1
|
Chai Y, Zheng W, Hu S, Yang T, Chen G, Huang A. Novel molecular mechanisms of gamma-aminobutyric acid production mediated by LuxS/AI-2 quorum sensing system in Limosilactobacillus fermentum B41. Int J Food Microbiol 2025; 439:111269. [PMID: 40393098 DOI: 10.1016/j.ijfoodmicro.2025.111269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/22/2025]
Abstract
LuxS/AI-2 quorum sensing (QS) systems promotes the production of various functional factors in lactic acid bacteria (LAB) including the production of gamma-aminobutyric acid (GABA). However, the molecular mechanisms underlying GABA biosynthesis mediated by the LuxS/AI-2 QS system in Limosilactobacillus fermentum (L. fermentum) B41 remain unclear. This study investigated the molecular mechanisms of GABA production in L. fermentum B41 by integrating LuxS/AI-2 QS system, proteomic, western blot technology, and fermented milk preparation. The results showed that autoinducer-2 (AI-2) positively correlated with cell density and GABA content of L. fermentum B41, suggesting LuxS/AI-2-QS system regulation of GABA production. Proteomic analysis revealed 657 differentially expressed proteins (DEPs) between the LuxS/AI-2-QS system peaks (10h) and lows (2 h), of which 335 were up-regulated, including the critically important s-ribosylhomocysteinase (LuxS) and GABA transaminase (ArgD). The KEGG pathway enrichment analysis revealed that the DEPs were mainly involved in cysteine and methionine metabolism and GABA biosynthesis. Additionally, western blot confirmed that LuxS and ArgD are key proteins for GABA synthesis. The GABA-enriched fermented milk produced using L. fermentum B41 demonstrated a significantly high GABA content of 201.53 ± 7.83 μg/mL (p < 0.05), indicated it promotes GABA production via LuxS/AI-2-QS system. In summary, this study providing new insights into efficient GABA production and the development of GABA-enriched fermented milk.
Collapse
Affiliation(s)
- Yunmei Chai
- Department of Food Science, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Wentao Zheng
- Department of Food Science, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Shaomei Hu
- Department of Food Science, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Tingting Yang
- Department of Food Science, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Guangwei Chen
- Department of Food Science, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China
| | - Aixiang Huang
- Department of Food Science, College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, Yunnan, China.
| |
Collapse
|
2
|
Raethong N, Chamtim P, Thananusak R, Whanmek K, Santivarangkna C. Genome-wide transcriptomics revealed carbon source-mediated gamma-aminobutyric acid (GABA) production in a probiotic, Lactiplantibacillus pentosus 9D3. Heliyon 2025; 11:e41879. [PMID: 39897778 PMCID: PMC11782964 DOI: 10.1016/j.heliyon.2025.e41879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
GABA-producing probiotics present promising opportunities for developing functional foods. Carbon sources have been identified as a critical influence on GABA production. Therefore, this study investigated the holistic metabolic responses and GABA biosynthesis to various carbon sources of Lactiplantibacillus pentosus 9D3, a proficient GABA producer, using a genome-wide transcriptomic approach. The analysis revealed 414 genes with differential expression responses to altering carbon sources, i.e., glucose, sucrose, and lactose, notably sugar phosphotransferase systems (PTS) (11 genes), indicating carbon source-mediated transcriptional change patterns in L. pentosus 9D3. The integration of transcriptome data with a genome-scale metabolic network (GSMN) revealed that L. pentosus 9D3 displays adaptability by synthesizing GABA as an alternative acid-tolerant mechanism when lactose is used as a carbon source rather than depending on the fatty acid synthesis and the arginine catabolic pathway. The findings of this study offer valuable insights into optimal carbon source utilization and gene expression co-regulation, thereby enhancing the GABA-producing capability of a probiotic and broadening its potential applications in the functional food industry.
Collapse
Affiliation(s)
- Nachon Raethong
- Institute of Nutrition, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Pitakthai Chamtim
- Academic Service Division, National Laboratory Animal Center, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Roypim Thananusak
- Omics Center for Agriculture, Bioresource, Food and Health Kasetsart University (OmiKU), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Duckweed Holobiont Resource & Research Center (DHbRC), Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Kanyawee Whanmek
- Institute of Nutrition, Mahidol University, Nakhon Pathom, 73170, Thailand
| | | |
Collapse
|
3
|
Sakthivel K, Balasubramanian R, Sampathrajan V, Veerasamy R, Appachi SV, K K K. Transforming tomatoes into GABA-rich functional foods through genome editing: A modern biotechnological approach. Funct Integr Genomics 2025; 25:27. [PMID: 39871009 DOI: 10.1007/s10142-025-01538-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/29/2025]
Abstract
Gamma-aminobutyric acid (GABA) functions as an inhibitory neurotransmitter which blocks the impulses between nerve cells in the brain. Due to the increasing awareness about the health promoting benefits associated with GABA, it is also artificially synthesized and consumed as a nutritional supplement by people in some regions of the world. Though among the fresh vegetables, tomato fruits do contain a comparatively higher amount of GABA (0.07 to 2.01 mg g-1 FW), it needs to be further enhanced to fully impart its potential health benefits. Achieving this feat through classical breeding approaches is time and resource consuming, and is also associated with linkage drag. On the other hand, precise targeting of specific sites in the genome with less off- target effects is mediated by CRISPR/Cas9 genome editing tool and is widely used to overcome the barriers associated with traditional breeding approaches. Combining genome editing with speed breeding techniques can enable the rapid development of GABA-rich tomato cultivars, paving a way to unlock a new era of functional foods, where every bite contributes to cognitive well-being and holistic health. This review highlights the significance of GABA boosted functional foods and explores the potential of CRISPR/Cas9 technology for developing GABA enriched tomatoes.
Collapse
Affiliation(s)
- Kausalya Sakthivel
- Department of Plant Biotechnology, Tamilnadu Agricultural University, 641003, Coimbatore, India
| | | | | | - Ravichandran Veerasamy
- Department of Crop Physiology, Tamilnadu Agricultural University, 641003, Coimbatore, India
| | | | - Kumar K K
- Department of Plant Biotechnology, Tamilnadu Agricultural University, 641003, Coimbatore, India.
| |
Collapse
|
4
|
Prapa I, Yanni AE, Kompoura V, Mitropoulou G, Panas P, Kostomitsopoulos N, Kourkoutas Y. Functional Modulation of Gut Microbiota and Blood Parameters in Diabetic Rats Following Dietary Intervention with Free or Immobilized Pediococcus acidilactici SK Cells on Pistachio Nuts. Nutrients 2024; 16:4221. [PMID: 39683613 DOI: 10.3390/nu16234221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND/OBJECTIVES The gut microbiota is linked to the pathogenesis of type 1 diabetes mellitus (T1DM), while supplementation with probiotics may result in positive alterations in the composition of the gut microbiome. This research aimed to map the changes in the gut microbiome and blood markers of streptozotocin-induced diabetic rats after a dietary intervention with free or immobilized cells of the presumptive probiotic Pediococcus acidilactici SK on pistachio nuts. METHODS Twenty-four male Wistar rats were studied and divided into four groups (healthy or diabetic) which received the free or the immobilized P. acidilactici SK cells on pistachio nuts for 4 weeks. Blood, fecal, and intestinal tissue samples were examined. RESULTS The diabetic rats exhibited an elevated concentration of HDL-c, while the inflammatory IL-1β levels were significantly lower in the diabetic animals that received the immobilized cells compared to the group that received the free cells. The dietary intervention with immobilized cells led to decreased counts of fecal staphylococci and enterococci in the diabetic animals, while the diet with both free and immobilized P. acidilactici SK cells rendered levels of these populations in normal values in the feces and intestinal tissue of the diabetic animals. Noticeably, the Lactobacillus and Bifidobacterium genera were elevated after the supplementation with immobilized P. acidilactici SK cells on pistachio nuts. CONCLUSIONS Dietary supplementation with P. acidilactici SK cells (in free or in immobilized form) beneficially affected the gut microbiota/microbiome of streptozotocin-induced diabetic rats, leading to the alleviation of dysbiosis and inflammation and control over their lipid levels.
Collapse
Affiliation(s)
- Ioanna Prapa
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Amalia E Yanni
- Laboratory of Chemistry, Biochemistry, Physical Chemistry of Foods, Department of Nutrition and Dietetics, Harokopio University of Athens, 17671 Athens, Greece
| | - Vasiliki Kompoura
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Gregoria Mitropoulou
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | | | - Nikolaos Kostomitsopoulos
- Laboratory Animal Facility, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Yiannis Kourkoutas
- Laboratory of Applied Microbiology and Biotechnology, Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| |
Collapse
|
5
|
Zhu L, Wang Z, Gao L, Chen X. Unraveling the Potential of γ-Aminobutyric Acid: Insights into Its Biosynthesis and Biotechnological Applications. Nutrients 2024; 16:2760. [PMID: 39203897 PMCID: PMC11357613 DOI: 10.3390/nu16162760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
γ-Aminobutyric acid (GABA) is a widely distributed non-protein amino acid that serves as a crucial inhibitory neurotransmitter in the brain, regulating various physiological functions. As a result of its potential benefits, GABA has gained substantial interest in the functional food and pharmaceutical industries. The enzyme responsible for GABA production is glutamic acid decarboxylase (GAD), which catalyzes the irreversible decarboxylation of glutamate. Understanding the crystal structure and catalytic mechanism of GAD is pivotal in advancing our knowledge of GABA production. This article provides an overview of GAD's sources, structure, and catalytic mechanism, and explores strategies for enhancing GABA production through fermentation optimization, metabolic engineering, and genetic engineering. Furthermore, the effects of GABA on the physiological functions of animal organisms are also discussed. To meet the increasing demand for GABA, various strategies have been investigated to enhance its production, including optimizing fermentation conditions to facilitate GAD activity. Additionally, metabolic engineering techniques have been employed to increase the availability of glutamate as a precursor for GABA biosynthesis. By fine-tuning fermentation conditions and utilizing metabolic and genetic engineering techniques, it is possible to achieve higher yields of GABA, thus opening up new avenues for its application in functional foods and pharmaceuticals. Continuous research in this field holds immense promise for harnessing the potential of GABA in addressing various health-related challenges.
Collapse
Affiliation(s)
- Lei Zhu
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| | - Zhefeng Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China;
| | - Le Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Technology Innovation Center for Synthetic Biology, Tianjin 300308, China;
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China;
| |
Collapse
|
6
|
Chang CCJ, Liu B, Liebmann JM, Cioffi GA, Winn BJ. Glaucoma and the Human Microbiome. J Glaucoma 2024; 33:529-538. [PMID: 38809163 DOI: 10.1097/ijg.0000000000002448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/11/2024] [Indexed: 05/30/2024]
Abstract
PURPOSE OF REVIEW To explore a view of the human microbiome as an interconnected, functional, dynamic system that may be linked to the pathogenesis and progression of glaucoma. METHODS A literature review was undertaken that included publications from 1966 to 2023. RESULTS Bacterial lipopolysaccharides (LPS) activate toll-like receptors (TLR) and mediate the human immune response. The LPS-TLR4 pathway is a potential avenue for the ocular, gut, and oral microbiomes to interface and/or influence ocular disease. Studies of gut dysbiosis have shown that alterations in the healthy microbiota can predispose the host to immune-mediated inflammatory and neurodegenerative conditions, while oral and ocular surface dysbiosis has been correlated with glaucoma. While developmental exposure to commensal microflora has shown to be necessary for the autoimmune and neurodegenerative responses to elevated intraocular pressure to take place, commensal bacterial products like short-chain fatty acids have regulatory effects protective against glaucoma. SUMMARY Alterations to human microbiotas have been associated with changes in intestinal permeability, gene regulation, immune cell differentiation, and neural functioning, which may predispose the host to glaucoma. Select microbes have been highlighted for their potential contributions to glaucoma disease progression or protection, raising the potential for microbiota-based treatment modalities. Current topical glaucoma treatments may disrupt the ocular surface microbiota, potentially having ramifications on host health. Further study of the relationships between human microbiome and glaucoma is needed.
Collapse
Affiliation(s)
| | - Benjamin Liu
- Department of Ophthalmology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY
| | | | | | - Bryan J Winn
- Department of Ophthalmology, Columbia University Medical Center, New York-Presbyterian Hospital, New York, NY
- Ophthalmology Section, Surgical Service, San Francisco Veterans Affairs Medical Center, San Francisco, CA
| |
Collapse
|
7
|
Wang J, Ma W, Zhou J, Wang X, Zhao L. Microbial chassis design and engineering for production of gamma-aminobutyric acid. World J Microbiol Biotechnol 2024; 40:159. [PMID: 38607454 DOI: 10.1007/s11274-024-03951-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/10/2024] [Indexed: 04/13/2024]
Abstract
Gamma-aminobutyric acid (GABA) is a non-protein amino acid which is widely applied in agriculture and pharmaceutical additive industries. GABA is synthesized from glutamate through irreversible α-decarboxylation by glutamate decarboxylase. Recently, microbial synthesis has become an inevitable trend to produce GABA due to its sustainable characteristics. Therefore, reasonable microbial platform design and metabolic engineering strategies for improving production of GABA are arousing a considerable attraction. The strategies concentrate on microbial platform optimization, fermentation process optimization, rational metabolic engineering as key metabolic pathway modification, promoter optimization, site-directed mutagenesis, modular transporter engineering, and dynamic switch systems application. In this review, the microbial producers for GABA were summarized, including lactic acid bacteria, Corynebacterium glutamicum, and Escherichia coli, as well as the efficient strategies for optimizing them to improve the production of GABA.
Collapse
Affiliation(s)
- Jianli Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China
| | - Wenjian Ma
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
| | - Xiaoyuan Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| | - Lei Zhao
- WuXi Biologics Co., Ltd., Wuxi, 214062, China
| |
Collapse
|
8
|
Matta T, Bhatia R, Joshi SR, Bishnoi M, Chopra K, Kondepudi KK. GABA synthesizing lactic acid bacteria and genomic analysis of Levilactobacillus brevis LAB6. 3 Biotech 2024; 14:62. [PMID: 38344283 PMCID: PMC10850046 DOI: 10.1007/s13205-024-03918-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/03/2024] [Indexed: 03/10/2024] Open
Abstract
This study was conducted to investigate the γ-aminobutyric acid (GABA) production ability of 20 Lactobacillus and 25 Bifidobacterium strains which were previously isolated in our laboratory. Effect of initial pH, incubation time, monosodium glutamate (MSG), and pyridoxal-5'-phosphate (PLP) concentration for highest GABA production by two potent bacterial strains, Levilactobacillus brevis LAB6 and Limosilactobacillus fermentum LAB19 were optimized in the MRS media. A threefold increase in GABA production at an initial pH 4.0, incubation time of 120 h in medium supplemented with 3% MSG and 400 μM of PLP for LAB6 and 300 μM for LAB19 lead to the production of 19.67 ± 0.28 and 20.77 ± 0.14 g/L of GABA, respectively. Coculturing both strains under optimized conditions led to a GABA yield of 20.02 ± 0.17 g/L. Owing to potent anti-inflammatory activity in-vitro, as reported previously, and highest GABA production ability of LAB6 (MTCC 25662), its whole-genome sequencing and bioinformatics analysis was carried out for mining genes related to GABA metabolism. LAB6 harbored a complete glutamate decarboxylase (GAD) gene system comprising gadA, gadB, and gadC as well as genes responsible for the beneficial probiotic traits, such as for acid and bile tolerance and host adhesion. Comparative genomic analysis of LAB6 with 28 completely sequenced Levilactobacillus brevis strains revealed the presence of 95 strain-specific genes-families that was significantly higher than most other L. brevis strains. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03918-7.
Collapse
Affiliation(s)
- Tushar Matta
- Healthy Gut Research Group, Centre of Excellence in Functional Foods, Food and Nutrition Biotechnology Laboratory, National Agri-Food Biotechnology Institute, S. A. S. Nagar, Mohali, Punjab, 140306 India
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014 India
| | - Ruchika Bhatia
- Healthy Gut Research Group, Centre of Excellence in Functional Foods, Food and Nutrition Biotechnology Laboratory, National Agri-Food Biotechnology Institute, S. A. S. Nagar, Mohali, Punjab, 140306 India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Santa Ram Joshi
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya 793022 India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Centre of Excellence in Functional Foods, Food and Nutrition Biotechnology Laboratory, National Agri-Food Biotechnology Institute, S. A. S. Nagar, Mohali, Punjab, 140306 India
- Department of Biotechnology, Panjab University, Chandigarh, India
- Regional Centre of Biotechnology, Faridabad, India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014 India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Centre of Excellence in Functional Foods, Food and Nutrition Biotechnology Laboratory, National Agri-Food Biotechnology Institute, S. A. S. Nagar, Mohali, Punjab, 140306 India
- Department of Biotechnology, Panjab University, Chandigarh, India
- Regional Centre of Biotechnology, Faridabad, India
| |
Collapse
|
9
|
Grover S, Narang RK, Singh S. GABA-transaminase: A Key Player and Potential Therapeutic Target for Neurological Disorders. Cent Nerv Syst Agents Med Chem 2024; 24:57-67. [PMID: 38243961 DOI: 10.2174/0118715249267700231116053516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/28/2023] [Accepted: 10/04/2023] [Indexed: 01/22/2024]
Abstract
Neurological disorders such as epilepsy, autism, Huntington's disease, multiple sclerosis, and Alzheimer's disease alter brain functions like cognition, mood, movements, and language, severely compromising the well-being of persons, suffering from their negative effects. The neurotransmitters (GABA, glutamate, norepinephrine, dopamine) are found to be involved in neuronal signaling and neurotransmission. GABA, a "commanding neurotransmitter" is directly or indirectly associated with various neurological disorders. GABA is metabolized to succinic semialdehyde by a mitochondrial gamma-aminobutyric acid-transaminase (GABA-T) enzyme. Therefore, the alterations in the GABA performance in the distinct regions of the brain via GABA-T overstimulation or inhibition would play a vital role in the pathogenesis of various neurological disorders. This review emphasizes the leading participation of GABA-T in neurological disorders like Huntington's disease, epilepsy, autism, Alzheimer's disease, and multiple sclerosis. In Huntington's disease, epilepsy, and multiple sclerosis, the surfeited performance of GABA-T results in diminished levels of GABA, whereas in autism, the subsidence of GABA-T activity causes the elevation in GABA contents, which is responsible for behavioral changes in these disorders. Therefore, GABA-T inhibitors (in Huntington's disease, epilepsy, and multiple sclerosis) or agonists (in autism) can be used therapeutically. In the context of Alzheimer's disease, some researchers favor the stimulation of GABA-T activity whereas some disagree with it. Therefore, the activity of GABA-T concerning Alzheimer's disease is still unclear. In this way, studies of GABA-T enzymatic activity in contrast to neurological disorders could be undertaken to understand and be considered a therapeutic target for several GABA-ergic CNS diseases.
Collapse
Affiliation(s)
- Sania Grover
- Department of Pharmacology, Indo Soviet Friendship College of Pharmacy, Moga, Punjab, India
- Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga-142001, Punjab, India
| | - Raj Kumar Narang
- Department of Pharmaceutics, ISF College of Pharmacy (An Autonomous College), Moga-142001, Punjab, India
| | - Shamsher Singh
- Department of Pharmacology, ISF College of Pharmacy (An Autonomous College), Moga-142001, Punjab, India
| |
Collapse
|
10
|
Iorizzo M, Paventi G, Di Martino C. Biosynthesis of Gamma-Aminobutyric Acid (GABA) by Lactiplantibacillus plantarum in Fermented Food Production. Curr Issues Mol Biol 2023; 46:200-220. [PMID: 38248317 PMCID: PMC10814391 DOI: 10.3390/cimb46010015] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
In recent decades, given the important role of gamma-aminobutyric acid (GABA) in human health, scientists have paid great attention to the enrichment of this chemical compound in food using various methods, including microbial fermentation. Moreover, GABA or GABA-rich products have been successfully commercialized as food additives or functional dietary supplements. Several microorganisms can produce GABA, including bacteria, fungi, and yeasts. Among GABA-producing microorganisms, lactic acid bacteria (LAB) are commonly used in the production of many fermented foods. Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) is a LAB species that has a long history of natural occurrence and safe use in a wide variety of fermented foods and beverages. Within this species, some strains possess not only good pro-technological properties but also the ability to produce various bioactive compounds, including GABA. The present review aims, after a preliminary excursus on the function and biosynthesis of GABA, to provide an overview of the current uses of microorganisms and, in particular, of L. plantarum in the production of GABA, with a detailed focus on fermented foods. The results of the studies reported in this review highlight that the selection of new probiotic strains of L. plantarum with the ability to synthesize GABA may offer concrete opportunities for the design of new functional foods.
Collapse
Affiliation(s)
| | - Gianluca Paventi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (C.D.M.)
| | | |
Collapse
|
11
|
Thongruck K, Maneerat S. Enhanced Production of Gamma-Aminobutyric Acid (GABA) from Lactobacillus futsaii CS3 Using Agri-Food Industries By-Products Under Batch and Fed-Batch Fermentation. Indian J Microbiol 2023; 63:467-482. [PMID: 38031599 PMCID: PMC10682332 DOI: 10.1007/s12088-023-01101-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/30/2023] [Indexed: 12/01/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) has diverse physiological functions, but its production by lactic acid bacteria is costly due to the culture medium. This study aimed to enhance GABA production by L. futsaii CS3 using low-cost substrates and agri-food industries by-products. Optimal culture conditions were determined using response surface methodology with a central composite design (CCD). Batch and fed-batch fermentation techniques were employed. In the MRS medium with 2% (w/v) monosodium glutamate (MSG), L. futsaii CS3 produced 6.84 g/l of GABA. Further optimization revealed that 2% (w/v) cane sugar resulted in a maximum GABA production of 9.6 g/l, while cane molasses yielded 7.4 g/l. The modified MRS medium with 2% (w/v) MSG, 2% (w/v) cane sugar, 3.06% (w/v) tuna condensate, and 2.5% (w/v) surimi washing water exhibited the highest GABA concentration of 11 g/l. Surimi washing water had a lower GABA concentration of 4.12 g/l. Critical factors identified through CCD analysis were cane sugar, tuna condensate, and MSG. The optimized modified MRS medium consisted of 3.48% (w/v) cane sugar, 3.84% (w/v) tuna condensate, and 10.77% (w/v) MSG, resulting in an actual GABA concentration of 18.27 g/l. Under flask-scale and batch fermentation conditions (initial pH 5, temperature 37 °C), GABA concentrations of 20.63 g/l and 17.24 g/l were obtained after 48 h, respectively. In fed-batch fermentation, GABA concentrations reached 23.01 g/l at 72 h. The addition of cane sugar and tuna condensate effectively enhanced GABA production in L. futsaii CS3, highlighting their suitability as cost-effective substrates for industrial-scale GABA production. Graphical Abstract
Collapse
Affiliation(s)
- Kanokwan Thongruck
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand
| | - Suppasil Maneerat
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla, 90110 Thailand
| |
Collapse
|
12
|
Zhu F, Hu S, Zhao W, Mei L. A Novel Method for γ-Aminobutyric Acid Biosynthesis Using Glutamate Decarboxylase Entrapped in Polyvinyl Alcohol-Sodium Alginate Capsules. Molecules 2023; 28:6844. [PMID: 37836687 PMCID: PMC10574615 DOI: 10.3390/molecules28196844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
γ-aminobutyric acid (GABA) has essential physiological functions in the human body. A novel method using glutamate decarboxylase (GAD) entrapped in polyvinyl alcohol (PVA)-sodium alginate (SA) capsules provides a green biological strategy for GABA synthesis. In this investigation, the stability range of immobilized GAD was effectively broadened, and immobilized GAD could be repeatedly used as a batch and fixed-bed column catalyst. The immobilized enzymes were stable and retained 89% of their activity in a pH range of 4.0-5.6, while there was an approximately 50% decrease in free GAD activity in the pH range of 4.8 ± 0.4. The immobilized GAD affinity to the substrate improved, and this was evidenced by the apparent decrease in Km to 13.3 mmol/L from the 30.9 mmol/L for free GAD. The immobilized GAD retained >90.6% activity after eight cycles and a near-100% enzyme activity retention after 120 h of a continuous fixed-bed column catalyst operation. This study has thus presented an effective PVA-SA-GAD immobilization method that could be used to continuously scale-up GABA biosynthesis.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Food Science, Zhejiang Pharmaceutical University, Ningbo 315000, China
| | - Sheng Hu
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315000, China
| | - Weirui Zhao
- School of Biological and Chemical Engineering, NingboTech University, Ningbo 315000, China
| | - Lehe Mei
- College of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310058, China
- Jinhua Advanced Research Institute, Jinhua 321019, China
| |
Collapse
|
13
|
Yavarzadeh M, Anwar F, Saadi S, Saari N. Production of glycerolamines based conjugated γ-aminobutyric acids using microbial COX and LOX as successor enzymes to GAD. Enzyme Microb Technol 2023; 169:110282. [PMID: 37393814 DOI: 10.1016/j.enzmictec.2023.110282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/04/2023]
Abstract
Gamma-aminobutyric acid (γ-ABA) can be produced by various microorganisms including bacteria, fungi and yeasts using enzymatic bioconversion, microbial fermentation or chemical hydrolysis. Regenerating conjugated glycerol-amines is valid by the intervention of microbial cyclooxygenase [COX] and lipooxygenase [LOX] enzymes produced via lactobacillus bacteria (LAB) as successor enzymes to glutamate decarboxylases (GAD). Therefore, the aim of this review is to provide an overview on γ-ABA production, and microbiological achievements used in producing this signal molecule based on those fermenting enzymes. The formation of aminoglycerides based conjugated γ-ABA is considered the key substances in controlling the host defense against pathogens and is aimed in increasing the neurotransmission effects and in suppressing further cardiovascular diseases.
Collapse
Affiliation(s)
- Marjan Yavarzadeh
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan.
| | - Sami Saadi
- Institute de la Nutrition, de l'Alimentation et des Technologies Agroalimetaires INATAA, Université des Frères Mentouri Constantine, 1, Route de Ain El Bey, Constantine 25000, Algeria; Laboratoire de Génie Agro-Alimentaire (GeniAAl), INATAA, Université Frères Mentouri Constantine, 1 UFC1, Route de Ain El Bey, Constantine 25000, Algeria
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
14
|
Chen Z, Wang R, Song Y, Ma A, Li S, Jia Y. Expression and Transformation Characteristics of a Novel Glutamic Acid Decarboxylase LcGAD10s and Its Application on Sufu Processing. Foods 2023; 12:3186. [PMID: 37685118 PMCID: PMC10486372 DOI: 10.3390/foods12173186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is an important non-proteinogenic amino acid and a potent bioactive compound with many anti-hypertensive and anti-depressant activities. The bioconversion of GABA by glutamic acid decarboxylase (GAD) has been eagerly studied. Herein, novel pyridoxal-5-phosphate monohydrates (PLP)-dependent GAD, which is not quite similar to reporting, was cloned from Latilactobacillus curvatus and efficiently expressed in E. coli. The conveniently purified GAD (designated LcGAD10s) appeared as a single protein on SDS-PAGE with a molecular mass of 52.0 kDa. LcGAD10s exhibited a specific activity of 303.7 U/mg after purification by Ni-IDA affinity chromatography, with optimal activity at 55 °C and pH 5. LcGAD10s displayed excellent temperature (50 °C) and pH (4-8) stability which relative activity above 80% and 70%, respectively. The enzymatic activity was, respectively, increased and depressed by 130%, and 24% in the presence of Mn+ and Cu2+. Enzyme activity over 90% can be achieved by adding at least 25 mM of PLP. LcGAD10s was able to efficiently transform 15 g/L GABA with a single-factor optimized reaction of pH (5), temperature (50 °C), time (2 h), LcGAD10s dosage (0.4 U) and monosodium glutamate level (5 g/L). Additionally, LcGAD10s can be applied to a tofu fermentation system to achieve GABA conversion and achieved 14.9 mg/g of GABA conversion when added at 2 U/mL, which is higher than most of the commercial sufu and previous application reports, increasing its functional substances.
Collapse
Affiliation(s)
| | | | | | | | | | - Yingmin Jia
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China; (Z.C.); (R.W.); (Y.S.); (A.M.); (S.L.)
| |
Collapse
|
15
|
Rehman A, Di Benedetto G, Bird JK, Dabene V, Vadakumchery L, May A, Schyns G, Sybesma W, Mak TN. Development of a workflow for the selection, identification and optimization of lactic acid bacteria with high γ-aminobutyric acid production. Sci Rep 2023; 13:13663. [PMID: 37608211 PMCID: PMC10444875 DOI: 10.1038/s41598-023-40808-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023] Open
Abstract
Lactic acid bacteria produce γ-aminobutyric acid (GABA) as an acid stress response. GABA is a neurotransmitter that may improve sleep and resilience to mental stress. This study focused on the selection, identification and optimization of a bacterial strain with high GABA production, for development as a probiotic supplement. The scientific literature and an industry database were searched for probiotics and potential GABA producers. In silico screening was conducted to identify genes involved in GABA production. Subsequently, 17 candidates were screened for in vitro GABA production using thin layer chromatography, which identified three candidate probiotic strains Levilactobacillus brevis DSM 20054, Lactococcus lactis DS75843and Bifidobacterium adolescentis DSM 24849 as producing GABA. Two biosensors capable of detecting GABA were developed: 1. a transcription factor-based biosensor characterized by the interaction with the transcriptional regulator GabR was developed in Corynebacterium glutamicum; and 2. a growth factor-based biosensor was built in Escherichia coli, which used auxotrophic complementation by expressing 4-aminobutyrate transaminase (GABA-T) that transfers the GABA amino group to pyruvate, hereby forming alanine. Consequently, the feasibility of developing a workflow based on co-culture with producer strains and a biosensor was tested. The three GABA producers were identified and the biosensors were encapsulated in nanoliter reactors (NLRs) as alginate beads in defined gut-like conditions. The E. coli growth factor-based biosensor was able to detect changes in GABA concentrations in liquid culture and under gut-like conditions. L. brevis and L. lactis were successfully encapsulated in the NLRs and showed growth under miniaturized intestinal conditions.
Collapse
Affiliation(s)
| | | | - Julia K Bird
- Bird Scientific Writing, Wassenaar, The Netherlands
| | | | - Lisa Vadakumchery
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zurich, Switzerland
| | - Ali May
- dsm-firmenich, Biodata and Translational Sciences, Delft, The Netherlands
| | | | - Wilbert Sybesma
- dsm-firmenich, Kaiseraugst, Switzerland
- Microbiome Solutions GmbH, Münsingen, Switzerland
| | - Tim N Mak
- dsm-firmenich, Kaiseraugst, Switzerland.
| |
Collapse
|
16
|
Cai H, Li X, Li D, Liu W, Han Y, Xu X, Yang P, Meng K. Optimization of Gamma-Aminobutyric Acid Production by Lactiplantibacillus plantarum FRT7 from Chinese Paocai. Foods 2023; 12:3034. [PMID: 37628033 PMCID: PMC10453537 DOI: 10.3390/foods12163034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is a widely available non-protein amino acid whose physiological importance goes beyond its role as an inhibitory neurotransmitter in mammals. The GABA synthesis ability of ten strains of Lactiplantibacillus plantarum was screened. They produced GABA ranging from 48.19 ± 3.44 to 100.75 ± 1.63 mg/L at 24 h-cultivation. Among them, Lp. plantarum FRT7 showed the highest GABA production. Therefore, FRT7 was chosen for GABA yield optimization. A one-factor-at-a-time strategy analysis of the GABA yield of FRT7 was performed, including the culture temperature, incubation time, inoculum volume, initial pH, the initial amount of monosodium glutamate (MSG), and pyridoxal 5'-phosphate (PLP) concentration, based on which the response surface methodology (RSM) was performed. After being cultured in an MRS culture medium supplemented with 3% MSG and 2 mmol/L of PLP at 40 °C with an initial pH of 7.0 for 48 h, the GABA reached a maximum yield of 1158.6 ± 21.22 mg/L. The results showed the experimental value of the GABA yield was in good agreement with the predicted values. Furthermore, the results from the RSM also indicated that the initial MSG addition, PLP concentration, and incubation time were significant variables. These results suggest that Lp. plantarum FRT7 has the potential to be a health-beneficial probiotic with commercial capabilities.
Collapse
Affiliation(s)
- Hongying Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (X.L.); (D.L.); (W.L.); (Y.H.); (X.X.); (P.Y.)
- National Engineering Research Center of Biological Feed, Beijing 100081, China
| | - Xuan Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (X.L.); (D.L.); (W.L.); (Y.H.); (X.X.); (P.Y.)
| | - Daojie Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (X.L.); (D.L.); (W.L.); (Y.H.); (X.X.); (P.Y.)
| | - Weiwei Liu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (X.L.); (D.L.); (W.L.); (Y.H.); (X.X.); (P.Y.)
| | - Yunsheng Han
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (X.L.); (D.L.); (W.L.); (Y.H.); (X.X.); (P.Y.)
| | - Xin Xu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (X.L.); (D.L.); (W.L.); (Y.H.); (X.X.); (P.Y.)
| | - Peilong Yang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (X.L.); (D.L.); (W.L.); (Y.H.); (X.X.); (P.Y.)
- National Engineering Research Center of Biological Feed, Beijing 100081, China
| | - Kun Meng
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.C.); (X.L.); (D.L.); (W.L.); (Y.H.); (X.X.); (P.Y.)
| |
Collapse
|
17
|
Qadi WSM, Mediani A, Kasim ZM, Misnan NM, Sani NA, Jamar NH. Biological Characterization and Metabolic Variations among Cell-Free Supernatants Produced by Selected Plant-Based Lactic Acid Bacteria. Metabolites 2023; 13:849. [PMID: 37512555 PMCID: PMC10385473 DOI: 10.3390/metabo13070849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The aim of this research was to assess the antibacterial and antioxidant properties as well as the variation in metabolites of the cell-free supernatant (CFS) produced by lactic acid bacteria (LAB) from local plants: Lactiplantibacillus plantarum ngue16, L. plantarum ng10, Enterococcus durans w3, and Levilactobacillus brevis w6. The tested strains exhibited inhibitory effects against pathogens, including Bacillus cereus, B. subtilis, Cronobacter sakazakii, Escherichia coli, Salmonella Typhimurium, and Staphylococcus aureus using the agar spot assay and well diffusion method. The CFS from all four strains displayed antibacterial activity against these pathogens with minimum inhibitory concentration (MIC) values ranging from 3.12 to 12.5 mg/mL and minimal bactericidal concentration (MBC) values ranging from 6.25 to 25.0 mg/mL. Moreover, the CFS demonstrated resilience within specific pH (3-8) and temperature (60-100 °C) ranges and lost its activity when treated with enzymes, such as Proteinase K and pepsin. Furthermore, the CFS exhibited antioxidant properties as evidenced by their ability to inhibit the formation of two radicals (1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) compared to the negative control, De Man, Rogosa, and Sharpe (MRS) broth. The use of proton-based nuclear magnetic resonance (1H-NMR) spectroscopy revealed the presence and quantification of 48 metabolites in both the CFS and MRS broths. Principal Component Analysis (PCA) effectively differentiated between CFS and MRS broth by identifying the specific metabolites responsible for the observed differences. The partial least squares (PLS) model demonstrated a significant correlation between the metabolites in the LAB supernatant and the tested antibacterial and antioxidant activities. Notably, anserine, GABA, acetic acid, lactic acid, uracil, uridine, propylene glycol, isopropanol, serine, histidine, and indol-3-lactate were identified as the compounds contributing the most to the highest antibacterial and antioxidant activities in the supernatant. These findings suggest that the LAB strains investigated have the potential to be utilized in the production of functional foods and the development of pharmaceutical products.
Collapse
Affiliation(s)
- Wasim S M Qadi
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia
| | - Ahmed Mediani
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia
| | - Zalifah Mohd Kasim
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia
| | - Norazlan Mohmad Misnan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Shah Alam 40170, Malaysia
| | - Norrakiah Abdullah Sani
- Department of Food Science, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia
| | - Nur Hidayah Jamar
- Department of Biology and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM, Bangi 43600, Malaysia
| |
Collapse
|
18
|
Ortega MA, Álvarez-Mon MA, García-Montero C, Fraile-Martínez Ó, Monserrat J, Martinez-Rozas L, Rodríguez-Jiménez R, Álvarez-Mon M, Lahera G. Microbiota-gut-brain axis mechanisms in the complex network of bipolar disorders: potential clinical implications and translational opportunities. Mol Psychiatry 2023; 28:2645-2673. [PMID: 36707651 PMCID: PMC10615769 DOI: 10.1038/s41380-023-01964-w] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Bipolar disorders (BD) represent a severe leading disabling mental condition worldwide characterized by episodic and often progressive mood fluctuations with manic and depressive stages. The biological mechanisms underlying the pathophysiology of BD remain incompletely understood, but it seems that there is a complex picture of genetic and environmental factors implicated. Nowadays, gut microbiota is in the spotlight of new research related to this kind of psychiatric disorder, as it can be consistently related to several pathophysiological events observed in BD. In the context of the so-called microbiota-gut-brain (MGB) axis, it is shown to have a strong influence on host neuromodulation and endocrine functions (i.e., controlling the synthesis of neurotransmitters like serotonin or mediating the activation of the hypothalamic-pituitary-adrenal axis), as well as in modulation of host immune responses, critically regulating intestinal, systemic and brain inflammation (neuroinflammation). The present review aims to elucidate pathophysiological mechanisms derived from the MGB axis disruption and possible therapeutic approaches mainly focusing on gut microbiota in the complex network of BD. Understanding the mechanisms of gut microbiota and its bidirectional communication with the immune and other systems can shed light on the discovery of new therapies for improving the clinical management of these patients. Besides, the effect of psychiatric drugs on gut microbiota currently used in BD patients, together with new therapeutical approaches targeting this ecosystem (dietary patterns, probiotics, prebiotics, and other novelties) will also be contemplated.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain.
| | - Miguel Angel Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Lucia Martinez-Rozas
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias (CIBEREHD), Alcalá de Henares, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| |
Collapse
|
19
|
Eastwood J, van Hemert S, Poveda C, Elmore S, Williams C, Lamport D, Walton G. The Effect of Probiotic Bacteria on Composition and Metabolite Production of Faecal Microbiota Using In Vitro Batch Cultures. Nutrients 2023; 15:nu15112563. [PMID: 37299530 DOI: 10.3390/nu15112563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/18/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Probiotic supplements are increasingly being used to target the gut microbiome with a view to improving cognitive and psychological function via the gut-brain axis. One possible mechanism behind the effect of probiotics is through alterations to microbially-derived metabolites including short-chain fatty acids (SCFA) and neurotransmitters. However, research to date has largely been conducted in animal models or under conditions irrelevant to the human gastrointestinal tract (GIT). The aim of the current work was therefore to use anaerobic, pH controlled in vitro batch cultures to (a) assess the production of neuroactive metabolites in human faecal microbiota under conditions relevant to the human GIT, and (b) to explore how several pre-selected probiotic strains may affect bacterial composition and metabolite production. Enumeration of bacteria was assessed using fluorescence in situ hybridisation with flow cytometry, and concentrations of SCFAs and neurotransmitters were measured using gas chromatography and liquid chromatography mass spectroscopy, respectively. GABA, serotonin, tryptophan, and dopamine were successfully detected, suggesting some level of microbial derivation. The addition of Lactococcus lactis W58 and Lactobacillus rhamnosus W198 resulted in a significant increase in lactate after 8 h of fermentation, while no significant effect of probiotics on bacterial composition or neurotransmitter production was found.
Collapse
Affiliation(s)
- Jessica Eastwood
- School of Psychology and Clinical Language Sciences, University of Reading, Earley Gate, Reading RG6 6BZ, UK
| | - Saskia van Hemert
- Winclove Probiotics, Hulstweg 11, 1032 LB Amsterdam, The Netherlands
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| | - Stephen Elmore
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| | - Claire Williams
- School of Psychology and Clinical Language Sciences, University of Reading, Earley Gate, Reading RG6 6BZ, UK
| | - Daniel Lamport
- School of Psychology and Clinical Language Sciences, University of Reading, Earley Gate, Reading RG6 6BZ, UK
| | - Gemma Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| |
Collapse
|
20
|
Li H, Pei J, Wei C, Lin Z, Pan H, Pan Z, Guo X, Yu Z. Sodium-Ion-Free Fermentative Production of GABA with Levilactobacillus brevis CD0817. Metabolites 2023; 13:metabo13050608. [PMID: 37233649 DOI: 10.3390/metabo13050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) has positive effects on many physiological processes. Lactic acid bacterial production of GABA is a future trend. This study aimed to produce a sodium-ion-free GABA fermentation process for Levilactobacillus brevis CD0817. In this fermentation, both the seed and fermentation media used L-glutamic acid instead of monosodium L-glutamate as the substrate. We optimized the key factors influencing GABA formation, adopting Erlenmeyer flask fermentation. The optimized values of the key factors of glucose, yeast extract, Tween 80, manganese ion, and fermentation temperature were 10 g/L, 35 g/L, 1.5 g/L, 0.2 mM, and 30 °C, respectively. Based on the optimized data, a sodium-ion-free GABA fermentation process was developed using a 10-L fermenter. During the fermentation, L-glutamic acid powder was continuously dissolved to supply substrate and to provide the acidic environment essential for GABA synthesis. The current bioprocess accumulated GABA at up to 331 ± 8.3 g/L after 48 h. The productivity of GABA was 6.9 g/L/h and the molar conversion rate of the substrate was 98.1%. These findings demonstrate that the proposed method is promising in the fermentative preparation of GABA by lactic acid bacteria.
Collapse
Affiliation(s)
- Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Jinfeng Pei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Cheng Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Zhiyu Lin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Hao Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Zhenkang Pan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xinyue Guo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Zhou Yu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| |
Collapse
|
21
|
Knez E, Kadac-Czapska K, Grembecka M. Fermented Vegetables and Legumes vs. Lifestyle Diseases: Microbiota and More. Life (Basel) 2023; 13:life13041044. [PMID: 37109573 PMCID: PMC10141223 DOI: 10.3390/life13041044] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Silages may be preventive against lifestyle diseases, including obesity, diabetes mellitus, or metabolic syndrome. Fermented vegetables and legumes are characterized by pleiotropic health effects, such as probiotic or antioxidant potential. That is mainly due to the fermentation process. Despite the low viability of microorganisms in the gastrointestinal tract, their probiotic potential was confirmed. The modification of microbiota diversity caused by these food products has numerous implications. Most of them are connected to changes in the production of metabolites by bacteria, such as butyrate. Moreover, intake of fermented vegetables and legumes influences epigenetic changes, which lead to inhibition of lipogenesis and decreased appetite. Lifestyle diseases' feature is increased inflammation; thus, foods with high antioxidant potential are recommended. Silages are characterized by having a higher bioavailable antioxidants content than fresh samples. That is due to fermentative microorganisms that produce the enzyme β-glucosidase, which releases these compounds from conjugated bonds with antinutrients. However, fermented vegetables and legumes are rich in salt or salt substitutes, such as potassium chloride. However, until today, silages intake has not been connected to the prevalence of hypertension or kidney failure.
Collapse
Affiliation(s)
- Eliza Knez
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| | - Kornelia Kadac-Czapska
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| | - Małgorzata Grembecka
- Department of Bromatology, Medical University of Gdańsk, Gen. J. Hallera Aw. 107, 80-416 Gdansk, Poland
| |
Collapse
|
22
|
Mockus E, Zokaityte E, Starkute V, Klupsaite D, Ruibys R, Rocha JM, Bartkevics V, Bartkiene E. Influence of different lactic acid bacteria strains and milling process on the solid-state fermented green and red lentils ( Lens culinaris L.) properties including gamma-aminobutyric acid formation. Front Nutr 2023; 10:1118710. [PMID: 37125035 PMCID: PMC10133501 DOI: 10.3389/fnut.2023.1118710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
The aim of this study was to evaluate the influence of lactic acid bacteria (LAB) strains (Lactiplantibacillus plantarum No.122 and Lacticaseibacillus casei No.210) and milling process on the solid-state fermented (for 24 h, at 30°C) green and red lentils (Lens culinaris L.) properties, chiefly pH, LAB viable counts, color coordinates, free amino acid (FAA) profile, γ-aminobutyric acid (GABA) and biogenic amine (BA) concentrations, fatty acid (FA) and volatile compound (VC) profiles. Results showed that both of the tested LAB strains are suitable for the fermentation of lentils: pH of fermented lentils was <4.5 and LAB viable counts >8.0 log10 colony-forming units (CFU)/g. A very strong negative correlation was found (r = -0.973, p ≤ 0.0001) between LAB counts and pH of the samples. Also, fermentation and milling process were significant factors toward color coordinates of the lentils. In most of the cases, solid-state fermentation (SSF) increased essential FAA content in lentils; however, some of the non-essential FAA content was reduced. SSF significantly increased GABA concentration in lentils and milling process was a significant factor on GABA content of the samples (p ≤ 0.05). The main BA in lentils was spermidine, and SSF decreased their total BA content (34.8% on average in red lentils and 39.9% on average in green lentils). The main FA in lentils were linoleic and oleic. The main VC in lentils were hexanal, 1-hexanol, hexanoic acid, D-limonene and (E)-2-nonen-1-ol. Furthermore, most of the VC showed significant correlations with pH of lentil samples, LAB counts and FA content. Finally, the LAB strain used for fermentation and the milling process of lentils are significant factors for most of the analyzed parameters in lentil. Moreover, despite the higher GABA concentration found in green non-milled SSF lentils, application of combined milling and SSF is recommended because they showed the lowest BA content in addition to higher essential FAA and GABA concentrations.
Collapse
Affiliation(s)
- Ernestas Mockus
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Vytaute Starkute
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Romas Ruibys
- Institute of Agricultural and Food Sciences, Agriculture Academy, Vytautas Magnus University, Kaunas, Lithuania
| | - João Miguel Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho, Porto, Portugal
| | - Vadims Bartkevics
- Animal Health and Environment “BIOR”, Institute of Food Safety, Riga, Latvia
| | - Elena Bartkiene
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Kaunas, Lithuania
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| |
Collapse
|
23
|
Li H, Wang L, Nie L, Liu X, Fu J. Sensitivity Intensified Ninhydrin-Based Chromogenic System by Ethanol-Ethyl Acetate: Application to Relative Quantitation of GABA. Metabolites 2023; 13:metabo13020283. [PMID: 36837902 PMCID: PMC9966720 DOI: 10.3390/metabo13020283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/07/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is a functional metabolite in various organisms. Herein, a sensitivity intensified ninhydrin-based chromogenic system (SINICS), achieved by ethanol and ethyl acetate, is described for the reliable relative quantitation of GABA. A 2.9 mL SINICS kit comprises 1% ninhydrin, 40% ethanol, 25% ethyl acetate, and 35 μL 0.2 M sodium acetate buffer (pH 5.0). In practice, following the addition of a 0.1 mL sample to the kit, the chromogenic reaction is completed by heating at 70 °C for 30 min. The kit increased the color development sensitivity of L-glutamic acid and GABA, with the detection limits being reduced from 20 mM and 200 mM to 5 mM and 20 mM, respectively. The chromophore was stable for at least 2 h at room temperature, which was sufficient for a routine colorimetric analysis. The absorbance at 570 nm with the deduction of background directly represents the content of amino acid. For a proof-of-concept, the SINICS was adopted to optimize the GABA fermentation process of Levilactobacillus brevis CD0817. The results demonstrated that SINICS is an attractive alternative to the available ninhydrin-based colorimetric methods.
Collapse
Affiliation(s)
- Haixing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Lingqin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Lijuan Nie
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Xiaohua Liu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
| | - Jinheng Fu
- Sino-German Joint Research Institute, Nanchang University, Nanchang 330047, China
- Correspondence:
| |
Collapse
|
24
|
Tang Z, Zhao Z, Chen S, Lin W, Wang Q, Shen N, Qin Y, Xiao Y, Chen H, Chen H, Bu T, Li Q, Yao H, Yuan M. Dragon fruit-kiwi fermented beverage: In vitro digestion, untargeted metabolome analysis and anti-aging activity in Caenorhabditis elegans. Front Nutr 2023; 9:1052818. [PMID: 36704792 PMCID: PMC9872153 DOI: 10.3389/fnut.2022.1052818] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
The research on the development of dragon fruit and kiwi fruit through LAB-yeast compound fermentation is very limited, and there are few related fermentation products on the market. The purpose of this study was to evaluate the stability of the antioxidant capacity of fermented beverages (FB) through in vitro simulated digestion, to evaluate the changes in metabolites of juice after fermentation through untargeted metabolomics, and used Caenorhabditis elegans as a model to evaluate its anti-aging activity. The results showed that FB not only has good in vitro antioxidant activity, but also the total phenol content (TPC), total flavonoid content (TFC), ABTS scavenging ability, and hydroxyl radical scavenging ability of FB were significantly increased during gastric digestion and intestinal digestion. Metabolomics showed that the contents of phenols and flavonoids related to antioxidant increased after fermentation, and fermentation had a significant effect on organic acids and amino acids in FB. Finally, compared with the control group, although the original concentration of FB has a side-toxic effect on nematodes, the mean lifespan of C. elegans fed with 1.56% FB increased by 18.01%, SOD activity significantly increased by 96.16% and MDA content significantly decreased by 40.62%. FB has good antioxidant activity in vitro and in vivo, and the antioxidant activity is stable during the simulated digestion process.
Collapse
Affiliation(s)
- Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China,*Correspondence: Zizhong Tang,
| | - Zhiqiao Zhao
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Siyi Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Wenjie Lin
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Qing Wang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Nayu Shen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yihan Qin
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Sichuan Agricultural University, Ya’an, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya’an, China
| | - Hui Chen
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China,Hui Chen,
| | - Tongliang Bu
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Huipeng Yao
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Ming Yuan
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
25
|
Bartkiene E, Zokaityte E, Starkute V, Zokaityte G, Kaminskaite A, Mockus E, Klupsaite D, Cernauskas D, Rocha JM, Özogul F, Guiné RPF. Crickets ( Acheta domesticus) as Wheat Bread Ingredient: Influence on Bread Quality and Safety Characteristics. Foods 2023; 12:foods12020325. [PMID: 36673418 PMCID: PMC9858247 DOI: 10.3390/foods12020325] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
The aim of this study was to assess respondents' opinions on the choice of edible insects as a food, and to evaluate the influence of cricket flour (ECF) (10, 20, 30%) on the quality of wheat bread (WB). Whereas ECF is an additional source of acrylamide precursors, in order to reduce acrylamide formation in WB, fermentation of ECF with Lactiplantibacillus plantarum-No.122 was applied. It was established that 70.7% of the respondents had never eaten insects and more than 30% would not choose them. However, ECF was suitable substrate for fermentation (lactobacilli count 8.24 log10CFU/g, pH-4.26). In addition, fermentation reduced the total biogenic amines content in ECF (by 13.1%). The highest specific volume showed WB, prepared with fermented ECF (10, 20, 30%). All the tested WB showed similar overall acceptability (on average, 7.9 points). However, the highest intensity of emotion "happy" was induced by the WB, prepared with fermented ECF. Most of the WB with non-treated and fermented ECF showed higher acrylamide concentration (except WB with 10% of fermented ECF), in comparison with the control. Finally, fermentation is recommended for ECF inclusion in the main WB formula because fermentation improves not only quality but also reduces acrylamide concentration in WB.
Collapse
Affiliation(s)
- Elena Bartkiene
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Correspondence: ; Tel.: +370-60135837
| | - Egle Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Vytaute Starkute
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Gintare Zokaityte
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Aura Kaminskaite
- Department of Food Safety and Quality, Veterinary Academy, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Ernestas Mockus
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Dovile Klupsaite
- Institute of Animal Rearing Technologies, Faculty of Animal Sciences, Lithuanian University of Health Sciences, Tilzes Str. 18, LT-47181 Kaunas, Lithuania
| | - Darius Cernauskas
- Food Institute, Kaunas University of Technology, Radvilenu Road 19, LT-50254 Kaunas, Lithuania
| | - João Miguel Rocha
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330 Adana, Turkey
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
26
|
Jin Y, Wu J, Hu D, Li J, Zhu W, Yuan L, Chen X, Yao J. Gamma-Aminobutyric Acid-Producing Levilactobacillus brevis Strains as Probiotics in Litchi Juice Fermentation. Foods 2023; 12:foods12020302. [PMID: 36673393 PMCID: PMC9857889 DOI: 10.3390/foods12020302] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Levilactobacillus brevis strains can be isolated from traditional Chinese pickles and used as the starter cultures to improve the nutritional profiles of fermented juices. Three L. brevis strains (LBG-29, LBG-24, LBD−14) that produce high levels of gamma-aminobutyric acid (GABA; >300 mg/L) were isolated from traditional Chinese pickles. The strains showed tolerance to low pH and high bile salts and exhibited safety in vitro. Litchi juice was fermented using each strain at 37 °C for 48 h. The litchi juice was determined to be a good substrate for fermentation as the process enhanced its functional profile. Overall, cell vitality increased (above 8.7 log10 CFU/mL), the antioxidant activities of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric ion-reducing antioxidant power (FRAP) were significantly increased, and the antioxidant capacity of the 2,2′-amino-di(3-ethyl-benzothiazoline sulphonic acid-6)ammonium salt (ABTS) was decreased. There was also a significant increase in the GABA and acetic acid content after LBG-29 and LBG-24 fermentation. It was thus determined that the LBG-29 and LBG-24 strains could be used to improve beverage functionality and aid in the development of new products. This is the first report of litchi fermentation using L. brevis as a starter culture. Further research is required to elucidate the functional benefits for the human body and the nutritional and functional properties during its shelf life.
Collapse
Affiliation(s)
- Yiwen Jin
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Jinyong Wu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei CAS Health Bio-Industrial Technology Co., Ltd., Hefei 230031, China
| | - Dan Hu
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch, Graduate School of USTC, Hefei 230026, China
| | - Jun Li
- Hefei CAS Health Bio-Industrial Technology Co., Ltd., Hefei 230031, China
| | - Weiwei Zhu
- Wuhan Zhongke Optics Valley Green Biotechnology Co., Ltd., Wuhan 430075, China
| | - Lixia Yuan
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei CAS Health Bio-Industrial Technology Co., Ltd., Hefei 230031, China
| | - Xiangsong Chen
- Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Hefei CAS Health Bio-Industrial Technology Co., Ltd., Hefei 230031, China
- Correspondence: or (X.C.); (J.Y.); Tel.: +86-551-65591399 (X.C. & J.Y.)
| | - Jianming Yao
- Science Island Branch, Graduate School of USTC, Hefei 230026, China
- Correspondence: or (X.C.); (J.Y.); Tel.: +86-551-65591399 (X.C. & J.Y.)
| |
Collapse
|
27
|
Gamma-aminobutyric acid (GABA) production by potential probiotic strains of indigenous fermented foods origin and RSM based production optimization. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
28
|
Zotta T, Faraone I, Giavalisco M, Parente E, Lela L, Storti LV, Ricciardi A. The Production of γ-Aminobutyric Acid from Free and Immobilized Cells of Levilactobacillus brevis Cultivated in Anaerobic and Aerobic Conditions. Microorganisms 2022; 10:2184. [PMID: 36363776 PMCID: PMC9699244 DOI: 10.3390/microorganisms10112184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 10/06/2023] Open
Abstract
γ-aminobutyric acid (GABA) has several beneficial effects on human health. GABA may be produced via chemical synthesis or through microbial metabolism, and Levilactobacillus brevis is recognized as a GABA-producing species. In this study, 11 Lvb. brevis strains were screened for GABA production, and the best producers were selected to verify the effect of aerobic (AE) and respiratory (RS) cultivations on growth parameters, biomass, and GABA accumulation. Lvb. brevis LB12 was then used to evaluate the combined effect of the incubation atmosphere (anaerobiosis vs. aerobiosis), cell protection (free vs. immobilized cells), and cell recycling (fresh vs. starved cells) on GABA production. Glutamate (GLU) consumption and GABA accumulation were detected by Thin-layer Chromatography (TLC) and RP-HPLC analyses. The ability to produce GABA was widespread among the strains. AE and RS growth improved biomass production, but oxygen availability impaired GLU to GABA conversion, and the anaerobically growing cells had the highest GABA productivity. Immobilized strains had lower efficiency in both GLU uptake and conversion compared to free cells, probably due to the poor diffusion in alginate beads. The use of resting cells allowed further GABA production without the cultivation step, but cell activity was exhausted after three cycles of reutilization. Lvb. brevis LB12 is an excellent GABA producer, and AE cultivation can be exploited to improve the final cell density; however, the conditions for boosting GLU to GABA conversion and cell regeneration need to be further investigated.
Collapse
Affiliation(s)
- Teresa Zotta
- Scuola di Scienze Agrarie, Alimentari, Forestali ed Ambientali (SAFE), Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Immacolata Faraone
- Dipartimento di Scienze (DIS), Università degli Studi della Basilicata, 85100 Potenza, Italy
- Spinoff BioActiPlant s.r.l., Viale Dell’ateneo Lucano 10, 85100 Potenza, Italy
| | - Marilisa Giavalisco
- Scuola di Scienze Agrarie, Alimentari, Forestali ed Ambientali (SAFE), Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Eugenio Parente
- Scuola di Scienze Agrarie, Alimentari, Forestali ed Ambientali (SAFE), Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Ludovica Lela
- Dipartimento di Scienze (DIS), Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Livia Vanessa Storti
- Scuola di Scienze Agrarie, Alimentari, Forestali ed Ambientali (SAFE), Università degli Studi della Basilicata, 85100 Potenza, Italy
| | - Annamaria Ricciardi
- Scuola di Scienze Agrarie, Alimentari, Forestali ed Ambientali (SAFE), Università degli Studi della Basilicata, 85100 Potenza, Italy
| |
Collapse
|
29
|
Survival and Interplay of γ-Aminobutyric Acid-Producing Psychobiotic Candidates with the Gut Microbiota in a Continuous Model of the Human Colon. BIOLOGY 2022; 11:biology11091311. [PMID: 36138790 PMCID: PMC9495918 DOI: 10.3390/biology11091311] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Appreciable evidence suggests that gut microbiota interact with the brain and play a key role in the pathogenesis of mental illnesses. Psychobiotics are beneficial bacteria (probiotics) or support for such bacteria (prebiotics) that can positively modulate microbiota–gut–brain interactions. Several trials suggest probiotics are involved in normalizing brain processes related to stress responses and mood improvements. Here, we studied the growth and competitiveness of recently identified GABA-producing psychobiotic candidates in a continuous model of the human colon. In summary, supplementation with these probiotic candidates positively modulated the gut microbiome composition and metabolism, suggesting their suitability for gut health-promoting applications. Abstract Over decades, probiotic research has focused on their benefits to gut health. Recently, the gut microbiota has been proven to share bidirectional connections with the brain through the gut–brain axis. Therefore, the manipulation of this axis via probiotics has garnered interest. We have recently isolated and characterized in vitro probiotic candidates producing γ-aminobutyric acid (GABA), a major neuromodulator of the enteric nervous system. This study investigates the growth and competitiveness of selected GABA-producing probiotic candidates (Bifidobacterium animalis, Streptococcus thermophilus, and Lactobacillus delbrueckii subsp. bulgaricus) in the presence of human gut microbiota ex vivo in a model mimicking physiological and microbiological conditions of the human proximal colon. Supplementation with GABA-producing probiotic candidates did not affect the overall gut microbiota diversity over 48 h of treatment. However, these candidates modulated the microbiota composition, especially by increasing the Bacteroidetes population, a key gut microbe associated with anti-inflammatory activities. The level of microbiota-generated SCFAs within 12 h of treatment was also increased, compared to the control group. Results from this study demonstrate the probiotic potential of the tested GABA-producing bacteria and their impact on gut microbiota structure and metabolism, suggesting their suitability for gut health-promoting applications.
Collapse
|
30
|
Characterization of metabolites of elderberry juice fermented by Lactobacillus bulgaricus BNCC336436 and Streptococcus thermophilus ABT-T using LC–MS/MS. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01546-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
31
|
Lactic Acid Bacteria in Raw-Milk Cheeses: From Starter Cultures to Probiotic Functions. Foods 2022; 11:foods11152276. [PMID: 35954043 PMCID: PMC9368153 DOI: 10.3390/foods11152276] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/15/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Traditional cheeses produced from raw milk exhibit a complex microbiota, characterized by a sequence of different microorganisms from milk coagulation and throughout maturation. Lactic acid bacteria (LAB) play an essential role in traditional cheese making, either as starter cultures that cause the rapid acidification of milk or as secondary microbiota that play an important role during cheese ripening. The enzymes produced by such dynamic LAB communities in raw milk are crucial, since they support proteolysis and lipolysis as chief drivers of flavor and texture of cheese. Recently, several LAB species have been characterized and used as probiotics that successfully promote human health. This review highlights the latest trends encompassing LAB acting in traditional raw milk cheeses (from cow, sheep, and goat milk), and their potential as probiotics and producers of bioactive compounds with health-promoting effects.
Collapse
|
32
|
Production of Gamma-Aminobutyric Acid by Levilactobacillus brevis CD0817 by Coupling Fermentation with Self-Buffered Whole-Cell Catalysis. FERMENTATION 2022. [DOI: 10.3390/fermentation8070321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
There is a recent trend of using lactic acid bacteria for the production of gamma-aminobutyric acid (GABA). This study described a method that combines fermentation and self-buffered whole-cell catalysis for the efficient production of GABA using Levilactobacillus brevis CD0817. Upon the completion of GABA fermentation, cells were recovered to conduct whole-cell catalysis by which the substrate L-glutamic acid was catalytically decarboxylated to GABA. L-glutamic acid itself maintained the acidity essential for decarboxylation. To maximize the whole-cell catalysis ability, the effects of the cell culture method, catalysis temperature, catalysis time, cell concentration, and L-glutamic acid dosage were investigated. The results illustrate that the cells that were cultivated for 16 h in a fermentation medium supplemented with 20.0 g/L of glucose were the most suitable for the whole-cell catalytic production of GABA. At 16 h, the fermentative GABA content reached 204.2 g/L. Under optimized whole-cell catalytic conditions (temperature 45.0 °C, time 12.0 h, wet cells 25.0 g/L, and L-glutamic acid 120.0 g/L), 85.1 g/L of GABA was obtained, with 3.7 ± 0.9 g/L of substrate residue. GABA was recovered from the system by sequentially performing rotary vacuum evaporation, precipitation with ethanol, filtration with filter paper, and drying. The purity of the GABA product reached 97.1%, with a recovery rate of 87.0%. These data suggest that the proposed method has potential applications in the production of GABA.
Collapse
|
33
|
Gu X, Zhang R, Zhao J, Li C, Guo T, Yang S, Han T, Kong J. Fast-acidification promotes GABA synthesis in response to acid stress in Streptococcus thermophilus. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
34
|
Kim J, Lee MH, Kim MS, Kim GH, Yoon SS. Probiotic Properties and Optimization of Gamma-Aminobutyric Acid Production by Lactiplantibacillus plantarum FBT215. J Microbiol Biotechnol 2022; 32:783-791. [PMID: 35586927 PMCID: PMC9628908 DOI: 10.4014/jmb.2204.04029] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022]
Abstract
Gamma-aminobutyric acid (GABA) improves various physiological illnesses, including diabetes, hypertension, depression, memory lapse, and insomnia in humans. Therefore, interest in the commercial production of GABA is steadily increasing. Lactic acid bacteria (LAB) have widely been reported as a GABA producer and are safe for human consumption. In this study, GABA-producing LAB were preliminarily identified and quantified via GABase assay. The acid and bile tolerance of the L. plantarum FBT215 strain were evaluated. The one-factor-at-a-time (OFAT) strategy was applied to determine the optimal conditions for GABA production using HPLC. Response surface methodology (RSM) with Box-Behnken design was used to predict the optimum GABA production. The strain FBT215 was shown to be acid and bile tolerant. The optimization of GABA production via the OFAT strategy resulted in an average GABA concentration of 1688.65 ± 14.29 μg/ml, while it was 1812.16 ± 23.16 μg/ml when RSM was applied. In conclusion, this study provides the optimum culture conditions for GABA production by the strain FBT215 and indicates that L. plantarum FBT215 is potentially promising for commercial functional probiotics with health claims.
Collapse
Affiliation(s)
- Jaegon Kim
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Myung-Hyun Lee
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Min-Sun Kim
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Gyeong-Hwuii Kim
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Sik Yoon
- Department of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea,Corresponding author Phone: +82-33-760-2251 Fax: +82-33-760-5576 E-mail:
| |
Collapse
|
35
|
Psychobiotic Potential of Gamma-Aminobutyric Acid-Producing Marine Enterococcus faecium SH9 from Marine Shrimp. Probiotics Antimicrob Proteins 2022; 14:934-946. [PMID: 35750975 PMCID: PMC9474364 DOI: 10.1007/s12602-022-09963-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2022] [Indexed: 10/31/2022]
Abstract
Psychobiotics are a novel class of probiotics with potential to confer mental wellness via production of neuroactive compounds such as gamma-aminobutyric acid (GABA). The demand for new biological sources of GABA has increased steadily. Therefore, the current study reports the isolation of 17 presumptive lactic acid bacteria (LAB) from marine samples and their screening for GABA synthesis from monosodium glutamate (MSG) using thin-layer chromatography (TLC). The isolate SH9 was selected as a high GABA producing strain. The GABA content of SH9 cell free supernatant (CFS) was quantitatively determined by high performance liquid chromatography (HPLC) to be 0.97 g/L. SH9 was identified biochemically and molecularly as Enterococcus faecium (identity 99%). Moreover, SH9 demonstrated promising probiotic potentials; it gave no signs of hemolysis and could survive at low pH values and high bile salt concentrations. It also exhibited antimicrobial activity against highly pathogenic strains and the ability to grow at 6.5% NaCl. In addition, SH9 CFS showed anti-inflammatory and antioxidant properties. The glutamate decarboxylase (GAD) gene was detected in SH9 by using specific primers. Product of 540 bp was obtained, sequenced, and analyzed (accession number: MW713382). The inferred amino acid sequence was 99.3% identical to Lactobacillus plantarum M-6 gadB gene. The findings of this study suggest that the marine isolate E. faecium SH9 could be used as a novel psychobiotics in the development of GABA rich healthy products.
Collapse
|
36
|
Laroute V, Beaufrand C, Gomes P, Nouaille S, Tondereau V, Daveran-Mingot ML, Theodorou V, Eutamene H, Mercier-Bonin M, Cocaign-Bousquet M. Lactococcus lactis NCDO2118 exerts visceral antinociceptive properties in rat via GABA production in the gastro-intestinal tract. eLife 2022; 11:77100. [PMID: 35727704 PMCID: PMC9213000 DOI: 10.7554/elife.77100] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/01/2022] [Indexed: 12/01/2022] Open
Abstract
Gut disorders associated to irritable bowel syndrome (IBS) are combined with anxiety and depression. Evidence suggests that microbially produced neuroactive molecules, like γ-aminobutyric acid (GABA), can modulate the gut-brain axis. Two natural strains of Lactococcus lactis and one mutant were characterized in vitro for their GABA production and tested in vivo in rat by oral gavage for their antinociceptive properties. L. lactis NCDO2118 significantly reduced visceral hypersensitivity induced by stress due to its glutamate decarboxylase (GAD) activity. L. lactis NCDO2727 with similar genes for GABA metabolism but no detectable GAD activity had no in vivo effect, as well as the NCDO2118 ΔgadB mutant. The antinociceptive effect observed for the NCDO2118 strain was mediated by the production of GABA in the gastro-intestinal tract and blocked by GABAB receptor antagonist. Only minor changes in the faecal microbiota composition were observed after the L. lactis NCDO2118 treatment. These findings reveal the crucial role of the microbial GAD activity of L. lactis NCDO2118 to deliver GABA into the gastro-intestinal tract for exerting antinociceptive properties in vivo and open avenues for this GRAS (Generally Recognized As safe) bacterium in the management of visceral pain and anxious profile of IBS patients.
Collapse
Affiliation(s)
- Valérie Laroute
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Catherine Beaufrand
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Pedro Gomes
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France.,Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Sébastien Nouaille
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Valérie Tondereau
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - Vassilia Theodorou
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Hélène Eutamene
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Muriel Mercier-Bonin
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Muriel Cocaign-Bousquet
- Toulouse Biotechnology Institute (TBI), Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
37
|
Kamiloğlu A. Functional and technological characterization of lactic acid bacteria isolated from Turkish dry-fermented sausage (sucuk). Braz J Microbiol 2022; 53:959-968. [PMID: 35171497 PMCID: PMC9151968 DOI: 10.1007/s42770-022-00708-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, 10 lactic acid bacteria were isolated from Turkish fermented sausage (sucuk) and identified as 5 Lactobacillus plantarum, 1 Pediococcus acidilactici, 1 Weissella hellenica, 1 Lactobacillus pentosus, and 2 Lactobacillus sakei. PCR screening of genes encoding plantaricin A and pediocin showed the presence of plantaricin A gene in 9 and pediocin gene in 3 of strains. All isolates showed antibacterial and antifungal effect on most of the tested microorganisms. gad gene, encoding glutamic acid decarboxylase enzyme, was detected in all isolates except Weisella hellenica KS-24. Eight of isolates were determined as gamma-amino butyric acid (GABA) producer in the presence of 53 mM mono sodium glutamate (MSG) by HPLC and TLC analysis. DPPH scavenging activity was observed for all isolates. Additionally, isolates were able to produce exopolysaccharide in the presence of sucrose. The best exopolysaccharide (EPS) production was achieved with L. plantarum KS-11 and L. pentosus KS-27. As a result, this study characterized some techno-functional properties of LAB isolates from sucuk. It was concluded that the isolates studied have the potential to be used in obtaining functional products in meat industry, as well as strain selection may be effective in providing the desired properties in the product.
Collapse
Affiliation(s)
- Aybike Kamiloğlu
- Food Engineering Department, Faculty of Engineering, Bayburt University, 69000, Bayburt, Turkey.
| |
Collapse
|
38
|
pH Auto-Sustain-Based Fermentation Supports Efficient Gamma-Aminobutyric Acid Production by Lactobacillus brevis CD0817. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050208] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gamma-aminobutyric acid (GABA) plays a role in several physiological functions. GABA production by lactic acid bacteria has attracted considerable interest; however, there is need to improve production. This study aimed to develop a pH auto-sustain (PAS)-based GABA fermentation process for Lactobacillus brevis CD0817, with L-glutamic acid (solubility ~6.0 g/L and isoelectric point 3.22) as the substrate. Firstly, we determined the optimum levels of vital factors affecting GABA synthesis using Erlenmeyer flask experiments. The results showed that optimal levels of sugar, yeast extract, Tween-80, manganese ion, and temperature were 5.0 g/L, 35.0 g/L, 1.0 g/L, 16.0 mg/L, and 30.0 °C, respectively. The added L-glutamic acid (650 g per liter of medium) mostly existed in the form of solid powder was slowly released to supply the substrate and acidity essential for GABA production with the progress of fermentation. Based on the optimizations, the PAS-based GABA fermentation was performed using a 10 L fermenter. The PAS-based strategy promoted GABA synthesis by the strain of up to 321.9 ± 6.7 g/L after 48 h, with a productivity of 6.71 g/L/h and a substrate molar conversion rate of 99.6%. The findings suggest that the PAS-based fermentation is a promising method for GABA production by lactic acid bacteria.
Collapse
|
39
|
Lalonde R, Strazielle C. Probiotic effects on anxiety-like behavior in animal models. Rev Neurosci 2022; 33:691-701. [PMID: 35381125 DOI: 10.1515/revneuro-2021-0173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/22/2022] [Indexed: 11/15/2022]
Abstract
Gut microbiota have been shown to be useful in treating gastrointestinal diseases, cancer, obesity, infections, and, more recently, neuropsychiatric conditions such as degenerative diseases and depression. There has also been recent expansion in testing probiotics and prebiotics on anxiety-like behaviors in animals. Current results indicate that probiotic substances of the Lactobacillus and Bifidobacterium type are effective in reducing anxiety-like behaviors in mice or rats evaluated in the elevated plus-maze, the open-field, the light-dark box, and conditioned defensive burying. Probiotics are also effective in reducing serum or plasma corticosterone levels after acute stress. It is hypothesized that probiotics cause anxiolytic-like effects via vagal influences on caudal solitary nucleus, periaqueductal gray, central nucleus of the amygdala, and bed nucleus of the stria terminalis. Further experimentation is needed to trace the neurochemical anatomy underlying anxiolytic-like behaviors of gut microbiata exerting effects via vagal or nonvagal pathways.
Collapse
Affiliation(s)
- Robert Lalonde
- University of Lorraine, Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, 54500 Vandœuvre-les-Nancy, France
| | - Catherine Strazielle
- University of Lorraine, Laboratory of Stress, Immunity, Pathogens (EA7300), Medical School, 54500 Vandœuvre-les-Nancy, France.,CHRU Nancy, 54500 Vandœuvre-les-Nancy, France
| |
Collapse
|
40
|
Cell factory for γ-aminobutyric acid (GABA) production using Bifidobacterium adolescentis. Microb Cell Fact 2022; 21:33. [PMID: 35255900 PMCID: PMC8903651 DOI: 10.1186/s12934-021-01729-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Bifidobacteria are gram-positive, probiotic, and generally regarded as safe bacteria. Techniques such as transformation, gene knockout, and heterologous gene expression have been established for Bifidobacterium, indicating that this bacterium can be used as a cell factory platform. However, there are limited previous reports in this field, likely because of factors such as the highly anaerobic nature of this bacterium. Bifidobacterium adolescentis is among the most oxygen-sensitive Bifidobacterium species. It shows strain-specific gamma-aminobutyric acid (GABA) production. GABA is a potent bioactive compound with numerous physiological and psychological functions. In this study, we investigated whether B. adolesentis could be used for mass production of GABA.
Results
The B. adolescentis 4–2 strain isolated from a healthy adult human produced approximately 14 mM GABA. It carried gadB and gadC, which encode glutamate decarboxylase and glutamate GABA antiporter, respectively. We constructed pKKT427::Pori-gadBC and pKKT427::Pgap-gadBC plasmids carrying gadBC driven by the original gadB (ori) and gap promoters, respectively. Recombinants of Bifidobacterium were then constructed. Two recombinants with high production abilities, monitored by two different promoters, were investigated. GABA production was improved by adjusting the fermentation parameters, including the substrate concentration, initial culture pH, and co-factor supplementation, using response surface methodology. The optimum initial cultivation pH varied when the promoter region was changed. The ori promoter was induced under acidic conditions (pH 5.2:4.4), whereas the constitutive gap promoter showed enhanced GABA production at pH 6.0. Fed-batch fermentation was used to validate the optimum fermentation parameters, in which approximately 415 mM GABA was produced. The conversion ratio of glutamate to GABA was 92–100%.
Conclusion
We report high GABA production in recombinant B. adolescentis. This study provides a foundation for using Bifidobacterium as a cell factory platform for industrial production of GABA.
Collapse
|
41
|
Kim J, Yoon YW, Kim MS, Lee MH, Kim GA, Bae K, Yoon SS. Gamma-aminobutyric acid fermentation in MRS-based medium by the fructophilic Lactiplantibacillus plantarum Y7. Food Sci Biotechnol 2022; 31:333-341. [PMID: 35273823 PMCID: PMC8885955 DOI: 10.1007/s10068-022-01035-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023] Open
Abstract
Among the key metabolites produced by probiotic lactic acid bacteria (LAB), the use of gamma-aminobutyric acid (GABA), which alleviates hypertension, depression, and sleepiness in humans, is gaining popularity. Thus, GABA-producing LAB are sought after. GABA-producing LAB were preliminarily screened in acidified-MRS broth and quantified via GABase assays. The one-factor-at-a-time strategy was applied to determine the optimal conditions for GABA production. GABA production in reconstituted skim milk medium (RSM) and antibiotic susceptibility testing were performed to evaluate the potential of the strain as a yogurt starter. L. plantarum Y7 produced 4,856.86 ± 82.47 μg/mL of GABA at optimal culture conditions. Co-cultivation of Y7 and commercial Lactobacillus bulgaricus affected the amount of GABA production (6.85 ± 0.20 μg/mL) in RSM. Y7 was susceptible to ampicillin, erythromycin, and tetracycline. Therefore, L. plantarum Y7 represents a promising strain for GABA production in the food industry.
Collapse
Affiliation(s)
- Jaegon Kim
- Department of Biological Science and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Yong-Won Yoon
- Department of Biological Science and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Min-Sun Kim
- Department of Biological Science and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Myung-Hyun Lee
- Department of Biological Science and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Geun-Ah Kim
- Department of Biological Science and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Kiho Bae
- Division of Biological Science and Technology, Yonsei University, Wonju, Republic of Korea
| | - Sung-Sik Yoon
- Department of Biological Science and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| |
Collapse
|
42
|
Application of Enterococcus malodoratus SJC25 for the Manufacture of Whey-Based Beverage Naturally Enriched with GABA. Foods 2022; 11:foods11030447. [PMID: 35159597 PMCID: PMC8834577 DOI: 10.3390/foods11030447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/29/2022] [Indexed: 02/01/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is used as a dietary supplement because of its health-promoting properties. However, concern over the use of synthetic products has increased the demand for foods that are naturally fortified with GABA. In addition, excess whey is a major concern for the dairy industry due to the high cost of treating it. Here, we report the use of a novel Enterococcus malodoratus strain isolated from cheese to produce sweet whey beverages naturally enriched with GABA. After the screening of cheese isolates, E. malodoratus strains were identified as high GABA producers. One beverage was prepared from pasteurized sweet whey enriched in glutamic acid and E. malodoratus SJC25. The fermented beverages were supplemented with a fruit preparation and subjected to chemical, microbiological and sensory analysis. The bacterial counts and GABA content were maintained until storage at 4 °C for 14 days. High conversion rates of glutamic acid to GABA (50–71%) were obtained in the beverages. The GABA content in whey-based beverages reached 250–300 mg/100 mL, which is equivalent to the content of commercially available GABA supplements. The beverages received a positive rating (4/5) by the taste panel. To our knowledge, this is the first report on E. malodoratus as a potential GABA producer.
Collapse
|
43
|
Lactic acid bacteria as pro-technological, bioprotective and health-promoting cultures in the dairy food industry. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Tang Z, Zhao Z, Wu X, Lin W, Qin Y, Chen H, Wan Y, Zhou C, Bu T, Chen H, Xiao Y. A Review on Fruit and Vegetable Fermented Beverage-Benefits of Microbes and Beneficial Effects. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2024222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zizhong Tang
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Zhiqiao Zhao
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Xulong Wu
- Chengdu Agricultural College, Chengdu, Sichuan, China
| | - Wenjie Lin
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yihan Qin
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Hui Chen
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yujun Wan
- Sichuan Food and Fermentation Industry Research and Design Institute, Chengdu,Sichuan, China
| | - Caixia Zhou
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Tongliang Bu
- College of Life Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yirong Xiao
- Sichuan Agricultural University Hospital, Ya’an, Sichuan, China
| |
Collapse
|
45
|
Optimization of Gamma Aminobutyric Acid Production Using High Pressure Processing (HPP) by Lactobacillus brevis PML1. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8540736. [PMID: 35071599 PMCID: PMC8776451 DOI: 10.1155/2022/8540736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/10/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022]
Abstract
In the present research, the production potential of gamma aminobutyric acid (GABA) using Lactobacillus brevis PML1 was investigated. In addition, the microorganism viability was examined in MAN, ROGOSA, and SHARPE (MRS) after undergoing high hydrostatic pressure at 100, 200, and 300 MPa for 5, 10, and 15 min. Response surface methodology (RSM) was applied to optimize the production conditions of GABA as well as the bacteria viability. Analysis of variance (ANOVA) indicated that both the independent variables (pressure and time) significantly influenced the dependent ones (GABA and bacteria viability) (
). The optimum extraction conditions to maximize the production of GABA included the pressure of 300 MPa and the time of 15 min. The amount of the compound was quantified using thin-layer chromatography (TLC) and spectrophotometry. For the process optimization, a central composite design (CCD) was created using Design Expert with 5 replications at the center point, whereby the highest content of GABA was obtained to be 397.73 ppm which was confirmed by high performance liquid chromatography (HPLC). Moreover, scanning electron microscopy (SEM) was utilized to observe the morphological changes in the microorganism. The results revealed that not only did have Lactobacillus brevis PML1 the potential for the production of GABA under conventional conditions (control sample) but also the content of this bioactive compound could be elevated by optimizing the production parameters.
Collapse
|
46
|
Le PH, Diep TT, Nguyen NTA, Tran KD, Tran TTM, Le TT. Evaluation of physicochemical properties of soymilk prepared from germinated soybean. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Phuong Hong Le
- Department of Chemical Engineering Nong Lam University Ho Chi Minh City Vietnam
| | - Tung Thanh Diep
- Department of Chemical Engineering Nong Lam University Ho Chi Minh City Vietnam
| | | | - Khoa Dang Tran
- Department of Chemical Engineering Nong Lam University Ho Chi Minh City Vietnam
| | - Trinh Thi Mai Tran
- Department of Chemical Engineering Nong Lam University Ho Chi Minh City Vietnam
| | - Thien Trung Le
- Department of Food Engineering Nong Lam University Ho Chi Minh City Vietnam
| |
Collapse
|
47
|
Verni M, Vekka A, Immonen M, Katina K, Rizzello CG, Coda R. Biosynthesis of γ-aminobutyric acid by lactic acid bacteria in surplus bread and its use in bread making. J Appl Microbiol 2021; 133:76-90. [PMID: 34687568 PMCID: PMC9544796 DOI: 10.1111/jam.15332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/04/2021] [Accepted: 10/18/2021] [Indexed: 01/25/2023]
Abstract
AIMS The aim of this study was to investigate the effectiveness of bread as substrate for γ-aminobutyric acid (GABA) biosynthesis, establishing a valorization strategy for surplus bread, repurposing it within the food chain. METHODS AND RESULTS Surplus bread was fermented by lactic acid bacteria (LAB) to produce GABA. Pediococcus pentosaceus F01, Levilactobacillus brevis MRS4, Lactiplantibacillus plantarum H64 and C48 were selected among 33 LAB strains for the ability to synthesize GABA. Four fermentation experiments were set up using surplus bread as such, added of amylolytic and proteolytic enzymes, modifying the pH or mixed with wheat bran. Enzyme-treated slurries led to the release of glucose (up to 20 mg g-1 ) and free amino acid, whereas the addition of wheat bran (30% of bread weight) yielded the highest GABA content (circa 800 mg kg-1 of dry weight) and was the most suitable substrate for LAB growth. The selected slurry was ultimately used as an ingredient in bread making causing an increase in free amino acids. CONCLUSIONS Besides the high GABA concentration (148 mg kg-1 dough), the experimental bread developed in this study was characterized by good nutritional properties, highlighting the efficacy of tailored bioprocessing technologies as means to mitigate food wastage. SIGNIFICANCE AND IMPACT OF STUDY Our results represent a proof of concept of effective strategies to repurpose food industry side streams.
Collapse
Affiliation(s)
- Michela Verni
- Department of Soil, Plant and Food Science, University of Bari "Aldo Moro", Bari, Italy
| | - Anna Vekka
- Department of Food and Nutrition Sciences, University of Helsinki, Helsinki, Finland
| | - Mikko Immonen
- Department of Food and Nutrition Sciences, University of Helsinki, Helsinki, Finland
| | - Kati Katina
- Department of Food and Nutrition Sciences, University of Helsinki, Helsinki, Finland
| | | | - Rossana Coda
- Department of Food and Nutrition Sciences, University of Helsinki, Helsinki, Finland.,Faculty of Agriculture and Forestry, Helsinki Institute of Sustainability Science, University of Helsinki, Helsinki, Finland
| |
Collapse
|
48
|
Gu X, Zhao J, Zhang R, Yu R, Guo T, Kong J. Molecular Analysis of Glutamate Decarboxylases in Enterococcus avium. Front Microbiol 2021; 12:691968. [PMID: 34566904 PMCID: PMC8461050 DOI: 10.3389/fmicb.2021.691968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Enterococcus avium (E. avium) is a common bacterium inhabiting the intestines of humans and other animals. Most strains of this species can produce gamma-aminobutyric acid (GABA) via the glutamate decarboxylase (GAD) system, but the presence and genetic organization of their GAD systems are poorly characterized. In this study, our bioinformatics analyses showed that the GAD system in E. avium strains was generally encoded by three gadB genes (gadB1, gadB2, and gadB3), together with an antiporter gene (gadC) and regulator gene (gadR), and these genes are organized in a cluster. This finding contrasts with that for other lactic acid bacteria. E. avium SDMCC050406, a GABA producer isolated from human feces, was employed to investigate the contribution of the three gadB genes to GABA biosynthesis. The results showed that the relative expression level of gadB3 was higher than those of gadB1 and gadB2 in the exponential growth and stationary phases, and this was accompanied by the synchronous transcription of gadC. After heterologous expression of the three gadB genes in Escherichia coli BL21 (DE3), the Km value of the purified GAD3 was 4.26 ± 0.48 mM, a value lower than those of the purified GAD1 and GAD2. Moreover, gadB3 gene inactivation caused decreased GABA production, accompanied by a reduction in resistance to acid stress. These results indicated that gadB3 plays a crucial role in GABA biosynthesis and this property endowed the strain with acid tolerance. Our findings provided insights into how E. avium strains survive the acidic environments of fermented foods and throughout transit through the stomach and gut while maintaining cell viability.
Collapse
Affiliation(s)
- Xinyi Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jiancun Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rongling Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Ruohan Yu
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Tingting Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jian Kong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
49
|
Liu W, Li H, Liu L, Ko K, Kim I. Screening of gamma-aminobutyric acid-producing lactic acid bacteria and the characteristic of glutamate decarboxylase from Levilactobacillus brevis F109-MD3 isolated from kimchi. J Appl Microbiol 2021; 132:1967-1977. [PMID: 34570423 DOI: 10.1111/jam.15306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/15/2022]
Abstract
AIMS This study aimed to screen the γ-aminobutyric acid (GABA)-producing lactic acid bacteria (LAB) from kimchi, and investigate the glutamate decarboxylase (GAD) activity of the highest GABA-producing strain. METHODS AND RESULTS Seven strains of LAB were screened from kimchi with GABA-producing activity. Strain Levilactobacillus brevis F109-MD3 showed the highest GABA-producing ability. It produced GABA at a concentration of 520 mmol l-1 with a 97.4% GABA conversion rate in MRS broth containing 10% monosodium glutamate for 72 h. The addition of pyridoxal 5'-phosphate had no significant effect on the GAD activity of L. brevis F109-MD3. The optimal pH range of GAD was 3.0-5.0 and the optimal temperature was 65°C. The D value of GAD at 50, 60 and 70°C was 7143, 971 and 124 min respectively and Z value was 11.36°C. CONCLUSIONS Seven strains isolated from kimchi, especially F109-MD3, showed high GABA-production ability even in the high concentrations of MSG at 7.5% and 10%. The GAD activity showed an effective broad pH range and higher optimal temperature. SIGNIFICANCE AND IMPACT OF THE STUDY These seven strains could be potentially useful for food-grade GABA production and the development of healthy foods.
Collapse
Affiliation(s)
- Wenli Liu
- China Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,School of Food Engineering, Ludong University, Yantai, China.,Department of Food Engineering, Mokpo National University, Jeonnam, Republic of Korea
| | - Huamin Li
- School of Food Engineering, Ludong University, Yantai, China.,Bionanotechnology Institute, Ludong University, Yantai, China
| | - Long Liu
- China Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Kanghee Ko
- Department of Food Engineering, Mokpo National University, Jeonnam, Republic of Korea
| | - Incheol Kim
- Department of Food Engineering, Mokpo National University, Jeonnam, Republic of Korea
| |
Collapse
|
50
|
Khanlari Z, Moayedi A, Ebrahimi P, Khomeiri M, Sadeghi A. Enhancement of γ‐aminobutyric acid (GABA) content in fermented milk by using
Enterococcus faecium
and
Weissella confusa
isolated from sourdough. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15869] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Zahra Khanlari
- Department of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Ali Moayedi
- Department of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Pouneh Ebrahimi
- Department of Chemistry Faculty of Sciences Golestan University Gorgan Iran
| | - Morteza Khomeiri
- Department of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| | - Alireza Sadeghi
- Department of Food Science and Technology Gorgan University of Agricultural Sciences and Natural Resources Gorgan Iran
| |
Collapse
|