1
|
Elstad K, Malone C, Luedke J, Jaime SJ, Dobbs WC, Almonroeder T, Kerksick CM, Markert A, Jagim AR. The Effects of Protein and Carbohydrate Supplementation, with and without Creatine, on Occupational Performance in Firefighters. Nutrients 2023; 15:5134. [PMID: 38140393 PMCID: PMC10745745 DOI: 10.3390/nu15245134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The purpose of this study was to assess the effects of protein and carbohydrate supplementation, with and without creatine, on occupational performance in firefighters. METHODS Using a randomized, double-blind approach, thirty male firefighters (age: 34.4 ± 8.4 yrs., height: 1.82 ± 0.07 m; weight: 88.6 ± 12.5 kg; BF%: 17.2 ± 5.8%) were randomized to receive either (A.) 25 g of whey protein isolate + 25 g of carbohydrate powder (ProCarb group); or (B.) ProCarb + 5 g of creatine (Creatine group) in a double-blind fashion over a period of 21-26 days (depending on shift rotations) to evaluate the impact of supplementation on occupation-specific performance. At baseline and following supplementation, firefighters completed a battery of tests. These tests included an aerobic speed test on an air-braked cycle ergometer followed by the hose carry, body drag, stair climb, and Keiser sled hammer for time. RESULTS No significant differences in measures of performance were observed at baseline (p > 0.05). There was a significant main effect for time observed for rescue, stair climb, total time to completion, and time trial performance (p < 0.05). There was a significant group × time (p < 0.05) interaction for rescue and forcible entry. Independent sample t-tests indicated that the Creatine group experienced a greater reduction (from baseline) in completion time for the rescue (1.78 ± 0.57 s, 95% CI: 0.61, 2.95 s, p = 0.004) and forcible entry (2.66 ± 0.97 s, 95% CI: 0.68, 4.65 s, p = 0.01) tests compared to the ProCarb group. No significant group × time interactions were observed for the hose line advance, stair climb, total time to completion, and time trial performance (p > 0.05). CONCLUSIONS The addition of supplemental creatine to a protein and carbohydrate supplement to the diet of career firefighters throughout a three week period improves occupational performance in firefighters in specific areas of high-intensity, repetitive actions.
Collapse
Affiliation(s)
- Kaia Elstad
- Exercise & Sport Science Department, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA (W.C.D.)
| | - Conley Malone
- Medicine & Health Sciences, Des Moines University, Des Moines, IA 50312, USA
| | - Joel Luedke
- Sports Medicine Department, Mayo Clinic Health System, La Crosse, WI 54650, USA (C.M.K.)
| | - Salvador J. Jaime
- Exercise & Sport Science Department, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA (W.C.D.)
| | - Ward C. Dobbs
- Exercise & Sport Science Department, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA (W.C.D.)
| | - Thomas Almonroeder
- Department of Physical Therapy, Trine University, Angola, IN 46703, USA;
| | - Chad M. Kerksick
- Sports Medicine Department, Mayo Clinic Health System, La Crosse, WI 54650, USA (C.M.K.)
- Exercise and Performance Nutrition Laboratory, Department of Kinesiology, Lindenwood University, St. Charles, MO 63301, USA
| | - Adam Markert
- La Crosse Fire Department, City of La Crosse, La Crosse, WI 54601, USA;
| | - Andrew R. Jagim
- Exercise & Sport Science Department, University of Wisconsin-La Crosse, La Crosse, WI 54601, USA (W.C.D.)
- Sports Medicine Department, Mayo Clinic Health System, La Crosse, WI 54650, USA (C.M.K.)
| |
Collapse
|
2
|
Martinez-Canton M, Galvan-Alvarez V, Garcia-Gonzalez E, Gallego-Selles A, Gelabert-Rebato M, Garcia-Perez G, Santana A, Lopez-Rios L, Vega-Morales T, Martin-Rincon M, Calbet JAL. A Mango Leaf Extract (Zynamite ®) Combined with Quercetin Has Exercise-Mimetic Properties in Human Skeletal Muscle. Nutrients 2023; 15:2848. [PMID: 37447175 DOI: 10.3390/nu15132848] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Zynamite PX®, a mango leaf extract combined with quercetin, enhances exercise performance by unknown molecular mechanisms. Twenty-five volunteers were assigned to a control (17 males) or supplementation group (8 males, receiving 140 mg of Zynamite® + 140 mg quercetin/8 h for 2 days). Then, they performed incremental exercise to exhaustion (IE) followed by occlusion of the circulation in one leg for 60 s. Afterwards, the cuff was released, and a 30 s sprint was performed, followed by 90 s circulatory occlusion (same leg). Vastus lateralis muscle biopsies were obtained at baseline, 20 s after IE (occluded leg) and 10 s after Wingate (occluded leg), and bilaterally at 90 s and 30 min post exercise. Compared to the controls, the Zynamite PX® group showed increased basal protein expression of Thr287-CaMKIIδD (2-fold, p = 0.007) and Ser9-GSK3β (1.3-fold, p = 0.005) and a non-significant increase of total NRF2 (1.7-fold, p = 0.099) and Ser40-NRF2 (1.2-fold, p = 0.061). In the controls, there was upregulation with exercise and recovery of total NRF2, catalase, glutathione reductase, and Thr287-CaMKIIδD (1.2-2.9-fold, all p < 0.05), which was not observed in the Zynamite PX® group. In conclusion, Zynamite PX® elicits muscle signaling changes in resting skeletal muscle resembling those described for exercise training and partly abrogates the stress kinases responses to exercise as observed in trained muscles.
Collapse
Affiliation(s)
- Miriam Martinez-Canton
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Victor Galvan-Alvarez
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Eduardo Garcia-Gonzalez
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Angel Gallego-Selles
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Miriam Gelabert-Rebato
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Giovanni Garcia-Perez
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Alfredo Santana
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
- Clinical Genetics Unit, Complejo Hospitalario Universitario Insular-Materno Infantil de Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain
| | - Laura Lopez-Rios
- Nektium Pharma, Las Mimosas 8, Agüimes, 35118 Las Palmas de Gran Canaria, Spain
| | | | - Marcos Martin-Rincon
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
| | - Jose A L Calbet
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, 35017 Las Palmas de Gran Canaria, Spain
- Department of Physical Performance, Norwegian School of Sport Sciences, 0806 Oslo, Norway
| |
Collapse
|
3
|
Mansor LS, Woo GH. Ketones for Post-exercise Recovery: Potential Applications and Mechanisms. Front Physiol 2021; 11:613648. [PMID: 33574765 PMCID: PMC7870714 DOI: 10.3389/fphys.2020.613648] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/30/2020] [Indexed: 11/13/2022] Open
Abstract
Ketogenic diet has been introduced in therapeutic areas for more than a century, but the role of ketones in exercise performance has only been explored in the past decade. One of the main reasons that allows the investigation of the role of ketones in exercise performance is the emergence of exogenous ketones, allowing athletes to achieve the state of ketosis acutely, and independent of their metabolic states. While there are mixed results showing either exogenous ketones improve exercise performance or no effect, the mechanisms of action are still being heavily researched. Moreover, these early data from exercise physiology studies suggested that exogenous ketones may play a more prominent role in post-exercise recovery, leading to a more pronounced cumulative impact over subsequent exercise performance. This review will look at existing evidence on the role of ketones in recovery and attempt to identify the current best practices and potential mechanisms that drive improved recovery.
Collapse
Affiliation(s)
- Latt Shahril Mansor
- Health Via Modern Nutrition Inc. (H.V.M.N.), San Francisco, CA, United States
| | - Geoffrey Hubert Woo
- Health Via Modern Nutrition Inc. (H.V.M.N.), San Francisco, CA, United States
| |
Collapse
|
4
|
da Silva CD, de Oliveira DR, Perrone ÍT, Fonseca CH, Garcia ES. Low-fat, lactose-free and leucine-enriched chocolate cow milk prototype: A preliminary study on sensorial acceptability and gastrointestinal complaints following exhaustive exercise. J Int Soc Sports Nutr 2021; 18:14. [PMID: 33568169 PMCID: PMC7874447 DOI: 10.1186/s12970-020-00406-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 12/26/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chocolate milk has gained recent scientific support as a recovery drink. However, it is known that high exercise-demand triggers gastrointestinal discomfort which continues post-exercise, thereby hindering this nutritional strategy. In addition, those who are lactose intolerant cannot benefit from a milk-based beverage. Thus, the aim of this preliminary study was to develop a low-fat, lactose-free, and leucine-enriched chocolate cow milk prototype (CML) representing nutrition-related recommendations for football players, as well as assess athletes' individual subjective outcomes for gastrointestinal complaints and sensorial acceptability in a field-based setting following strenuous team-sport physical demands. METHODS This study followed a single group and repeated-measured design with 10 football players (23 ± 2 yrs., 74 ± 14 kg, 174 ± 5 cm) who consumed CML following a 90-min football match simulation protocol (FMP). The total CML intake to achieve 0.150 g leucine·kg [BW]·h- 1 occurred in aliquots of 50, 30 and 20% at 0-, 45- and 75-min post-FMP, respectively. Athletes were evaluated by the prevalence, the type and severity (bloating, nausea, flatulence, and gastric reflux) of gastrointestinal complaints and sensorial acceptability (overall perception, appearance, consistency, and flavour) after drinking each aliquot in a 4-h recovery period. RESULTS The CML showed higher scores for "Product Acceptability Index" (88%) and sensorial acceptability (~ 8 in 9-point hedonic scale). Kendall's W with bootstrapped resample (95%CI) revealed agreement among respondents as "moderate" (overall perception, flavour) to "strong" (appearance, consistency) and with no significant agreement differences between rater response in the timeline analysis (0.57 up to 0.87; p > 0.05). Agresti-Caffo add-4 analysis (95% confidence interval, [95%CI]) revealed no differences in each time-point analysis versus baseline for athletes classified as having severe gastrointestinal symptoms, but confirmed concern with bloating (three athletes showed a transient response at 2-h and only one continued until 3-h; p = 0.051). CONCLUSIONS These preliminary findings suggest that CML presents good taste and high acceptability by the sampled athletes. Thus, CML may be an alternative sport drink for immediate post-workout supplementation to overcome the energy deficit, offer co-ingested leucine, maintain palatability and adherence including lactose intolerance following a team sport-specific fatigue. TRIAL REGISTRATION RBR-2vmpz9 , 10/12/2019, retrospectively registered.
Collapse
Affiliation(s)
- Cristiano D da Silva
- Department of Physical Education, Institute of Life Sciences, Federal University of Juiz de Fora, Campus: Governador Valadares, Rua Manoel Byrro, 241 - Vila Bretas, Governador Valadares, MG, 35010-260, Brazil. .,School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| | - Dirce R de Oliveira
- Department of Basic Life Sciences Institute of Life Sciences , Federal University of Juiz de Fora , Campus Governador Valadares, MG, Governador Valadares, Brazil
| | - Ítalo T Perrone
- Department of Food Engineering, Center of Exact Sciences, Federal University of Viçosa, Viçosa, MG, Brazil.,Pharmaceutical Department, Faculty of Pharmacy, Federal University of Juiz de Fora, Campus Juiz de Fora, MG, Brazil
| | - Carlos H Fonseca
- Pharmaceutical Department, Institute of Life Sciences, Federal University of Juiz de Fora, Campus Governador Valadares, MG, Brazil
| | - Emerson S Garcia
- Department of Physical Education, Federal University of Maranhão, São Luís, Maranhão, Brazil
| |
Collapse
|
5
|
MARGOLIS LEEM, ALLEN JILLIANT, HATCH-MCCHESNEY ADRIENNE, PASIAKOS STEFANM. Coingestion of Carbohydrate and Protein on Muscle Glycogen Synthesis after Exercise: A Meta-analysis. Med Sci Sports Exerc 2021; 53:384-393. [PMID: 32826640 PMCID: PMC7803445 DOI: 10.1249/mss.0000000000002476] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION/PURPOSE Evidence suggests that carbohydrate and protein (CHO-PRO) ingestion after exercise enhances muscle glycogen repletion to a greater extent than carbohydrate (CHO) alone. However, there is no consensus at this point, and results across studies are mixed, which may be attributable to differences in energy content and carbohydrate intake relative to body mass consumed after exercise. The purpose of this study was determine the overall effects of CHO-PRO and the independent effects of energy and relative carbohydrate content of CHO-PRO supplementation on postexercise muscle glycogen synthesis compared with CHO alone. METHODS Meta-analysis was conducted on crossover studies assessing the influence of CHO-PRO compared with CHO alone on postexercise muscle glycogen synthesis. Studies were identified in a systematic review from PubMed and Cochrane Library databases. Data are presented as effect size (95% confidence interval [CI]) using Hedges' g. Subgroup analyses were conducted to evaluate effects of isocaloric and nonisocaloric energy content and dichotomized by median relative carbohydrate (high, ≥0.8 g·kg-1⋅h-1; low, <0.8 g·kg-1⋅h-1) content on glycogen synthesis. RESULTS Twenty studies were included in the analysis. CHO-PRO had no overall effect on glycogen synthesis (0.13, 95% CI = -0.04 to 0.29) compared with CHO. Subgroup analysis found that CHO-PRO had a positive effect (0.26, 95% CI = 0.04-0.49) on glycogen synthesis when the combined intervention provided more energy than CHO. Glycogen synthesis was not significant (-0.05, 95% CI = -0.23 to 0.13) in CHO-PRO compared with CON when matched for energy content. There was no statistical difference of CHO-PRO on glycogen synthesis in high (0.07, 95% CI = -0.11 to 0.22) or low (0.21, 95% CI = -0.08 to 0.50) carbohydrate content compared with CHO. CONCLUSION Glycogen synthesis rates are enhanced when CHO-PRO are coingested after exercise compared with CHO only when the added energy of protein is consumed in addition to, not in place of, carbohydrate.
Collapse
Affiliation(s)
- LEE M. MARGOLIS
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
| | - JILLIAN T. ALLEN
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
- Oak Ridge Institute of Science and Education, Oak Ridge, TN
| | | | - STEFAN M. PASIAKOS
- Military Nutrition Division, U.S. Army Research Institute of Environmental Medicine, Natick, MA
| |
Collapse
|
6
|
Komorowski JR, Ojalvo SP, Sylla S, Tastan H, Orhan C, Tuzcu M, Sahin N, Sahin K. The addition of an amylopectin/chromium complex to branched-chain amino acids enhances muscle protein synthesis in rat skeletal muscle. J Int Soc Sports Nutr 2020; 17:26. [PMID: 32460884 PMCID: PMC7251890 DOI: 10.1186/s12970-020-00355-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 05/10/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND A previous clinical study reported that the addition of an amylopectin/chromium complex (ACr; Velositol®) to 6 g of whey protein (WP) significantly enhanced muscle protein synthesis (MPS). Branched-chain amino acids (BCAAs) are also well-known to enhance MPS. The aim of this study was to determine if the addition of ACr to BCAAs can enhance MPS and activate expression of the mammalian target of the rapamycin (mTOR) pathway compared to BCAAs and exercise alone in exercise-trained rats. METHODS Twenty-four male Wistar rats were randomly divided into three groups (n = 8 per group): (I) Exercise control, (II) Exercise plus BCAAs (0.465 g/kg BW, a 6 g human equivalent dose (HED)), and (III) Exercise plus BCAAs (0.465 g/kg BW) and ACr (0.155 g/kg BW, a 2 g HED). All animals were trained with treadmill exercise for 10 days. On the day of the single-dose experiment, rats were exercised at 26 m/min for 2 h and then fed, via oral gavage, study product. One hour after the consumption of study product, rats were injected with a bolus dose (250 mg/kg BW, 25 g/L) of phenylalanine labeled with deuterium to measure the fractional rate of protein synthesis (FSR). Ten minutes later, muscle tissue samples were taken to determine MPS measured by FSR and the phosphorylation of proteins involved in the mTOR pathway including mTOR, S6K1, and 4E-BP1. RESULTS ACr combined with BCAAs increased MPS by 71% compared to the exercise control group, while BCAAs alone increased MPS by 57% over control (p < 0.05). ACr plus BCAAs significantly enhanced phosphorylation of mTOR, S6K1 and 4E-BP1 compared to exercise control rats (p < 0.05). The addition of ACr to BCAAs enhanced insulin levels, mTOR and S6K1 phosphorylation compared to BCAAs alone (p < 0.05). Serum insulin concentration was positively correlated with the levels of mTOR, (r = 0.923), S6K1 (r = 0.814) and 4E-BP1 (r = 0.953). CONCLUSIONS In conclusion, the results of this study provide evidence that the addition of ACr to BCAAs significantly enhances exercise-induced MPS, and the phosphorylation of mTOR signaling proteins, compared to BCAAs and exercise alone.
Collapse
Affiliation(s)
- James R Komorowski
- Research and Development Department, Nutrition 21 LLC, Purchase, NY, 10577, USA.
| | - Sara Perez Ojalvo
- Research and Development Department, Nutrition 21 LLC, Purchase, NY, 10577, USA
| | - Sarah Sylla
- Research and Development Department, Nutrition 21 LLC, Purchase, NY, 10577, USA
| | - Hakki Tastan
- Division of Biology, Faculty of Science, Gazi University, 06100, Ankara, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Mehmet Tuzcu
- Division of Biology, Faculty of Science, Firat University, 23119, Elazig, Turkey
| | - Nurhan Sahin
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Kazim Sahin
- Department of Animal Nutrition and Nutritional Disorders, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| |
Collapse
|
7
|
Lysenko EA, Vepkhvadze TF, Lednev EM, Vinogradova OL, Popov DV. Branched-chain amino acids administration suppresses endurance exercise-related activation of ubiquitin proteasome signaling in trained human skeletal muscle. J Physiol Sci 2018; 68:43-53. [PMID: 27913948 PMCID: PMC10717082 DOI: 10.1007/s12576-016-0506-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022]
Abstract
We tested whether post exercise ingestion of branched-chain amino acids (BCAA < 10 g) is sufficient to activate signaling associated with muscle protein synthesis and suppress exercise-induced activation of mechanisms associated with proteolysis in endurance-trained human skeletal muscle. Nine endurance-trained athletes performed a cycling bout with and without BCAA ingestion (0.1 g/kg). Post exercise ACCSer79/222 phosphorylation (endogenous marker of AMPK activity) was increased (~3-fold, P < 0.05) in both sessions. No changes were observed in IGF1 mRNA isoform expression or phosphorylation of the key anabolic markers - p70S6K1Thr389 and eEF2Thr56 - between the sessions. BCAA administration suppressed exercise-induced expression of mTORC1 inhibitor DDIT4 mRNA, eliminated activation of the ubiquitin proteasome system, detected in the control session as decreased FOXO1Ser256 phosphorylation (0.83-fold change, P < 0.05) and increased TRIM63 (MURF1) expression (2.4-fold, P < 0.05). Therefore, in endurance-trained human skeletal muscle, post exercise BCAA ingestion partially suppresses exercise-induced expression of PGC-1a mRNA, activation of ubiquitin proteasome signaling, and suppresses DDIT4 mRNA expression.
Collapse
Affiliation(s)
- Evgeny A Lysenko
- Laboratory of Exercise Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76A, Moscow, 123007, Russia.
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky Prospect, 27-1, Moscow, 119192, Russia.
| | - Tatiana F Vepkhvadze
- Laboratory of Exercise Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76A, Moscow, 123007, Russia
| | - Egor M Lednev
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky Prospect, 27-1, Moscow, 119192, Russia
| | - Olga L Vinogradova
- Laboratory of Exercise Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76A, Moscow, 123007, Russia
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky Prospect, 27-1, Moscow, 119192, Russia
| | - Daniil V Popov
- Laboratory of Exercise Physiology, Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye shosse, 76A, Moscow, 123007, Russia
- Faculty of Fundamental Medicine, M.V. Lomonosov Moscow State University, Lomonosovsky Prospect, 27-1, Moscow, 119192, Russia
| |
Collapse
|
8
|
Aras D, Karakoc B, Koz M, Bizati O. The effects of active recovery and carbohydrate intake on HRV during 48 hours in athletes after a vigorous-intensity physical activity. Sci Sports 2017. [DOI: 10.1016/j.scispo.2017.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Jäger R, Kerksick CM, Campbell BI, Cribb PJ, Wells SD, Skwiat TM, Purpura M, Ziegenfuss TN, Ferrando AA, Arent SM, Smith-Ryan AE, Stout JR, Arciero PJ, Ormsbee MJ, Taylor LW, Wilborn CD, Kalman DS, Kreider RB, Willoughby DS, Hoffman JR, Krzykowski JL, Antonio J. International Society of Sports Nutrition Position Stand: protein and exercise. J Int Soc Sports Nutr 2017; 14:20. [PMID: 28642676 PMCID: PMC5477153 DOI: 10.1186/s12970-017-0177-8] [Citation(s) in RCA: 384] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 06/05/2017] [Indexed: 01/03/2023] Open
Abstract
The International Society of Sports Nutrition (ISSN) provides an objective and critical review related to the intake of protein for healthy, exercising individuals. Based on the current available literature, the position of the Society is as follows:An acute exercise stimulus, particularly resistance exercise, and protein ingestion both stimulate muscle protein synthesis (MPS) and are synergistic when protein consumption occurs before or after resistance exercise.For building muscle mass and for maintaining muscle mass through a positive muscle protein balance, an overall daily protein intake in the range of 1.4-2.0 g protein/kg body weight/day (g/kg/d) is sufficient for most exercising individuals, a value that falls in line within the Acceptable Macronutrient Distribution Range published by the Institute of Medicine for protein.Higher protein intakes (2.3-3.1 g/kg/d) may be needed to maximize the retention of lean body mass in resistance-trained subjects during hypocaloric periods.There is novel evidence that suggests higher protein intakes (>3.0 g/kg/d) may have positive effects on body composition in resistance-trained individuals (i.e., promote loss of fat mass).Recommendations regarding the optimal protein intake per serving for athletes to maximize MPS are mixed and are dependent upon age and recent resistance exercise stimuli. General recommendations are 0.25 g of a high-quality protein per kg of body weight, or an absolute dose of 20-40 g.Acute protein doses should strive to contain 700-3000 mg of leucine and/or a higher relative leucine content, in addition to a balanced array of the essential amino acids (EAAs).These protein doses should ideally be evenly distributed, every 3-4 h, across the day.The optimal time period during which to ingest protein is likely a matter of individual tolerance, since benefits are derived from pre- or post-workout ingestion; however, the anabolic effect of exercise is long-lasting (at least 24 h), but likely diminishes with increasing time post-exercise.While it is possible for physically active individuals to obtain their daily protein requirements through the consumption of whole foods, supplementation is a practical way of ensuring intake of adequate protein quality and quantity, while minimizing caloric intake, particularly for athletes who typically complete high volumes of training. Rapidly digested proteins that contain high proportions of essential amino acids (EAAs) and adequate leucine, are most effective in stimulating MPS. Different types and quality of protein can affect amino acid bioavailability following protein supplementation. Athletes should consider focusing on whole food sources of protein that contain all of the EAAs (i.e., it is the EAAs that are required to stimulate MPS). Endurance athletes should focus on achieving adequate carbohydrate intake to promote optimal performance; the addition of protein may help to offset muscle damage and promote recovery. Pre-sleep casein protein intake (30-40 g) provides increases in overnight MPS and metabolic rate without influencing lipolysis.
Collapse
Affiliation(s)
| | - Chad M. Kerksick
- Exercise and Performance Nutrition Laboratory, School of Health Sciences, Lindenwood University, St. Charles, MO USA
| | - Bill I. Campbell
- Performance & Physique Enhancement Laboratory, University of South Florida, Tampa, FL USA
| | - Paul J. Cribb
- Metabolic Precision Certifications, Queensland, Australia
| | | | | | | | | | - Arny A. Ferrando
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, AR USA
| | - Shawn M. Arent
- IFNH Center for Health & Human Performance, Department of Kinesiology & Health, Rutgers, the State University of New Jersey, New Brunswick, New Jersey USA
| | - Abbie E. Smith-Ryan
- Applied Physiology Laboratory, Department of Exercise and Sport Science, University of North Carolina, Chapel Hill, NC USA
| | - Jeffrey R. Stout
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL USA
| | - Paul J. Arciero
- Human Nutrition and Metabolism Laboratory, Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY 12866 USA
| | - Michael J. Ormsbee
- Department of Nutrition, Food and Exercise Sciences, Institute of Sport Sciences and Medicine, Florida State University, Tallahassee, USA
- Biokinetics, Exercise and Leisure Studies, University of KwaZulu-Natal, Durban, 4000 South Africa
| | - Lem W. Taylor
- Human Performance Laboratory, University of Mary Hardin-Baylor UMHB, Belton, TX 76513 USA
| | - Colin D. Wilborn
- Human Performance Laboratory, University of Mary Hardin-Baylor UMHB, Belton, TX 76513 USA
| | - Doug S. Kalman
- Department of Nutrition & Endocrinology, QPS, Miami, FL USA
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Human Clinical Research Facility, Department of Health & Kinesiology, Texas A&M University, College Station, TX USA
| | - Darryn S. Willoughby
- Exercise and Biochemical Nutrition Laboratory, Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX USA
| | - Jay R. Hoffman
- Institute of Exercise Physiology and Wellness, University of Central Florida, Orlando, FL USA
| | | | - Jose Antonio
- Department of Health and Human Performance, Nova Southeastern University, Davie, FL USA
| |
Collapse
|
10
|
Wang W, Ding Z, Solares GJ, Choi SM, Wang B, Yoon A, Farrar RP, Ivy JL. Co-ingestion of carbohydrate and whey protein increases fasted rates of muscle protein synthesis immediately after resistance exercise in rats. PLoS One 2017; 12:e0173809. [PMID: 28296942 PMCID: PMC5351968 DOI: 10.1371/journal.pone.0173809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 02/27/2017] [Indexed: 11/18/2022] Open
Abstract
The objective of the study was to investigate whether co-ingestion of carbohydrate and protein as compared with protein alone augments muscle protein synthesis (MPS) during early exercise recovery. Two months old rats performed 10 repetitions of ladder climbing with 75% of body weight attached to their tails. Placebo (PLA), whey protein (WP), or whey protein plus carbohydrate (CP) was then given to rats by gavage. An additional group of sedentary rats (SED) was used as controls. Blood samples were collected immediately and at either 1 or 2 h after exercise. The flexor hallucis longus muscle was excised at 1 or 2 h post exercise for analysis of MPS and related signaling proteins. MPS was significantly increased by CP compared with PLA (p<0.05), and approached significance compared with WP at 1 h post exercise (p = 0.08). CP yielded a greater phosphorylation of mTOR compared with SED and PLA at 1 h post exercise and SED and WP at 2 h post exercise. CP also increased phosphorylation of p70S6K compared with SED at 1 and 2 h post exercise. 4E-BP1 phosphorylation was inhibited by PLA at 1 h but elevated by WP and CP at 2 h post exercise relative to SED. The phosphorylation of AMPK was elevated by exercise at 1 h post exercise, and this elevated level was sustained only in the WP group at 2 h. The phosphorylation of Akt, GSK3, and eIF2Bε were unchanged by treatments. Plasma insulin was transiently increased by CP at 1 h post exercise. In conclusion, post-exercise CP supplementation increases MPS post exercise relative to PLA and possibly WP, which may have been mediated by greater activation of the mTOR signaling pathway.
Collapse
Affiliation(s)
- Wanyi Wang
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States of America
| | - Zhenping Ding
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States of America
| | - Geoffrey J. Solares
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States of America
| | - Soon-Mi Choi
- Department of Athletic Training and Exercise Physiology, Midwestern State University, Wichita Falls, Texas, United States of America
| | - Bo Wang
- Sports Science College, Beijing Sports University, Beijing, China
| | - Aram Yoon
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States of America
| | - Roger P. Farrar
- Muscle Physiology Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States of America
| | - John L. Ivy
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas, United States of America
- * E-mail:
| |
Collapse
|
11
|
Carbohydrate intake and resistance-based exercise: are current recommendations reflective of actual need? Br J Nutr 2016; 116:2053-2065. [PMID: 27993175 DOI: 10.1017/s0007114516003949] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Substantial research has been completed examining the impact of carbohydrate (CHO) intake on endurance exercise, whereas its role in resistance-based exercise performance, adaptation and cell signalling has yet to be fully characterised. This empirical shortcoming has precluded the ability to establish specific CHO recommendations for resistance exercise. This results in recommendations largely stemming from findings based on endurance exercise and/or anecdotal evidence despite the distinct energetic demands and molecular responses mediating adaptation from endurance- and resistance-based exercise. Moreover, the topic of CHO and exercise has become one of polarising nature with divergent views - some substantiated, others lacking evidence. Current literature suggests a moderately high daily CHO intake (3-7 g/kg per d) for resistance training, which is thought to prevent glycogen depletion and facilitate performance and adaptation. However, contemporary investigation, along with an emerging understanding of the molecular underpinnings of resistance exercise adaptation, may suggest that such an intake may not be necessary. In addition to the low likelihood of true glycogen depletion occurring in response to resistance exercise, a diet restrictive in CHO may not be detrimental to acute resistance exercise performance or the cellular signalling activity responsible for adaptation, even when muscle glycogen stores are reduced. Current evidence suggests that signalling of the mammalian target of rapamycin complex 1, the key regulatory kinase for gene translation (protein synthesis), is unaffected by CHO restriction or low muscular glycogen concentrations. Such findings may call into question the current view and subsequent recommendations of CHO intake with regard to resistance-based exercise.
Collapse
|
12
|
Smiles WJ, Hawley JA, Camera DM. Effects of skeletal muscle energy availability on protein turnover responses to exercise. ACTA ACUST UNITED AC 2016; 219:214-25. [PMID: 26792333 DOI: 10.1242/jeb.125104] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skeletal muscle adaptation to exercise training is a consequence of repeated contraction-induced increases in gene expression that lead to the accumulation of functional proteins whose role is to blunt the homeostatic perturbations generated by escalations in energetic demand and substrate turnover. The development of a specific 'exercise phenotype' is the result of new, augmented steady-state mRNA and protein levels that stem from the training stimulus (i.e. endurance or resistance based). Maintaining appropriate skeletal muscle integrity to meet the demands of training (i.e. increases in myofibrillar and/or mitochondrial protein) is regulated by cyclic phases of synthesis and breakdown, the rate and turnover largely determined by the protein's half-life. Cross-talk among several intracellular systems regulating protein synthesis, breakdown and folding is required to ensure protein equilibrium is maintained. These pathways include both proteasomal and lysosomal degradation systems (ubiquitin-mediated and autophagy, respectively) and the protein translational and folding machinery. The activities of these cellular pathways are bioenergetically expensive and are modified by intracellular energy availability (i.e. macronutrient intake) and the 'training impulse' (i.e. summation of the volume, intensity and frequency). As such, exercise-nutrient interactions can modulate signal transduction cascades that converge on these protein regulatory systems, especially in the early post-exercise recovery period. This review focuses on the regulation of muscle protein synthetic response-adaptation processes to divergent exercise stimuli and how intracellular energy availability interacts with contractile activity to impact on muscle remodelling.
Collapse
Affiliation(s)
- William J Smiles
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia
| | - John A Hawley
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - Donny M Camera
- Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3065, Australia
| |
Collapse
|
13
|
Adams GR, Bamman MM. Characterization and regulation of mechanical loading-induced compensatory muscle hypertrophy. Compr Physiol 2013; 2:2829-70. [PMID: 23720267 DOI: 10.1002/cphy.c110066] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In mammalian systems, skeletal muscle exists in a dynamic state that monitors and regulates the physiological investment in muscle size to meet the current level of functional demand. This review attempts to consolidate current knowledge concerning development of the compensatory hypertrophy that occurs in response to a sustained increase in the mechanical loading of skeletal muscle. Topics covered include: defining and measuring compensatory hypertrophy, experimental models, loading stimulus parameters, acute responses to increased loading, hyperplasia, myofiber-type adaptations, the involvement of satellite cells, mRNA translational control, mechanotransduction, and endocrinology. The authors conclude with their impressions of current knowledge gaps in the field that are ripe for future study.
Collapse
Affiliation(s)
- Gregory R Adams
- Department of Physiology and Biophysics, University of California Irvine, Irvine, California, USA.
| | | |
Collapse
|
14
|
Lynch S. The differential effects of a complex protein drink versus isocaloric carbohydrate drink on performance indices following high-intensity resistance training: a two arm crossover design. J Int Soc Sports Nutr 2013; 10:31. [PMID: 23758838 PMCID: PMC3685561 DOI: 10.1186/1550-2783-10-31] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/05/2013] [Indexed: 11/13/2022] Open
Abstract
Background Post-workout nutrient timing and macronutrient selection are essential for recovery, glycogen replenishment and muscle protein synthesis (MPS). Performance repeatability, particularly after strenuous activity, can be influenced by substrate availability, recovery markers and perceived rate of exertion. This study compared the differential effects of a complex protein ready-to-drink beverage (VPX) and isocaloric carbohydrate beverage (iCHO) on performance—agility T-test, push-up test, 40-yard sprint, and rate of perceived exertion (RPE), following high-intensity resistance training (HIRT). Methods In a randomized, double blind two-arm crossover controlled trial, 15 subjects performed a 15–18 minute (2:1 work to rest) HIRT and then immediately drank one of the two treatments. After a 2-hour fast, subjects returned to execute the field tests and report RPE. The protocol was repeated one week later with the other treatment. Results There were no significant main effect differences in the agility T-test (p = 0.83), push-up (p = 0.21) sprint (p = 0.12), average agility RPE (p = 0.83), average push-up RPE (p = 0.81) or average sprint RPE (p = 0.66) between the two trials and the two treatments. The multivariate analysis yielded a cumulative significant interaction effect amongst the three performance variables after consuming VPX (p < 0.01). These results suggest a complex protein beverage is a better post-workout choice compared to an isocaloric carbohydrate beverage for repeated performance for activities that require multiple energy demands and athletic skills; however, this outcome was not observed for each single performance event or RPE. Conclusion When considering the collective physical effects of the agility T-test, push-up and sprint tests, a complex protein beverage may provide a recovery advantage as it relates to repeated-bout performance compared to an iCHO-only beverage. Additional research examining the chronic effects of post-exercise protein versus iCHO beverages on performance repeatability, particularly in special populations (e.g. tactical and elite athletes), is warranted to further develop these findings.
Collapse
Affiliation(s)
- Shannan Lynch
- Trident University, 5757 Plaza Drive #100, Cypress, CA, USA
| |
Collapse
|
15
|
Ferguson-Stegall L, McCleave EL, Ding Z, Doerner PG, Wang B, Liao YH, Kammer L, Liu Y, Hwang J, Dessard BM, Ivy JL. Postexercise carbohydrate-protein supplementation improves subsequent exercise performance and intracellular signaling for protein synthesis. J Strength Cond Res 2011; 25:1210-24. [PMID: 21522069 DOI: 10.1519/jsc.0b013e318212db21] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Postexercise carbohydrate-protein (CHO + PRO) supplementation has been proposed to improve recovery and subsequent endurance performance compared to CHO supplementation. This study compared the effects of a CHO + PRO supplement in the form of chocolate milk (CM), isocaloric CHO, and placebo (PLA) on recovery and subsequent exercise performance. Ten cyclists performed 3 trials, cycling 1.5 hours at 70% VO₂max plus 10 minutes of intervals. They ingested supplements immediately postexercise and 2 hours into a 4-hour recovery. Biopsies were performed at recovery minutes 0, 45, and 240 (R0, R45, REnd). Postrecovery, subjects performed a 40-km time trial (TT). The TT time was faster in CM than in CHO and in PLA (79.43 ± 2.11 vs. 85.74 ± 3.44 and 86.92 ± 3.28 minutes, p ≤ 0.05). Muscle glycogen resynthesis was higher in CM and in CHO than in PLA (23.58 and 30.58 vs. 7.05 μmol·g⁻¹ wet weight, p ≤ 0.05). The mammalian target of rapamycin phosphorylation was greater at R45 in CM than in CHO or in PLA (174.4 ± 36.3 vs. 131.3 ± 28.1 and 73.7 ± 7.8% standard, p ≤ 0.05) and at REnd in CM than in PLA (94.5 ± 9.9 vs. 69.1 ± 3.8%, p ≤ 0.05). rpS6 phosphorylation was greater in CM than in PLA at R45 (41.0 ± 8.3 vs. 15.3 ± 2.9%, p ≤ 0.05) and REnd (16.8 ± 2.8 vs. 8.4 ± 1.9%, p ≤ 0.05). FOXO3A phosphorylation was greater at R45 in CM and in CHO than in PLA (84.7 ± 6.7 and 85.4 ± 4.7 vs. 69.2 ± 5.5%, p ≤ 0.05). These results indicate that postexercise CM supplementation can improve subsequent exercise performance and provide a greater intracellular signaling stimulus for PRO synthesis compared to CHO and placebo.
Collapse
Affiliation(s)
- Lisa Ferguson-Stegall
- Exercise Physiology and Metabolism Laboratory, Department of Kinesiology, University of Texas at Austin, Austin, Texas, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Breen L, Philp A, Witard OC, Jackman SR, Selby A, Smith K, Baar K, Tipton KD. The influence of carbohydrate-protein co-ingestion following endurance exercise on myofibrillar and mitochondrial protein synthesis. J Physiol 2011; 589:4011-25. [PMID: 21746787 DOI: 10.1113/jphysiol.2011.211888] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The aim of the present study was to determine mitochondrial and myofibrillar muscle protein synthesis (MPS) when carbohydrate (CHO) or carbohydrate plus protein (C+P) beverages were ingested following prolonged cycling exercise. The intracellular mechanisms thought to regulate MPS were also investigated. In a single-blind, cross-over study, 10 trained cyclists (age 29 ± 6 years, VO2max 66.5 ± 5.1 ml kg(−1) min(−1)) completed two trials in a randomized order. Subjects cycled for 90 min at 77 ± 1% VO2max before ingesting a CHO (25 g of carbohydrate) or C+P (25 g carbohydrate + 10 g whey protein) beverage immediately and 30 min post-exercise. A primed constant infusion of L-[ring-(13)C6]phenylalanine began 1.5 h prior to exercise and continued until 4 h post-exercise. Muscle biopsy samples were obtained to determine myofibrillar and mitochondrial MPS and the phosphorylation of intracellular signalling proteins. Arterialized blood samples were obtained throughout the protocol. Plasma amino acid and urea concentrations increased following ingestion of C+P only. Serum insulin concentration increased more for C+P than CHO. Myofibrillar MPS was ∼35% greater for C+P compared with CHO (0.087 ± 0.007 and 0.057 ± 0.006% h(−1), respectively; P = 0.025). Mitochondrial MPS rates were similar for C+P and CHO (0.082 ± 0.011 and 0.086 ± 0.018% h(−1), respectively). mTOR(Ser2448) phosphorylation was greater for C+P compared with CHO at 4 h post-exercise (P < 0.05). p70S6K(Thr389) phosphorylation increased at 4 h post-exercise for C+P (P < 0.05), whilst eEF2(Thr56) phosphorylation increased by ∼40% at 4 h post-exercise for CHO only (P < 0.01). The present study demonstrates that the ingestion of protein in addition to carbohydrate stimulates an increase in myofibrillar, but not mitochondrial, MPS following prolonged cycling. These data indicate that the increase in myofibrillar MPS for C+P could, potentially, be mediated through p70S6K, downstream of mTOR, which in turn may suppress the rise in eEF2 on translation elongation.
Collapse
Affiliation(s)
- Leigh Breen
- School of Sport and Exercise Sciences, University of Birmingham, Birmingham, UK.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Rowlands DS, Thomson JS, Timmons BW, Raymond F, Fuerholz A, Mansourian R, Zwahlen MC, Métairon S, Glover E, Stellingwerff T, Kussmann M, Tarnopolsky MA. Transcriptome and translational signaling following endurance exercise in trained skeletal muscle: impact of dietary protein. Physiol Genomics 2011; 43:1004-20. [PMID: 21730029 DOI: 10.1152/physiolgenomics.00073.2011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Postexercise protein feeding regulates the skeletal muscle adaptive response to endurance exercise, but the transcriptome guiding these adaptations in well-trained human skeletal muscle is uncharacterized. In a crossover design, eight cyclists ingested beverages containing protein, carbohydrate and fat (PTN: 0.4, 1.2, 0.2 g/kg, respectively) or isocaloric carbohydrate and fat (CON: 1.6, 0.2 g/kg) at 0 and 1 h following 100 min of cycling. Biopsies of the vastus lateralis were collected at 3 and 48 h following to determine the early and late transcriptome and regulatory signaling responses via microarray and immunoblot. The top gene ontology enriched by PTN were: muscle contraction, extracellular matrix--signaling and structure, and nucleoside, nucleotide, and nucleic acid metabolism (3 and 48 h); developmental processes, immunity, and defense (3 h); glycolysis, lipid and fatty acid metabolism (48 h). The transcriptome was also enriched within axonal guidance, actin cytoskeletal, Ca2+, cAMP, MAPK, and PPAR canonical pathways linking protein nutrition to exercise-stimulated signaling regulating extracellular matrix, slow-myofibril, and metabolic gene expression. At 3 h, PTN attenuated AMPKα1Thr172 phosphorylation but increased mTORC1Ser2448, rps6Ser240/244, and 4E-BP1-γ phosphorylation, suggesting increased translation initiation, while at 48 h AMPKα1Thr172 phosphorylation and PPARG and PPARGC1A expression increased, supporting the late metabolic transcriptome, relative to CON. To conclude, protein feeding following endurance exercise affects signaling associated with cell energy status and translation initiation and the transcriptome involved in skeletal muscle development, slow-myofibril remodeling, immunity and defense, and energy metabolism. Further research should determine the time course and posttranscriptional regulation of this transcriptome and the phenotype responding to chronic postexercise protein feeding.
Collapse
Affiliation(s)
- David S Rowlands
- School of Sport and Exercise and Institute of Food Nutrition and Human Health, Massey University, Wellington, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Saunders MJ. Carbohydrate-protein intake and recovery from endurance exercise: is chocolate milk the answer? Curr Sports Med Rep 2011; 10:203-10. [PMID: 23531895 DOI: 10.1249/jsr.0b013e318223ccb4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Postexercise carbohydrate intake has been shown to augment recovery from heavy aerobic exercise. The effects of carbohydrate and protein coingestion (CHO + Pro) have been investigated more recently, including the potential influences of chocolate milk. Some studies report that CHO + Pro beverages (including chocolate milk) enhance subsequent exercise performance versus carbohydrate beverages, although others have reported no positive effects. The putative efficacy of CHO + Pro could be due to influences on glycogen resynthesis, protein turnover, rehydration, attenuations in muscle disruption, or perhaps a combination of these factors. However, there are inconsistencies in the literature regarding the effects of CHO + Pro on these factors, and the mechanisms explaining potential influences of CHO + Pro are not defined clearly. Further research is required to address these limitations, but present evidence suggests that CHO + Pro beverages may positively influence recovery under some exercise conditions, and chocolate milk is likely a good recovery beverage for lactose-tolerant endurance athletes.
Collapse
|
19
|
Aerobic exercise training adaptations are increased by postexercise carbohydrate-protein supplementation. J Nutr Metab 2011; 2011:623182. [PMID: 21773022 PMCID: PMC3136187 DOI: 10.1155/2011/623182] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Accepted: 04/19/2011] [Indexed: 11/17/2022] Open
Abstract
Carbohydrate-protein supplementation has been found to increase the rate of training adaptation when provided postresistance exercise. The present study compared the effects of a carbohydrate and protein supplement in the form of chocolate milk (CM), isocaloric carbohydrate (CHO), and placebo on training adaptations occurring over 4.5 weeks of aerobic exercise training. Thirty-two untrained subjects cycled 60 min/d, 5 d/wk for 4.5 wks at 75-80% of maximal oxygen consumption (VO(2) max). Supplements were ingested immediately and 1 h after each exercise session. VO(2) max and body composition were assessed before the start and end of training. VO(2) max improvements were significantly greater in CM than CHO and placebo. Greater improvements in body composition, represented by a calculated lean and fat mass differential for whole body and trunk, were found in the CM group compared to CHO. We conclude supplementing with CM postexercise improves aerobic power and body composition more effectively than CHO alone.
Collapse
|
20
|
Kleinert M, Liao YH, Nelson JL, Bernard JR, Wang W, Ivy JL. An amino acid mixture enhances insulin-stimulated glucose uptake in isolated rat epitrochlearis muscle. J Appl Physiol (1985) 2011; 111:163-9. [PMID: 21527668 DOI: 10.1152/japplphysiol.01368.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Protein and certain amino acids (AA) have been found to lower blood glucose. Although these glucose-lowering AA are important modulators of skeletal muscle metabolism, their impact on muscle glucose uptake remains unclear. We therefore examined how an AA mixture consisting of 2 mM isoleucine, 0.012 mM cysteine, 0.006 mM methionine, 0.0016 mM valine, and 0.014 mM leucine impacts skeletal muscle glucose uptake in the absence or presence of a submaximal (sINS) or maximal insulin (mINS) concentration. The AA mixture, sINS, and mINS significantly increased 2-[(3)H]deoxyglucose (2-DG) uptake by 63, 79, and 298% above basal, respectively. When the AA mixture was combined with sINS and mINS, 2-DG uptake was further increased significantly by 26% (P = 0.028) and 14% (P = 0.032), respectively. Western blotting analysis revealed that the AA mixture increased basal and sINS Akt substrate of 160 kDa (AS160) phosphorylation, while AA mixture did not change phosphorylation of Akt or mammalian target of rapamycin (mTOR) under these conditions. Interestingly, addition of the AA mixture to mINS increased phosphorylation of mTOR, Akt as well as AS160, compared with mINS alone. These data suggest that certain AA increase glucose uptake in the absence of insulin and augment insulin-stimulated glucose uptake in an additive manner. Furthermore, these effects appear to be mediated via a pathway that is independent from the canonical insulin cascade and therefore may prove effective as an alternative therapeutic treatment for insulin resistance.
Collapse
Affiliation(s)
- Maximilian Kleinert
- Department of Kinesiology and Health Education, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | |
Collapse
|
21
|
Morifuji M, Kanda A, Koga J, Kawanaka K, Higuchi M. Preexercise ingestion of carbohydrate plus whey protein hydrolysates attenuates skeletal muscle glycogen depletion during exercise in rats. Nutrition 2010; 27:833-7. [PMID: 21050718 DOI: 10.1016/j.nut.2010.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 08/18/2010] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Depletion of glycogen stores is associated with fatigue during both sprint and endurance exercises and therefore it is considered important to maintain adequate tissue stores of glycogen during exercise. The aims of the present study in rats were therefore to investigate the effects of preexercise supplementation with carbohydrate and whey protein hydrolysates (WPH) on glycogen content, and phosphorylated signaling molecules of key enzymes that regulate glucose uptake and glycogen synthesis during exercise. METHODS Male SD rats were used in the study (n=7/group). Prior to exercise, one group of rats was sacrificed, whereas the other groups were given either water, glucose, or glucose plus WPH solutions. After ingestion of the test solutions, glycogen-depleting exercise was carried out for 60 min. The rats were then sacrificed and the triceps muscles excised quickly. RESULTS Compared to water or glucose only, preexercise ingestion of glucose plus WPH caused a significant attenuation of muscle glycogen depletion during the postexercise period. Coingestion of glucose and WPH also significantly lowered phosphorylated glycogen synthase levels compared to ingestion of water only. In the glucose plus WPH group, the levels of phosphorylated Akt were increased significantly compared to the group ingesting water only, while the levels of phosphorylated PKC were significantly higher than in the groups ingesting only water or glucose. CONCLUSION Taken together, these results indicate that, compared to ingestion of glucose or water only, preexercise ingestion of carbohydrate plus WPH activates skeletal muscle proteins of key enzymes that regulate glucose uptake and glycogen synthesis during exercise, thereby attenuating exercise-induced glycogen depletion.
Collapse
Affiliation(s)
- Masashi Morifuji
- Food and Health R&D Laboratories, Meiji Seika Kaisha Ltd., 5-3-1 Chiyoda, Sakado-shi, Saitama, 350-0289, Japan.
| | | | | | | | | |
Collapse
|
22
|
Waller AP, Lindinger MI. Nutritional aspects of post exercise skeletal muscle glycogen synthesis in horses: a comparative review. Equine Vet J 2010; 42:274-81. [PMID: 20486986 DOI: 10.2746/042516409x479603] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Carbohydrate (CHO) stored in the form of skeletal muscle glycogen is the main energy source for glycolytic and oxidative ATP production during vigorous exercise in mammals. In man, horse and dog both short-term high intensity and prolonged submaximal exercise deplete muscle glycogen. In horses, however, muscle glycogen synthesis is 2-3-fold slower than in man and rat, even when a diet high in soluble CHO is fed. There appear to be significant differences in CHO and glycogen metabolism between horses and other mammals, and it is becoming increasingly clear that many conclusions drawn from human exercise physiology do not apply to horses. This review aims to provide a comprehensive, comparative summary of the research on muscle glycogen synthesis in horse, man and rodent. Species differences in CHO uptake and utilisation are examined and the issues with feeding high soluble CHO diets to horses are discussed. Alternative feeding strategies, including protein and long and short chain fatty acid supplementation and the importance of rehydration, are explored.
Collapse
Affiliation(s)
- A P Waller
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | |
Collapse
|
23
|
Depner CM, Kirwan RD, Frederickson SJ, Miles MP. Enhanced inflammation with high carbohydrate intake during recovery from eccentric exercise. Eur J Appl Physiol 2010; 109:1067-76. [PMID: 20364347 DOI: 10.1007/s00421-010-1448-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2010] [Indexed: 01/04/2023]
Abstract
Inflammation associated with adipose tissue is modulated by macronutrient availability. For example, glucose increases inflammation in obese but not lean individuals. Little is known about how macronutrient intake influences inflammation associated with muscle. The aim of this study was to determine the impact of macronutrient intake differences during recovery from eccentric exercise on the inflammatory response. The study was a cross-over design in which young men and women (n = 12) completed high and low carbohydrate (CHO) conditions. Both conditions consisted of six sets of ten maximal high-force eccentric contractions of the elbow flexors and extensors followed by a controlled diet for the first 8 h post-exercise. Glucose, insulin, tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6, and C-reactive protein were measured from blood samples pre-exercise, 1.5, 4, 8, and 24 h post-exercise. Perceived muscle soreness, strength loss, and serum CK activity were measured through 120 h post-exercise. Perceived soreness was elevated (P < 0.001) at all time points post-exercise in both conditions and was higher (P < 0.05) in the high compared to the low CHO condition. IL-1beta increased (P = 0.05) 24 h post-exercise in the high compared to the low CHO condition. There was a trend (P = 0.06) for IL-6 to be elevated in the high compared to the low CHO condition. We conclude that inflammation induced by high-force eccentric exercise in skeletal muscle is greater when a high CHO compared to a low CHO diet is consumed during recovery.
Collapse
Affiliation(s)
- Chris M Depner
- Department of Health and Human Development, Montana State University, Box 173540, Bozeman, MT 59717, USA
| | | | | | | |
Collapse
|
24
|
Ivy JL, Ferguson LM. Optimizing Resistance Exercise Adaptations Through the Timing of Post-Exercise Carbohydrate-Protein Supplementation. Strength Cond J 2010. [DOI: 10.1519/ssc.0b013e3181c01707] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Kammer L, Ding Z, Wang B, Hara D, Liao YH, Ivy JL. Cereal and nonfat milk support muscle recovery following exercise. J Int Soc Sports Nutr 2009; 6:11. [PMID: 19442266 PMCID: PMC2691397 DOI: 10.1186/1550-2783-6-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 05/14/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study compared the effects of ingesting cereal and nonfat milk (Cereal) and a carbohydrate-electrolyte sports drink (Drink) immediately following endurance exercise on muscle glycogen synthesis and the phosphorylation state of proteins controlling protein synthesis: Akt, mTOR, rpS6 and eIF4E. METHODS Trained cyclists or triathletes (8 male: 28.0 +/- 1.6 yrs, 1.8 +/- 0.0 m, 75.4 +/- 3.2 kg, 61.0 +/- 1.6 ml O2*kg-1*min-1; 4 female: 25.3 +/- 1.7 yrs, 1.7 +/- 0.0 m, 66.9 +/- 4.6 kg, 46.4 +/- 1.2 mlO2*kg-1*min-1) completed two randomly-ordered trials serving as their own controls. After 2 hours of cycling at 60-65% VO2MAX, a biopsy from the vastus lateralis was obtained (Post0), then subjects consumed either Drink (78.5 g carbohydrate) or Cereal (77 g carbohydrate, 19.5 g protein and 2.7 g fat). Blood was drawn before and at the end of exercise, and at 15, 30 and 60 minutes after treatment. A second biopsy was taken 60 minutes after supplementation (Post60). Differences within and between treatments were tested using repeated measures ANOVA. RESULTS At Post60, blood glucose was similar between treatments (Drink 6.1 +/- 0.3, Cereal 5.6 +/- 0.2 mmol/L, p < .05), but after Cereal, plasma insulin was significantly higher (Drink 123.1 +/- 11.8, Cereal 191.0 +/- 12.3 pmol/L, p < .05), and plasma lactate significantly lower (Drink 1.4 +/- 0.1, Cereal 1.00 +/- 0.1 mmol/L, p < .05). Except for higher phosphorylation of mTOR after Cereal, glycogen and muscle proteins were not statistically different between treatments. Significant Post0 to Post60 changes occurred in glycogen (Drink 52.4 +/- 7.0 to 58.6 +/- 6.9, Cereal 58.7 +/- 9.6 to 66.0 +/- 10.0 mumol/g, p < .05) and rpS6 (Drink 17.9 +/- 2.5 to 35.2 +/- 4.9, Cereal 18.6 +/- 2.2 to 35.4 +/- 4.4 %Std, p < .05) for each treatment, but only Cereal significantly affected glycogen synthase (Drink 66.6 +/- 6.9 to 64.9 +/- 6.9, Cereal 61.1 +/- 8.0 to 54.2 +/- 7.2%Std, p < .05), Akt (Drink 57.9 +/- 3.2 to 55.7 +/- 3.1, Cereal 53.2 +/- 4.1 to 60.5 +/- 3.7 %Std, p < .05) and mTOR (Drink 28.7 +/- 4.4 to 35.4 +/- 4.5, Cereal 23.0 +/- 3.1 to 42.2 +/- 2.5 %Std, p < .05). eIF4E was unchanged after both treatments. CONCLUSION These results suggest that Cereal is as good as a commercially-available sports drink in initiating post-exercise muscle recovery.
Collapse
Affiliation(s)
- Lynne Kammer
- Exercise Physiology and Metabolism Laboratory Department of Kinesiology and Health Education The University of Texas at Austin Austin, TX, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Gomes FR, Rezende EL, Malisch JL, Lee SK, Rivas DA, Kelly SA, Lytle C, Yaspelkis BB, Garland T. Glycogen storage and muscle glucose transporters (GLUT-4) of mice selectively bred for high voluntary wheel running. J Exp Biol 2009; 212:238-48. [PMID: 19112143 PMCID: PMC2721000 DOI: 10.1242/jeb.025296] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2008] [Indexed: 01/09/2023]
Abstract
To examine the evolution of endurance-exercise behaviour, we have selectively bred four replicate lines of laboratory mice (Mus domesticus) for high voluntary wheel running (;high runner' or HR lines), while also maintaining four non-selected control (C) lines. By generation 16, HR mice ran approximately 2.7-fold more than C mice, mainly by running faster (especially in females), a differential maintained through subsequent generations, suggesting an evolutionary limit of unknown origin. We hypothesized that HR mice would have higher glycogen levels before nightly running, show greater depletion of those depots during their more intense wheel running, and have increased glycogen synthase activity and GLUT-4 protein in skeletal muscle. We sampled females from generation 35 at three times (photophase 07:00 h-19:00 h) during days 5-6 of wheel access, as in the routine selection protocol: Group 1, day 5, 16:00 h-17:30 h, wheels blocked from 13:00 h; Group 2, day 6, 02:00 h-03:30 h (immediately after peak running); and Group 3, day 6, 07:00 h-08:30 h. An additional Group 4, sampled 16:00 h-17:30 h, never had wheels. HR individuals with the mini-muscle phenotype (50% reduced hindlimb muscle mass) were distinguished for statistical analyses comparing C, HR normal, and HR mini. HR mini ran more than HR normal, and at higher speeds, which might explain why they have been favored by the selective-breeding protocol. Plasma glucose was higher in Group 1 than in Group 4, indicating a training effect (phenotypic plasticity). Without wheels, no differences in gastrocnemius GLUT-4 were observed. After 5 days with wheels, all mice showed elevated GLUT-4, but HR normal and mini were 2.5-fold higher than C. At all times and irrespective of wheel access, HR mini showed approximately three-fold higher [glycogen] in gastrocnemius and altered glycogen synthase activity. HR mini also showed elevated glycogen in soleus when sampled during peak running. All mice showed some glycogen depletion during nightly wheel running, in muscles and/or liver, but the magnitude of this depletion was not large and hence does not seem to be limiting to the evolution of even-higher wheel running.
Collapse
Affiliation(s)
- Fernando R Gomes
- Department of Biology, University of California, Riverside, CA 92521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|