1
|
Thuma TBT, Procopio RA, Jimenez HJ, Gunton KB, Pulido JS. Hypomorphic variants in inherited retinal and ocular diseases: A review of the literature with clinical cases. Surv Ophthalmol 2024; 69:337-348. [PMID: 38036193 DOI: 10.1016/j.survophthal.2023.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/02/2023]
Abstract
Hypomorphic variants decrease, but do not eliminate, gene function via a reduction in the amount of mRNA or protein product produced by a gene or by production of a gene product with reduced function. Many hypomorphic variants have been implicated in inherited retinal diseases (IRDs) and other genetic ocular conditions; however, there is heterogeneity in the use of the term "hypomorphic" in the scientific literature. We searched for all hypomorphic variants reported to cause IRDs and ocular disorders. We also discuss the presence of hypomorphic variants in the patient population of our ocular genetics department over the past decade. We propose that standardized criteria should be adopted for use of the term "hypomorphic" to describe gene variants to improve genetic counseling and patient care outcomes.
Collapse
Affiliation(s)
- Tobin B T Thuma
- Department of Pediatric Ophthalmology and Strabismus, Wills Eye Hospital, Philadelphia, PA, USA
| | | | - Hiram J Jimenez
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, PA, USA
| | - Kammi B Gunton
- Department of Pediatric Ophthalmology and Strabismus, Wills Eye Hospital, Philadelphia, PA, USA
| | - Jose S Pulido
- Vickie and Jack Farber Vision Research Center, Wills Eye Hospital, Philadelphia, PA, USA; Retina Service, Wills Eye Hospital, Philadelphia, PA, USA.
| |
Collapse
|
2
|
Brandes N, Goldman G, Wang CH, Ye CJ, Ntranos V. Genome-wide prediction of disease variant effects with a deep protein language model. Nat Genet 2023; 55:1512-1522. [PMID: 37563329 PMCID: PMC10484790 DOI: 10.1038/s41588-023-01465-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/05/2023] [Indexed: 08/12/2023]
Abstract
Predicting the effects of coding variants is a major challenge. While recent deep-learning models have improved variant effect prediction accuracy, they cannot analyze all coding variants due to dependency on close homologs or software limitations. Here we developed a workflow using ESM1b, a 650-million-parameter protein language model, to predict all ~450 million possible missense variant effects in the human genome, and made all predictions available on a web portal. ESM1b outperformed existing methods in classifying ~150,000 ClinVar/HGMD missense variants as pathogenic or benign and predicting measurements across 28 deep mutational scan datasets. We further annotated ~2 million variants as damaging only in specific protein isoforms, demonstrating the importance of considering all isoforms when predicting variant effects. Our approach also generalizes to more complex coding variants such as in-frame indels and stop-gains. Together, these results establish protein language models as an effective, accurate and general approach to predicting variant effects.
Collapse
Affiliation(s)
- Nadav Brandes
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Grant Goldman
- Biological and Medical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Charlotte H Wang
- Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Chun Jimmie Ye
- Division of Rheumatology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
| | - Vasilis Ntranos
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA.
- Department of Epidemiology & Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
3
|
Senarathne UD, Indika NLR, Jezela-Stanek A, Ciara E, Frye RE, Chen C, Stepien KM. Biochemical, Genetic and Clinical Diagnostic Approaches to Autism-Associated Inherited Metabolic Disorders. Genes (Basel) 2023; 14:genes14040803. [PMID: 37107561 PMCID: PMC10138025 DOI: 10.3390/genes14040803] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders characterized by impaired social interaction, limited communication skills, and restrictive and repetitive behaviours. The pathophysiology of ASD is multifactorial and includes genetic, epigenetic, and environmental factors, whereas a causal relationship has been described between ASD and inherited metabolic disorders (IMDs). This review describes biochemical, genetic, and clinical approaches to investigating IMDs associated with ASD. The biochemical work-up includes body fluid analysis to confirm general metabolic and/or lysosomal storage diseases, while the advances and applications of genomic testing technology would assist with identifying molecular defects. An IMD is considered likely underlying pathophysiology in ASD patients with suggestive clinical symptoms and multiorgan involvement, of which early recognition and treatment increase their likelihood of achieving optimal care and a better quality of life.
Collapse
Affiliation(s)
- Udara D. Senarathne
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
- Department of Chemical Pathology, Monash Health Pathology, Monash Health, Melbourne, VIC 3168, Australia
| | - Neluwa-Liyanage R. Indika
- Department of Biochemistry, Faculty of Medical Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
| | - Aleksandra Jezela-Stanek
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 01-138 Warsaw, Poland
| | - Elżbieta Ciara
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland
| | - Richard E. Frye
- Autism Discovery and Treatment Foundation, Phoenix, AZ 85050, USA
| | - Cliff Chen
- Clinical Neuropsychology Department, Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
| | - Karolina M. Stepien
- Adult Inherited Metabolic Diseases, Mark Holland Unit, Salford Royal NHS Foundation Trust, Salford M6 8HD, UK
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester M13 9PL, UK
- Correspondence:
| |
Collapse
|
4
|
Tripathi R, Aggarwal T, Lindberg FA, Klemm AH, Fredriksson R. SLC38A10 Regulate Glutamate Homeostasis and Modulate the AKT/TSC2/mTOR Pathway in Mouse Primary Cortex Cells. Front Cell Dev Biol 2022; 10:854397. [PMID: 35450293 PMCID: PMC9017388 DOI: 10.3389/fcell.2022.854397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
Glutamate acts as a critical regulator of neurotransmitter balance, recycling, synaptic function and homeostasis in the brain and glutamate transporters control glutamate levels in the brain. SLC38A10 is a member of the SLC38 family and regulates protein synthesis and cellular stress responses. Here, we uncover the role of SLC38A10 as a transceptor involved in glutamate-sensing signaling pathways that control both the glutamate homeostasis and mTOR-signaling. The culture of primary cortex cells from SLC38A10 knockout mice had increased intracellular glutamate. In addition, under nutrient starvation, KO cells had an impaired response in amino acid-dependent mTORC1 signaling. Combined studies from transcriptomics, protein arrays and metabolomics established that SLC38A10 is involved in mTOR signaling and that SLC38A10 deficient primary cortex cells have increased protein synthesis. Metabolomic data showed decreased cholesterol levels, changed fatty acid synthesis, and altered levels of fumaric acid, citrate, 2-oxoglutarate and succinate in the TCA cycle. These data suggests that SLC38A10 may act as a modulator of glutamate homeostasis, and mTOR-sensing and loss of this transceptor result in lower cholesterol, which could have implications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Rekha Tripathi
- Department of Pharmaceutical Bioscience, Unit of Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
- *Correspondence: Rekha Tripathi,
| | - Tanya Aggarwal
- Department of Pharmaceutical Bioscience, Unit of Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| | - Frida A. Lindberg
- Department of Pharmaceutical Bioscience, Unit of Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| | - Anna H. Klemm
- BioImage Informatics Facility, SciLifeLab, Division of Visual Information and Interaction, Department of Information Technology, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Bioscience, Unit of Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Sourbron J, Jansen K, Mei D, Hammer TB, Møller RS, Gold NB, O'Grady L, Guerrini R, Lagae L. SLC7A3: In Silico Prediction of a Potential New Cause of Childhood Epilepsy. Neuropediatrics 2022; 53:46-51. [PMID: 34872132 DOI: 10.1055/s-0041-1739133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
We report an in-depth genetic analysis in an 11-year-old boy with drug-resistant, generalized seizures and developmental disability. Three distinct variants of unknown clinical significance (VUS) were detected by whole exome sequencing (WES) but not by initial genetic analyses (microarray and epilepsy gene panel). These variants involve the SLC7A3, CACNA1H, and IGLON5 genes, which were subsequently evaluated by computational analyses using the InterVar tool and MutationTaster. While future functional studies are necessary to prove the pathogenicity of a certain VUS, segregation analyses over three generations and in silico predictions suggest the X-linked gene SLC7A3 (transmembrane solute carrier transporter) as the likely culprit gene in this patient. In addition, a search via GeneMatcher unveiled two additional patients with a VUS in SLC7A3. We propose SLC7A3 as a likely candidate gene for epilepsy and/or developmental/cognitive delay and provide an overview of the 27 SLC genes related to epilepsy by other preclinical and/or clinical studies.
Collapse
Affiliation(s)
- Jo Sourbron
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium.,Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Katrien Jansen
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium
| | - Davide Mei
- Neuroscience Department, Meyer Children's Hospital, European Reference Network ERN EpiCARE, University of Florence, Florence, Italy
| | - Trine Bjørg Hammer
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Centre, Denmark and Clinical Genetic Department, Rigshospitalet, Copenhagen, Denmark
| | - Rikke S Møller
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark.,Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center Dianalund, Denmark
| | - Nina B Gold
- Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, Massachusetts, United States.,Harvard Medical School, Department of Pediatrics, Boston, MA, USA
| | - Lauren O'Grady
- Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, Massachusetts, United States
| | - Renzo Guerrini
- Neuroscience Department, Meyer Children's Hospital, European Reference Network ERN EpiCARE, University of Florence, Florence, Italy.,IRCCS Stella Maris Foundation, Pisa, Italy
| | - Lieven Lagae
- Department of Development and Regeneration, Section Pediatric Neurology, University Hospital KU Leuven, Leuven, Belgium
| |
Collapse
|
6
|
Wang B, Dong H, Li H, Yue X, Xie L. A Probable Way Vitamin D Affects Autism Spectrum Disorder: The Nitric Oxide Signaling Pathway. Front Psychiatry 2022; 13:908895. [PMID: 35722582 PMCID: PMC9199365 DOI: 10.3389/fpsyt.2022.908895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Vitamin D (VD) deficiency during pregnancy and early brain development is an important environmental risk factor for autism spectrum disorder (ASD). Its specific mechanism of action is still unclear. However, one study on the correlation between metabolomics and VD levels in children with ASD has found that the whole-blood arginine (Arg) levels of children with ASD are significantly negatively correlated with serum VD levels, suggesting that the effect of VD on ASD may be related to the signaling pathway involving Arg. Arg is a precursor of nitric oxide (NO), and changes in its levels most directly affect NO levels and signal transduction pathways. NO, a biologically active free radical, is both a neurotransmitter and a neuromodulator in the central nervous system and is related to the pathogeneses of various neurological diseases. The NO signaling pathway is not only affected by VD levels but also closely related to ASD through a series of mechanisms, such as neurotransmitter imbalance, immune disorders, and oxidative stress. Therefore, the effect of VD on ASD may be achieved via regulation of the NO signaling pathway. The current review discusses the relationship among VD, NO, and ASD as suggested by a large body of evidence in the literature in an effort to provide clues for researchers on the pathogenesis of ASD and the mechanism of VD's impact on ASD.
Collapse
Affiliation(s)
- Bing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China.,Department of Developmental and Behavioral Pediatrics, First Affiliated Hospital of Jilin University, Changchun, China
| | - HanYu Dong
- Department of Developmental and Behavioral Pediatrics, First Affiliated Hospital of Jilin University, Changchun, China
| | - HongHua Li
- Department of Developmental and Behavioral Pediatrics, First Affiliated Hospital of Jilin University, Changchun, China
| | - XiaoJing Yue
- Department of Developmental and Behavioral Pediatrics, First Affiliated Hospital of Jilin University, Changchun, China
| | - Lin Xie
- Department of Nutrition and Food Hygiene, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
7
|
Transport of L-Arginine Related Cardiovascular Risk Markers. J Clin Med 2020; 9:jcm9123975. [PMID: 33302555 PMCID: PMC7764698 DOI: 10.3390/jcm9123975] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022] Open
Abstract
L-arginine and its derivatives, asymmetric and symmetric dimethylarginine (ADMA and SDMA) and L-homoarginine, have emerged as cardiovascular biomarkers linked to cardiovascular outcomes and various metabolic and functional pathways such as NO-mediated endothelial function. Cellular uptake and efflux of L-arginine and its derivatives are facilitated by transport proteins. In this respect the cationic amino acid transporters CAT1 and CAT2 (SLC7A1 and SLC7A2) and the system y+L amino acid transporters (SLC7A6 and SLC7A7) have been most extensively investigated, so far, but the number of transporters shown to mediate the transport of L-arginine and its derivatives is constantly increasing. In the present review we assess the growing body of evidence regarding the function, expression, and clinical relevance of these transporters and their possible relation to cardiovascular diseases.
Collapse
|
8
|
Kandasamy P, Gyimesi G, Kanai Y, Hediger MA. Amino acid transporters revisited: New views in health and disease. Trends Biochem Sci 2018; 43:752-789. [PMID: 30177408 DOI: 10.1016/j.tibs.2018.05.003] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/09/2023]
Abstract
Amino acid transporters (AATs) are membrane-bound transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs have diverse functional roles ranging from neurotransmission to acid-base balance, intracellular energy metabolism, and anabolic and catabolic reactions. In cancer cells and diabetes, dysregulation of AATs leads to metabolic reprogramming, which changes intracellular amino acid levels, contributing to the pathogenesis of cancer, obesity and diabetes. Indeed, the neutral amino acid transporters (NATs) SLC7A5/LAT1 and SLC1A5/ASCT2 are likely involved in several human malignancies. However, a clinical therapy that directly targets AATs has not yet been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, their diverse physiological roles in different tissues and organs, their wide-ranging implications in human diseases and the emerging strategies and tools that will be necessary to target AATs therapeutically.
Collapse
Affiliation(s)
- Palanivel Kandasamy
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Gergely Gyimesi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland.
| |
Collapse
|
9
|
Anwar A, Abruzzo PM, Pasha S, Rajpoot K, Bolotta A, Ghezzo A, Marini M, Posar A, Visconti P, Thornalley PJ, Rabbani N. Advanced glycation endproducts, dityrosine and arginine transporter dysfunction in autism - a source of biomarkers for clinical diagnosis. Mol Autism 2018; 9:3. [PMID: 29479405 PMCID: PMC5817812 DOI: 10.1186/s13229-017-0183-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022] Open
Abstract
Background Clinical chemistry tests for autism spectrum disorder (ASD) are currently unavailable. The aim of this study was to explore the diagnostic utility of proteotoxic biomarkers in plasma and urine, plasma protein glycation, oxidation, and nitration adducts, and related glycated, oxidized, and nitrated amino acids (free adducts), for the clinical diagnosis of ASD. Methods Thirty-eight children with ASD (29 male, 9 female; age 7.6 ± 2.0 years) and 31 age-matched healthy controls (23 males, 8 females; 8.6 ± 2.0 years) were recruited for this study. Plasma protein glycation, oxidation, and nitration adducts and amino acid metabolome in plasma and urine were determined by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry. Machine learning methods were then employed to explore and optimize combinations of analyte data for ASD diagnosis. Results We found that children with ASD had increased advanced glycation endproducts (AGEs), Nε-carboxymethyl-lysine (CML) and Nω-carboxymethylarginine (CMA), and increased oxidation damage marker, dityrosine (DT), in plasma protein, with respect to healthy controls. We also found that children with ASD had increased CMA free adduct in plasma ultrafiltrate and increased urinary excretion of oxidation free adducts, alpha-aminoadipic semialdehyde and glutamic semialdehyde. From study of renal handling of amino acids, we found that children with ASD had decreased renal clearance of arginine and CMA with respect to healthy controls. Algorithms to discriminate between ASD and healthy controls gave strong diagnostic performance with features: plasma protein AGEs—CML, CMA—and 3-deoxyglucosone-derived hydroimidazolone, and oxidative damage marker, DT. The sensitivity, specificity, and receiver operating characteristic area-under-the-curve were 92%, 84%, and 0.94, respectively. Conclusions Changes in plasma AGEs were likely indicative of dysfunctional metabolism of dicarbonyl metabolite precursors of AGEs, glyoxal and 3-deoxyglucosone. DT is formed enzymatically by dual oxidase (DUOX); selective increase of DT as an oxidative damage marker implicates increased DUOX activity in ASD possibly linked to impaired gut mucosal immunity. Decreased renal clearance of arginine and CMA in ASD is indicative of increased arginine transporter activity which may be a surrogate marker of disturbance of neuronal availability of amino acids. Data driven combination of these biomarkers perturbed by proteotoxic stress, plasma protein AGEs and DT, gave diagnostic algorithms of high sensitivity and specificity for ASD. Electronic supplementary material The online version of this article (10.1186/s13229-017-0183-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Attia Anwar
- Warwick Medical School, University of Warwick, Clinical Sciences Research Laboratories, University Hospital, Coventry, UK
| | - Provvidenza Maria Abruzzo
- 2Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy.,4Don Carlo Gnocchi Foundation ONLUS, IRCCS "S. Maria Nascente", Via Alfonso Capecelatro 66, 20148 Milan, Italy
| | - Sabah Pasha
- Warwick Medical School, University of Warwick, Clinical Sciences Research Laboratories, University Hospital, Coventry, UK
| | - Kashif Rajpoot
- 3Department of Computer Science, University of Birmingham, Birmingham, UK
| | - Alessandra Bolotta
- 2Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy.,4Don Carlo Gnocchi Foundation ONLUS, IRCCS "S. Maria Nascente", Via Alfonso Capecelatro 66, 20148 Milan, Italy
| | - Alessandro Ghezzo
- 2Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy
| | - Marina Marini
- 2Department of Experimental, Diagnostic and Specialty Medicine, School of Medicine, University of Bologna, Via Belmeloro 8, 40126 Bologna, Italy.,4Don Carlo Gnocchi Foundation ONLUS, IRCCS "S. Maria Nascente", Via Alfonso Capecelatro 66, 20148 Milan, Italy
| | - Annio Posar
- Child Neurology and Psychiatry Unit, IRCCS Institute of Neurological Sciences, Via Altura, 3, 40139 Bologna, Italy.,6Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Altura 3, 40139 Bologna, Italy
| | - Paola Visconti
- Child Neurology and Psychiatry Unit, IRCCS Institute of Neurological Sciences, Via Altura, 3, 40139 Bologna, Italy
| | - Paul J Thornalley
- Warwick Medical School, University of Warwick, Clinical Sciences Research Laboratories, University Hospital, Coventry, UK.,7Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, Senate House, University of Warwick, Coventry, CV4 7AL UK
| | - Naila Rabbani
- Warwick Medical School, University of Warwick, Clinical Sciences Research Laboratories, University Hospital, Coventry, UK.,7Zeeman Institute for Systems Biology & Infectious Disease Epidemiology Research, Senate House, University of Warwick, Coventry, CV4 7AL UK.,8Research Technology Platform-Proteomics, University of Warwick, Coventry, UK
| |
Collapse
|
10
|
Lund C, Striano P, Sorte HS, Parisi P, Iacomino M, Sheng Y, Vigeland MD, Øye AM, Møller RS, Selmer KK, Zara F. Exome Sequencing Fails to Identify the Genetic Cause of Aicardi Syndrome. Mol Syndromol 2016; 7:234-238. [PMID: 27781033 DOI: 10.1159/000448367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aicardi syndrome (AS) is a well-characterized neurodevelopmental disorder with an unknown etiology. In this study, we performed whole-exome sequencing in 11 female patients with the diagnosis of AS, in order to identify the disease-causing gene. In particular, we focused on detecting variants in the X chromosome, including the analysis of variants with a low number of sequencing reads, in case of somatic mosaicism. For 2 of the patients, we also sequenced the exome of the parents to search for de novo mutations. We did not identify any genetic variants likely to be damaging. Only one single missense variant was identified by the de novo analyses of the 2 trios, and this was considered benign. The failure to identify a disease gene in this study may be due to technical limitations of our study design, including the possibility that the genetic aberration leading to AS is situated in a non-exonic region or that the mutation is somatic and not detectable by our approach. Alternatively, it is possible that AS is genetically heterogeneous and that 11 patients are not sufficient to reveal the causative genes. Future studies of AS should consider designs where also non-exonic regions are explored and apply a sequencing depth so that also low-grade somatic mosaicism can be detected.
Collapse
Affiliation(s)
- Caroline Lund
- National Centre for Rare Epilepsy-Related Disorders, Oslo University Hospital, Oslo, Norway
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Rome, Italy
| | - Hanne Sørmo Sorte
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Pasquale Parisi
- NESMOS Department, c/o Sant'Andrea Hospital, Faculty of Medicine and Psychology, University of Rome Sapienza, Rome, Italy
| | - Michele Iacomino
- Laboratory of Neurogenetics, Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, University of Genoa, 'G. Gaslini' Institute, Genoa, Rome, Italy
| | - Ying Sheng
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Magnus D Vigeland
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Anne-Marte Øye
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Rikke Steensbjerre Møller
- Danish Epilepsy Centre, Dianalund, Odense, Denmark; Institute for Regional Health Services, University of Southern Denmark, Odense, Denmark
| | - Kaja K Selmer
- National Centre for Rare Epilepsy-Related Disorders, Oslo University Hospital, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Federico Zara
- Laboratory of Neurogenetics, Pediatric Neurology and Muscular Diseases Unit, Department of Neurosciences, University of Genoa, 'G. Gaslini' Institute, Genoa, Rome, Italy
| |
Collapse
|