1
|
Uyama T, Sasaki S, Sikder MM, Okada-Iwabu M, Ueda N. The PLAAT family as phospholipid-related enzymes. Prog Lipid Res 2025; 98:101331. [PMID: 40074088 DOI: 10.1016/j.plipres.2025.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
The phospholipase A and acyltransferase (PLAAT) family is a group of structurally related proteins that are conserved among vertebrates. In humans, the family comprises five members (PLAAT1-5), which share common domain structures, and functions as phospholipase A1/A2 and acyltransferase enzymes. Regarding acyltransferase activities, PLAATs produce N-acyl-phosphatidylethanolamines, which serve as the precursor of bioactive N-acylethanolamines (NAEs). Recent evidence strongly suggests that PLAAT proteins play a crucial role in maintaining homeostasis in various organelles, such as the endoplasmic reticulum, lysosomes, mitochondria, and peroxisomes. In this process, PLAAT proteins bind to organelles and degrade them in an enzyme activity-dependent manner. Their physiological significance was revealed by the inability of PLAAT-deficient animals to degrade organelles during the maturation of the eye lens, resulting in the development of cataracts. Furthermore, the deficiency of PLAAT1, 3, and 5 in mice caused resistance to high-fat diet-induced fatty liver, the lean phenotype represented by a marked decrease in adipose tissue mass, and the exacerbation of testicular inflammation due to decreased levels of anti-inflammatory NAEs, respectively. In addition, human PLAAT3 was identified as a causative gene for lipodystrophy. We herein provide an overview of the molecular and biological properties of PLAAT proteins.
Collapse
Affiliation(s)
- Toru Uyama
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| | - Sumire Sasaki
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Mohammad Mamun Sikder
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Miki Okada-Iwabu
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| |
Collapse
|
2
|
Ebrahimi Samani S, Tatsukawa H, Hitomi K, Kaartinen MT. Transglutaminase 1: Emerging Functions beyond Skin. Int J Mol Sci 2024; 25:10306. [PMID: 39408635 PMCID: PMC11476513 DOI: 10.3390/ijms251910306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024] Open
Abstract
Transglutaminase enzymes catalyze Ca2+- and thiol-dependent posttranslational modifications of glutamine-residues that include esterification, hydrolysis and transamidation, which results in covalent protein-protein crosslinking. Among the eight transglutaminase family members in mammals, transglutaminase 1 (TG1) plays a crucial role in skin barrier formation via crosslinking and insolubilizing proteins in keratinocytes. Despite this established function in skin, novel functions have begun merging in normal tissue homeostasis as well as in pathologies. This review summarizes our current understanding of the structure, activation, expression and activity patterns of TG1 and discusses its putative novel role in other tissues, such as in vascular integrity, and in diseases, such as cancer and fibrosis.
Collapse
Affiliation(s)
- Sahar Ebrahimi Samani
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada;
| | - Hideki Tatsukawa
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.T.); (K.H.)
| | - Kiyotaka Hitomi
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya 464-8601, Japan; (H.T.); (K.H.)
| | - Mari T. Kaartinen
- Division of Experimental Medicine, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada;
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
3
|
Zhao JY, Yuan XK, Luo RZ, Wang LX, Gu W, Yamane D, Feng H. Phospholipase A and acyltransferase 4/retinoic acid receptor responder 3 at the intersection of tumor suppression and pathogen restriction. Front Immunol 2023; 14:1107239. [PMID: 37063830 PMCID: PMC10102619 DOI: 10.3389/fimmu.2023.1107239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Phospholipase A and acyltransferase (PLAAT) 4 is a class II tumor suppressor with phospholipid metabolizing abilities. It was characterized in late 2000s, and has since been referred to as 'tazarotene-induced gene 3' (TIG3) or 'retinoic acid receptor responder 3' (RARRES3) as a key downstream effector of retinoic acid signaling. Two decades of research have revealed the complexity of its function and regulatory roles in suppressing tumorigenesis. However, more recent findings have also identified PLAAT4 as a key anti-microbial effector enzyme acting downstream of interferon regulatory factor 1 (IRF1) and interferons (IFNs), favoring protection from virus and parasite infections. Unveiling the molecular mechanisms underlying its action may thus open new therapeutic avenues for the treatment of both cancer and infectious diseases. Herein, we aim to summarize a brief history of PLAAT4 discovery, its transcriptional regulation, and the potential mechanisms in tumor prevention and anti-pathogen defense, and discuss potential future directions of PLAAT4 research toward the development of therapeutic approaches targeting this enzyme with pleiotropic functions.
Collapse
Affiliation(s)
- Jian-Yong Zhao
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Xiang-Kun Yuan
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Rui-Zhen Luo
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Li-Xin Wang
- Hospital of Integrated Traditional Chinese and Western Medicine, Hebei University of Chinese Medicine, Cangzhou, Hebei, China
| | - Wei Gu
- School of Medicine, Chongqing University, Chongqing, China
| | - Daisuke Yamane
- Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hui Feng
- School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
4
|
Hao X, Liu X, Yu S, Qin C, Wang R, Li C, Shao J. Intravenous As 2O 3 as a promising treatment for psoriasis - an experimental study in psoriasis-like mouse model. Immunopharmacol Immunotoxicol 2022; 44:935-958. [PMID: 35748353 DOI: 10.1080/08923973.2022.2093742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE To evaluate the efficacy and mechanistic bases of the intravenous injection of arsenic trioxide at clinical-relevant doses for treating an imiquimod-induced psoriasis-like mouse model. METHODS After inducing psoriasis-like skin lesions on the back of mice with imiquimod, mice in each group were injected with a clinical dose of arsenic trioxide through the tail vein. The changes in the gene expression, protein expression and distribution of relevant inflammatory factors were evaluated in the inflicted skin area, for mechanisms underlying the efficacy of intravenous As2O3 intervention. HaCaT cells were used to establish an in vitro psoriasis model and pcDNA3.1-NF-κB overexpression plasmid was transfected into cells to overexpress P65, which further confirmed the role of the NF-κB signaling pathway in the effectiveness of As2O3. RESULTS Clinical dose of As2O3 can significantly improve abnormal symptoms and pathological changes in psoriasis-like skin lesions induced by IMQ in mice. While IMQ induced abnormal expression and distribution of inflammatory factors in the RIG-I pathway and the microRNA-31 (miR-31) pathway in psoriatic skin tissues, intravenous As2O3 can effectively regulate and restore the normality. The leading role of NF-κB signaling was evidenced in vivo and validated in vitro using the NF-κB-overexpressed HaCaT cell model. CONCLUSION Clinical dosage of As2O3 may achieve effective treatment of IMQ-induced psoriatic skin lesions by modulating the NF-κB signaling pathway which regulates both the RIG-I and the miR-31 lines of action. Our data provided strong evidence supporting the claim that systemic As2O3 administration of clinical doses can be a promising treatment for psoriasis patients.
Collapse
Affiliation(s)
- Xiaoji Hao
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Xiaohui Liu
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Shunfei Yu
- Department of Occupational Health and Radiation Protection, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, China
| | - Chang Qin
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Ruonan Wang
- Office of Health Emergency, Tianjin Binhai New Area Center for Disease Control and Prevention, Tianjin, China
| | - Chunna Li
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, Liaoning, China
| | - Jing Shao
- Department of Environmental Health and Toxicology, School of Public Health, Dalian Medical University, Dalian, Liaoning, China.,Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Liaoning Medical Center for Hematopoietic Stem Cell Transplantation, Dalian Key Laboratory of Hematology, Diamond Bay Institute of Hematology, Second Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
5
|
Kerr C, Szmacinski H, Fisher ML, Nance B, Lakowicz JR, Akbar A, Keillor JW, Wong TL, Godoy-Ruiz R, Toth EA, Weber DJ, Eckert RL. Transamidase site-targeted agents alter the conformation of the transglutaminase cancer stem cell survival protein to reduce GTP binding activity and cancer stem cell survival. Oncogene 2017; 36:2981-2990. [PMID: 27941875 PMCID: PMC5444990 DOI: 10.1038/onc.2016.452] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023]
Abstract
Type 2 transglutaminase (TG2) is an important cancer stem cell survival protein that exists in open and closed conformations. The major intracellular form is the closed conformation that functions as a GTP-binding GTPase and is required for cancer stem cell survival. However, at a finite rate, TG2 transitions to an open conformation that exposes the transamidase catalytic site involved in protein-protein crosslinking. The activities are mutually exclusive, as the closed conformation has GTP binding/GTPase activity, and the open conformation transamidase activity. We recently showed that GTP binding, but not transamidase activity, is required for TG2-dependent cancer stem cell invasion, migration and tumour formation. However, we were surprised that transamidase site-specific inhibitors reduce cancer stem cell survival. We now show that compounds NC9, VA4 and VA5, which react exclusively at the TG2 transamidase site, inhibit both transamidase and GTP-binding activities. Transamidase activity is inhibited by direct inhibitor binding at the transamidase site, and GTP binding is blocked because inhibitor interaction at the transamidase site locks the protein in the extended/open conformation to disorganize/inactivate the GTP binding/GTPase site. These findings suggest that transamidase site-specific inhibitors can inhibit GTP binding/signalling by driving a conformation change that disorganizes the TG2 GTP binding to reduce TG2-dependent signalling, and that drugs designed to target this site may be potent anti-cancer agents.
Collapse
Affiliation(s)
- Candace Kerr
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Henryk Szmacinski
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Matthew L. Fisher
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Bailey Nance
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Joseph R. Lakowicz
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - Abdullah Akbar
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario
| | - Jeffrey W. Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario
| | - Tin Lok Wong
- Institute for Bioscience and Biotechnology Research, and Center for Biomolecular Therapeutics, Rockville, Maryland
| | - Raquel Godoy-Ruiz
- Institute for Bioscience and Biotechnology Research, and Center for Biomolecular Therapeutics, Rockville, Maryland
| | - Eric A. Toth
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Marlene and Stewart Greenebaum Cancer Center, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Institute for Bioscience and Biotechnology Research, and Center for Biomolecular Therapeutics, Rockville, Maryland
| | - David J. Weber
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Marlene and Stewart Greenebaum Cancer Center, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Institute for Bioscience and Biotechnology Research, and Center for Biomolecular Therapeutics, Rockville, Maryland
| | - Richard L. Eckert
- Department of Biochemistry and Molecular Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Department of Dermatology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Department of Reproductive Biology, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
- Marlene and Stewart Greenebaum Cancer Center, The University of Maryland School of Medicine, Baltimore, Maryland, 21201
| |
Collapse
|
6
|
Wei H, Wang L, Ren X, Yu W, Lin J, Jin C, Xia B. Structural and functional characterization of tumor suppressors TIG3 and H-REV107. FEBS Lett 2015; 589:1179-86. [PMID: 25871522 DOI: 10.1016/j.febslet.2015.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/16/2015] [Accepted: 04/01/2015] [Indexed: 11/30/2022]
Abstract
H-REV107-like family proteins TIG3 and H-REV107 are class II tumor suppressors. Here we report that the C-terminal domains (CTDs) of TIG3 and H-REV107 can induce HeLa cell death independently. The N-terminal domain (NTD) of TIG3 enhances the cell death inducing ability of CTD, while NTD of H-REV107 plays an inhibitory role. The solution structure of TIG3 NTD is very similar to that of H-REV107 in overall fold. However, the CTD binding regions on NTD are different between TIG3 and H-REV107, which may explain their functional difference. As a result, the flexible main loop of H-REV107, but not that of TIG3, is critical for its NTD to modulate its CTD in inducing cell death.
Collapse
Affiliation(s)
- Hejia Wei
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Lei Wang
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaobai Ren
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wenyu Yu
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Jian Lin
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
7
|
Choudhary V, Olala LO, Kaddour-Djebbar I, Helwa I, Bollag WB. Protein kinase D1 deficiency promotes differentiation in epidermal keratinocytes. J Dermatol Sci 2014; 76:186-95. [PMID: 25450094 PMCID: PMC4259831 DOI: 10.1016/j.jdermsci.2014.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/06/2014] [Accepted: 09/19/2014] [Indexed: 01/26/2023]
Abstract
BACKGROUND Protein kinase D (PKD or PKD1) is a serine/threonine protein kinase that has been shown to play a role in a variety of cellular processes; however, the function of PKD1 in the skin has not been fully investigated. The balance between proliferation and differentiation processes in the predominant cells of the epidermis, the keratinocytes, is essential for normal skin function. OBJECTIVE To investigate the effect of PKD1 deficiency on proliferation and differentiation of epidermal keratinocytes. METHODS We utilized a floxed PKD1 mouse model such that infecting epidermal keratinocytes derived from these mice with an adenovirus expressing Cre-recombinase allowed us to determine the effect of PKD1 gene loss in vitro. Proliferation and differentiation were monitored using qRT-PCR, Western blot, transglutaminase activity assays, [3H]thymidine incorporation into DNA and cell cycle analysis. RESULTS A significant decrease in PKD1 mRNA and protein levels was achieved in adenoviral Cre-recombinase-infected cells. Deficiency of PKD1 resulted in significant increases in the mRNA and protein expression of various differentiation markers such as loricrin, involucrin, and keratin 10 either basally and/or upon stimulation of differentiation. PKD1-deficient keratinocytes also showed an increase in transglutaminase expression and activity, indicating an anti-differentiative role of PKD1. Furthermore, the PKD1-deficient keratinocytes exhibited decreased proliferation. However, PKD1 loss had no effect on stem cell marker expression. CONCLUSIONS Cre-recombinase-mediated knockdown represents an additional approach demonstrating that PKD1 is an anti-differentiative, pro-proliferative signal in mouse keratinocytes.
Collapse
Affiliation(s)
- Vivek Choudhary
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA; Section of Dermatology, Department of Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Lawrence O Olala
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Ismail Kaddour-Djebbar
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Inas Helwa
- Department of Oral Biology, Georgia Regents University, Augusta, GA 30912, USA; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA
| | - Wendy B Bollag
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA; Department of Physiology, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA; Section of Dermatology, Department of Medicine, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA; Department of Oral Biology, Georgia Regents University, Augusta, GA 30912, USA; Departments of Cell Biology and Anatomy, and Orthopaedic Surgery, Medical College of Georgia at Georgia Regents University, Augusta, GA 30912, USA.
| |
Collapse
|
8
|
Jeon SY, Ha SM, Ko DY, Ku BS, Lee CY, Song KH, Kim KH. Tazarotene-induced gene 3 may affect inflammatory angiogenesis in psoriasis by downregulating placental growth factor expression. Ann Dermatol 2014; 26:517-20. [PMID: 25143685 PMCID: PMC4135111 DOI: 10.5021/ad.2014.26.4.517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/30/2012] [Accepted: 04/04/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Su-Young Jeon
- Department of Dermatology, College of Medicine, Dong-A University, Busan, Korea
| | - Seung-Min Ha
- Department of Dermatology, College of Medicine, Dong-A University, Busan, Korea
| | - Dong-Yeob Ko
- Department of Dermatology, College of Medicine, Dong-A University, Busan, Korea
| | - Bon-Seok Ku
- Beautiful Esthetic & Dermatologic Clinics, Busan, Korea
| | - Chae-Young Lee
- Department of Dermatology, Sorokdo National Hospital, Goheung, Korea
| | - Ki-Hoon Song
- Department of Dermatology, College of Medicine, Dong-A University, Busan, Korea
| | - Ki-Ho Kim
- Department of Dermatology, College of Medicine, Dong-A University, Busan, Korea
| |
Collapse
|
9
|
Eckert RL, Kaartinen MT, Nurminskaya M, Belkin AM, Colak G, Johnson GVW, Mehta K. Transglutaminase regulation of cell function. Physiol Rev 2014; 94:383-417. [PMID: 24692352 DOI: 10.1152/physrev.00019.2013] [Citation(s) in RCA: 330] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transglutaminases (TGs) are multifunctional proteins having enzymatic and scaffolding functions that participate in regulation of cell fate in a wide range of cellular systems and are implicated to have roles in development of disease. This review highlights the mechanism of action of these proteins with respect to their structure, impact on cell differentiation and survival, role in cancer development and progression, and function in signal transduction. We also discuss the mechanisms whereby TG level is controlled and how TGs control downstream targets. The studies described herein begin to clarify the physiological roles of TGs in both normal biology and disease states.
Collapse
|
10
|
Scharadin TM, Eckert RL. TIG3: an important regulator of keratinocyte proliferation and survival. J Invest Dermatol 2014; 134:1811-1816. [PMID: 24599174 PMCID: PMC4057967 DOI: 10.1038/jid.2014.79] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 12/11/2013] [Accepted: 01/16/2014] [Indexed: 01/12/2023]
Abstract
Tazarotene induced gene 3 (TIG3) is a tumor suppressor protein. In normal human epidermis, TIG3 is present in the differentiated, suprabasal layers and regulates terminal differentiation. TIG3 level is reduced in hyperproliferative diseases, including psoriasis and skin cancer, suggesting that loss of TIG3 is associated with enhanced cell proliferation. Moreover, transient expression of TIG3 leads to terminal differentiation in normal keratinocytes and apoptosis in skin cancer cells. In both cell types, TIG3 distributes to the cell membrane and to the centrosome. At the cell membrane, TIG3 interacts with and activates type I transglutaminase (TG1) to enhance keratinocyte terminal differentiation. TIG3 at the centrosome acts to inhibit centrosome separation during mitosis and to alter microtubule function. These findings argue that TIG3 is involved in control of keratinocyte differentiation and that loss of TIG3 in transformed cells contributes to the malignant phenotype.
Collapse
Affiliation(s)
- Tiffany M Scharadin
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard L Eckert
- Departments of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Departments of Obstetrics and Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
11
|
Scharadin TM, Adhikary G, Shaw K, Grun DJB, Xu W, Eckert RL. Pericentrosomal localization of the TIG3 tumor suppressor requires an N-terminal hydrophilic region motif. J Invest Dermatol 2013; 134:1220-1229. [PMID: 24401997 PMCID: PMC3989452 DOI: 10.1038/jid.2013.533] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 11/09/2022]
Abstract
Tazarotene-induced gene 3 (TIG3) is a tumor suppressor protein that has a key role in controlling cell proliferation. TIG3 is observed at reduced levels in epidermal squamous cell carcinoma, and the restoration of expression in skin cancer cells reduces cell survival. TIG3 suppresses cell survival through mechanisms that involve localization at the plasma membrane and at the centrosome. TIG3 interacts at the plasma membrane to activate enzymes involved in keratinocyte terminal differentiation, and at the centrosome to inhibit daughter centrosome separation during mitosis leading to cessation of cell proliferation and induction of apoptosis. An important goal is identifying the motifs required for TIG3 localization at these intracellular sites as a method to understand the function of TIG3 at each location. TIG3 encodes an N-terminal hydrophilic region (amino acids 1-135) and a C-terminal membrane-anchoring domain (amino acids 135-164). We show that the C-terminal hydrophobic domain targets intact TIG3 to the plasma membrane, but when isolated as an independent element localizes at the mitochondria. We further demonstrate that a segment of the N-terminal hydrophilic region targets the centrosome. These studies provide important insights regarding the mechanisms that guide subcellular localization of this keratinocyte survival regulator.
Collapse
Affiliation(s)
- Tiffany M Scharadin
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Gautam Adhikary
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kristin Shaw
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dan J B Grun
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wen Xu
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Richard L Eckert
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland, USA; Department of Obstetrics and Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
12
|
Klöck C, Khosla C. Regulation of the activities of the mammalian transglutaminase family of enzymes. Protein Sci 2012; 21:1781-91. [PMID: 23011841 DOI: 10.1002/pro.2162] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 01/31/2023]
Abstract
Mammalian transglutaminases catalyze post-translational modifications of glutamine residues on proteins and peptides through transamidation or deamidation reactions. Their catalytic mechanism resembles that of cysteine proteases. In virtually every case, their enzymatic activity is modulated by elaborate strategies including controlled gene expression, allostery, covalent modification, and proteolysis. In this review, we focus on our current knowledge of post-translational regulation of transglutaminase activity by physiological as well as synthetic allosteric agents. Our discussion will primarily focus on transglutaminase 2, but will also compare and contrast its regulation with Factor XIIIa as well as transglutaminases 1 and 3. Potential structure-function relationships of known mutations in human transglutaminases are analyzed.
Collapse
Affiliation(s)
- Cornelius Klöck
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
13
|
Kypriotou M, Huber M, Hohl D. The human epidermal differentiation complex: cornified envelope precursors, S100 proteins and the 'fused genes' family. Exp Dermatol 2012; 21:643-9. [PMID: 22507538 DOI: 10.1111/j.1600-0625.2012.01472.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The skin is essential for survival and protects our body against biological attacks, physical stress, chemical injury, water loss, ultraviolet radiation and immunological impairment. The epidermal barrier constitutes the primordial frontline of this defense established during terminal differentiation. During this complex process proliferating basal keratinocytes become suprabasally mitotically inactive and move through four epidermal layers (basal, spinous, granular and layer, stratum corneum) constantly adapting to the needs of the respective cell layer. As a result, squamous keratinocytes contain polymerized keratin intermediate filament bundles and a water-retaining matrix surrounded by the cross-linked cornified cell envelope (CE) with ceramide lipids attached on the outer surface. These cells are concomitantly insulated by intercellular lipid lamellae and hold together by corneodesmosmes. Many proteins essential for epidermal differentiation are encoded by genes clustered on chromosomal human region 1q21. These genes constitute the 'epidermal differentiation complex' (EDC), which is divided on the basis of common gene and protein structures, in three gene families: (i) CE precursors, (ii) S100A and (iii) S100 fused genes. EDC protein expression is regulated in a gene and tissue-specific manner by a pool of transcription factors. Among them, Klf4, Grhl3 and Arnt are essential, and their deletion in mice is lethal. The importance of the EDC is further reflected by human diseases: FLG mutations are the strongest risk factor for atopic dermatitis (AD) and for AD-associated asthma, and faulty CE formation caused by TG1 deficiency causes life-threatening lamellar ichthyosis. Here, we review the EDC genes and the progress in this field.
Collapse
Affiliation(s)
- Magdalini Kypriotou
- Laboratory of Cutaneous Biology, Service of Dermatology and Venereology, Beaumont Hospital CHUV, Lausanne, Switzerland
| | | | | |
Collapse
|
14
|
Wilhelmus MMM, de Jager M, Rozemuller AJM, Brevé J, Bol JGJM, Eckert RL, Drukarch B. Transglutaminase 1 and its regulator tazarotene-induced gene 3 localize to neuronal tau inclusions in tauopathies. J Pathol 2011; 226:132-42. [PMID: 22009441 DOI: 10.1002/path.2984] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 07/05/2011] [Accepted: 08/04/2011] [Indexed: 11/07/2022]
Abstract
Alzheimer's disease (AD), progressive supranuclear palsy (PSP), frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17), and Pick's disease (PiD) are commonly known as tauopathies. Neurodegeneration observed in these diseases is linked to neuronal fibrillary hyperphosphorylated tau protein inclusions. Transglutaminases (TGs) are inducible enzymes, capable of modifying conformational and/or structural properties of proteins by inducing molecular cross-links. Both transglutaminase 1 (TG1) and transglutaminase 2 (TG2) are abundantly expressed in the brain and are associated with fibrillary hyperphosphorylated tau protein inclusions in neurons of AD, so-called neurofibrillary tangles (NFTs). However, other data obtained by our group suggested that tau pathology in the brain may be primarily related to TG1 and not to TG2 activity. To obtain more information on this issue, we set out to investigate the association of TG1, TG2, and TG-catalysed cross-links with fibrillary hyperphosphorylated tau inclusions in tauopathies other than AD, using immunohistochemistry. We found strong TG1 and TG-catalysed cross-link staining in neuronal tau inclusions characteristic of PSP, FTDP-17 with mutations in the tau gene (FTDP-17T), and PiD brain, whereas, in contrast to AD, TG2 was only rarely observed in these inclusions. Furthermore, using a biochemical approach, we demonstrated that tau is a substrate for TG1-mediated cross-linking. Interestingly, we found co-localization of the TG1 activator, tazarotene-induced gene 3 (TIG3), in the neuronal tau inclusions of PSP, FTDP-17T, and PiD, but not in NFTs of AD cases, indicating that these tau-containing protein aggregates are not identical. We conclude that TG1-catalysed cross-linking, regulated by TIG3, might play an important role in the formation of neuronal tau inclusions in PSP, FTDP-17T, and PiD brain.
Collapse
Affiliation(s)
- Micha M M Wilhelmus
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
15
|
Borrelli S, Fanoni D, Dolfini D, Alotto D, Ravo M, Grober OMV, Weisz A, Castagnoli C, Berti E, Vigano MA, Mantovani R. C/EBPδ gene targets in human keratinocytes. PLoS One 2010; 5:e13789. [PMID: 21072181 PMCID: PMC2970548 DOI: 10.1371/journal.pone.0013789] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 10/08/2010] [Indexed: 11/19/2022] Open
Abstract
C/EBPs are a family of B-Zip transcription factors -TFs- involved in the regulation of differentiation in several tissues. The two most studied members -C/EBPα and C/EBPβ- play important roles in skin homeostasis and their ablation reveals cells with stem cells signatures. Much less is known about C/EBPδ which is highly expressed in the granular layer of interfollicular epidermis and is a direct target of p63, the master regular of multilayered epithelia. We identified C/EBPδ target genes in human primary keratinocytes by ChIP on chip and profiling of cells functionally inactivated with siRNA. Categorization suggests a role in differentiation and control of cell-cycle, particularly of G2/M genes. Among positively controlled targets are numerous genes involved in barrier function. Functional inactivation of C/EBPδ as well as overexpressions of two TF targets -MafB and SOX2- affect expression of markers of keratinocyte differentiation. We performed IHC on skin tumor tissue arrays: expression of C/EBPδ is lost in Basal Cell Carcinomas, but a majority of Squamous Cell Carcinomas showed elevated levels of the protein. Our data indicate that C/EBPδ plays a role in late stages of keratinocyte differentiation.
Collapse
Affiliation(s)
- Serena Borrelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Daniele Fanoni
- Istituto di Scienze Dermatologiche, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di Milano, Milano, Italy
| | - Diletta Dolfini
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Daniela Alotto
- Dipartimento di Chirurgia Plastica - Banca della Cute, Ospedale CTO, Torino, Italy
| | - Maria Ravo
- Dipartimento di Patologia Generale and Centro Grandi Apparecchiature, Seconda Università di Napoli, Napoli, Italy
| | - Olì Maria Victoria Grober
- Dipartimento di Patologia Generale and Centro Grandi Apparecchiature, Seconda Università di Napoli, Napoli, Italy
| | - Alessandro Weisz
- Dipartimento di Patologia Generale and Centro Grandi Apparecchiature, Seconda Università di Napoli, Napoli, Italy
- AIRC Naples Oncogenomics Centre, c/o CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Carlotta Castagnoli
- Dipartimento di Chirurgia Plastica - Banca della Cute, Ospedale CTO, Torino, Italy
| | - Emilio Berti
- Istituto di Scienze Dermatologiche, IRCCS Fondazione Ospedale Maggiore Policlinico, Mangiagalli e Regina Elena, Università degli Studi di Milano, Milano, Italy
- Università di Milano-Bicocca, Milano, Italy
| | - M. Alessandra Vigano
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
| | - Roberto Mantovani
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Milano, Italy
- * E-mail:
| |
Collapse
|
16
|
Ueda N, Tsuboi K, Uyama T. Enzymological studies on the biosynthesis of N-acylethanolamines. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:1274-85. [PMID: 20736084 DOI: 10.1016/j.bbalip.2010.08.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 08/10/2010] [Accepted: 08/17/2010] [Indexed: 11/28/2022]
Abstract
Ethanolamides of different long-chain fatty acids constitute a class of endogenous lipid molecules generally called N-acylethanolamines (NAEs). They contain N-arachidonoylethanolamine (anandamide), N-palmitoylethanolamine, and N-oleoylethanolamine, which receive considerable attention because of their actions as an endogenous cannabinoid receptor ligand (endocannabinoid), an anti-inflammatory substance, and an appetite-suppressing substance, respectively. Identification of their biosynthetic routes in animal tissues and molecular characterization of the enzymes involved are essential for better understanding of physiological importance of NAEs as well as development of enzyme inhibitors as possible therapeutic drugs. In the classical "transacylation-phosphodiesterase pathway", NAEs are formed from glycerophospholipids via N-acylphosphatidylethanolamine (NAPE), an unusual derivative of phosphatidylethanolamine with a third acyl chain attached to the amino group, by sequential catalyses by Ca(2+)-dependent N-acyltransferase and NAPE-hydrolyzing phospholipase D. However, recent studies reveal that NAE-generating pathways are more complex than presumed before. In this review article, we will focus on recent findings regarding mammalian enzymes that are involved or might be involved in the biosynthesis of NAEs.
Collapse
Affiliation(s)
- Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, 1750-1 Ikenobe, Miki, Kagawa 761-0793, Japan.
| | | | | |
Collapse
|
17
|
Borrelli S, Candi E, Hu B, Dolfini D, Ravo M, Grober OMV, Weisz A, Dotto GP, Melino G, Viganò MA, Mantovani R. The p63 target HBP1 is required for skin differentiation and stratification. Cell Death Differ 2010; 17:1896-907. [PMID: 20523354 DOI: 10.1038/cdd.2010.59] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Genetic experiments established that p63 is crucial for the development and maintenance of pluristratified epithelia. In the RNA interference (RNAi) screening for targets of p63 in keratinocytes, we identified the transcription factor, High Mobility Group (HMG) box protein 1 (HBP1). HBP1 is an HMG-containing repressor transiently induced during differentiation of several cell lineages. We investigated the relationship between the two factors: using RNAi, overexpression, chromatin immunoprecipitations and transient transfections with reporter constructs, we established that HBP1 is directly repressed by p63. This was further confirmed in vivo by evaluating expression in p63 knockout mice and in transgenics expressing p63 in basal keratinocytes. Consistent with these findings, expression of HBP1 increases upon differentiation of primary keratinocytes and HaCaT cells in culture, and it is higher in the upper layers of human skin. Inactivation of HBP1 by RNAi prevents differentiation of keratinocytes and stratification of organotypic skin cultures. Finally, we analyzed the keratinocyte transcriptomes after HBP1 RNAi; in addition to repression of growth-promoting genes, unexpected activation of differentiation genes was uncovered, coexisting with repression of other genes involved in epithelial cornification. Our data indicate that suppression of HBP1 is part of the growth-promoting strategy of p63 in the lower layers of epidermis and that HBP1 temporally coordinates expression of genes involved in stratification, leading to the formation of the skin barrier.
Collapse
Affiliation(s)
- S Borrelli
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|