1
|
Kaur R, Kobue-Lekalake R, Masisi K, Aukema HM, Moghadasian MH. Plasma and fecal bioactive mediators in relation to the prevention of atherogenesis in LDL-r-KO mice: insights from an African staple food. Appl Physiol Nutr Metab 2025; 50:1-9. [PMID: 40068193 DOI: 10.1139/apnm-2024-0328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2025]
Abstract
Our previous study revealed a significant anti-atherosclerotic effect of Kgengwe seed powder (KSP) in low-density lipoprotein receptor knockout (LDL-r-KO) mice. The importance of various lipid and protein metabolites, including certain amino acids and fatty acids on atherogenesis has been well established. Thus, we used plasma and fecal samples from our previous study to further study the association of such metabolites with atherosclerotic lesion development. Male LDL-r-KO mice were provided with an atherogenic diet supplemented with (treated, n = 10) or without (controls, n = 10) 10% (w/w) KSP for 20 weeks. The treated group showed significantly (P < 0.05) higher plasma levels of many amino acids plus propionic acid, indoleacetic acid, pyruvic acid, beta-hydroxybutyric acid, alpha-ketoglutaric acid, trimethylamine N-oxide, LYSOC16:0, LYSOC18:0, and LYSOC18:2, as compared with those of the control group. Similarly, several oxylipins, including 15-keto prostaglandin E2, 9,10,13-trihydroxy-octadecenoic acid, 9,10-epoxy-octadecenoic acid, and 12,13-epoxy-octadecenoic acid increased by approximately 2.0 log2 folds (P < 0.05) in the plasma of the treated group. Other oxylipins, including 15,16-epoxy-octadecadieonic acid, 13-hydroxy-octadecadienoic acid, and prostaglandin E2 showed also an increased level, but to a lesser extent. Furthermore, our findings showed a significant positive correlation between plasma concentrations of prostaglandin E2 and IL-10 in the treated mice. We also observed a significant negative association between atherosclerotic lesion size and plasma levels of citrulline, lysine, alpha-ketoglutaric acid, and 15,16 epoxy-octadecadienoic acid. Additional in vitro and in vivo studies are needed to explore the mechanisms of such associations.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Rosemary Kobue-Lekalake
- Department of Food Science and Technology, Botswana University of Agriculture and Natural Resources, Gaborone, Botswana
| | - Kabo Masisi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Harold M Aukema
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Mohammed H Moghadasian
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- The Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| |
Collapse
|
2
|
Sahin K, Sahin E, Orhan C, Er B, Akoglan B, Ozercan IH, Sahin N, Komorowski JR. The impact of magnesium biotinate and arginine silicate complexes on metabolic dysfunctions, antioxidant activity, inflammation, and neuromodulation in high-fat diet-fed rats. Clin Exp Med 2024; 24:176. [PMID: 39105860 PMCID: PMC11303438 DOI: 10.1007/s10238-024-01434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/12/2024] [Indexed: 08/07/2024]
Abstract
Biotin and arginine play crucial roles in lipid metabolism and may offer promising interventions against obesity. This study examined the combined effect of magnesium biotinate (MgB) and inositol-stabilized arginine silicate complex (ASI) on obesity-related oxidative imbalance, inflammation, lipid metabolism and neuromodulation in rats on a high-fat diet (HFD). Forty rats were divided into five groups: (a) control: rats were fed a standard diet containing 12% of energy from fat; (b) HFD: rats were fed the HFD with 42% of energy from fat; (c) HFD + MgB: rats were fed the HFD and given 0.31 mg/kg body weight (BW) MgB, (d) HFD + ASI: rats were fed the HFD and were given 12.91 mg/kg BW ASI), and (e) HFD + MgB + ASI: rats were fed the HFD and given 0.31 mg/kg BW MgB and 12.91 mg/kg BW ASI). The combined administration of MgB and ASI reduced the levels of serum cholesterol, free fatty acid (FFA), and malondialdehyde (MDA), as well as liver inflammatory cytokines, sterol regulatory element-binding protein 1-c (SREBP-1c), and 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) proteins (P < 0.001) compared to HFD rats without supplementation. Moreover, this combination increased the activities of antioxidant enzymes (P < 0.05) and boosted the brain-derived neurotrophic factor (BDNF), serotonin, dopamine (P < 0.001), as well as liver insulin receptor substrate 1 (IRS-1) and peroxisome proliferator-activated receptor gamma (PPAR-γ) (P < 0.001). These findings suggest that combining MgB and ASI could deter liver fat accumulation and enhance lipid metabolism in HFD-fed rats by modulating various metabolic pathways and neuromodulators related to energy metabolism. This combination demonstrates potential in addressing obesity and its related metabolic dysfunctions.
Collapse
Affiliation(s)
- Kazim Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey.
| | - Emre Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Bingol University, Bingol, Turkey
| | - Cemal Orhan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | - Besir Er
- Department of Biology, Faculty of Science, Firat University, 23119, Elazig, Turkey
| | - Bayram Akoglan
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | | | - Nurhan Sahin
- Department of Animal Nutrition, Faculty of Veterinary Medicine, Firat University, 23119, Elazig, Turkey
| | | |
Collapse
|
3
|
Volpe M, Ferrera A, Piccinocchi R, Morisco C. The Emerging Role of Prediabetes and Its Management: Focus on L-Arginine and a Survey in Clinical Practice. High Blood Press Cardiovasc Prev 2023; 30:489-496. [PMID: 38060094 PMCID: PMC10721705 DOI: 10.1007/s40292-023-00613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
The worldwide impressive growth of metabolic disorders observed in the last decades, especially type 2 diabetes mellitus and obesity, has generated great interest in the potential benefits of early identification and management of patients at risk. In this view, prediabetes represents a high-risk condition for the development of type 2 diabetes mellitus and cardiovascular diseases, and an ideal target to intercept patients before they develop type 2 diabetes gaining a prominent role even in international guidelines. For prediabetic individuals, lifestyle modification is the cornerstone of diabetes prevention, with evidence of about 50% relative risk reduction. Accumulating data also show potential benefits from pharmacotherapy. In this context, the only available data pertain to metformin as a pharmaceutical drug and vitamin D and L-arginine as nutraceuticals. L-arginine appears to be a very interesting tool in the clinical management of patients with pre-diabetes. In this review we summarize the current knowledge on the role of L-arginine in prediabetes as a potentially useful preventive strategy against the progression to type 2 diabetes, with a particular focus on the underlying molecular mechanisms and the past and ongoing trials. In this article we also report the interesting data about the perception of the prediabetic condition and its therapeutic management in the clinical practice in Italy. An early identification and a prompt management of people with prediabetes appears to be of paramount importance to prevent the progression to diabetes and avoid its cardiovascular consequences.
Collapse
Affiliation(s)
- Massimo Volpe
- Department of Clinical and Molecular Medicine, ''Sapienza'' University of Rome, Rome, Italy.
- IRCCS San Raffaele, Rome, Italy.
| | - Armando Ferrera
- Department of Clinical and Molecular Medicine, ''Sapienza'' University of Rome, Rome, Italy
| | | | | |
Collapse
|
4
|
Hu S, He W, Bazer FW, Johnson GA, Wu G. Synthesis of glycine from 4-hydroxyproline in tissues of neonatal pigs with intrauterine growth restriction. Exp Biol Med (Maywood) 2023; 248:1446-1458. [PMID: 37837389 PMCID: PMC10666732 DOI: 10.1177/15353702231199080] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/04/2023] [Indexed: 10/16/2023] Open
Abstract
This study tested the hypothesis that the synthesis of glycine from 4-hydroxyproline (an abundant amino acid in milk and neonatal blood) was impaired in tissues of piglets with intrauterine growth restriction (IUGR), thereby contributing to a severe glycine deficiency in these compromised neonates. At 0, 7, 14, and 21 days of age, IUGR piglets were euthanized, and tissues (liver, small intestine, kidney, pancreas, stomach, skeletal muscle, and heart) were obtained for metabolic studies, as well as the determination of enzymatic activities, cell-specific localization, and expression of mRNAs for glycine-synthetic enzymes. The results indicated relatively low enzymatic activities for 4-hydroxyproline oxidase (OH-POX), proline oxidase, serine hydroxymethyltransferase, threonine dehydrogenase (TDH), alanine: glyoxylate transaminase, and 4-hydroxy-2-oxoglutarate aldolase in the kidneys and liver from 0- to 21-day-old IUGR pigs, in the pancreas of 7- to 21-day-old IUGR pigs, and in the small intestine and skeletal muscle (except TDH) of 21-day-old IUGR pigs. Accordingly, the rates of conversion of 4-hydroxyproline into glycine were relatively low in tissues of IUGR piglets. The expression of mRNAs for glycine-synthetic enzymes followed the patterns of enzymatic activities and was also low. Immunohistochemical analyses revealed the relatively low abundance of OH-POX protein in the liver, kidney, and small intestine of IUGR piglets, and the lack of OH-POX zonation in their livers. These novel results provide a metabolic basis to explain why the endogenous synthesis of glycine is insufficient for optimum growth of IUGR piglets and have important implications for improving the nutrition and health of other mammalian neonates including humans with IUGR.
Collapse
Affiliation(s)
- Shengdi Hu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Hu S, He W, Bazer FW, Johnson GA, Wu G. Synthesis of glycine from 4-hydroxyproline in tissues of neonatal pigs. Exp Biol Med (Maywood) 2023; 248:1206-1220. [PMID: 37632196 PMCID: PMC10621473 DOI: 10.1177/15353702231181360] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 04/01/2023] [Indexed: 08/27/2023] Open
Abstract
Glycine from sow's milk only meets 20% of the requirement of suckling piglets. However, how glycine is synthesized endogenously in neonates is not known. This study determined glycine synthesis from 4-hydroxyproline (an abundant amino acid in milk and neonatal blood) in tissues of sow-reared piglets with normal birth weights. Piglets were euthanized at 0, 7, 14 and 21 days of age, and their tissues were used to determine glycine synthesis from 0 to 5 mM 4-hydroxyproline, activities and mRNA expression of key glycine-synthetic enzymes, and their cell-specific localization. Activities of 4-hydroxyproline oxidase (OH-POX), proline oxidase (POX), serine hydroxymethyltransferase (SHMT), threonine dehydrogenase (TDH), alanine:glyoxylate transaminase (AGT), and 4-hydroxy-2-oxoglutarate aldolase (HOA) occurred in the kidneys and liver from all age groups of piglets, and in the pancreas of 7- to 21-day-old piglets. Activities of OH-POX and HOA were absent from the small intestine of newborn pigs but present in the small intestine of 7- to 21-day-old piglets and in the skeletal muscle of 14- to 21-day-old piglets. Between days 0 and 21 of age, the enzymatic activities of OH-POX, AGT, and HOA decreased in the liver and kidneys but increased in the pancreas and small intestine with age. The mRNA levels of these three enzymes changed in a manner similar to their enzymatic activities. In contrast to OH-POX, AGT, and HOA, the enzymatic activities of POX, SHMT, and TDH were present in the kidneys, liver, and intestine of all age groups of piglets. Glycine was synthesized from 0.1 to 5 mM 4-hydroxyproline in the liver and kidney from 0- to 21-day-old piglets, as well as the pancreas, small intestine, and skeletal muscle from 14- to 21-day-old piglets in a concentration-dependent manner. Collectively, our findings indicate that 4-hydroxyproline is used for the synthesis of glycine in tissues of piglets to compensate for the deficiency of glycine in milk.
Collapse
Affiliation(s)
- Shengdi Hu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Gregory A Johnson
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
6
|
Jobgen WS, Lee MJ, Fried SK, Wu G. l-Arginine supplementation regulates energy-substrate metabolism in skeletal muscle and adipose tissue of diet-induced obese rats. Exp Biol Med (Maywood) 2022; 248:209-216. [PMID: 36544403 PMCID: PMC10107391 DOI: 10.1177/15353702221139207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Dietary supplementation with l-arginine has been reported to reduce white fat mass in diet-induced obese rats and in obese humans. This study was conducted to test the hypothesis that the arginine treatment regulates glucose and fatty acid metabolism in insulin-sensitive tissues. Male Sprague–Dawley rats (4-week-old) were fed either low- or high-fat diets for 15 weeks ( n = 16/diet). Thereafter, lean or obese rats were fed their respective diets and received drinking water containing either 1.51% l-arginine-HCl or 2.55% alanine (isonitrogenous control) ( n = 8/treatment group). After 12 weeks of treatment, rats were euthanized and tissue samples were collected for biochemical assays. High-fat feeding increased the size of adipocytes isolated from retroperitoneal (RP) adipose tissue, while arginine treatment reduced their size. The total number of adipocytes in the adipose tissue did not differ among the four groups of rats. Glucose oxidation in extensor digitorum longus (EDL) muscle, soleus muscle, and RP adipose tissue were reduced in response to high-fat feeding. On the contrary, oleic acid oxidation in RP adipose tissue was enhanced in rats fed the high-fat diet. Arginine treatment stimulated both glucose and oleic acid oxidation in EDL and soleus muscles, while having no effect on glucose oxidation, oleic acid oxidation, or basal lipolysis per 106 adipocytes in RP adipose tissue. Collectively, these results indicate that oral supplementation with arginine to diet-induced obese rats promoted the oxidation of energy substrates in skeletal muscle, thereby reducing white fat in the body.
Collapse
Affiliation(s)
- Wenjuan S Jobgen
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Mi-Jeong Lee
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Susan K Fried
- Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Guoyao Wu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Xue H, Zhao Y, Wang L, Zhu X, Zhang K, Li D, Ji J, Niu L, Cui J, Luo J, Gao X. Regulation of amino acid metabolism in Aphis gossypii parasitized by Binodoxys communis. Front Nutr 2022; 9:1006253. [PMID: 36245483 PMCID: PMC9558109 DOI: 10.3389/fnut.2022.1006253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
The vast majority of parasitoids are capable of precise and meticulous regulation of nutrition and metabolism within the host. An important building block of life, amino acids are critical to the development of parasitoids. To date, research on how parasitoids regulate host amino acid metabolism remains limited. In this study, Aphis gossypii and its dominant parasitoid Binodoxys communis were used as a study system to explore how parasitism may change the regulation of amino acids in A. gossypii with UHPLC-MS/MS and RT-qPCR techniques. Here, for the first 8 h of parasitism the abundance of almost all amino acids in cotton aphids increased, and after 16 h most of the amino acids decreased. An amino acid of parasitic syndrome, the content of Tyr increased gradually after being parasitized. The expression of genes related to amino acid metabolism increased significantly in early stages of parasitism and then significantly decreased gradually. At the same time, the abundance of Buchnera, a cotton aphid specific symbiont increased significantly. Our comprehensive analyses reveal impacts of B. communis on the amino acid regulatory network in cotton aphid from three aspects: amino acid metabolism, gene expression, and bacterial symbionts. Therefore, this research provides an important theoretical basis for parasitoid nutritional regulation in host, which is highly significant as it may inform the artificial reproduction of parasitoids and the biological control of insect pests.
Collapse
Affiliation(s)
- Hui Xue
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yunyun Zhao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Li Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiangzhen Zhu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Kaixin Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Dongyang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jichao Ji
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Lin Niu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jinjie Cui
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Jinjie Cui,
| | - Junyu Luo
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Junyu Luo,
| | - Xueke Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Xueke Gao,
| |
Collapse
|
8
|
Study of the Association between Thiols and Oxidative Stress Markers in Children with Obesity. Nutrients 2022; 14:nu14173637. [PMID: 36079892 PMCID: PMC9460844 DOI: 10.3390/nu14173637] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
Obesity has reached epidemic proportions, and the World Health Organization defined childhood overweight and obesity as a noncommunicable disease that represents the most serious public health challenges of the twenty-first century. Oxidative stress, defined as an imbalance between oxidants and antioxidants causing an impairment of the redox signals, is linked to the development of metabolic diseases. In addition, reactive oxygen species generated during metabolic disorder could increase inflammation, causing the development of insulin resistance, diabetes, and cardiovascular disease. We analyze serum levels of cysteine (Cys), cysteinyl-glycine (Cys-Gly), homocysteine (Hcy), and glutathione (GSH), and other markers of oxidative stress, such as thiobarbituric acid reactive substances (T-BARS), 8-isoprostane, and protein carbonyl in our children with obesity. Total antioxidant status was also determined. We found lower GSH and Cys-Gly levels, and higher Hcy and oxidative stress markers levels. We also found a positive correlation between Body Mass Index (BMI), Cys, GSH, and Hcy levels, between insulin and Cys levels, and between BMI and the homeostasis model assessment-estimated insulin resistance (HOMA-IR) with 8-isoprostane levels. Finally, we found a correlation between age and GSH and Cys levels. The deficiency of GSH could be restored by dietary supplementation with GSH precursors, supplying an inexpensive approach to oppose oxidative stress, thus avoiding obesity complications.
Collapse
|
9
|
Ma Z, Wang W, Zhang D, Zhang Y, Zhao Y, Li X, Zhao L, Lin C, Wang J, Zhou B, Cheng J, Xu D, Li W, Yang X, Huang Y, Cui P, Liu J, Zeng X, Zhai R, Zhang X. Ovine RAP1GAP and rBAT gene polymorphisms and their association with tail fat deposition in Hu sheep. Front Vet Sci 2022; 9:974513. [PMID: 36090178 PMCID: PMC9453205 DOI: 10.3389/fvets.2022.974513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive fat deposition in the tail of sheep will affect its feed efficiency, which will increase the feeding cost. The purpose of this study was to identify the single nucleotide polymorphisms (SNPs) of RAP1GAP and rBAT genes by PCR amplification and Sanger sequencing, the SNPs were genotyped by KASP genotyping assays to evaluate their association with tail fat deposition traits. The results showed that two intronic mutations of g.13561 G > A and g.1460 T > C were found in RAP1GAP and rBAT, respectively. There were three genotypes of GG, AG, AA and CC, CT and TT at these two loci, respectively. Association analysis showed that g.13561 G > A of RAP1GAP was associated with tail width, tail fat weight and relative tail fat weight (P < 0.05). The g.1460 T > C of rBAT was associated with tail width and tail fat weight (P < 0.05). Different combinations of genotypes also differed significantly with tail fat deposition traits. In the tail fat tissue, the expression levels of RAP1GAP gene was significantly higher in small-tailed sheep than in big-tailed sheep, and the expression levels of rBAT gene was significantly higher in big-tailed sheep than in small-tailed sheep. In the liver, the expression levels of RAP1GAP and rBAT gene was significantly higher at 6 months than at 0 and 3 months. In conclusion, RAP1GAP and rBAT polymorphisms can be used as a candidate molecular marker to reduce tail fat deposition in sheep.
Collapse
Affiliation(s)
- Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Xiaoxue Zhang
| |
Collapse
|
10
|
Microbiome-metabolomics insights into the feces of high-fat diet mice to reveal the anti-obesity effects of yak (Bos grunniens) bone collagen hydrolysates. Food Res Int 2022; 156:111024. [DOI: 10.1016/j.foodres.2022.111024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 12/14/2022]
|
11
|
Gu C, Zhou Z, Yu Z, He M, He L, Luo Z, Xiao W, Yang Q, Zhao F, Li W, Shen L, Han J, Cao S, Zuo Z, Deng J, Yan Q, Ren Z, Zhao M, Yu S. The Microbiota and It’s Correlation With Metabolites in the Gut of Mice With Nonalcoholic Fatty Liver Disease. Front Cell Infect Microbiol 2022; 12:870785. [PMID: 35694542 PMCID: PMC9186341 DOI: 10.3389/fcimb.2022.870785] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
In recent years, nonalcoholic fatty liver disease (NAFLD) has become the most common liver disease in the world. As an important model animal, the characteristics of gut microbiota alteration in mice with NAFLD have been studied but the changes in metabolite abundance in NAFLD mice and how the gut microbiota affects these intestinal metabolites remain unclear. In this experiment, a mouse model for NAFLD was established by a high-fat diet. The use of 16S rDNA technology showed that while there were no significant changes in the alpha diversity in the cecum of NAFLD mice, the beta diversity changed significantly. The abundance of Blautia, Unidentified-Lachnospiraceae, Romboutsia, Faecalibaculum, and Ileibacterium increased significantly in NAFLD mice, while Allobaculum and Enterorhabdus decreased significantly. Amino acids, lipids, bile acids and nucleotide metabolites were among the 167 significantly different metabolites selected. The metabolic pathways of amino acids, SFAs, and bile acids were significantly enhanced, while the metabolic pathways of PUFAs, vitamins, and nucleotides were significantly inhibited. Through correlation and MIMOSA2 analysis, it is suggested that gut microbiota does not affect the changes of lipids and bile acids but can reduce thiamine, pyridoxine, and promote L-phenylalanine and tyramine production. The findings of this study will help us to better understand the relationship between gut microbiota and metabolites in NAFLD.
Collapse
Affiliation(s)
- Congwei Gu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
| | - Zihan Zhou
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zehui Yu
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
| | - Manli He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
| | - Lvqin He
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
| | - Zhengzhong Luo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wudian Xiao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
| | - Qian Yang
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
| | - Fangfang Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Weiyao Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Liuhong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jianhong Han
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
| | - Suizhong Cao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qigui Yan
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhihua Ren
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingde Zhao
- Laboratory Animal Centre, Southwest Medical University, Luzhou, China
- *Correspondence: Mingde Zhao, ; Shumin Yu,
| | - Shumin Yu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Mingde Zhao, ; Shumin Yu,
| |
Collapse
|
12
|
Mirzababaei A, Daneshzad E, Shiraseb F, Pourreza S, Setayesh L, Clark CCT, Tangestani H, Abaj F, Yarizadeh H, Mirzaei K. Variants of the cry 1 gene may influence the effect of fat intake on resting metabolic rate in women with overweight of obesity: a cross-sectional study. BMC Endocr Disord 2021; 21:196. [PMID: 34610814 PMCID: PMC8493740 DOI: 10.1186/s12902-021-00860-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/16/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Previous studies have shown that the minor allele (C allele) for Cry 1 rs2287161, may be associated with increased risk of cardiovascular diseases (CVDs). Low resting metabolic rate (RMR) caused by the diet has been shown to have, potentially, unfavorable effects on obesity. This study sought to investigate the interactions between the Cry 1 Gene and fat intake on RMR in women with overweight of obesity. METHODS This comparative cross-sectional study was conducted on 377 Iranian women with overweight of obesity. A food frequency questionnaire (FFQ), with 147 items, was used to assess dietary intake. Individuals were categorized into two groups based on the rs2287161 genotype. Body composition, dietary intake, and RMR were assessed for all participants. RESULTS There was a significant difference between genotypes for fasting blood sugar (FBS) (P = 0.04), fat free mass (FFM) (P = 0.0009), RMR per FFM (P = 0.05), RMR per body mass index (BMI) (P = 0.02), and RMR deviation (P = 0.01). Our findings also showed significant interactions between total fat and C allele carrier group on RMR per kg body weight, RMR per body surface area (BSA), RMR per FFM, and RMR deviation (P for interaction < 0.1), in addition to a significant interaction between CC + CG group genotype and polyunsaturated fatty acids (PUFA) intake on RMR per BMI (P for interaction =0.00) and RMR per kg (P for interaction = 0.02) and RMR per BSA (P = 0.07), compared to the GG group, after control for confounder factors. CONCLUSION These results highlight that dietary compositions, gene variants, and their interaction, should be acutely considered in lower RMR.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box:14155-6117, Tehran, Iran
| | - Elnaz Daneshzad
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box:14155-6117, Tehran, Iran
| | - Sanaz Pourreza
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box:14155-6117, Tehran, Iran
| | - Leila Setayesh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box:14155-6117, Tehran, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Hadith Tangestani
- Department of Nutrition, Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box:14155-6117, Tehran, Iran
| | - Habib Yarizadeh
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box:14155-6117, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O.Box:14155-6117, Tehran, Iran.
| |
Collapse
|
13
|
Posey EA, Bazer FW, Wu G. Amino Acids and Their Metabolites for Improving Human Exercising Performance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:151-166. [PMID: 34251643 DOI: 10.1007/978-3-030-74180-8_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Achieving adequate nutrition for exercising humans is especially important for improving both muscle mass and metabolic health. One of the most common misunderstandings in the fitness industry is that the human body has requirements for dietary whole protein and that exercising individuals must consume only whole protein to meet their physiological needs. This view, however, is incorrect. Instead, humans at rest or during exercise have requirements for dietary amino acids (AAs), and dietary protein is a source of AAs in the body. The requirements for AAs must be met each day to avoid a negative nitrogen balance in individuals with moderate or intense physical activity. By properly meeting increased requirements for AAs through increased intake of high-quality protein (the source of AAs) plus supplemental AAs, athletes can improve their overall athletic performance. AAs or metabolites that are of special importance for exercising individuals include arginine, branched-chain AAs, creatine, glycine, taurine, and glutamine. The AAs play vital roles as both substrates for protein synthesis and molecules for regulating blood flow and nutrient metabolism. The functional roles of AAs include the maintenance of cell and tissue integrity; stimulation of mechanistic target of rapamycin and AMP-activated protein kinase cell signaling pathways; energy sources for the small intestine, cells of the immune system, and skeletal muscle; antioxidant and anti-inflammatory reactions; production of neurotransmitters; modulation of acid-base balance in the body. All of those roles are crucial for the overall goal of improving exercise performance. Therefore, adequate intakes of proteinogenic AAs and their functional metabolites, especially those noted in this review, are essential for optimal human health (including optimum muscle mass and function) and should be a primary goal of exercising individuals.
Collapse
Affiliation(s)
- Erin A Posey
- Department of Animal Science, Texas A&M University, College Station, Texas, TX, 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, TX, 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, Texas, TX, 77843, USA.
| |
Collapse
|
14
|
Cifani C, Alboni S, Mucci A, Benatti C, Botticelli L, Brunello N, Micioni Di Bonaventura MV, Righi V. Serum metabolic signature of binge-like palatable food consumption in female rats by nuclear magnetic resonance spectroscopy. NMR IN BIOMEDICINE 2021; 34:e4469. [PMID: 33458898 DOI: 10.1002/nbm.4469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/17/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Maladaptive eating behavior is a growing public health problem and compulsively eating excessive food in a short time, or binge eating, is a key symptom of many eating disorders. In order to investigate the binge-like eating behavior in female rats, induced by intermittent food restrictions/refeeding and frustration stress, we analyzed for the first time the metabolic profile obtained from serum of rats, through nuclear magnetic resonance (NMR) spectroscopy. In this experimental protocol, rats were exposed to chow food restricting/refeeding and frustration stress manipulation. This stress procedure consists of 15 min exposure to the odor and sight of a familiar chocolate paste, without access to it, just before offering the palatable food. In this model, a "binge-eating episode" was considered the significantly higher palatable food consumption within 2 h in restricted and stressed rats (R + S) than in the other three experimental groups: rats with no food restriction and no stress (NR + NS), only stressed rats (NR + S) or only restricted rats (R + NS). Serum samples from these four different rat groups were collected. The statistical analysis of the 1 H NMR spectral profiles of the four sets of samples pointed to O- and N-acetyl glycoproteins as the main biomarkers for the discrimination of restriction effects. Other metabolites, such as threonine, glycine, glutamine, acetate, pyruvate and lactate, showed trends that may be useful to understand metabolic pathways involved in eating disorders. This study suggested that NMR-based metabolomics is a suitable approach to detect biomarkers related to binge-eating behavior.
Collapse
Affiliation(s)
- Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Silvia Alboni
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Adele Mucci
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Cristina Benatti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Camerino, Italy
| | - Nicoletta Brunello
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | - Valeria Righi
- Department for the Quality of Life Studies, University of Bologna, Rimini, Italy
| |
Collapse
|
15
|
Che D, Nyingwa PS, Ralinala KM, Maswanganye GMT, Wu G. Amino Acids in the Nutrition, Metabolism, and Health of Domestic Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:217-231. [PMID: 33770409 DOI: 10.1007/978-3-030-54462-1_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Domestic cats (carnivores) require high amounts of dietary amino acids (AAs) for normal growth, development, and reproduction. Amino acids had been traditionally categorised as nutritionally essential (EAAs) or nonessential (NEAAs), depending on whether they are synthesized de novo in the body. This review will focus on AA nutrition and metabolism in cats. Like other mammals, cats do not synthesize the carbon skeletons of twelve proteinogenic AAs: Arg, Cys, His, Ile, Leu, Lys, Met, Phe, Thr, Trp, Tyr, and Val. Like other feline carnivores but unlike many mammals, cats do not synthesize citrulline and have a very limited ability to produce taurine from Cys. Except for Leu and Lys that are strictly ketogenic AAs, most EAAs are both glucogenic and ketogenic AAs. All the EAAs (including taurine) must be provided in diets for cats. These animals are sensitive to dietary deficiencies of Arg and taurine, which rapidly result in life-threatening hyperammonemia and retinal damage, respectively. Although the National Research Council (NCR, Nutrient requirements of dogs and cats. National Academies Press, Washington, DC, 2006) does not recommend dietary requirements of cats for NEAAs, much attention should be directed to this critical issue of nutrition. Cats can synthesize de novo eight proteinogenic AAs: Ala, Asn, Asp, Gln, Glu, Gly, Pro, and Ser, as well as some nonproteinogenic AAs, such as γ-aminobutyrate, ornithine, and β-alanine with important physiological functions. Some of these AAs (e.g., Gln, Glu, Pro, and Gly) are crucial for intestinal integrity and health. Except for Gln, AAs in the arterial blood of cats may not be available to the mucosa of the small intestine. Plant-source foodstuffs lack taurine and generally contain inadequate Met and Cys and, therefore, should not be fed to cats in any age group. Besides meat, animal-source foodstuffs (including ruminant meat & bone meal, poultry by-product meal, porcine mucosal protein, and chicken visceral digest) are good sources of proteinogenic AAs and taurine for cats. Meeting dietary requirements for both EAAs and NEAAs in proper amounts and balances is crucial for improving the health, wellbeing, longevity, and reproduction of cats.
Collapse
Affiliation(s)
- Dongsheng Che
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Pakama S Nyingwa
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Khakhathi M Ralinala
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gwen M T Maswanganye
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
16
|
Si H, Han Y, Liu H, Lou Y, Li Z. Effects of rumen-protected arginine supplementation on the plasma amino acids and gut microbiota of sika deer (Cervus nippon). Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
17
|
Does Proteomic Mirror Reflect Clinical Characteristics of Obesity? J Pers Med 2021; 11:jpm11020064. [PMID: 33494491 PMCID: PMC7912072 DOI: 10.3390/jpm11020064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/14/2022] Open
Abstract
Obesity is a frightening chronic disease, which has tripled since 1975. It is not expected to slow down staying one of the leading cases of preventable death and resulting in an increased clinical and economic burden. Poor lifestyle choices and excessive intake of “cheap calories” are major contributors to obesity, triggering type 2 diabetes, cardiovascular diseases, and other comorbidities. Understanding the molecular mechanisms responsible for development of obesity is essential as it might result in the introducing of anti-obesity targets and early-stage obesity biomarkers, allowing the distinction between metabolic syndromes. The complex nature of this disease, coupled with the phenomenon of metabolically healthy obesity, inspired us to perform data-centric, hypothesis-generating pilot research, aimed to find correlations between parameters of classic clinical blood tests and proteomic profiles of 104 lean and obese subjects. As the result, we assembled patterns of proteins, which presence or absence allows predicting the weight of the patient fairly well. We believe that such proteomic patterns with high prediction power should facilitate the translation of potential candidates into biomarkers of clinical use for early-stage stratification of obesity therapy.
Collapse
|
18
|
Role of L-Arginine in Nitric Oxide Synthesis and Health in Humans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:167-187. [PMID: 34251644 DOI: 10.1007/978-3-030-74180-8_10] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As a functional amino acid (AA), L-arginine (Arg) serves not only as a building block of protein but also as an essential substrate for the synthesis of nitric oxide (NO), creatine, polyamines, homoarginine, and agmatine in mammals (including humans). NO (a major vasodilator) increases blood flow to tissues. Arg and its metabolites play important roles in metabolism and physiology. Arg is required to maintain the urea cycle in the active state to detoxify ammonia. This AA also activates cellular mechanistic target of rapamycin (MTOR) and focal adhesion kinase cell signaling pathways in mammals, thereby stimulating protein synthesis, inhibiting autophagy and proteolysis, enhancing cell migration and wound healing, promoting spermatogenesis and sperm quality, improving conceptus survival and growth, and augmenting the production of milk proteins. Although Arg is formed de novo from glutamine/glutamate and proline in humans, these synthetic pathways do not provide sufficient Arg in infants or adults. Thus, humans and other animals do have dietary needs of Arg for optimal growth, development, lactation, and fertility. Much evidence shows that oral administration of Arg within the physiological range can confer health benefits to both men and women by increasing NO synthesis and thus blood flow in tissues (e.g., skeletal muscle and the corpora cavernosa of the penis). NO is a vasodilator, a neurotransmitter, a regulator of nutrient metabolism, and a killer of bacteria, fungi, parasites, and viruses [including coronaviruses, such as SARS-CoV and SARS-CoV-2 (the virus causing COVID-19). Thus, Arg supplementation can enhance immunity, anti-infectious, and anti-oxidative responses, fertility, wound healing, ammonia detoxification, nutrient digestion and absorption, lean tissue mass, and brown adipose tissue development; ameliorate metabolic syndromes (including dyslipidemia, obesity, diabetes, and hypertension); and treat individuals with erectile dysfunction, sickle cell disease, muscular dystrophy, and pre-eclampsia.
Collapse
|
19
|
Manivannan A, Lee ES, Han K, Lee HE, Kim DS. Versatile Nutraceutical Potentials of Watermelon-A Modest Fruit Loaded with Pharmaceutically Valuable Phytochemicals. Molecules 2020; 25:E5258. [PMID: 33187365 PMCID: PMC7698065 DOI: 10.3390/molecules25225258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 11/16/2022] Open
Abstract
Watermelon (Citrulus lantus) is an important horticultural crop which belongs to the Curcubitaceae family. The nutraceutical potential of watermelon has been illustrated by several researchers, which makes it a better choice of functional food. Watermelon has been used to treat various ailments, such as cardio-vascular diseases, aging related ailments, obesity, diabetes, ulcers, and various types of cancers. The medicinal properties of watermelon are attributed by the presence of important phytochemicals with pharmaceutical values such as lycopene, citrulline, and other polyphenolic compounds. Watermelon acts as vital source of l-citrulline, a neutral-alpha amino acid which is the precursor of l-arginine, an essential amino acid necessary for protein synthesis. Supplementation of l-citrulline and lycopene displayed numerous health benefits in in vitro and in vivo studies. Similarly, the dietary intake of watermelon has proven benefits as functional food in humans for weight management. Apart from the fruits, the extracts prepared from the seeds, sprouts, and leaves also evidenced medicinal properties. The present review provides a comprehensive overview of benefits of watermelon for the treatment of various ailments.
Collapse
Affiliation(s)
| | | | | | | | - Do-Sun Kim
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Jeonju 55365, Korea; (A.M.); (E.-S.L.); (K.H.); (H.-E.L.)
| |
Collapse
|
20
|
Fang H, Li Z, Graff EC, McCafferty KJ, Judd RL. Niacin increases diet-induced hepatic steatosis in B6129 mice. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158731. [PMID: 32404278 DOI: 10.1016/j.bbalip.2020.158731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a very common disorder affecting between 20 and 30% of adults in the United States. However, there is no effective pharmacotherapy for treating NAFLD. Niacin, a water-soluble vitamin (B3), at pharmacological doses, decreases hepatic triglyceride (TG) content in NAFLD through inhibition of diacylglycerol acyltransferase 2, a key enzyme that catalyzes the final step in TG synthesis. Alternatively, some studies indicate that niacin induces fatty liver in high-fat diet (HFD)-fed rats. Therefore, in this study we investigated whether niacin is beneficial in treating NAFLD in two strains of mice, C57BL/6J (B6) and B6129SF2/J (B6129) mice, with 20 weeks of HFD feeding. Niacin treatment was started from week 5 until the end of the study. Niacin treatment increased normalized liver weight, hepatic TG content and NAFLD score in HFD-fed B6129 mice but had no impact on B6 mice. Metabolomics analysis revealed that in B6129 mice, 4-hydroxyphenylpyruvic acid (4-HPP), which is associated with fatty acid oxidation, did not change with HFD feeding but significantly decreased with niacin treatment. Lipidomics analysis discovered that the abundance of phosphocholine (PC), which is critical for very low-density lipoprotein (VLDL)-TG production and secretion, was decreased in HFD-fed B6129 with niacin treatment. In conclusion, niacin had no impact on diet-induced NAFLD development in B6 mice but potentiated hepatic steatosis in HFD-fed B6129 mice due to impaired fatty acid oxidation and decreased VLDL-TG production and secretion.
Collapse
Affiliation(s)
- Han Fang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Zhuoyue Li
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Emily C Graff
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Kayleen J McCafferty
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America
| | - Robert L Judd
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States of America.
| |
Collapse
|
21
|
Ma Q, Zhou X, Sun Y, Hu L, Zhu J, Shao C, Meng Q, Shan A. Threonine, but Not Lysine and Methionine, Reduces Fat Accumulation by Regulating Lipid Metabolism in Obese Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4876-4883. [PMID: 32293174 DOI: 10.1021/acs.jafc.0c01023] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Some amino acids (AAs) have been proven to suppress fat mass and improve insulin sensitivity. However, the impact of important essential AAs, threonine, lysine, and methionine, on obesity has not been clarified. In the present study, after an 8 week period of obesity induction, mice were grouped to receive either a high-fat diet (HFD) or HFD supplemented with lysine, threonine, or methionine (3% in drinking water) for another 10 weeks. The results showed that dietary supplementation with threonine significantly decreased body weight, epididymal and perirenal fat pad weights, serum concentrations of glucose, triacylglycerols, total cholesterol, and LDL-cholesterol compared to the HFD group. HOMA-IR and serum leptin and adiponectin were improved by threonine supplementation. In epididymal adipose tissue, threonine treatment significantly down-regulated the expression levels of lipogenesis and up-regulated expressions of lipolysis compared to the HFD group. Threonine addition stimulated the expression of UCP-1 and related genes in brown adipose tissue. However, lysine or methionine supplementation showed little effect on body weight, WAT weight, serum lipid profiles, and lipid-metabolism-related gene expressions of HFD-fed mice. These findings suggest that threonine inhibited fat mass and improved lipid metabolism of already obese mice, providing a potential agent in treating obesity.
Collapse
Affiliation(s)
- Qingquan Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Xinbo Zhou
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Yuchen Sun
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Linlin Hu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Jialiang Zhu
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Changxuan Shao
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Qingwei Meng
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
22
|
Selenium and Selenoproteins in Adipose Tissue Physiology and Obesity. Biomolecules 2020; 10:biom10040658. [PMID: 32344656 PMCID: PMC7225961 DOI: 10.3390/biom10040658] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/13/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
Selenium (Se) homeostasis is tightly related to carbohydrate and lipid metabolism, but its possible roles in obesity development and in adipocyte metabolism are unclear. The objective of the present study is to review the current data on Se status in obesity and to discuss the interference between Se and selenoprotein metabolism in adipocyte physiology and obesity pathogenesis. The overview and meta-analysis of the studies on blood Se and selenoprotein P (SELENOP) levels, as well as glutathione peroxidase (GPX) activity in obese subjects, have yielded heterogenous and even conflicting results. Laboratory studies demonstrate that Se may modulate preadipocyte proliferation and adipogenic differentiation, and also interfere with insulin signaling, and regulate lipolysis. Knockout models have demonstrated that the selenoprotein machinery, including endoplasmic reticulum-resident selenoproteins together with GPXs and thioredoxin reductases (TXNRDs), are tightly related to adipocyte development and functioning. In conclusion, Se and selenoproteins appear to play an essential role in adipose tissue physiology, although human data are inconsistent. Taken together, these findings do not support the utility of Se supplementation to prevent or alleviate obesity in humans. Further human and laboratory studies are required to elucidate associations between Se metabolism and obesity.
Collapse
|
23
|
Zhang X, Sun Z, Cai J, Wang G, Wang J, Zhu Z, Cao F. Dietary supplementation with fermented moringa oleifera leaves inhibits the lipogenesis in the liver of meat ducks. Anim Feed Sci Technol 2020. [DOI: 10.1016/j.anifeedsci.2019.114336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Khatun J, Loh TC, Akit H, Foo HL, Mohamad R, Kareem KY. Dietary supplementation with L-arginine and combinations of different oil sources beneficially regulates body fat deposition, lipogenic gene expression, growth performance and carcass yield in broiler chickens. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an19205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context Broiler meat with excessive of fat and saturated fatty acids content has serious health implication for consumers. The accumulation of abdominal fats in broiler chickens constitutes a loss of dietary energy and also reduces carcass yield. Oil rich in unsaturated fatty acids and l-arginine are effective for reducing fat deposition and improve meat quality. Aims The aim of this study was to examine the effects of supplementation of l-arginine (l-Arg) with four combinations of palm oil (PO) and sunflower oil (SO) on growth performance, carcass yield, fat deposition, lipogenic gene expression and blood lipid profile in broiler chickens. Methods A total of 180 1-day-old chicks (Cobb 500) were randomly assigned to five dietary treatments as: T1, 6% PO (control); T2, 6% PO + 0.25% l-Arg; T3, 4% PO + 2% SO + 0.25% l-Arg; T4, 2% PO + 4% SO + 0.25% l-Arg; and T5, 6% SO + 0.25% l-Arg. Key results Birds fed l-Arg and combinations of PO and SO had higher weight gain at starter and finisher period compared with the control. The carcass yield increased, and relative abdominal fat reduced in broiler fed with combinations of l-Arg and increased level of SO in the diet. The concentration of oleic, palmitoleic and total monounsaturated fatty acids in liver tissue decreased by addition of l-Arg in broiler diet. The palmitic and total saturated fatty acid decreased, and total unsaturated fatty acid and polyunsaturated fatty acids increased in liver tissue when PO replaced progressively by SO supplemented with l-Arg in the diet. The acetyl-CoA carboxylase , stearoyl-CoA desaturase and fatty acid synthetase gene expression tended to decrease by supplementation of l-Arg with an increased level of SO compared with control. Conclusion Supplementation with l-Arg and combination of PO and SO at the ratio of 4:2 could inhibit lipogenesis and subsequent lower abdominal fat deposition and enhance growth performance and carcass yield in broiler chickens. Implications Ratio of PO and SO, 4:2 with l-Arg supplementation in the dietary of broiler chickens can contribute to a better growth performance, lesser fat deposition and greater carcass yield.
Collapse
|
25
|
Che D, Adams S, Zhao B, Qin G, Jiang H. Effects of Dietary L-arginine Supplementation from Conception to Post- Weaning in Piglets. Curr Protein Pept Sci 2019; 20:736-749. [PMID: 30678624 DOI: 10.2174/1389203720666190125104959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Abstract
Weaned piglets experience sudden changes in their dietary patterns such as withdrawal from the easily digestible watery milk to a coarse cereal diet with both systemic and intestinal disruptions coupling with the expression of pro-inflammatory proteins which affects the immune system and the concentrations of haptoglobin including both positive and negative acute-phase proteins in the plasma. L-arginine is an important protein amino acid for piglets, but its inadequate synthesis is a nutritional problem for both sows and piglets. Recent studies indicated that dietary supplementation of L-arginine increased feed intake, uterine growth, placental growth and nutrient transport, maternal growth and health, embryonic survival, piglets birth weight, piglet's growth, and productivity, and decreased stillbirths. L-arginine is essential in several important pathways involved in the growth and development of piglets such as nitric oxide synthesis, energy metabolism, polyamine synthesis, cellular protein production and muscle accretion, and the synthesis of other functional amino acids. However, the underlying molecular mechanism in these key pathways remains largely unresolved. This review was conducted on the general hypothesis that L-arginine increased the growth and survival of post-weaning piglets. We discussed the effects of dietary L-arginine supplementation during gestation, parturition, lactation, weaning, and post-weaning in pigs as each of these stages influences the health and survival of sows and their progenies. Therefore, the aim of this review was to discuss through a logical approach the effects of L-arginine supplementation on piglet's growth and survival from conception to postweaning.
Collapse
Affiliation(s)
- Dongsheng Che
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Seidu Adams
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Bao Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Guixin Qin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Hailong Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| |
Collapse
|
26
|
Tekwe CD, Yao K, Lei J, Li X, Gupta A, Luan Y, Meininger CJ, Bazer FW, Wu G. Oral administration of α-ketoglutarate enhances nitric oxide synthesis by endothelial cells and whole-body insulin sensitivity in diet-induced obese rats. Exp Biol Med (Maywood) 2019; 244:1081-1088. [PMID: 31357871 DOI: 10.1177/1535370219865229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Obesity is a risk factor for many chronic diseases, including hypertension, type-2 diabetes, and cancer. Interestingly, concentrations of branched-chain amino acids (BCAAs) in plasma are commonly associated with endothelial dysfunction in humans and animals with obesity. Because L-leucine inhibits nitric oxide synthesis by endothelial cells (EC), we hypothesized that dietary supplementation with AKG (a substrate for BCAA transaminase) may stimulate BCAA catabolism in the small intestine and extra-intestinal tissues, thereby reducing the circulating concentrations of BCAAs and increasing nitric oxide synthesis by endothelial cells. Beginning at four weeks of age, male Sprague-Dawley rats were fed a low-fat or a high-fat diet for 15 weeks. At 19 weeks of age, lean or obese rats continued to be fed for 12 weeks their respective diets and received drinking water containing 0 or 1% AKG ( n = 8/group). At 31 weeks of age, the rats were euthanized to obtain tissues. Food intake did not differ ( P > 0.05) between rats supplemented with or without AKG. Oral administration of AKG (250 mg/kg BW per day) reduced ( P < 0.05) concentrations of BCAAs, glucose, ammonia, and triacylglycerols in plasma, adiposity, and glutamine:fructose-6-phosphate transaminase activity in endothelial cells, and enhanced ( P < 0.05) concentrations of the reduced form of glutathione in tissues, nitric oxide synthesis by endothelial cells, and whole-body insulin sensitivity (indicated by oral glucose tolerance test) in both low-fat and high-fat rats. AKG administration reduced ( P < 0.05) white adipose tissue weights of rats in the low-fat and high-fat groups. These novel results indicate that AKG can reduce adiposity and increase nitric oxide production by endothelial cells in diet-induced obese rats. Impact statement Obesity is associated with elevated concentrations of branched-chain amino acids, including L-leucine. L-Leucine inhibits the synthesis of nitric oxide from L-arginine by endothelial cells, contributing to impairments in angiogenesis, blood flow, and vascular dysfunction, as well as insulin resistance. Reduction in the circulating levels of branched-chain amino acids through dietary supplementation with α-ketoglutarate to promote their transamination in the small intestine and other tissues can restore nitric oxide synthesis in the vasculature and reduce the weights of white adipose tissues, thereby improving metabolic profiles and whole-body insulin sensitivity (indicated by oral glucose tolerance test) in diet-induced obese rats. Our findings provide a simple and effective nutritional means to alleviate metabolic syndrome in obese subjects. This is highly significant to combat the current obesity epidemic and associated health problems in humans worldwide.
Collapse
Affiliation(s)
- Carmen D Tekwe
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.,Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Kang Yao
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Jian Lei
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Xilong Li
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Anand Gupta
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Yuanyuan Luan
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.,Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843, USA
| |
Collapse
|
27
|
Kim MJ, Kim JH, Kim MS, Yang HJ, Lee M, Kwon DY. Metabolomics Associated with Genome-Wide Association Study Related to the Basal Metabolic Rate in Overweight/Obese Korean Women. J Med Food 2019; 22:499-507. [DOI: 10.1089/jmf.2018.4310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Min Jung Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Korea
| | - Jin Hee Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Korea
| | - Myung-Sunny Kim
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Korea
| | - Hye Jeong Yang
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Korea
| | - Myoungsook Lee
- Department of Food and Nutrition, Sungshin Women's University, Seoul, Korea
| | - Dae Young Kwon
- Research Division of Food Functionality, Korea Food Research Institute, Wanju-gun, Korea
| |
Collapse
|
28
|
Tomato Juice Supplementation Influences the Gene Expression Related to Steatosis in Rats. Nutrients 2018; 10:nu10091215. [PMID: 30200543 PMCID: PMC6165399 DOI: 10.3390/nu10091215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/25/2018] [Accepted: 08/31/2018] [Indexed: 12/12/2022] Open
Abstract
The objective of this work was to identify the effect of tomato juice on the expression of genes and levels of metabolites related to steatosis in rats. Male Sprague Dawley rats (8 weeks-old) were grouped (6 rats/group) in four experimental groups: NA (normal diet and water), NL (normal diet and tomato juice), HA (high-fat diet and water), and HL (high-fat diet and tomato juice). After an intervention period of 5 weeks, rats were sacrificed and biochemical parameters, biomarkers of oxidative stress, liver metabolites, and gene expression were determined. Although the H diet provoked dislipemia related to steatosis, no changes in isoprostanes or liver malondialdehyde (MDA) were observed. Changes in the gene expression of the HA group were produced by the high consumption of fat, whereas the consumption of tomato juice had different effects, depending on the diet. In the NL group, the genes involved in β-oxidation were upregulated, and in groups NL and HL upregulation of CD36 and downregulation of APOB and LPL were observed. In addition, in the HL group the accumulation of lycopene upregulated the genes FXR and HNF4A, which have been suggested as preventive factors in relation to steatosis. Regarding the metabolomics study, intake of tomato juice stimulated the biosynthesis of glutathione and amino acids of the transulfurization pathway, increasing the levels of metabolites related to the antioxidant response.
Collapse
|
29
|
McNeal CJ, Meininger CJ, Wilborn CD, Tekwe CD, Wu G. Safety of dietary supplementation with arginine in adult humans. Amino Acids 2018; 50:1215-1229. [PMID: 29858688 DOI: 10.1007/s00726-018-2594-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/25/2018] [Indexed: 02/05/2023]
Abstract
Previous studies with animals and humans have shown beneficial effects of dietary supplementation with L-arginine (Arg) on reducing white fat and improving health. At present, a long-term safe level of Arg administration to adult humans is unknown. The objective of this study was to conduct a randomized, placebo-controlled, clinical trial to evaluate the safety and tolerability of oral Arg in overweight or obese but otherwise healthy adults with a body mass index of ≥ 25 kg/m2. A total of 142 subjects completed a 7-day wash-in period using a 12 g Arg/day dose. All the remaining eligible 101 subjects who tolerated the wash-in dose (45 men and 56 women) were assigned randomly to ingest 0, 15 or 30 g Arg (as pharmaceutical-grade Arg-HCl) per day for 90 days. Arg was taken daily in at least two divided doses by mixing with a flavored beverage. At Days 0 and 90, blood pressures of study subjects were recorded, their physical examinations were performed, and their blood and 24-h urine samples were obtained to measure: (1) serum concentrations of amino acids, glucose, fatty acids, and related metabolites; and (2) renal, hepatic, endocrine and metabolic parameters. Our results indicate that the serum concentration of Arg in men or women increased (P < 0.05) progressively with increasing oral Arg doses from 0 to 30 g/day. Dietary supplementation with 30 g Arg/day reduced (P < 0.05) systolic blood pressure and serum glucose concentration in females, as well as serum concentrations of free fatty acids in both males and females. Based on physiological and biochemical variables, study subjects tolerated oral administration of 15 and 30 g Arg/day without adverse events. We conclude that a long-term safe level of dietary Arg supplementation is at least 30 g/day in adult humans.
Collapse
Affiliation(s)
- Catherine J McNeal
- Department of Internal Medicine, Baylor Scott & White Health, Temple, TX, 76508, USA
| | - Cynthia J Meininger
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, TX, 76504, USA
| | - Colin D Wilborn
- Department of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, 76513, USA
| | - Carmen D Tekwe
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, TX, 76504, USA. .,Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
30
|
Moradi S, Mirzaei K, Maghbooli Z, Abdurahman AA, Keshavarz SA. Variants in the PPARGC1A Gene may Influence the Effect of Fat Intake on Resting Metabolic Rate in Obese Women. Lipids 2018; 53:291-300. [PMID: 29663401 DOI: 10.1002/lipd.12024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 11/26/2017] [Accepted: 11/27/2017] [Indexed: 12/17/2022]
Abstract
Recent studies have shown that dietary intake and genetic variants play a decisive role in the risk of obesity. Therefore, this study was designed to examine the interaction between dietary fat and PPARGC1A polymorphisms on the level of resting metabolic rate (RMR). We enrolled 288 Iranian overweight and obese women in this cross-sectional study. We sequenced the 648 b.p. DNA in Exon 8 of PPARGC1A gene. We analyzed the two single-nucleotide polymorphisms, namely rs11290186 and rs2970847, in this region. All participants were assessed for RMR, dietary intake, and body composition. This study demonstrated that total cholesterol and insulin levels were positively associated with T allele carriers of rs2970847. Moreover, the A-deletion allele carrier of the rs11290186 genotype had higher triacylglycerol and insulin concentrations. The current study revealed that, after adjustment for energy intake, the AA genotype of PPARGC1A (rs11290186) had a direct association with polyunsaturated fatty acids and linoleic acid intakes. Another important finding in our study was that there was an interaction seen between fat and saturated fatty acids intake with the PPARGC1A genotypes. Women with fat intakes of more than 30% of calorie intake per day and the A-deletion genotype had a lower RMR and RMR/fat free mass (FFM). It seems that the PPARGC1A polymorphisms lead to the downregulation of insulin signaling and subsequently insulin resistance. In addition, the interactions between the PPARGC1A polymorphisms (rs11290186) and the level of dietary fat intake probably can have an effect on RMR and RMR/FFM in obese women.
Collapse
Affiliation(s)
- Sajjad Moradi
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Zhila Maghbooli
- Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmed A Abdurahman
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Seyed Ali Keshavarz
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
31
|
Analysis of Glutathione in Biological Samples by HPLC Involving Pre-Column Derivatization with o-Phthalaldehyde. Methods Mol Biol 2018; 1694:105-115. [PMID: 29080160 DOI: 10.1007/978-1-4939-7398-9_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutathione (GSH) forms conjugates with polyamines in prokaryotes and eukaryotes. There is also evidence suggesting cross-talk between GSH and polyamines to regulate cellular homeostasis and function, particularly under the conditions of oxidative stress. Because of its versatile roles in cell metabolism and function, a number of high performance liquid chromatography (HPLC) methods have been developed for glutathione analysis. Here, we describe our rapid and sensitive method for the analysis of GSH and the oxidized form of glutathione (GS-SG) in animal tissues and cells by HPLC involving pre-column derivatization with o-phthalaldehyde (OPA). OPA reacts very rapidly (within 1 min) with S-carboxymethyl-glutathione at room temperatures (e.g., 20-25 °C) in an autosampler, and their derivatives are immediately injected into the HPLC column without any need for extraction. This method requires two simple steps (a total of 15 min) before samples are loaded into the autosampler: (a) the conversion of GS-SG into GSH by 2-mercaptoethanol; and (b) the oxidation of GSH by iodoacetic acid to yield S-carboxymethyl-glutathione. The autosampler is programmed to mix S-carboxymethyl-glutathione with OPA for 1 min to generate a highly fluorescent derivative for HPLC separation and detection (excitation wavelength 340 nm and emission wavelength 450 nm). The detection limit for GSH and GS-SG is 15 pmol/ml or 375 fmol/injection. The total time for chromatographic separation (including column regeneration) is 16 min for each sample. Our routine HPLC technique is applicable for analyses of cysteine and cystine, as well as polyamines and GSH-polyamine conjugates in biological samples.
Collapse
|
32
|
Moon J, Kim OY, Jo G, Shin MJ. Alterations in Circulating Amino Acid Metabolite Ratio Associated with Arginase Activity Are Potential Indicators of Metabolic Syndrome: The Korean Genome and Epidemiology Study. Nutrients 2017; 9:E740. [PMID: 28704931 PMCID: PMC5537854 DOI: 10.3390/nu9070740] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/05/2017] [Accepted: 07/05/2017] [Indexed: 01/02/2023] Open
Abstract
Upregulated arginase activity, which competes with nitric oxide synthase (NOS), impairs nitric oxide production and has been implicated in various metabolic disorders. This study examined whether circulating amino acid metabolite ratios are associated with arginase and NOS activities and whether arginine bioavailability is associated with metabolic syndrome (MetS). Data related to arginase and NOS activities were collected from non-diabetic Koreans without cardiovascular disease (n = 1998) in the Ansan-Ansung cohorts (2005-2006). Subsequently, correlation and multivariate logistic regression analyses were performed. With the increase in the number of MetS risk factors, ratios of circulating amino acid metabolites, such as those of ornithine/citrulline, proline/citrulline, and ornithine/arginine, also significantly increased, whereas arginine bioavailability significantly decreased. These metabolite ratios and arginase bioavailability were also significantly correlated with MetS risk-related parameters, which remained significant after adjusting for covariates. In addition, logistic regression analysis revealed that high ratios of circulating metabolites and low arginine bioavailability, which indicated increased arginase activity, were significantly associated with a high MetS risk. This study demonstrated that altered ratios of circulating amino acid metabolites indicates increased arginase activity and decreased arginine bioavailability, both of which can be potential markers for MetS risk.
Collapse
Affiliation(s)
- Jiyoung Moon
- Department of Public Health Sciences, BK21PLUS Program in Embodiment: Health-Society Interaction, Graduate School, Korea University, Seoul 02841, Korea.
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan 49315, Korea.
| | - Garam Jo
- Department of Public Health Sciences, BK21PLUS Program in Embodiment: Health-Society Interaction, Graduate School, Korea University, Seoul 02841, Korea.
| | - Min-Jeong Shin
- Department of Public Health Sciences, BK21PLUS Program in Embodiment: Health-Society Interaction, Graduate School, Korea University, Seoul 02841, Korea.
| |
Collapse
|
33
|
Ji Y, Wu Z, Dai Z, Wang X, Li J, Wang B, Wu G. Fetal and neonatal programming of postnatal growth and feed efficiency in swine. J Anim Sci Biotechnol 2017; 8:42. [PMID: 28484595 PMCID: PMC5420136 DOI: 10.1186/s40104-017-0173-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 04/18/2017] [Indexed: 01/10/2023] Open
Abstract
Maternal undernutrition or overnutrition during pregnancy alters organ structure, impairs prenatal and neonatal growth and development, and reduces feed efficiency for lean tissue gains in pigs. These adverse effects may be carried over to the next generation or beyond. This phenomenon of the transgenerational impacts is known as fetal programming, which is mediated by stable and heritable alterations of gene expression through covalent modifications of DNA and histones without changes in DNA sequences (namely, epigenetics). The mechanisms responsible for the epigenetic regulation of protein expression and functions include chromatin remodeling; DNA methylation (occurring at the 5´-position of cytosine residues within CpG dinucleotides); and histone modifications (acetylation, methylation, phosphorylation, and ubiquitination). Like maternal malnutrition, undernutrition during the neonatal period also reduces growth performance and feed efficiency (weight gain:feed intake; also known as weight-gain efficiency) in postweaning pigs by 5-10%, thereby increasing the days necessary to reach the market body-weight. Supplementing functional amino acids (e.g., arginine and glutamine) and vitamins (e.g., folate) play a key role in activating the mammalian target of rapamycin signaling and regulating the provision of methyl donors for DNA and protein methylation. Therefore, these nutrients are beneficial for the dietary treatment of metabolic disorders in offspring with intrauterine growth restriction or neonatal malnutrition. The mechanism-based strategies hold great promise for the improvement of the efficiency of pork production and the sustainability of the global swine industry.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 China
| | - Xiaolong Wang
- Henan Yinfa Animal Husbandry Co., Ltd., Xinzheng, Henan 451100 China
| | - Ju Li
- Henan Yinfa Animal Husbandry Co., Ltd., Xinzheng, Henan 451100 China
| | - Binggen Wang
- Henan Yinfa Animal Husbandry Co., Ltd., Xinzheng, Henan 451100 China
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, 100193 China.,Department of Animal Science and Center for Animal Genomics, Texas A&M University, Room 212, College Station, TX 77843 USA
| |
Collapse
|
34
|
Oral arginine supplementation protects female mice from the onset of non-alcoholic steatohepatitis. Amino Acids 2017; 49:1215-1225. [PMID: 28434046 PMCID: PMC5487836 DOI: 10.1007/s00726-017-2423-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 04/13/2017] [Indexed: 02/06/2023]
Abstract
Dietary arginine (Arg) supplementation has been proposed to have positive effects on the development of liver diseases. In the present study, we investigate if an oral Arg supplementation in diet protects mice fed a fructose, fat and cholesterol enriched Western-style diet (WSD) from the development of non-alcoholic steatohepatitis (NASH). Female C57BL/6J mice were fed a liquid control diet or a liquid WSD ± Arg (2.49 g/kg body weight/day) for 6 weeks. Indices of liver injury, glucose metabolism and intestinal permeability were determined. While Arg supplementation had no effects on body weight gain, fasting blood glucose levels were significantly lower in WSD+Arg-fed mice than in C+Arg-fed animals. WSD-fed mice developed liver steatosis accompanied with inflammation, both being significantly attenuated in WSD+Arg-fed mice. These effects of Arg supplementation went along with a protection against WSD-induced decreased tight junction protein levels in the upper parts of the small intestine, increased levels of bacterial endotoxin in portal plasma as well as increased hepatic toll-like receptor-4 mRNA and 4-hydroxynonenal protein adduct levels. In conclusion, Arg supplementation may protect mice from the development of NASH.
Collapse
|
35
|
Miles M, Kitevska-Ilioski T, Hawkins C. Old and Novel Functions of Caspase-2. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:155-212. [DOI: 10.1016/bs.ircmb.2016.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Wan J, Chen D, Yu B, Luo Y, Mao X, Zheng P, Yu J, Luo J, He J. Leucine Protects Against Skeletal Muscle Atrophy in Lipopolysaccharide-Challenged Rats. J Med Food 2016; 20:93-101. [PMID: 28009536 DOI: 10.1089/jmf.2016.3759] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Skeletal muscle atrophy is a decrease in muscle mass that occurs when protein degradation exceeds protein synthesis. Leucine (Leu), an essential branched-chain amino acid in animal nutrition, regulates skeletal muscle protein metabolism. Two experiments were conducted to evaluate whether Leu could alleviate lipopolysaccharide (LPS)-induced skeletal muscle wasting by modulating skeletal muscle protein synthesis and degradation. A total of 24 rats were randomly allocated into three groups (n = 8): (1) non-challenged control; (2) LPS-challenged control; and (3) LPS +3.0% Leu. Rats were fed with control or Leu-supplemented (part of the casein was replaced with 3.0% Leu) diets throughout the trial and were injected intraperitoneally with sterile saline or LPS at days 6, 11, 16, and 21. On the morning of day 22, serum samples were collected and rats were then sacrificed for liver and muscle analysis. In vitro protein degradation, nuclear factor-κB (NF-κB) activity, and proteolytic enzyme activities of the muscles from immune-challenged rats were also measured. Our results showed that the LPS challenge resulted in not only enhanced serum interleukin-1 and liver C-reactive protein (CRP) concentrations but also decreased the average daily body weight gain and muscle fiber diameter. However, dietary Leu inclusion attenuated the increase in CRP level and the decrease in muscle fiber diameter. Importantly, the LPS challenge caused a significant elevation in the muscle proteolysis rate, but dietary Leu supplementation significantly blocked the muscle proteolysis. The mRNA expression of NF-κB, muscle atrophy F-box (MAFbx), and muscle ring finger 1 (MuRF1) was upregulated by the LPS challenge in gastrocnemius muscles, but was downregulated by Leu supplementation. Interestingly, when muscles from the LPS-challenged rats were incubated with Leu in vitro, proteasome-, calpain-, and cathepsin-L-dependent muscle proteolysis and NF-κB activity were decreased. Collectively, the data suggest that Leu supplementation could inhibit excessive skeletal muscle degradation, as well as enhance protein synthesis and, thus, attenuate the negative effects caused by the LPS-induced immune challenge.
Collapse
Affiliation(s)
- Jin Wan
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu, Wenjiang District, Sichuan, China
| |
Collapse
|
37
|
Sex-specific alterations in glucose homeostasis and metabolic parameters during ageing of caspase-2-deficient mice. Cell Death Discov 2016; 2:16009. [PMID: 27551503 PMCID: PMC4979492 DOI: 10.1038/cddiscovery.2016.9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/12/2016] [Indexed: 01/20/2023] Open
Abstract
Gender-specific differences are commonly found in metabolic pathways and in response to nutritional manipulation. Previously, we identified a role for caspase-2 in age-related glucose homeostasis and lipid metabolism using male caspase-2-deficient (Casp2−/−) mice. Here we show that the resistance to age-induced glucose tolerance does not occur in female Casp2−/− mice and it appears to be independent of insulin sensitivity in males. Using fasting (18 h) as a means to further investigate the role of caspase-2 in energy and lipid metabolism, we identified sex-specific differences in the fasting response and lipid mobilization. In aged (18–22 months) male Casp2−/− mice, a significant decrease in fasting liver mass, but not total body weight, was observed while in females, total body weight, but not liver mass, was reduced when compared with wild-type (WT) animals. Fasting-induced lipolysis of adipose tissue was enhanced in male Casp2−/− mice as indicated by a significant reduction in white adipocyte cell size, and increased serum-free fatty acids. In females, white adipocyte cell size was significantly smaller in both fed and fasted Casp2−/− mice. No difference in fasting-induced hepatosteatosis was observed in the absence of caspase-2. Further analysis of white adipose tissue (WAT) indicated that female Casp2−/− mice may have enhanced fatty acid recycling and metabolism with expression of genes involved in glyceroneogenesis and fatty acid oxidation increased. Loss of Casp2 also increased fasting-induced autophagy in both male and female liver and in female skeletal muscle. Our observations suggest that caspase-2 can regulate glucose homeostasis and lipid metabolism in a tissue and sex-specific manner.
Collapse
|
38
|
Machado MV, Michelotti GA, Jewell ML, Pereira TA, Xie G, Premont RT, Diehl AM. Caspase-2 promotes obesity, the metabolic syndrome and nonalcoholic fatty liver disease. Cell Death Dis 2016; 7:e2096. [PMID: 26890135 PMCID: PMC5399190 DOI: 10.1038/cddis.2016.19] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/18/2023]
Abstract
Obesity and its resulting metabolic disturbances are major health threats. In response to energy surplus, overtaxed adipocytes release fatty acids and pro-inflammatory factors into the circulation, promoting organ fat accumulation (including nonalcoholic fatty liver disease), insulin resistance and the metabolic syndrome. Recently, caspase-2 was linked to lipoapoptosis, so we hypothesized that caspase-2 might be a critical determinant of metabolic syndrome pathogenesis. Caspase-2-deficient and wild-type mice were fed a Western diet (high-fat diet, enriched with saturated fatty acids and 0.2% cholesterol, supplemented with fructose and glucose in the drinking water) for 16 weeks. Metabolic and hepatic outcomes were evaluated. In vitro studies assessed the role of caspase-2 in adipose tissue proliferative properties and susceptibility for lipoapoptosis. Caspase-2-deficient mice fed a Western diet were protected from abdominal fat deposition, diabetes mellitus, dyslipidemia and hepatic steatosis. Adipose tissue in caspase-2-deficient mice was more proliferative, upregulated mitochondrial uncoupling proteins consistent with browning, and was resistant to cell hypertrophy and cell death. The liver was protected from steatohepatitis through a decrease in circulating fatty acids and more efficient hepatic fat metabolism, and from fibrosis as a consequence of reduced fibrogenic stimuli from fewer lipotoxic hepatocytes. Caspase-2 deficiency protected mice from diet-induced obesity, metabolic syndrome and nonalcoholic fatty liver disease. Further studies are necessary to assess caspase-2 as a therapeutic target for those conditions.
Collapse
Affiliation(s)
- M V Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA.,Gastroenterology Department, Hospital de Santa Maria, Lisbon, Portugal
| | - G A Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - M L Jewell
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - T A Pereira
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - G Xie
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - R T Premont
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | - A M Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
39
|
Alterations of amino acid metabolism in osteoarthritis: its implications for nutrition and health. Amino Acids 2016; 48:907-914. [DOI: 10.1007/s00726-015-2168-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/30/2015] [Indexed: 01/15/2023]
|
40
|
Merlin J, Evans BA, Dehvari N, Sato M, Bengtsson T, Hutchinson DS. Could burning fat start with a brite spark? Pharmacological and nutritional ways to promote thermogenesis. Mol Nutr Food Res 2015. [DOI: 10.1002/mnfr.201500251] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jon Merlin
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Australia
| | - Bronwyn A. Evans
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Australia
| | - Nodi Dehvari
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| | - Masaaki Sato
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Australia
- Department of Pharmacology; Monash University; Clayton Australia
| | - Tore Bengtsson
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| | - Dana S. Hutchinson
- Drug Discovery Biology; Monash Institute of Pharmaceutical Sciences; Monash University; Parkville Australia
- Department of Pharmacology; Monash University; Clayton Australia
| |
Collapse
|
41
|
Machado MV, Michelotti GA, Pereira de Almeida T, Boursier J, Kruger L, Swiderska-Syn M, Karaca G, Xie G, Guy CD, Bohnic B, Lindblom KR, Johnson E, Kornbluth S, Diehl AM. Reduced lipoapoptosis, hedgehog pathway activation and fibrosis in caspase-2 deficient mice with non-alcoholic steatohepatitis. Gut 2015; 64:1148-57. [PMID: 25053716 PMCID: PMC4303564 DOI: 10.1136/gutjnl-2014-307362] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/07/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Caspase-2 is an initiator caspase involved in multiple apoptotic pathways, particularly in response to specific intracellular stressors (eg, DNA damage, ER stress). We recently reported that caspase-2 was pivotal for the induction of cell death triggered by excessive intracellular accumulation of long-chain fatty acids, a response known as lipoapoptosis. The liver is particularly susceptible to lipid-induced damage, explaining the pandemic status of non-alcoholic fatty liver disease (NAFLD). Progression from NAFLD to non-alcoholic steatohepatitis (NASH) results, in part, from hepatocyte apoptosis and consequential paracrine-mediated fibrogenesis. We evaluated the hypothesis that caspase-2 promotes NASH-related cirrhosis. DESIGN Caspase-2 was localised in liver biopsies from patients with NASH. Its expression was evaluated in different mouse models of NASH, and outcomes of diet-induced NASH were compared in wild-type (WT) and caspase-2-deficient mice. Lipotoxicity was modelled in vitro using hepatocytes derived from WT and caspase-2-deficient mice. RESULTS We showed that caspase-2 is integral to the pathogenesis of NASH-related cirrhosis. Caspase-2 is localised in injured hepatocytes and its expression was markedly upregulated in patients and animal models of NASH. During lipotoxic stress, caspase-2 deficiency reduced apoptosis, inhibited induction of profibrogenic hedgehog target genes in mice and blocked production of hedgehog ligands in cultured hepatocytes. CONCLUSIONS These data point to a critical role for caspase-2 in lipid-induced hepatocyte apoptosis in vivo for the production of apoptosis-associated fibrogenic factors and in the progression of lipid-induced liver fibrosis. This raises the intriguing possibility that caspase-2 may be a promising therapeutic target to prevent progression to NASH.
Collapse
Affiliation(s)
- MV Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA,Gastroenterology Department, Hospital de Santa Maria, CHLN, Lisbon, Portugal
| | - GA Michelotti
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - T Pereira de Almeida
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - J Boursier
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA,HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - L Kruger
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - M Swiderska-Syn
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - G Karaca
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - G Xie
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - CD Guy
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - B Bohnic
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - KR Lindblom
- Division of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - E Johnson
- Division of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - S Kornbluth
- Division of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - AM Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
42
|
Coverdale JA, Hammer CJ, Walter KW. HORSE SPECIES SYMPOSIUM: Nutritional programming and the impact on mare and foal performance1. J Anim Sci 2015; 93:3261-7. [DOI: 10.2527/jas.2015-9057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
43
|
Hou Y, Yin Y, Wu G. Dietary essentiality of "nutritionally non-essential amino acids" for animals and humans. Exp Biol Med (Maywood) 2015; 240:997-1007. [PMID: 26041391 DOI: 10.1177/1535370215587913] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Based on growth or nitrogen balance, amino acids (AA) had traditionally been classified as nutritionally essential (indispensable) or non-essential (dispensable) for animals and humans. Nutritionally essential AA (EAA) are defined as either those AA whose carbon skeletons cannot be synthesized de novo in animal cells or those that normally are insufficiently synthesized de novo by the animal organism relative to its needs for maintenance, growth, development, and health and which must be provided in the diet to meet requirements. In contrast, nutritionally non-essential AA (NEAA) are those AA which can be synthesized de novo in adequate amounts by the animal organism to meet requirements for maintenance, growth, development, and health and, therefore, need not be provided in the diet. Although EAA and NEAA had been described for over a century, there are no compelling data to substantiate the assumption that NEAA are synthesized sufficiently in animals and humans to meet the needs for maximal growth and optimal health. NEAA play important roles in regulating gene expression, cell signaling pathways, digestion and absorption of dietary nutrients, DNA and protein synthesis, proteolysis, metabolism of glucose and lipids, endocrine status, men and women fertility, acid-base balance, antioxidative responses, detoxification of xenobiotics and endogenous metabolites, neurotransmission, and immunity. Emerging evidence indicates dietary essentiality of "nutritionally non-essential amino acids" for animals and humans to achieve their full genetic potential for growth, development, reproduction, lactation, and resistance to metabolic and infectious diseases. This concept represents a new paradigm shift in protein nutrition to guide the feeding of mammals (including livestock), poultry, and fish.
Collapse
Affiliation(s)
- Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yulong Yin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Guoyao Wu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
44
|
Safety of long-term dietary supplementation with L-arginine in rats. Amino Acids 2015; 47:1909-20. [PMID: 25948162 DOI: 10.1007/s00726-015-1992-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/13/2015] [Indexed: 02/05/2023]
Abstract
This study was conducted with rats to determine the safety of long-term dietary supplementation with L-arginine. Beginning at 6 weeks of age, male and female rats were fed a casein-based semi-purified diet containing 0.61 % L-arginine and received drinking water containing L-arginine-HCl (0, 1.8, or 3.6 g L-arginine/kg body-weight/day; n = 10/group). These supplemental doses of L-arginine were equivalent to 0, 286, and 573 mg L-arginine/kg body-weight/day, respectively, in humans. After a 13-week supplementation period, blood samples were obtained from rats for biochemical analyses. Supplementation with L-arginine increased plasma concentrations of arginine, ornithine, proline, homoarginine, urea, and nitric oxide metabolites without affecting those for lysine, histidine, or methylarginines, while reducing plasma concentrations of ammonia, glutamine, free fatty acids, and triglycerides. L-Arginine supplementation enhanced protein gain and reduced white-fat deposition in the body. Based on general appearance, feeding behavior, and physiological parameters, all animals showed good health during the entire experimental period; Plasma concentrations of all measured hormones (except leptin) did not differ between control and arginine-supplemented rats. L-Arginine supplementation reduced plasma levels of leptin. Additionally, L-arginine supplementation increased L-arginine:glycine amidinotransferase activity in kidneys but not in the liver or small intestine, suggesting tissue-specific regulation of enzyme expression by L-arginine. Collectively, these results indicate that dietary supplementation with L-arginine (e.g., 3.6 g/kg body-weight/day) is safe in rats for at least 91 days. This dose is equivalent to 40 g L-arginine/kg body-weight/day for a 70-kg person. Our findings help guide clinical studies to determine the safety of long-term oral administration of L-arginine to humans.
Collapse
|
45
|
Joffin N, Jaubert AM, Bamba J, Barouki R, Noirez P, Forest C. Acute induction of uncoupling protein 1 by citrulline in cultured explants of white adipose tissue from lean and high-fat-diet-fed rats. Adipocyte 2015; 4:129-34. [PMID: 26167416 PMCID: PMC4497294 DOI: 10.4161/21623945.2014.989748] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 01/14/2023] Open
Abstract
A diet enriched with citrulline (CIT) reduces white adipose tissue (WAT) mass. We recently showed that CIT stimulated β-oxidation in rat WAT explants from young (2-4 months) but not old (25 months) rats. Here we show that both in old rats and high-fat-diet-fed young rats, uncoupling protein one (UCP1) mRNA and protein expressions were weaker than those in young control rats. Selectively in WAT from young rats, a 24h CIT treatment up-regulated expressions of UCP1, peroxisome proliferator-activated receptor-α (PPARα), PPARγ-coactivator-1-α and mitochondrial-transcription-factor-A whereas it down-regulated PPARγ2 gene expression, whatever the diet. These results suggest that CIT induces a new metabolic status in WAT, with increased β-oxidation and uncoupling of respiratory chain, resulting in energy expenditure that favors fat mass reduction.
Collapse
Key Words
- ARG, arginine
- ASL, argininosuccinate lyase
- ASS, argininosuccinate synthase
- BSA, bovine serum albumin
- CD, control diet
- CIT, citrulline
- CPT1-b, carnitine palmitoyl transferase 1-b
- EPI, epididymal
- HFD, high-fat-diet
- KREBS, Krebs Ringer Buffer Saline
- NEFA, non-esterified fatty acids
- NO, nitric oxide
- NOS, nitric oxide synthase
- PEPCK-C, cytosolic phosphoenolpyruvate carboxykinase
- PGC-1α, peroxisome proliferator-activated receptor gamma co-activator 1α
- PKA, protein kinase A
- PPAR, peroxisome proliferator-activated receptor
- RET, retroperitoneal
- TFAM, mitochondrial transcription factor A
- UCP1
- VLCAD, very long chain acyl-CoA dehydrogenase
- WAT, white adipose tissue
- adipose tissue
- browning
- citrulline
- fatty acids
- obesity
Collapse
|
46
|
Ma X, Zheng C, Hu Y, Wang L, Yang X, Jiang Z. Dietary L-arginine supplementation affects the skeletal longissimus muscle proteome in finishing pigs. PLoS One 2015; 10:e0117294. [PMID: 25635834 PMCID: PMC4311982 DOI: 10.1371/journal.pone.0117294] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/30/2014] [Indexed: 01/07/2023] Open
Abstract
Forty-eight Duroc x Landrace x Large White gilts were used to determine the relationship between proteome changes of longissimus muscle and intramuscular fat (IMF) content in arginine-supplemented pigs. Beginning at 60 kg BW, pigs were fed a corn- and soybean meal-based diet supplemented or not with 1% L-arginine until they reached a BW of 100 kg. Supplementation with 1% L-arginine did not affect the growth performance or carcass traits, while it increased IMF content by 32% (P < 0.01), it also decreased the drip loss at 48 h post-mortem and the b* meat color value at 24 h post-mortem; supplementation with 1% dietary L-arginine did not change the proportion of SFA and MUFA in muscle lipids. The proteome changes in longissimus muscle between the control and supplemented pigs showed that L-arginine significantly influenced the abundance of proteins related to energy metabolism, fiber type and structure. The increase in IMF content was positively correlated with the increased abundance of slow twitch troponin I (TNNI1) protein and negatively correlated with myosin heavy chain IIb (MyHC IIb) protein content. It is suggested that the proteome changes in longissimus muscle contributed to the greater IMF content in L-arginine supplemented pigs.
Collapse
Affiliation(s)
- Xianyong Ma
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Chuntian Zheng
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Youjun Hu
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Li Wang
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Xuefen Yang
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
| | - Zongyong Jiang
- Institute of Animal Science; Guangdong Academy of Agricultural Sciences, Guangzhou, China
- State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangzhou, China
- Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, China
- * E-mail:
| |
Collapse
|
47
|
Assaad HI, Hou Y, Zhou L, Carroll RJ, Wu G. Rapid publication-ready MS-Word tables for two-way ANOVA. SPRINGERPLUS 2015; 4:33. [PMID: 25635246 PMCID: PMC4305362 DOI: 10.1186/s40064-015-0795-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/05/2015] [Indexed: 01/09/2023]
Abstract
BACKGROUND Statistical tables are an essential component of scientific papers and reports in biomedical and agricultural sciences. Measurements in these tables are summarized as mean ± SEM for each treatment group. Results from pairwise-comparison tests are often included using letter displays, in which treatment means that are not significantly different, are followed by a common letter. However, the traditional manual processes for computation and presentation of statistically significant outcomes in MS Word tables using a letter-based algorithm are tedious and prone to errors. RESULTS Using the R package 'Shiny', we present a web-based program freely available online, at https://houssein-assaad.shinyapps.io/TwoWayANOVA/. No download is required. The program is capable of rapidly generating publication-ready tables containing two-way analysis of variance (ANOVA) results. Additionally, the software can perform multiple comparisons of means using the Duncan, Student-Newman-Keuls, Tukey Kramer, Westfall, and Fisher's least significant difference (LSD) tests. If the LSD test is selected, multiple methods (e.g., Bonferroni and Holm) are available for adjusting p-values. Significance statements resulting from all pairwise comparisons are included in the table using the popular letter display algorithm. With the application of our software, the procedures of ANOVA can be completed within seconds using a web-browser, preferably Mozilla Firefox or Google Chrome, and a few mouse clicks. To our awareness, none of the currently available commercial (e.g., Stata, SPSS and SAS) or open-source software (e.g., R and Python) can perform such a rapid task without advanced knowledge of the corresponding programming language. CONCLUSIONS The new and user-friendly program described in this paper should help scientists perform statistical analysis and rapidly generate publication-ready MS-Word tables for two-way ANOVA. Our software is expected to facilitate research in agriculture, biomedicine, and other fields of life sciences.
Collapse
Affiliation(s)
- Houssein I Assaad
- Department of Statistics, Texas A & M University, College Station, TX 77843 USA ; Department of Animal Science, Texas A & M University, College Station, TX 77843 USA
| | - Yongqing Hou
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 China
| | - Lan Zhou
- Department of Statistics, Texas A & M University, College Station, TX 77843 USA
| | - Raymond J Carroll
- Department of Statistics, Texas A & M University, College Station, TX 77843 USA
| | - Guoyao Wu
- Department of Animal Science, Texas A & M University, College Station, TX 77843 USA ; Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan, 430023 China
| |
Collapse
|
48
|
Age-related proteostasis and metabolic alterations in Caspase-2-deficient mice. Cell Death Dis 2015; 6:e1615. [PMID: 25611376 PMCID: PMC4669765 DOI: 10.1038/cddis.2014.567] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 11/27/2014] [Indexed: 12/21/2022]
Abstract
Ageing is a complex biological process for which underlying biochemical changes are still largely unknown. We performed comparative profiling of the cellular proteome and metabolome to understand the molecular basis of ageing in Caspase-2-deficient (Casp2−/−) mice that are a model of premature ageing in the absence of overt disease. Age-related changes were determined in the liver and serum of young (6–9 week) and aged (18–24 month) wild-type and Casp2−/− mice. We identified perturbed metabolic pathways, decreased levels of ribosomal and respiratory complex proteins and altered mitochondrial function that contribute to premature ageing in the Casp2−/− mice. We show that the metabolic profile changes in the young Casp2−/− mice resemble those found in aged wild-type mice. Intriguingly, aged Casp2−/− mice were found to have reduced blood glucose and improved glucose tolerance. These results demonstrate an important role for caspase-2 in regulating proteome and metabolome remodelling during ageing.
Collapse
|
49
|
Hong MY, Hartig N, Kaufman K, Hooshmand S, Figueroa A, Kern M. Watermelon consumption improves inflammation and antioxidant capacity in rats fed an atherogenic diet. Nutr Res 2015; 35:251-8. [PMID: 25631716 DOI: 10.1016/j.nutres.2014.12.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/26/2014] [Accepted: 12/28/2014] [Indexed: 01/22/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the United States. Watermelon, rich in antioxidants and other bioactive components, may be a viable method to improve CVD risk factors through reduced oxidative stress. The purpose of the study was to determine the effects of watermelon powder consumption on lipid profiles, antioxidant capacity, and inflammation in dextran sodium sulfate (DSS)-treated rats fed an atherogenic diet. We hypothesized that watermelon would increase antioxidant capacity and reduce blood lipids and inflammation through modulation of related gene expression. Forty male-weanling (21 days old) Sprague-Dawley rats were divided into 4 groups (10 per group, total N = 40) in a 2 diets (control or 0.33% watermelon) × 2 treatments (with or without DSS) factorial design using an atherogenic diet. Watermelon-fed groups exhibited significantly lower serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol (P< .05). C-reactive protein levels were significantly lower in watermelon-fed rats than the control (P= .001). In addition, oxidative stress as measured by thiobarbituric acid reactive substances was significantly lower in watermelon groups (P= .001). Total antioxidant capacity, superoxide dismutase, and catalase activities were greater in watermelon groups (P< .05). Aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and lactate dehydrogenase were significantly lower in DSS-treated rats when watermelon was consumed (P< .05). Fatty acid synthase, 3-hydroxy-3methyl-glutaryl-CoA reductase, sterol regulatory element-binding protein 1, sterol regulatory element-binding protein 2, and cyclooxygenase-2 gene expression was significantly downregulated in the watermelon group without DSS (P< .05). These findings indicate that watermelon improves risk factors for CVD in rats through better lipid profiles, lower inflammation, and greater antioxidant capacity by altering gene expression for lipid metabolism.
Collapse
Affiliation(s)
- Mee Young Hong
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego CA USA 92182.
| | - Nicole Hartig
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego CA USA 92182
| | - Katy Kaufman
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego CA USA 92182
| | - Shirin Hooshmand
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego CA USA 92182
| | - Arturo Figueroa
- Nutrition, Food, and Exercise Sciences, Florida State University, Tallahassee, FL 32306
| | - Mark Kern
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego CA USA 92182
| |
Collapse
|
50
|
Andersen SM, Assaad HI, Lin G, Wang J, Aksnes A, Wu G, Espe M. Metabolomic analysis of plasma and liver from surplus arginine fed Atlantic salmon. Front Biosci (Elite Ed) 2015; 7:67-78. [PMID: 25553364 DOI: 10.2741/e718] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this study was to determine the metabolic effect of surplus arginine (36.1 g/kg dry matter) compared to a control diet with required arginine (21.1 g/kg dry matter) in adult Atlantic salmon (Salmo salar L.). Although the feeding trial had no significant effect on growth, there were significant differences in the metabolite profile in both plasma and liver in experimental group as compared to the control group. There was increased concentrations of biliverdin, PGF-2 alpha, oxidized glutathione, selenocysteine, two monoacylglycerols and a tripeptide in the liver as well as decreased concentrations of valine and a vitamin D3 metabolite in plasma of arginine supplemented fish. These results indicate that while surplus arginine does not affect growth or body weight, it induces metabolic changes in Atlantic salmon.
Collapse
Affiliation(s)
- Synne M Andersen
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Houssein I Assaad
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Gang Lin
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Junjun Wang
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Anders Aksnes
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | - Guoyao Wu
- National Institute of Nutrition and Seafood Research (NIFES), Bergen, Norway
| | | |
Collapse
|