1
|
Zhou R, Zhe L, Mercier Y, Hu L, Li R, Chen H, Zhang X, Huang L, Hua L, Zhuo Y, Li J, Xu S, Lin Y, Feng B, Che L, Wu D, Fang Z. Serum metabolomics analysis reveals a novel association between maternal metabolism and fetal survival in sows fed diets containing differing methionine levels and sources. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:145-157. [PMID: 39967700 PMCID: PMC11833788 DOI: 10.1016/j.aninu.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 02/20/2025]
Abstract
Methionine (Met) metabolism is vital for one carbon metabolism, redox status and fetal development. Hence, this study investigated the effects of different levels and sources of Met on maternal metabolism, anti-oxidative capacity and fetal survival in pregnant sows. Forty primiparous sows were assigned to the following four groups: control group (basal diet, CON), 1.5S-OHMet group (supplemented methionine hydroxy analogue [OHMet] at 1.5 g/kg diet), 3.0S-OHMet group (supplemented OHMet at 3.0 g/kg diet), and 3.0S-Met group (supplemented L-Met at 3.0 g/kg diet) (n = 10). The trial lasted from day 60 of gestation to the farrowing day. Maternal 1.5S-OHMet consumption had the lowest stillborn ratio and the highest serum glucose levels during farrowing. Further analysis revealed that dietary 1.5S-OHMet consumption elevated the serum contents of glucose-6-phosphate, citric acid, butyric acid, malic acid, 3-methyladenine, 1-methyladenosine, ferulic acid and salicylic acid, but reduced the serum contents of succinic acid, oxoglutaric acid, 9(S)-hydroperoxylinoleic acid, 13(S)-hydroperoxy-octadecatrienoic acid, uric acid and urea nitrogen when compared to contents observed in the 3.0S-OHMet and 3.0S-Met groups (P < 0.05). Serum metabolomics analysis was conducted to determine the enriched differential metabolites and an enrichment analysis was performed using Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis. The results showed that the enriched metabolites were mainly associated with central carbon metabolism, amino acid metabolism, lipid metabolism, and nucleotide metabolism. Moreover, maternal 3.0S-OHMet or 3.0S-Met consumption upregulated the trans-methylation pathway by elevating the S-adenosyl-methionine (SAM) level and the ratio of SAM to S-adenosyl-homocysteine (P < 0.05) at day 114 of gestation, while increasing homocysteine concentration (P < 0.001). However, compared to the 3.0S-Met group, maternal 3.0S-OHMet consumption elevated fetal survival and glutathione peroxidase (P < 0.05). Thus, this study provided new insights into the mechanisms through which sows fed with a 1.5S-OHMet diet during mid-to late-gestation period had high fetal survival, such as improvements in maternal amino acid, nucleotide and glycolipid metabolism.
Collapse
Affiliation(s)
- Rui Zhou
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Li Zhe
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yves Mercier
- Adisseo France S.A.S., Commentry F-03600, France
| | - Liang Hu
- Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Ran Li
- Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Hong Chen
- Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, Ya'an 625014, China
| | - Xiaoling Zhang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lingjie Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lun Hua
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Jian Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Lin
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - De Wu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
2
|
Yuan PQ, Lin S, Peng JY, Li YX, Liu YH, Wang P, Zhong HJ, Yang XM, Che LQ, Feng B, Batonon-Alavo DI, Mercier Y, Zhang XL, Lin Y, Xu SY, Li J, Zhuo Y, Wu D, Fang ZF. Effects of dietary methionine supplementation from different sources on growth performance and meat quality of barrows and gilts. Animal 2023; 17:100986. [PMID: 37820406 DOI: 10.1016/j.animal.2023.100986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 08/29/2023] [Accepted: 09/07/2023] [Indexed: 10/13/2023] Open
Abstract
Methionine is indispensable for growth and meat formation in pigs. However, it is still unclear that increasing dietary sulphur-containing amino acid (SAA) levels using different methionine sources affects the growth performance and meat quality of barrows and gilts. To investigate this, 144 pigs (half barrows and half gilts) were fed the control (100% SAA, CON), DL-Methionine (125% SAA, DL-Met)-supplemented, or OH-Methionine (125% SAA, OH-Met)-supplemented diets during the 11-110 kg period. The results showed that plasma methionine levels varied among treatments during the experimental phase, with increased plasma methionine levels observed following increased SAA consumption during the 25-45 kg period. In contrast, pigs fed the DL-Met diet had lower plasma methionine levels than those fed the CON diet (95-110 kg). Additionally, gilts fed the DL-Met or OH-Met diets showed decreased drip loss in longissimus lumborum muscle (LM) compared to CON-fed gilts. OH-Met-fed gilts had higher pH45min values than those fed the CON or DL-Met diets, whereas OH-Met-fed barrows had higher L45min values than those fed the CON or DL-Met diets. Moreover, increased consumption of SAA, regardless of the methionine source, tended to decrease the shear force of the LM in pigs. In conclusion, this study indicates that increasing dietary levels of SAA (+25%) appeared to improve the meat quality of gilts by decreasing drip loss and increasing meat tenderness.
Collapse
Affiliation(s)
- P Q Yuan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China; Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairsand, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China
| | - S Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China; Key Laboratory of Urban Agriculture in South China, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, People's Republic of China
| | - J Y Peng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Y X Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Y H Liu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - P Wang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - H J Zhong
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - X M Yang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - L Q Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - B Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | | | - Y Mercier
- Adisseo France S.A.S, CERN, Commentry, France
| | - X L Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Y Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - S Y Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - J Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Y Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - D Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China
| | - Z F Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, People's Republic of China; Key Laboratory of Agricultural Product Processing and Nutrition Health (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairsand, College of Food Science, Sichuan Agricultural University, Ya'an 625014, People's Republic of China.
| |
Collapse
|
3
|
Estévez M, Geraert PA, Liu R, Delgado J, Mercier Y, Zhang W. Sulphur amino acids, muscle redox status and meat quality: More than building blocks – Invited review. Meat Sci 2020; 163:108087. [DOI: 10.1016/j.meatsci.2020.108087] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/21/2020] [Accepted: 02/10/2020] [Indexed: 12/31/2022]
|
4
|
Effects of Dietary Supplementation with Combination of Tributyrin and Essential Oil on Gut Health and Microbiota of Weaned Piglets. Animals (Basel) 2020; 10:ani10020180. [PMID: 31973120 PMCID: PMC7070613 DOI: 10.3390/ani10020180] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The dietary inclusion of the combination of tributyrin with either oregano or methyl salicylate as a substitution to antibiotics improved intestinal morphological structure of weaned piglets and resulted in major changes in the profiles of intestine microbiota and metabolites, which exerted beneficial effects on intestinal health of piglets. Our study indicated that the combination of tributyrate with oregano or methyl salicylate could be used as an alternative feed additive to the antibiotics. Abstract The aim of this study was to determine the effects of dietary inclusion of the combination of tributyrin with oregano or methyl salicylate as a substitute to antibiotics on gut health and microbiota of piglets. A total of 48 weaned crossbred piglets (Duroc × Large White × Landrace, 8.79 ± 0.97 kg, 21 ± 1 d) were randomly allocated to four experimental groups and fed for 4 weeks: the basal diet (Con); the control plus antibiotics (AB); the control plus oregano and tributyrin (OT); and the control plus methyl salicylate and tributyrin (MT). Although a numerical improvement on feed intake, weight gain and feed conversion ratio was observed in the OT and MT as well as the AB group, the difference was not significant (p > 0.05). The OT and MT groups were larger in villus height in the duodenum compared to the Con (p < 0.05), and were larger in relative abundance of Firmicutes/Bacaeroides in the intestine compared to Con and AB groups (p < 0.01). The amount of major different metabolites was 6, 8 and 8 for the AB, OT and MT groups when compared to the Con, respectively. In conclusion, as a substitute for antibiotics the inclusion of the combination of tributyrin with either oregano or methyl salicylate to the diet of weaned piglets improved the intestinal morphological structure and altered intestinal microbiota and metabolites, which were beneficial to the animal health.
Collapse
|
5
|
Wei H, Zhao X, Xia M, Tan C, Gao J, Htoo JK, Xu C, Peng J. Different dietary methionine to lysine ratios in the lactation diet: effects on the performance of sows and their offspring and methionine metabolism in lactating sows. J Anim Sci Biotechnol 2019; 10:76. [PMID: 31440375 PMCID: PMC6704691 DOI: 10.1186/s40104-019-0373-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 06/13/2019] [Indexed: 01/15/2023] Open
Abstract
Background Over the last decade, the nutritional requirements of lactating modern genotype sows have increased. The current nutritional recommendations might be unable to meet the needs of increased litter size and milk production, and thus the nutritional requirements need to be re-evaluated. The current study was conducted to investigate the effects of dietary methionine to lysine (Met:Lys) ratios on the performance of and methionine metabolism in lactating sows. Results During the 1st week of lactation, piglets reared on sows in the 0.37 to 0.57 Met:Lys ratio groups grew faster than those reared on sows in the control group (0.27) (P < 0.01). The 0.37-ratio group showed increased levels of GSH-Px in plasma during lactation (P < 0.01) and decreased concentrations of urea nitrogen in the plasma of sows (P < 0.05). Compared with the 0.27-ratio group, the levels of T-AOC and GSH-Px in the plasma and homocysteine in the milk of lactating sows were significantly increased in sows in the 0.47-ratio group (P < 0.01). In sows fed a 0.57-ratio diet, the levels of glutathione and taurine in the plasma and milk were improved significantly during lactation. However, the content of TBARS in the blood (P < 0.05 at day 7 and P = 0.06 at weaning day) was increased (P < 0.01). Moreover, there were linear increases in the levels of homocysteine in the blood and milk of sows during the lactation period (P < 0.01) with increased dietary Met:Lys ratios in the lactation diet. Conclusions The current study indicated that increasing the dietary Met:Lys ratio (0.37~0.57) in the lactation diet had no significant effect on the overall performance of sows or the colostrum and milk composition, but it increased piglet mean BW and piglet ADG during the first week of lactation. Increasing dietary methionine levels had no significant effect on antioxidant function in lactation sows, even though it increased levels of GSH and GSH-Px in the plasma of sows during lactation. However, the content of homocysteine in the plasma and milk increased during lactation due to a high level of dietary methionine.
Collapse
Affiliation(s)
- Hongkui Wei
- 1Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xichen Zhao
- 1Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.,2Department of Animal Nutrition and Feed Science, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Mao Xia
- 1Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Chengquan Tan
- 2Department of Animal Nutrition and Feed Science, College of Animal Science, South China Agricultural University, Guangzhou, People's Republic of China
| | - Jun Gao
- Evonik Degussa (China) Co., Ltd, Beijing, People's Republic of China
| | - John K Htoo
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Essen, Germany
| | - Chuanhui Xu
- 1Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Jian Peng
- 1Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, People's Republic of China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, People's Republic of China
| |
Collapse
|
6
|
Dietary supplementation of branched-chain amino acids increases muscle net amino acid fluxes through elevating their substrate availability and intramuscular catabolism in young pigs. Br J Nutr 2017; 117:911-922. [PMID: 28446262 DOI: 10.1017/s0007114517000757] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Branched-chain amino acids (BCAA) have been clearly demonstrated to have anabolic effects on muscle protein synthesis. However, little is known about their roles in the regulation of net AA fluxes across skeletal muscle in vivo. This study was aimed to investigate the effect and related mechanisms of dietary supplementation of BCAA on muscle net amino acid (AA) fluxes using the hindlimb flux model. In all fourteen 4-week-old barrows were fed reduced-protein diets with or without supplemental BCAA for 28 d. Pigs were implanted with carotid arterial, femoral arterial and venous catheters, and fed once hourly with intraarterial infusion of p-amino hippurate. Arterial and venous plasma and muscle samples were obtained for the measurement of AA, branched-chain α-keto acids (BCKA) and 3-methylhistidine (3-MH). Metabolomes of venous plasma were determined by HPLC-quadrupole time-of-flight-MS. BCAA-supplemented group showed elevated muscle net fluxes of total essential AA, non-essential AA and AA. As for individual AA, muscle net fluxes of each BCAA and their metabolites (alanine, glutamate and glutamine), along with those of histidine, methionine and several functional non-essential AA (glycine, proline and serine), were increased by BCAA supplementation. The elevated muscle net AA fluxes were associated with the increase in arterial and intramuscular concentrations of BCAA and venous metabolites including BCKA and free fatty acids, and were also related to the decrease in the intramuscular concentration of 3-MH. Correlation analysis indicated that muscle net AA fluxes are highly and positively correlated with arterial BCAA concentrations and muscle net BCKA production. In conclusion, supplementing BCAA to reduced-protein diet increases the arterial concentrations and intramuscular catabolism of BCAA, both of which would contribute to an increase of muscle net AA fluxes in young pigs.
Collapse
|
7
|
Gu Y, Song Y, Yin H, Lin S, Zhang X, Che L, Lin Y, Xu S, Feng B, Wu D, Fang Z. Dietary supplementation with tributyrin prevented weaned pigs from growth retardation and lethal infection via modulation of inflammatory cytokines production, ileal expression, and intestinal acetate fermentation. J Anim Sci 2017; 95:226-238. [PMID: 28177354 DOI: 10.2527/jas.2016.0911] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Weanling pigs, with an underdeveloped intestine and immature immune system, are usually subjected to depressed feed intake, growth retardation, and postweaning diarrhea. The aim of this study was to determine 1) the growth response of weaned pigs to supplemental tributyrin (TB) and 2) the potential effects and mechanisms of TB in modulating immune responses of lipopolysaccharide (LPS)-challenged piglets. A total of 240 piglets (Duroc × Large White × Landrace) were weaned at 21 d of age to a control (basal diet), supplemented with antibiotics (AB; +AB), supplemented with TB (+TB), or with supplemental AB and TB (+AB+TB) diets, with 10 replicate pens (6 piglets/pen) per diet. At 49 d of age, male pigs from the control and +TB groups were intraperitoneally injected with LPS (25 μg/kg BW) or saline ( = 6) and sacrificed at 4 h after injection to collect blood, intestine, and digesta samples for biochemical analysis. There were higher ( < 0.05) feed intake and lower ( < 0.05) percentage of negative growth piglets in the +TB groups than in the control group during the first week after weaning. For piglets without LPS challenge, there were higher ( < 0.05) ileal fibroblast growth factor 19 () mRNA abundance and total bile acid concentrations in the +TB groups than in the control group, whereas downregulated ( < 0.05) expression was observed in the +TB groups after LPS challenge. Lipopolysaccharide challenge in the control group increased ( < 0.05) plasma tumor necrosis factor α and IL-6 concentrations and colonic amount and decreased ( < 0.05) colonic goblet cells and colonic and cecal acetate concentrations, with no differences ( > 0.05) observed between +TB groups following LPS challenge. Taken together, dietary supplementation with TB prevented growth retardation through stimulating the appetite of weaned pigs and protected piglets against lethal infection via modulation of inflammatory cytokines production, ileal expression, and intestinal acetate fermentation.
Collapse
|
8
|
Zheng L, Wei H, He P, Zhao S, Xiang Q, Pang J, Peng J. Effects of Supplementation of Branched-Chain Amino Acids to Reduced-Protein Diet on Skeletal Muscle Protein Synthesis and Degradation in the Fed and Fasted States in a Piglet Model. Nutrients 2016; 9:nu9010017. [PMID: 28036018 PMCID: PMC5295061 DOI: 10.3390/nu9010017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022] Open
Abstract
Supplementation of branched-chain amino acids (BCAA) has been demonstrated to promote skeletal muscle mass gain, but the mechanisms underlying this observation are still unknown. Since the regulation of muscle mass depends on a dynamic equilibrium (fasted losses–fed gains) in protein turnover, the aim of this study was to investigate the effects of BCAA supplementation on muscle protein synthesis and degradation in fed/fasted states and the related mechanisms. Fourteen 26- (Experiment 1) and 28-day-old (Experiment 2) piglets were fed reduced-protein diets without or with supplemental BCAA. After a four-week acclimation period, skeletal muscle mass and components of anabolic and catabolic signaling in muscle samples after overnight fasting were determined in Experiment 1. Pigs in Experiment 2 were implanted with carotid arterial, jugular venous, femoral arterial and venous catheters, and fed once hourly along with the intravenous infusion of NaH13CO3 for 2 h, followed by a 6-h infusion of [1-13C]leucine. Muscle leucine kinetics were measured using arteriovenous difference technique. The mass of most muscles was increased by BCAA supplementation. During feeding, BCAA supplementation increased leucine uptake, protein synthesis, protein degradation and net transamination. The greater increase in protein synthesis than in protein degradation resulted in elevated protein deposition. Protein synthesis was strongly and positively correlated with the intramuscular net production of α-ketoisocaproate (KIC) and protein degradation. Moreover, BCAA supplementation enhanced the fasted-state phosphorylation of protein translation initiation factors and inhibited the protein-degradation signaling of ubiquitin-proteasome and autophagy-lysosome systems. In conclusion, supplementation of BCAA to reduced-protein diet increases fed-state protein synthesis and inhibits fasted-state protein degradation, both of which could contribute to the elevation of skeletal muscle mass in piglets. The effect of BCAA supplementation on muscle protein synthesis is associated with the increase in protein degradation and KIC production in the fed state.
Collapse
Affiliation(s)
- Liufeng Zheng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| | - Pingli He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100094, China.
| | - Shengjun Zhao
- Department of Feed Science, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Quanhang Xiang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jiaman Pang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China.
| |
Collapse
|
9
|
Zhong H, Li H, Liu G, Wan H, Mercier Y, Zhang X, Lin Y, Che L, Xu S, Tang L, Tian G, Chen D, Wu D, Fang Z. Increased maternal consumption of methionine as its hydroxyl analog promoted neonatal intestinal growth without compromising maternal energy homeostasis. J Anim Sci Biotechnol 2016; 7:46. [PMID: 27499853 PMCID: PMC4975900 DOI: 10.1186/s40104-016-0103-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 07/18/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To determine responses of neonatal intestine to maternal increased consumption of DL-methionine (DLM) or DL-2-hydroxy-4-methylthiobutanoic acid (HMTBA), eighteen primiparous sows (Landrace × Yorkshire) were allocated based on body weight and backfat thickness to the control, DLM and HMTBA groups (n = 6), with the nutritional treatments introduced from postpartum d0 to d14. RESULTS The DLM-fed sows showed negative energy balance manifested by lost bodyweight, lower plasma glucose, subdued tricarboxylic acid cycle, and increased plasma lipid metabolites levels. Both villus height and ratio of villus height to crypt depth averaged across the small intestine of piglets were higher in the DLM and HMTBA groups than in the control group. Piglet jejunal oxidized glutathione concentration and ratio of oxidized to reduced glutathione were lower in the HMTBA group than in the DLM and control groups. However, piglet jejunal aminopeptidase A, carnitine transporter 2 and IGF-II precursor mRNA abundances were higher in the DLM group than in the HMTBA and control groups. CONCLUSION Increasing maternal consumption of methionine as DLM and HMTBA promoted neonatal intestinal growth by increasing morphological development or up-regulating expression of genes responsible for nutrient metabolism. And increasing maternal consumption of HMTBA promoted neonatal intestinal antioxidant capacity without compromising maternal energy homeostasis during early lactation.
Collapse
Affiliation(s)
- Heju Zhong
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Hao Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Guangmang Liu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Haifeng Wan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | | | - Xiaoling Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Li Tang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Gang Tian
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Daiwen Chen
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014 China
| |
Collapse
|
10
|
Li L, Zhang P, Zheng P, Bao Z, Wang Y, Huang F. Hepatic cumulative net appearance of amino acids and related gene expression response to different protein diets in pigs. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
11
|
Differences in plasma metabolomics between sows feddl-methionine and its hydroxy analogue reveal a strong association of milk composition and neonatal growth with maternal methionine nutrition. Br J Nutr 2015; 113:585-95. [DOI: 10.1017/s0007114514004036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aim of the present study was to determine whether increased consumption of methionine asdl-methionine (DLM) or its hydroxy analoguedl-2-hydroxy-4-methylthiobutanoic acid (HMTBA) could benefit milk synthesis and neonatal growth. For this purpose, eighteen cross-bred (Landrace × Yorkshire) primiparous sows were fed a control (CON), DLM or HMTBA diet (n6 per diet) from 0 to 14 d post-partum. At postnatal day 14, piglets in the HMTBA group had higher body weight (P= 0·02) than those in the CON group, tended (P= 0·07) to be higher than those in the DLM group, and had higher (P< 0·05) mRNA abundance of jejunal fatty acid-binding protein 2, intestinal than those in the CON and DLM groups. Compared with the CON diet-fed sows, milk protein, non-fat solid, and lysine, histidine and ornithine concentrations decreased in the DLM diet-fed sows (P< 0·05), and milk fat, lactose, and cysteine and taurine concentrations increased in the HMTBA diet-fed sows (P< 0·05). Plasma homocysteine and urea N concentrations that averaged across time were increased (P< 0·05) in sows fed the DLM diet compared with those fed the CON diet. Metabolomic results based on1H NMR spectroscopy revealed that consumption of the HMTBA and DLM diets increased (P< 0·05) both sow plasma methionine and valine levels; however, consumption of the DLM diet led to lower (P< 0·05) plasma levels of lysine, tyrosine, glucose and acetate and higher (P< 0·05) plasma levels of citrate, lactate, formate, glycerol,myo-inositol andN-acetyl glycoprotein in sows. Collectively, neonatal growth and milk synthesis were regulated by dietary methionine levels and sources, which resulted in marked alterations in amino acid, lipid and glycogen metabolism.
Collapse
|
12
|
Changes in plasma amino acid profiles, growth performance and intestinal antioxidant capacity of piglets following increased consumption of methionine as its hydroxy analogue. Br J Nutr 2014; 112:855-67. [DOI: 10.1017/s000711451400172x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The aim of the present study was to determine whether early weaning-induced growth retardation could be attenuated by increased consumption of methionine as dl-methionine (DLM) or dl-2-hydroxy-4-methylthiobutyrate (HMTBA) in both lactating sows and weaned piglets. Therefore, diets containing DLM and HMTBA at 25 % of the total sulphur-containing amino acids (AA) present in the control (CON) diet were fed to lactating sows and weaned piglets and their responses were evaluated. Compared with the CON diet-fed sows, the HMTBA diet-fed sows exhibited a tendency (P< 0·10) towards higher plasma taurine concentrations and the DLM diet-fed sows had higher (P< 0·05) plasma taurine concentrations, but lower (P< 0·05) isoleucine concentrations. Suckling piglets in the HMTBA treatment group had higher (P< 0·05) intestinal reduced glutathione (GSH) content, lower (P< 0·05) oxidised glutathione (GSSG):GSH ratio, and higher (P< 0·05) plasma cysteine and glutathione peroxidase (GPx) activity than those in the CON and DLM treatment groups. The feed intake (P< 0·05) and body weight of piglets averaged across post-weaning (PW) days were higher (P< 0·05) in the HMTBA treatment group than in the DLM treatment group and were higher (P< 0·05) and tended (P< 0·10) to be higher, respectively, in the HMTBA treatment group than in the CON treatment group. Increased (P< 0·05) GSSG content and GSSG:GSH ratio and down-regulated (P< 0·05) expression of nutrient transport genes were observed in the jejunum of piglets on PW day 7 than on PW day 0. On PW day 14, the HMTBA diet-fed piglets had higher (P< 0·05) intestinal GSH content than the CON diet-fed piglets and higher (P< 0·05) plasma GPx activity, villus height and goblet cell numbers than the CON diet- and DLM diet-fed piglets. In conclusion, early weaning-induced growth retardation appears to be attenuated through changes in plasma AA profiles and elevation of growth performance and intestinal antioxidant capacity in piglets following increased consumption of methionine as HMTBA.
Collapse
|
13
|
Responses of growth performance and proinflammatory cytokines expression to fish oil supplementation in lactation sows' and/or weaned piglets' diets. BIOMED RESEARCH INTERNATIONAL 2013; 2013:905918. [PMID: 24078926 PMCID: PMC3773922 DOI: 10.1155/2013/905918] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/09/2013] [Accepted: 07/27/2013] [Indexed: 11/17/2022]
Abstract
The study was conducted to investigate whether dietary fish oil could influence growth of piglets via regulating the expression of proinflammatory cytokines. A split-plot experimental design was used with sow diet effect in the main plots and differing piglet diet effect in the subplot. The results showed that suckling piglets from fish oil fed dams grew rapidly (P < 0.05) than control. It was also observed that these piglets had higher ADG, feed intake, and final body weight (P < 0.05) during postweaning than those piglets from lard fed dams. Furthermore, there was a significant decrease (P < 0.01) in the expression of interleukin 6 and tumor necrosis factor- α in longissimus dorsi muscle. In contrast, there was a tendency (P < 0.10) towards lower ADG and higher feed:gain in weaned piglets receiving fish oil compared with those receiving lard. Meanwhile, splenic proinflammatory cytokines expression was increased (P < 0.01) in piglets receiving fish oil during postweaning period. The results suggested that 7% fish oil addition to sows' diets alleviated inflammatory response via decreasing the proinflammatory cytokines expression in skeletal muscle and accelerated piglet growth. However, 7% fish oil addition to weaned piglets' diets might decrease piglet growth via increasing splenic proinflammatory cytokines expression.
Collapse
|
14
|
Rotondo A, Amato A, Baldassano S, Lentini L, Mulè F. Gastric relaxation induced by glucagon-like peptide-2 in mice fed a high-fat diet or fasted. Peptides 2011; 32:1587-92. [PMID: 21771622 DOI: 10.1016/j.peptides.2011.06.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/29/2011] [Accepted: 06/29/2011] [Indexed: 12/17/2022]
Abstract
Glucagon-like peptide-2 (GLP-2) is a nutrient-responsive gut hormone that increases the intestinal absorption. Exogenous GLP-2 also induces gastric fundus relaxation with possible implications for emptying rate or feeling of satiety. GLP-2 actions are mediated by GLP-2 receptor (GLP-2R), located on enteric neurons and myofibroblasts in murine gastrointestinal tract. Because it is not known whether changes in the endogenous GLP-2R levels occur in different nutritional states, we examined the GLP-2R gene and protein expression in gastric fundus from standard diet (STD)-fed, 12-h and 24-h fasted and re-fed, or high-fat diet (HFD)-fed mice and we analyzed the mechanical responses to exogenous GLP-2 in the stomach from different groups of animals. GLP-2 expression was examined using real-time reverse-transcription polymerase chain reaction and western blotting. The gastric mechanical activity from whole-organ was recorded in vitro as changes of intraluminal pressure. GLP-2R expression in fundic region from 12-h or 24-h fasted mice was reduced in comparison with STD-fed animals and returned to control values in re-fed mice, while it was increased in HFD-fed mice. The exogenous GLP-2 efficacy in inducing gastric relaxation, normalized to isoproterenol response, was decreased in stomach from fasted mice and it was increased in stomach from HFD-fed mice in comparison with STD-fed mice. In conclusion, the nutritional state influences GLP-2R expression in murine gastric preparations. The changes in the GLP-2R expression are associated with modifications of GLP-2 gastric relaxant efficacy. This could represent an adaptive response to reduced or increased nutrient intake.
Collapse
Affiliation(s)
- Alessandra Rotondo
- Dipartimento di Scienze e Tecnologie Molecolari e Biomolecolari (STEMBIO), Università di Palermo, 90128 Palermo, Italy
| | | | | | | | | |
Collapse
|
15
|
Taylor-Edwards CC, Burrin DG, Matthews JC, McLeod KR, Holst JJ, Harmon DL. Expression of mRNA for proglucagon and glucagon-like peptide-2 (GLP-2) receptor in the ruminant gastrointestinal tract and the influence of energy intake. Domest Anim Endocrinol 2010; 39:181-93. [PMID: 20688461 DOI: 10.1016/j.domaniend.2010.05.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 05/11/2010] [Accepted: 05/19/2010] [Indexed: 11/27/2022]
Abstract
Glucagon-like peptide-2 (GLP-2) is a potent trophic gut hormone, yet its function in ruminants is relatively unknown. Experiment 1 was conducted as a pilot study to establish the presence of GLP-2 in ruminants and to ascertain whether it was responsive to increased nutrition, as in non-ruminants. Concentrations of intact GLP-2 in the blood and gut epithelial mRNA expression of proglucagon (GCG) and the GLP-2 receptor (GLP2R) were measured in 4 ruminally, duodenally, and ileally cannulated steers. Steers were fed to meet 0.75 x NE(M) for 21 d, and then increased to 1.75 x NE(M) requirement for another 29 d. Blood samples and ruminal, duodenal, and ileal epithelium biopsies were collected at low intake (Days -6 and -3), acute high intake (Days 1 and 3), and chronic high intake (Days 7 and 29) periods. Experiment 2 investigated the mRNA expression pattern of GCG and GLP2R in epithelial tissue obtained from the forestomachs (rumen, omasum, and abomasum) and intestines (duodenum, jejunum, ileum, and colon) of 18 forage-fed Angus steers (260 kg BW). In Experiments 1 and 2, real-time polymerase chain reaction showed that expression of GCG and GLP2R mRNA was detectable in forestomach tissues, but expression was greater (P < 0.001) in small intestinal and colon tissue. High energy intake tended (P = 0.07) to increase plasma GLP-2 during the acute period and was paralleled by a 78% increase (P = 0.07) in ileal GCG mRNA expression. After this initial adaptation, duodenal GCG mRNA expression increased (P = 0.08) during the chronic high intake period. Duodenal GLP2R mRNA expression was not affected by energy intake, but ileal GLP2R expression was increased after 29 d of high energy intake compared to both the low and acute high intake periods (P = 0.001 and P = 0.01, respectively). These data demonstrate that cattle express GCG and GLP2R mRNA primarily in small intestinal and colon tissues. Increased nutrient intake increases ileal GCG mRNA and plasma GLP-2, suggesting that GLP-2 may play a role in the trophic response of the ruminant gastrointestinal tract to increased feed intake.
Collapse
Affiliation(s)
- C C Taylor-Edwards
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, USA
| | | | | | | | | | | |
Collapse
|
16
|
Li Y, Fang Z, Dai J, Partridge G, Ru Y, Peng J. Corn extrusion and enzyme addition improves digestibility of corn/soy based diets by pigs: In vitro and in vivo studies. Anim Feed Sci Technol 2010. [DOI: 10.1016/j.anifeedsci.2010.03.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
17
|
Fang Z, Yao K, Zhang X, Zhao S, Sun Z, Tian G, Yu B, Lin Y, Zhu B, Jia G, Zhang K, Chen D, Wu D. Nutrition and health relevant regulation of intestinal sulfur amino acid metabolism. Amino Acids 2010; 39:633-40. [PMID: 20162307 DOI: 10.1007/s00726-010-0502-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Accepted: 01/25/2010] [Indexed: 12/14/2022]
Abstract
Sulfur amino acids (SAA), particularly methionine and cysteine, are critical for the gut to maintain its functions including the digestion, absorption and metabolism of nutrients, the immune surveillance of the intestinal epithelial layer and regulation of the mucosal response to foreign antigens. However, the metabolism of SAA in the gut, specifically the transmethylation of methionine, will result in a net release of homocysteine, which is shown to be associated with cardiovascular disease and stroke. Furthermore, the extensive catabolism of dietary methionine by the intestine or by luminal microbes may result in a decrease in nutritional efficiency. Therefore, the regulation of SAA metabolism in the gut is not only nutritionally relevant, but also relevant to the overall health and well-being. The superiority of DL-2-hydroxy-4-methylthiobutyrate to DL-methionine in decreasing homocysteine production, alleviating stress responses, and reducing the first-pass intestinal metabolism of dietary methionine may provide a promising implication for nutritional strategies to manipulate SAA metabolism and thus to improve the nutrition and health status of animals and perhaps humans.
Collapse
Affiliation(s)
- Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Ya'an, 625014, People's Republic of Chin.,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fang Z, Luo H, Wei H, Huang F, Qi Z, Jiang S, Peng J. Methionine metabolism in piglets Fed DL-methionine or its hydroxy analogue was affected by distribution of enzymes oxidizing these sources to keto-methionine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:2008-2014. [PMID: 20073466 DOI: 10.1021/jf903317x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Previous evidence shows that the extensive catabolism of dietary essential amino acids (AA) by the intestine results in decreased availability of these AA for protein synthesis in extraintestinal tissues. This raises the possibility that extraintestinal availability of AA may be improved by supplying the animal with an AA source more of which can bypass the intestine. To test this hypothesis, six barrows (35-day-old, 8.6 +/- 1.4 kg), implanted with arterial, portal, and mesenteric catheters, were fed a DL-methionine (DL-MET) or DL-2-hydroxy-4-methylthiobutyrate (DL-HMTB) diet once hourly and infused intramesenterically with 1% p-amino hippurate. Although the directly available L-MET in DL-MET diet was about 1.2-fold that in DL-HMTB diet, the net portal appearance of L-MET was not different between the two diets. Compared with the low mRNA abundance and low activity of D-2-hydroxy acid dehydrogenase (D-HADH) and l-2-hydroxy acid oxidase (L-HAOX) in the intestine, the high mRNA abundance and high activity of D-AA oxidase (D-AAOX) indicated that the intestine had a relatively higher capacity of D-MET utilization than of dl-HMTB utilization to L-MET synthesis and its subsequent metabolism. However, in contrast to the much lower D-AAOX activity (nmol/g tissue) in the stomach than in the liver and kidney, both d-HADH and L-HAOX activity in the stomach was comparable with those in the liver and/or kidney, indicating the substantial capacity of the stomach to convert DL-HMTB to L-MET. Collectively, the difference in distribution of activity and mRNA abundance of D-AAOX, D-HADH, and L-HAOX in the piglets may offer a biological basis for the similar portal appearance of L-MET between DL-MET and DL-HMTB diets, and thus may provide new important insights into nutritional efficiency of different L-MET sources.
Collapse
Affiliation(s)
- Zhengfeng Fang
- Key Lab of Animal Genetics, Breeding and Reproduction of Ministry of Education & Key Lab of Swine Genetics and Breeding of Ministry of Agriculture, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | | | | | | | | | |
Collapse
|
19
|
Effects ofdl-2-hydroxy-4-methylthiobutyrate on the first-pass intestinal metabolism of dietary methionine and its extra-intestinal availability. Br J Nutr 2010; 103:643-51. [DOI: 10.1017/s0007114509992169] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The present study was conducted in a one-factorial arrangement to determine the effects ofdl-2-hydroxy-4-methylthiobutyrate (dl-HMTB) on the first-pass intestinal metabolism of dietary methionine and its extra-intestinal availability. Barrows (n6; aged 35 d; weight 8·6 kg), implanted with arterial, portal, mesenteric and gastric catheters, were fed a diet containingdl-methionine (dl-MET) ordl-HMTB once hourly and infused intramesenterically with 1 %p-aminohippurate and intragastrically with [1-13C]methionine at 7·0 μmol/kg body weight per h. Arterial and portal blood samples were taken at hourly intervals until 6 h of tracer infusion and pigs was then killed for collection of muscle, intestine, liver and kidney samples. The net portal appearance of methionine, expressed as the fraction of ingested directly availablel-methionine, was higher (P < 0·05) in thedl-HMTB than in thedl-MET diet, and there was no difference (P = 0·26) in the fractional portal balance of [1-13C]methionine between the diets. [1-13C]methionine enrichment (tracer:tracee ratio; mol/100 mol amino acid) in the jejunum, arterial and portal plasma, liver, kidney and muscle was also not different (P>0·05) between the groups. Over the 6 h period after the start of feeding, the average concentration of citrulline both in the arterial and portal plasma was higher (P < 0·05) in thedl-HMTB than in thedl-MET group, and arterial plasma ornithine and taurine concentration was also higher (P < 0·05) in thedl-HMTB than in thedl-MET group. However, plasma urea concentration both in the arterial and portal vein was lower (P < 0·05) in thedl-HMTB than in thedl-MET group. These results suggested that the potential difference in the first-pass use of methionine by the intestine between thedl-HMTB anddl-MET diets might affect intestinal and systemic metabolism of other amino acids, which may provide new important insights into nutritional efficiency of different methionine sources.
Collapse
|
20
|
Amino acids: metabolism, functions, and nutrition. Amino Acids 2009; 37:1-17. [PMID: 19301095 DOI: 10.1007/s00726-009-0269-0] [Citation(s) in RCA: 1765] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2009] [Accepted: 03/01/2009] [Indexed: 02/06/2023]
Abstract
Recent years have witnessed the discovery that amino acids (AA) are not only cell signaling molecules but are also regulators of gene expression and the protein phosphorylation cascade. Additionally, AA are key precursors for syntheses of hormones and low-molecular weight nitrogenous substances with each having enormous biological importance. Physiological concentrations of AA and their metabolites (e.g., nitric oxide, polyamines, glutathione, taurine, thyroid hormones, and serotonin) are required for the functions. However, elevated levels of AA and their products (e.g., ammonia, homocysteine, and asymmetric dimethylarginine) are pathogenic factors for neurological disorders, oxidative stress, and cardiovascular disease. Thus, an optimal balance among AA in the diet and circulation is crucial for whole body homeostasis. There is growing recognition that besides their role as building blocks of proteins and polypeptides, some AA regulate key metabolic pathways that are necessary for maintenance, growth, reproduction, and immunity. They are called functional AA, which include arginine, cysteine, glutamine, leucine, proline, and tryptophan. Dietary supplementation with one or a mixture of these AA may be beneficial for (1) ameliorating health problems at various stages of the life cycle (e.g., fetal growth restriction, neonatal morbidity and mortality, weaning-associated intestinal dysfunction and wasting syndrome, obesity, diabetes, cardiovascular disease, the metabolic syndrome, and infertility); (2) optimizing efficiency of metabolic transformations to enhance muscle growth, milk production, egg and meat quality and athletic performance, while preventing excess fat deposition and reducing adiposity. Thus, AA have important functions in both nutrition and health.
Collapse
|
21
|
Wang J, Wu G, Zhou H, Wang F. Emerging technologies for amino acid nutrition research in the post-genome era. Amino Acids 2008; 37:177-86. [DOI: 10.1007/s00726-008-0193-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 10/05/2008] [Indexed: 12/30/2022]
|
22
|
He Q, Kong X, Wu G, Ren P, Tang H, Hao F, Huang R, Li T, Tan B, Li P, Tang Z, Yin Y, Wu Y. Metabolomic analysis of the response of growing pigs to dietary L-arginine supplementation. Amino Acids 2008; 37:199-208. [PMID: 18989615 DOI: 10.1007/s00726-008-0192-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 10/05/2008] [Indexed: 12/14/2022]
Abstract
Arginine plays an important role regulating nutrient metabolism, but the underlying mechanisms are largely unknown. This study was conducted to determine the effect of dietary arginine supplementation on the metabolome in serum of growing pigs using (1)H nuclear magnetic resonance spectroscopy. Sixteen 120-day-old pigs (48 +/- 1 kg) were randomly assigned to one of two groups, representing supplementation with 0 or 1.0% L: -arginine to corn- and soybean meal-based diets. Serum was collected after a 46-day period of treatment. Dietary arginine supplementation decreased fat deposition and increased protein accretion in the body. Principal component analysis showed that serum concentrations of low density lipoprotein, very low density lipoprotein, and urea were lower, but concentrations of creatinine, tricarboxylic acid cycle metabolites, ornithine, lysine and tyrosine were greater in arginine-supplemented than in control pigs. Additionally, the arginine treatment affected serum concentrations of nitrogenous and lipid signaling molecules (glycerophosphorylcholine and myo-inositol) and intestinal bacterial metabolites (formate, ethanol, methylamine, dimethylamine, acetate, and propionate). These novel findings suggest that dietary arginine supplementation alters the catabolism of fat and amino acids in the whole body, enhances protein synthesis in skeletal muscle, and modulates intestinal microbial metabolism in growing pigs.
Collapse
Affiliation(s)
- Qinghua He
- State Key Laboratory of Food Science and Technology, Nanchang University, 330047, Nanchang, Jiangxi, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
The intestine is not only critical for the absorption of nutrients, but also interacts with a complex external milieu. Most foreign antigens enter the body through the digestive tract. Dietary amino acids are major fuels for the small intestinal mucosa, as well as important substrates for syntheses of intestinal proteins, nitric oxide, polyamines, and other products with enormous biological importance. Recent studies support potential therapeutic roles for specific amino acids (including glutamine, glutamate, arginine, glycine, lysine, threonine, and sulfur-containing amino acids) in gut-related diseases. Results of these new lines of work indicate trophic and cytoprotective effects of amino acids on gut integrity, growth, and health in animals and humans.
Collapse
|