and unique in their antigen presenting molecule expression patterns. Here, we will discuss these and other mechanisms that allow the human female reproductive tract to perform this delicate and indispensible balancing act.
Collapse
Affiliation(s)
- Gary F Clark
- Department of Obstetrics, Gynecology and Women's Health, Division of Reproductive Medicine and Fertility, University of Missouri Columbia, MO, USA
| | | |
Collapse
|
21
|
Levillain O, Ramos-Molina B, Forcheron F, Peñafiel R. Expression and distribution of genes encoding for polyamine-metabolizing enzymes in the different zones of male and female mouse kidneys. Amino Acids 2012; 43:2153-63. [PMID: 22562773 DOI: 10.1007/s00726-012-1300-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/12/2012] [Indexed: 12/16/2022]
Abstract
The role of polyamines in renal physiology is only partially understood. Moreover, most of the data on the enzymes of polyamine metabolism come from studies using whole kidneys. The aim of the present study was to analyze the mRNA abundance of the genes implicated in both the polyamine biosynthetic and catabolic pathways in different renal zones of male and female mice, by means of the quantitative reverse transcription-polymerase chain reaction. Our results indicate that there is an uneven distribution of the different mRNAs studied in the five renal zones: superficial cortex, deep cortex, outer stripe of the outer medulla (OS), inner stripe of the outer medulla (IS), and the inner medulla + papilla (IM). The biosynthetic genes, ornithine decarboxylase (ODC) and spermine synthase, were more expressed in the cortex, whereas the mRNAs of the catabolic genes spermine oxidase (SMO) and diamine oxidase were more abundant in IS and IM. The genes involved in the regulation of polyamine synthesis (AZ1, AZ2 and AZIN1) were expressed in all the renal zones, predominantly in the cortex, while AZIN2 gene was more abundant in the OS. ODC, SMO, spermidine synthase and spermidine/spermine acetyl transferase expression was higher in males than in females. In conclusion, the genes encoding for the polyamine metabolism were specifically and quantitatively distributed along the corticopapillary axis of male and female mouse kidneys, suggesting that their physiological role is essential in defined renal zones and/or nephron segments.
Collapse
Affiliation(s)
- Olivier Levillain
- Institut de Biologie et Chimie des Protéines, FRE 3310, Dysfonctionnements de l'homéostasie tissulaire et ingénierie thérapeutique, (DyHTIT), 7 passage du Vercors, 69367, Lyon, France.
| | | | | | | |
Collapse
|
22
|
Sinigaglia G, Magro M, Miotto G, Cardillo S, Agostinelli E, Zboril R, Bidollari E, Vianello F. Catalytically active bovine serum amine oxidase bound to fluorescent and magnetically drivable nanoparticles. Int J Nanomedicine 2012; 7:2249-59. [PMID: 22619559 PMCID: PMC3356201 DOI: 10.2147/ijn.s28237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Novel superparamagnetic surface-active maghemite nanoparticles (SAMNs) characterized by a diameter of 10 ± 2 nm were modified with bovine serum amine oxidase, which used rhodamine B isothiocyanate (RITC) adduct as a fluorescent spacer-arm. A fluorescent and magnetically drivable adduct comprised of bovine serum copper-containing amine oxidase (SAMN-RITC-BSAO) that immobilized on the surface of specifically functionalized magnetic nanoparticles was developed. The multifunctional nanomaterial was characterized using transmission electron microscopy, infrared spectroscopy, mass spectrometry, and activity measurements. The results of this study demonstrated that bare magnetic nanoparticles form stable colloidal suspensions in aqueous solutions. The maximum binding capacity of bovine serum amine oxidase was approximately 6.4 mg g(-1) nanoparticles. The immobilization procedure reduced the catalytic activity of the native enzyme to 30% ± 10% and the Michaelis constant was increased by a factor of 2. We suggest that the SAMN-RITC-BSAO complex, characterized by a specific activity of 0.81 IU g(-1,) could be used in the presence of polyamines to create a fluorescent magnetically drivable H(2)O(2) and aldehydes-producing system. Selective tumor cell destruction is suggested as a potential future application of this system.
Collapse
|
23
|
Synthesis of hydroxydiamines and triamines via reductive cleavage of N–N bond in substituted pyrazolidines. Amino Acids 2012; 43:1225-31. [DOI: 10.1007/s00726-011-1187-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 11/24/2011] [Indexed: 12/25/2022]
|
24
|
Spermine Oxidation Products Induce Mitochondrial Alterations on Tumor Cells. ACTA FACULTATIS MEDICAE NAISSENSIS 2012. [DOI: 10.2478/v10283-012-0015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spermine Oxidation Products Induce Mitochondrial Alterations on Tumor CellsCytotoxic products of polyamines generatedin situby an enzyme-catalyzed reaction may be useful as a new avenue in combating cancer. This study demonstrates that multidrug resistant (MDR) cancer cells (colon adenocarcinoma and melanoma) are significantly more sensitive than the corresponding wild type (WT) ones to hydrogen peroxide and aldehydes, the products of bovine serum amine oxidase (BSAO)-catalyzed oxidation of spermine. Transmission electron microscopy (TEM) observations showed the major ultrastructural alterations of the mitochondria. These were more pronounced in MDR than in WT cells. After treatment with BSAO/spermine a higher mitochondrial membrane depolarization and an increased mitochondrial activity in drug-resistant cells were observed. The results suggest that enzymatically formed cytotoxic agents activate stress signal transduction pathways, leading to apoptotic cell death, mainly in multidrug resistant cell lines.
Collapse
|
25
|
Kochetkov KA, Tavtorkin AN, Vorozhtsov NI, Sviridova LA, Moroz AM, Dorozhkova IR. A new approach to the synthesis of aliphatic triamines and diamino alcohols that are analogs of the anti-TB drug ethambutol. Russ Chem Bull 2011. [DOI: 10.1007/s11172-011-0109-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Correa-Fiz F, Reyes-Palomares A, Fajardo I, Melgarejo E, Gutiérrez A, García-Ranea JA, Medina MA, Sánchez-Jiménez F. Regulatory cross-talk of mouse liver polyamine and methionine metabolic pathways: a systemic approach to its physiopathological consequences. Amino Acids 2011; 42:577-95. [PMID: 21818563 DOI: 10.1007/s00726-011-1044-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 04/22/2011] [Indexed: 12/15/2022]
Abstract
Both polyamines and methionine derivatives are nitrogen compounds directly related to the regulation of gene expression. In silico predictions and experimental evidence suggest a cross-talk between polyamine and methionine metabolism in mammalian tissues. Since liver is the major organ that controls nitrogen metabolism of the whole organism, it is the best tissue to further test this hypothesis in vivo. In this work, we studied the effects of the chronic administration of a methionine-supplemented diet (0.5% Met in drinking water for 5 months) on the liver of mice (designated as MET-mice). Metabolic and proteomic approaches were performed and the data obtained were subjected to biocomputational analysis. Results showed that a supplemental methionine intake can indeed regulate biogenic amine metabolism in an in vivo model by multiple mechanisms including metabolic regulation and specific gene demethylation. Furthermore, putative systemic effects were investigated by molecular and cellular biology methods. Among other results, altered expression levels of multiple inflammation and cell proliferation/death balance markers were found and macrophage activation was observed. Overall, the results presented here will be of interest across a variety of biomedical disciplines, including nutrition, orphan diseases, immunology and oncology.
Collapse
Affiliation(s)
- F Correa-Fiz
- Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Role of polyamines in hypertrophy and terminal differentiation of osteoarthritic chondrocytes. Amino Acids 2011; 42:667-78. [PMID: 21814786 DOI: 10.1007/s00726-011-1041-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 04/28/2011] [Indexed: 01/23/2023]
Abstract
Polyamines are naturally occurring, positively charged polycations which are able to control several cellular processes in different cell types, by interacting with negatively charged compounds and structures within the living cell. Functional genomics in rodents targeting key biosynthetic or catabolic enzymes have revealed a series of phenotypic changes, many of them related to human diseases. Several pieces of evidence from the literature point at a role of polyamines in promoting chondrocyte differentiation, a process which is physiological in growth plate maturation or fracture healing, but has pathological consequences in articular chondrocytes, programmed to keep a maturational arrested state. Inappropriate differentiation of articular chondrocytes results in osteoarthritis. Thus, we have studied the effects of exogenously added spermine or spermidine in chondrocyte maturation recapitulated in 3D cultures, to tease out the effects on gene and protein expression of key chondrogenesis regulatory transcription factors, markers and effectors, as well as their posttranscriptional regulation. The results indicate that both polyamines are able to increase the rate and the extent of chondrogenesis, with enhanced collagen 2 deposition and remodeling with downstream generation of collagen 2 bioactive peptides. These were able to promote nuclear localization of RUNX-2, the pivotal transcription factor in chondrocyte hypertrophy and osteoblast generation. Indeed, samples stimulated with polyamines showed an enhanced mineralization, along with increased caspase activity, indicating increased chondrocyte terminal differentiation. In conclusion these results indicate that the polyamine pathway can represent a potential target to control and correct chondrocyte inappropriate maturation in osteoarthritis.
Collapse
|
28
|
Arısan ED, Coker A, Palavan-Ünsal N. Polyamine depletion enhances the roscovitine-induced apoptosis through the activation of mitochondria in HCT116 colon carcinoma cells. Amino Acids 2011; 42:655-65. [PMID: 21809075 DOI: 10.1007/s00726-011-1040-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/24/2011] [Indexed: 12/15/2022]
Abstract
Small molecule inhibitors of cyclin-dependent kinases (CDKs) show high therapeutic potential in various cancer types which are characterized by the accumulation of transformed cells due to impaired apoptotic machinery. Roscovitine, a CDK inhibitor showed to be a potent apoptotic inducer in several cancer cells. Polyamines, putrescine, spermidine and spermine, are biogenic amines involved in many cellular processes, including apoptosis. In this study, we explored the potential role of polyamines in roscovitine-induced apoptosis in HCT116 colon cancer cells. Roscovitine induced apoptosis by activating mitochondrial pathway caspases and modulating the expression of Bcl-2 family members. Depletion of polyamines by treatment with difluoromethylornithine (DFMO) increased roscovitine-induced apoptosis. Transient silencing of ornithine decarboxylase, polyamine biosynthesis enzyme and special target of DFMO also increased roscovitine-induced apoptosis in HCT116 cells. Interestingly, additional putrescine treatment was found pro-apoptotic due to the presence of non-functional ornithine decarboxylase (ODC). Finally, roscovitine altered polyamine catabolic pathway and led to decrease in putrescine and spermidine levels. Therefore, the metabolic regulation of polyamines may dictate the power of roscovitine induced apoptotic responses in HCT116 colon cancer cells.
Collapse
Affiliation(s)
- Elif Damla Arısan
- Molecular Biology and Genetics Department, Istanbul Kultur University, Science and Literature Faculty, Atakoy Campus, 34156, Istanbul, Turkey
| | | | | |
Collapse
|
29
|
Largeron M. Amine oxidases of the quinoproteins family: Their implication in the metabolic oxidation of xenobiotics. ANNALES PHARMACEUTIQUES FRANÇAISES 2011; 69:53-61. [DOI: 10.1016/j.pharma.2010.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 10/04/2010] [Accepted: 10/13/2010] [Indexed: 12/11/2022]
|
30
|
Preliminary kinetic characterization of a copper amine oxidase from rat liver mitochondria matrix. Amino Acids 2010; 40:713-20. [DOI: 10.1007/s00726-010-0708-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Accepted: 07/17/2010] [Indexed: 10/19/2022]
|
31
|
Colotti G, Ilari A. Polyamine metabolism in Leishmania: from arginine to trypanothione. Amino Acids 2010; 40:269-85. [PMID: 20512387 DOI: 10.1007/s00726-010-0630-3] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 05/13/2010] [Indexed: 12/20/2022]
Abstract
Polyamines (PAs) are essential metabolites in eukaryotes, participating in a variety of proliferative processes, and in trypanosomatid protozoa play an additional role in the synthesis of the critical thiol trypanothione. The PAs are synthesized by a metabolic process which involves arginase (ARG), which catalyzes the enzymatic hydrolysis of L-arginine (L-Arg) to L-ornithine and urea, and ornithine decarboxylase (ODC), which catalyzes the enzymatic decarboxylation of L-ornithine in putrescine. The S-adenosylmethionine decarboxylase (AdoMetDC) catalyzes the irreversible decarboxylation of S-adenosylmethionine (AdoMet), generating the decarboxylated S-adenosylmethionine (dAdoMet), which is a substrate, together with putrescine, for spermidine synthase (SpdS). Leishmania parasites and all the other members of the trypanosomatid family depend on spermidine for growth and survival. They can synthesize PAs and polyamine precursors, and also scavenge them from the microenvironment, using specific transporters. In addition, Trypanosomatids have a unique thiol-based metabolism, in which trypanothione (N1-N8-bis(glutathionyl)spermidine, T(SH)(2)) and trypanothione reductase (TR) replace many of the antioxidant and metabolic functions of the glutathione/glutathione reductase (GR) and thioredoxin/thioredoxin reductase (TrxR) systems present in the host. Trypanothione synthetase (TryS) and TR are necessary for the protozoa survival. Consequently, enzymes involved in spermidine synthesis and its utilization, i.e. ARG, ODC, AdoMetDC, SpdS and, in particular, TryS and TR, are promising targets for drug development.
Collapse
Affiliation(s)
- Gianni Colotti
- Institute of Biology and Molecular Pathology, CNR, c/o Department of Biochemical Sciences, University Sapienza, P.le A. Moro 5, 00185, Rome, Italy.
| | | |
Collapse
|
32
|
Stasyk T, Lutsik-Kordovsky M, Wernstedt C, Antonyuk V, Klyuchivska O, Souchelnytskyi S, Hellman U, Stoika R. A new highly toxic protein isolated from the death cap Amanita phalloides is an L-amino acid oxidase. FEBS J 2010; 277:1260-9. [PMID: 20121947 DOI: 10.1111/j.1742-4658.2010.07557.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A new highly cytotoxic protein, toxophallin, was recently isolated from the fruit body of the death cap Amanita phalloides mushroom [Stasyk et al. (2008) Studia Biologica 2, 21-32]. The physico-chemical, chemical and biological characteristics of toxophallin differ distinctly from those of another death cap toxic protein, namely phallolysin. The interaction of toxophallin with target cells is not mediated by a specific cell surface receptor. It induces chromatin condensation, as well as DNA and nucleus fragmentation, which are typical for apoptosis. However, caspase III inhibitor [benzyloxycarbonyl-Asp(OMe)-fluoromethylketone] did not stop toxophallin-induced DNA fragmentation. Thus, toxophallin uses a caspase-independent pathway of apoptosis induction. In the present study, we applied a complementary approach based on a combination of proteomics and molecular biology tools for the protein identification of toxophallin. The primary structure of toxophallin was partially studied via direct sequencing of its tryptic peptides, followed by PCR-based cloning of the corresponding cDNA. A subsequent bioinformatic search revealed a structural homology of toxophallin with the l-amino acid oxidase of the Laccaria bicolor mushroom. This demonstrates the usefulness of our approach for the identification of proteins in organisms with unknown genomes. We also found a broad substrate specificity of toxophallin with respect to oxidizing selected amino acids. Ascorbic acid inhibited the cytotoxic effect of toxophallin, most likely as a result of scavenging hydrogen peroxide, which is the product of oxidase catalysis. Thus, in addition to highly toxic cyclopeptides and toxic lectin phallolysin, the death cap fruit body contains another cytotoxic protein in the form of an enzyme, namely l-amino acid oxidase.
Collapse
Affiliation(s)
- Taras Stasyk
- Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Largeron M, Fleury MB, Strolin Benedetti M. A small molecule that mimics the metabolic activity of copper-containing amine oxidases (CuAOs) toward physiological mono- and polyamines. Org Biomol Chem 2010; 8:3796-800. [DOI: 10.1039/c004501b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
34
|
Polyamines: fundamental characters in chemistry and biology. Amino Acids 2009; 38:393-403. [DOI: 10.1007/s00726-009-0396-7] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Accepted: 10/08/2009] [Indexed: 10/20/2022]
|
35
|
Potential anticancer application of polyamine oxidation products formed by amine oxidase: a new therapeutic approach. Amino Acids 2009; 38:353-68. [PMID: 20012114 DOI: 10.1007/s00726-009-0431-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Accepted: 10/20/2009] [Indexed: 02/02/2023]
Abstract
The polyamines spermine, spermidine and putrescine are ubiquitous cell components. These molecules are substrates of a class of enzymes that includes monoamine oxidases, diamine oxidases, polyamine oxidases and copper-containing amine oxidases. Amine oxidases are important because they contribute to regulate levels of mono- and polyamines. In tumors, polyamines and amine oxidases are increased as compared to normal tissues. Cytotoxicity induced by bovine serum amine oxidase (BSAO) and spermine is attributed to H(2)O(2) and aldehydes produced by the reaction. This study demonstrated that multidrug-resistant (MDR) cancer cells (colon adenocarcinoma and melanoma) are significantly more sensitive than the corresponding wild-type (WT) ones to H(2)O(2) and aldehydes, the products of BSAO-catalyzed oxidation of spermine. Transmission electron microscopy (TEM) observations showed major ultrastructural alterations of the mitochondria. These were more pronounced in MDR than in WT cells. Increasing the incubation temperature from 37 to 42 degrees Celsius enhances cytotoxicity in cells exposed to spermine metabolites. The combination BSAO/spermine prevents tumor growth, particularly well if the enzyme has been conjugated to a biocompatible hydrogel polymers. Since both wild-type and MDR cancer cells after pre-treatment with MDL 72527, a lysosomotropic compound, are sensitized to subsequent exposure to BSAO/spermine, it is conceivable that combined treatment with a lysosomotropic compound and BSAO/spermine would be effective against tumor cells. It is of interest to search for such novel compounds, which might be promising for application in a therapeutic setting.
Collapse
|
36
|
Arndt MA, Battaglia V, Parisi E, Lortie MJ, Isome M, Baskerville C, Pizzo DP, Ientile R, Colombatto S, Toninello A, Satriano J. The arginine metabolite agmatine protects mitochondrial function and confers resistance to cellular apoptosis. Am J Physiol Cell Physiol 2009; 296:C1411-9. [PMID: 19321739 DOI: 10.1152/ajpcell.00529.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Agmatine, an endogenous metabolite of arginine, selectively suppresses growth in cells with high proliferative kinetics, such as transformed cells, through depletion of intracellular polyamine levels. In the present study, we depleted intracellular polyamine content with agmatine to determine if attrition by cell death contributes to the growth-suppressive effects. We did not observe an increase in necrosis, DNA fragmentation, or chromatin condensation in Ha-Ras-transformed NIH-3T3 cells administered agmatine. In response to Ca(2+)-induced oxidative stress in kidney mitochondrial preparations, agmatine demonstrated attributes of a free radical scavenger by protecting against the oxidation of sulfhydryl groups and decreasing hydrogen peroxide content. The functional outcome was a protective effect against Ca(2+)-induced mitochondrial swelling and mitochondrial membrane potential collapse. We also observed decreased expression of proapoptotic Bcl-2 family members and of execution caspase-3, implying antiapoptotic potential. Indeed, we found that apoptosis induced by camptothecin or 5-fluorourocil was attenuated in cells administered agmatine. Agmatine may offer an alternative to the ornithine decarboxylase inhibitor difluoromethyl ornithine for depletion of intracellular polyamine content while avoiding the complications of increasing polyamine import and reducing the intracellular free radical scavenger capacity of polyamines. Depletion of intracellular polyamine content with agmatine suppressed cell growth, yet its antioxidant capacity afforded protection from mitochondrial insult and resistance to cellular apoptosis. These results could explain the beneficial outcomes observed with agmatine in models of injury and disease.
Collapse
Affiliation(s)
- Mary Ann Arndt
- Division of Nephrology-Hypertension, University of California-San Diego, San Diego, CA 92161, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The state of wound oxygenation is a key determinant of healing outcomes. From a diagnostic standpoint, measurements of wound oxygenation are commonly used to guide treatment planning such as amputation decision. In preventive applications, optimizing wound perfusion and providing supplemental O(2) in the perioperative period reduces the incidence of postoperative infections. Correction of wound pO(2) may, by itself, trigger some healing responses. Importantly, approaches to correct wound pO(2) favorably influence outcomes of other therapies such as responsiveness to growth factors and acceptance of grafts. Chronic ischemic wounds are essentially hypoxic. Primarily based on the tumor literature, hypoxia is generally viewed as being angiogenic. This is true with the condition that hypoxia be acute and mild to modest in magnitude. Extreme near-anoxic hypoxia, as commonly noted in problem wounds, is not compatible with tissue repair. Adequate wound tissue oxygenation is required but may not be sufficient to favorably influence healing outcomes. Success in wound care may be improved by a personalized health care approach. The key lies in our ability to specifically identify the key limitations of a given wound and in developing a multifaceted strategy to specifically address those limitations. In considering approaches to oxygenate the wound tissue it is important to recognize that both too little as well as too much may impede the healing process. Oxygen dosing based on the specific need of a wound therefore seems prudent. Therapeutic approaches targeting the oxygen sensing and redox signaling pathways are promising.
Collapse
Affiliation(s)
- Chandan K Sen
- The Comprehensive Wound Center, Department of Surgery and Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio, USA.
| |
Collapse
|
38
|
Marques MPM, Gil FPSC, Calheiros R, Battaglia V, Brunati AM, Agostinelli E, Toninello A. Biological activity of antitumoural MGBG: the structural variable. Amino Acids 2007; 34:555-64. [DOI: 10.1007/s00726-007-0009-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Accepted: 11/21/2007] [Indexed: 11/30/2022]
|