1
|
França DCH, Honorio-França AC, Silva KMR, Alves FCB, Bueno G, Costa SMB, Cotrim ACDM, Barbosa AMP, França EL, Rudge MVC, The Diamater Study Group. Serotonin and Interleukin 10 Can Influence the Blood and Urine Viscosity in Gestational Diabetes Mellitus and Pregnancy-Specific Urinary Incontinence. Int J Mol Sci 2023; 24:17125. [PMID: 38138954 PMCID: PMC10742662 DOI: 10.3390/ijms242417125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 12/24/2023] Open
Abstract
Serotonin and interleukin 10 (IL-10) may play a role in gestational diabetes mellitus. Hyperglycemic environment, the detrusor musculature of the bladder and pelvic floor muscles may become damaged, leading to urination problems and urine viscosity in pregnant women with gestational diabetes mellitus and pregnancy-specific urinary incontinence. Urine and blood samples were collected from pregnant women between 24 and 28 weeks of gestation. The serotonin concentration and cytokine IL-10 levels were evaluated in plasma and urine. In the total blood and urine, the viscosity was evaluated in the presence and absence of exogenous serotonin and IL-10. The plasma serotonin levels decreased, while the urine serotonin levels increased in the normoglycemic incontinent (NG-I), hyperglycemic continent (GDM-C), and hyperglycemic incontinent (GDM-I) groups. The IL-10 in the plasma decreased in the GDM-I group and was higher in the urine in the NG-I and GDM-I groups. The blood viscosity was higher, independently of urinary incontinence, in the GDM groups. The serotonin increased the blood viscosity from women with GDM-C and urine in the NG-I, GDM-C, and GDM-I groups. Blood and urine in the presence of IL-10 showed a similar viscosity in all groups studied. Also, no difference was observed in the viscosity in either the blood or urine when in the presence of serotonin and IL-10. These findings suggest that serotonin and IL-10 have the potential to reduce blood viscosity in pregnant women with gestational diabetes and specific urinary incontinence, maintaining values similar to those in normoglycemic women's blood.
Collapse
Affiliation(s)
- Danielle Cristina Honório França
- Department of Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University, Botucatu 05508-070, SP, Brazil; (D.C.H.F.); (F.C.B.A.); (G.B.); (S.M.B.C.); (A.M.P.B.)
| | - Adenilda Cristina Honorio-França
- Biological and Health Sciences Institute, Federal University of Mato Grosso, Barra do Garças 78605-091, MT, Brazil; (K.M.R.S.); (A.C.d.M.C.); (E.L.F.)
| | - Kênia Maria Rezende Silva
- Biological and Health Sciences Institute, Federal University of Mato Grosso, Barra do Garças 78605-091, MT, Brazil; (K.M.R.S.); (A.C.d.M.C.); (E.L.F.)
| | - Fernanda Cristina Bérgamo Alves
- Department of Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University, Botucatu 05508-070, SP, Brazil; (D.C.H.F.); (F.C.B.A.); (G.B.); (S.M.B.C.); (A.M.P.B.)
| | - Gabriela Bueno
- Department of Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University, Botucatu 05508-070, SP, Brazil; (D.C.H.F.); (F.C.B.A.); (G.B.); (S.M.B.C.); (A.M.P.B.)
| | - Sarah Maria Barneze Costa
- Department of Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University, Botucatu 05508-070, SP, Brazil; (D.C.H.F.); (F.C.B.A.); (G.B.); (S.M.B.C.); (A.M.P.B.)
| | - Aron Carlos de Melo Cotrim
- Biological and Health Sciences Institute, Federal University of Mato Grosso, Barra do Garças 78605-091, MT, Brazil; (K.M.R.S.); (A.C.d.M.C.); (E.L.F.)
| | - Angélica Mércia Pascon Barbosa
- Department of Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University, Botucatu 05508-070, SP, Brazil; (D.C.H.F.); (F.C.B.A.); (G.B.); (S.M.B.C.); (A.M.P.B.)
- Department of Physiotherapy and Occupational Therapy, School of Philosophy and Sciences, São Paulo State University, Marilia 17525-900, SP, Brazil
| | - Eduardo Luzía França
- Biological and Health Sciences Institute, Federal University of Mato Grosso, Barra do Garças 78605-091, MT, Brazil; (K.M.R.S.); (A.C.d.M.C.); (E.L.F.)
| | - Marilza Vieira Cunha Rudge
- Department of Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University, Botucatu 05508-070, SP, Brazil; (D.C.H.F.); (F.C.B.A.); (G.B.); (S.M.B.C.); (A.M.P.B.)
| | - The Diamater Study Group
- Department of Gynecology and Obstetrics, Botucatu Medical School, São Paulo State University, Botucatu 05508-070, SP, Brazil; (D.C.H.F.); (F.C.B.A.); (G.B.); (S.M.B.C.); (A.M.P.B.)
| |
Collapse
|
2
|
Dunwoodie SL, Bozon K, Szot JO, Cuny H. Nicotinamide Adenine Dinucleotide Deficiency and Its Impact on Mammalian Development. Antioxid Redox Signal 2023; 39:1108-1132. [PMID: 37300479 DOI: 10.1089/ars.2023.0349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Significance: Nicotinamide adenine dinucleotide (NAD) is an important molecule synthesized from tryptophan or vitamin B3 and involved in numerous cellular reactions. NAD deficiency during pregnancy causes congenital NAD deficiency disorder (CNDD) characterized by multiple congenital malformations and/or miscarriage. Studies in genetically engineered mice replicating mutations found in human patient cases show that CNDD can be prevented by dietary supplements. Recent Advances: A growing number of patient reports show that biallelic loss-of-function of genes involved in NAD de novo synthesis (KYNU, HAAO, NADSYN1) cause CNDD. Other factors that limit the availability of NAD precursors, for example, limited dietary precursor supply or absorption, can cause or contribute to NAD deficiency and result in CNDD in mice. Molecular flux experiments allow quantitative understanding of NAD precursor concentrations in the circulation and their usage by different cells. Studies of NAD-consuming enzymes and contributors to NAD homeostasis help better understand how perturbed NAD levels are implicated in various diseases and adverse pregnancy outcomes. Critical Issues: NAD deficiency is one of the many known causes of adverse pregnancy outcomes, but its prevalence in the human population and among pregnant women is unknown. Since NAD is involved in hundreds of diverse cellular reactions, determining how NAD deficiency disrupts embryogenesis is an important challenge. Future Directions: Furthering our understanding of the molecular fluxes between the maternal and embryonic circulation during pregnancy, the NAD-dependent pathways active in the developing embryo, and the molecular mechanisms by which NAD deficiency causes adverse pregnancy outcomes will provide direction for future prevention strategies. Antioxid. Redox Signal. 39, 1108-1132.
Collapse
Affiliation(s)
- Sally L Dunwoodie
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| | - Kayleigh Bozon
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Justin O Szot
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
| | - Hartmut Cuny
- Victor Chang Cardiac Research Institute, Sydney, New South Wales, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
3
|
Archambault JL, Delaney CA. A Review of Serotonin in the Developing Lung and Neonatal Pulmonary Hypertension. Biomedicines 2023; 11:3049. [PMID: 38002049 PMCID: PMC10668978 DOI: 10.3390/biomedicines11113049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Serotonin (5-HT) is a bioamine that has been implicated in the pathogenesis of pulmonary hypertension (PH). The lung serves as an important site of 5-HT synthesis, uptake, and metabolism with signaling primarily regulated by tryptophan hydroxylase (TPH), the 5-HT transporter (SERT), and numerous unique 5-HT receptors. The 5-HT hypothesis of PH was first proposed in the 1960s and, since that time, preclinical and clinical studies have worked to elucidate the role of 5-HT in adult PH. Over the past several decades, accumulating evidence from both clinical and preclinical studies has suggested that the 5-HT signaling pathway may play an important role in neonatal cardiopulmonary transition and the development of PH in newborns. The expression of TPH, SERT, and the 5-HT receptors is developmentally regulated, with alterations resulting in pulmonary vasoconstriction and pulmonary vascular remodeling. However, much remains unknown about the role of 5-HT in the developing and newborn lung. The purpose of this review is to discuss the implications of 5-HT on fetal and neonatal pulmonary circulation and summarize the existing preclinical and clinical literature on 5-HT in neonatal PH.
Collapse
Affiliation(s)
| | - Cassidy A. Delaney
- Section of Neonatology, Department of Pediatrics, University of Colorado, Aurora, CO 80045, USA;
| |
Collapse
|
4
|
van Uden L, Tchirikov M. A Study of the Literature on Intrauterine Treatment Options for Chronic Placental Insufficiency with Intrauterine Growth Restriction Using Intrauterine Intravascular Amino Acid Supplementation. Life (Basel) 2023; 13:1232. [PMID: 37374014 DOI: 10.3390/life13061232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Intrauterine growth retardation (IUGR) is a very serious prenatal condition with 3-5% incidence of all pregnancies. It results from numerous factors, including chronic placental insufficiency. IUGR is associated with an increased risk of mortality and morbidity and is considered a major cause of fetal mortality. Currently, treatment options are significantly limited and often result in preterm delivery. Postpartum, IUGR infants also have higher risks of disease and neurological abnormalities. METHODS The PubMed database was searched using the keywords "IUGR", "fetal growth restriction", "treatment", "management" and "placental insufficiency" for the period between 1975 and 2023. These terms were also combined together. RESULTS There were 4160 papers, reviews and articles dealing with the topic of IUGR. In total, only 15 papers directly dealt with a prepartum therapy of IUGR; 10 of these were based on an animal model. Overall, the main focus was on maternal intravenous therapy with amino acids or intraamniotic infusion. Treatment methods have been tested since the 1970s to supplement the fetuses with nutrients lacking due to chronic placental insufficiency in various ways. In some studies, pregnant women were implanted with a subcutaneous intravascular perinatal port system, thus infusing the fetuses with a continuous amino acid solution. Prolongation of pregnancy was achieved, as well as improvement in fetal growth. However, insufficient benefit was observed in infusion with commercial amino acid solution in fetuses below 28 weeks' gestation. The authors attribute this primarily to the enormous variation in amino acid concentrations of the commercially available solutions compared with those observed in the plasma of preterm infants. These different concentrations are particularly important because differences in the fetal brain caused by metabolic changes have been demonstrated in the rabbit model. Several brain metabolites and amino acids were significantly decreased in IUGR brain tissue samples, resulting in abnormal neurodevelopment with decreased brain volume. DISCUSSION There are currently only a few studies and case reports with correspondingly low case numbers. Most of the studies refer to prenatal treatment by supplementation of amino acids and nutrients to prolong pregnancy and support fetal growth. However, there is no infusion solution that matches the amino acid concentrations found in fetal plasma. The commercially available solutions have mismatched amino acid concentrations and have not shown sufficient benefit in fetuses below 28 weeks' gestation. More treatment avenues need to be explored and existing ones improved to better treat multifactorial IUGR fetuses.
Collapse
Affiliation(s)
- Lisa van Uden
- University Clinic of Obstetrics and Prenatal Medicine, Center of Fetal Surgery, University Medical Center Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube Strasse 40, 06120 Halle (Saale), Germany
| | - Michael Tchirikov
- University Clinic of Obstetrics and Prenatal Medicine, Center of Fetal Surgery, University Medical Center Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube Strasse 40, 06120 Halle (Saale), Germany
| |
Collapse
|
5
|
van Zundert SKM, Broekhuizen M, Smit AJP, van Rossem L, Mirzaian M, Willemsen SP, Danser AHJ, De Rijke YB, Reiss IKM, Merkus D, Steegers-Theunissen RPM. The Role of the Kynurenine Pathway in the (Patho) physiology of Maternal Pregnancy and Fetal Outcomes: A Systematic Review. Int J Tryptophan Res 2022; 15:11786469221135545. [PMID: 36467775 PMCID: PMC9716456 DOI: 10.1177/11786469221135545] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/10/2022] [Indexed: 08/04/2023] Open
Abstract
INTRODUCTION Tryptophan is the precursor of kynurenine pathway (KP) metabolites which regulate immune tolerance, energy metabolism, and vascular tone. Since these processes are important during pregnancy, changes in KP metabolite concentrations may play a role in the pathophysiology of pregnancy complications. We hypothesize that KP metabolites can serve as novel biomarkers and preventive therapeutic targets. This review aimed to provide more insight into associations between KP metabolite concentrations in maternal and fetal blood, and in the placenta, and adverse maternal pregnancy and fetal outcomes. METHODS A systematic search was performed on 18 February 2022 comprising all KP metabolites, and keywords related to maternal pregnancy and fetal outcomes. English-written human studies measuring KP metabolite(s) in maternal or fetal blood or in the placenta in relation to pregnancy complications, were included. Methodological quality was assessed using the ErasmusAGE quality score (QS) (range: 0-10). A meta-analysis of the mean maternal tryptophan and kynurenine concentrations in uncomplicated pregnancies was conducted. RESULTS Of the 6262 unique records, 37 were included (median QS = 5). Tryptophan was investigated in most studies, followed by kynurenine, predominantly in maternal blood (n = 28/37), and in the second and third trimester of pregnancy (n = 29/37). Compared to uncomplicated pregnancies, decreased tryptophan in maternal blood was associated with an increased prevalence of depression, gestational diabetes mellitus, fetal growth restriction, spontaneous abortion, and preterm birth. Elevated tryptophan was only observed in women with pregnancy-induced hypertension compared to normotensive pregnant women. In women with preeclampsia, only kynurenic acid was altered; elevated in the first trimester of pregnancy, and positively associated with proteinuria in the third trimester of pregnancy. CONCLUSIONS KP metabolite concentrations were altered in a variety of maternal pregnancy and fetal complications. This review implies that physiological pregnancy requires a tight balance of KP metabolites, and that disturbances in either direction are associated with adverse maternal pregnancy and fetal outcomes.
Collapse
Affiliation(s)
- Sofie KM van Zundert
- Department of Obstetrics and
Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Clinical Chemistry,
Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Michelle Broekhuizen
- Division of Neonatology, Department of
Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Division of Pharmacology and Vascular
Medicine, Department of Internal Medicine, Erasmus MC University Medical Center,
Rotterdam, The Netherlands
- Division of Experimental Cardiology,
Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The
Netherlands
| | - Ashley JP Smit
- Department of Obstetrics and
Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Lenie van Rossem
- Department of Obstetrics and
Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Mina Mirzaian
- Department of Clinical Chemistry,
Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Sten P Willemsen
- Department of Obstetrics and
Gynecology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Biostatistics, Erasmus MC
University Medical Center, Rotterdam, The Netherlands
| | - AH Jan Danser
- Division of Pharmacology and Vascular
Medicine, Department of Internal Medicine, Erasmus MC University Medical Center,
Rotterdam, The Netherlands
| | - Yolanda B De Rijke
- Department of Clinical Chemistry,
Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Irwin KM Reiss
- Division of Neonatology, Department of
Pediatrics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Daphne Merkus
- Division of Experimental Cardiology,
Department of Cardiology, Erasmus MC University Medical Center, Rotterdam, The
Netherlands
- Walter Brendel Center of Experimental
Medicine, University Clinic Munich, Ludwig Maximillian University Munich, Munich,
Germany
| | | |
Collapse
|
6
|
Ruyak SL, Noor S, DiDomenico J, Sun MS, Fernandez Oropeza AK, Rodriguez DE, Marquez LE, Milligan ED, Bakhireva LN. Effects of prenatal opioid and alcohol exposures on immune and serotonin factors in human placenta. Exp Neurol 2022; 353:114057. [PMID: 35364108 PMCID: PMC10035581 DOI: 10.1016/j.expneurol.2022.114057] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 03/15/2022] [Accepted: 03/24/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE Opioids and alcohol impact critical serotonin (5-HT) function in the developing placenta and fetus through the actions of immune proinflammatory factors. Yet, possible convergent effects of opioids and alcohol on human placental toll-like receptor 4 (TLR4) activation and subsequent 5-HT homeostasis remain entirely unknown. The purpose of this study was to examine the effect of prenatal exposure to opioids with or without prenatal alcohol exposure (PAE) on the expression of key placental immune and serotonin signaling factors in human placental tissue obtained from a well-characterized prospective cohort. METHODS Data were collected from a subset of participants enrolled in the prospective pre-birth Ethanol, Neurodevelopment, Infant, and Child Health (ENRICH-1) cohort. Women were recruited and classified into four study groups: 1) PAE (n = 20); 2) those taking medications for opioid use disorder (MOUD; n = 28), 3) concurrent PAE and MOUD (n = 20); and 4) controls (HC; n = 20) based on prospective, repeated self-report, and biomarker analysis. Placenta samples underwent tissue processing to identify mRNA for TLR4, nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), serotonin transporter (SERT), tryptophan hydroxylase (TPH1), indoleamine 2,3-Dioxygenase 1 (IDO) as well as protein concentrations of TLR4, IL-1β, TNF-α, SERT. To consider the association between study group and mRNA/protein expression of our targets, multivariable regression models were developed with inclusion of a priori selected covariates. RESULTS There was a significant negative association between PAE and SERT mRNA (β = -0.01; p < 0.01) and a positive association with TPH1 mRNA expression (β = 0.78; p < 0.05). In addition, there was a negative association between MOUD and TNF-α protein expression (β = -0.12; p < 0.05). CONCLUSIONS This study provides the first evidence that PAE may inhibit SERT expression while simultaneously promoting increased TPH1 protein expression in human placenta. This may result in increased 5-HT in fetal circulation known to affect neurodevelopment. Our data suggest that opioids and alcohol may disturb the bidirectional, dynamic interaction between the placental immune and serotonin system. Given the implication for brain development and health across the life-span further investigation of these critical mechanisms in well-defined cohorts is required.
Collapse
Affiliation(s)
- Sharon L Ruyak
- College of Nursing, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America; College of Pharmacy Substance Use Research Education Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America.
| | - Shahani Noor
- Department of Neurosciences, University of New Mexico, Health Sciences Center, Albuquerque, NM, United States of America
| | - Jared DiDomenico
- College of Pharmacy Substance Use Research Education Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| | - Melody S Sun
- Department of Neurosciences, University of New Mexico, Health Sciences Center, Albuquerque, NM, United States of America
| | - Annette K Fernandez Oropeza
- Department of Neurosciences, University of New Mexico, Health Sciences Center, Albuquerque, NM, United States of America
| | - Dominique E Rodriguez
- College of Pharmacy Substance Use Research Education Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| | - Lidia Enriquez Marquez
- College of Pharmacy Substance Use Research Education Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| | - Erin D Milligan
- Department of Neurosciences, University of New Mexico, Health Sciences Center, Albuquerque, NM, United States of America
| | - Ludmila N Bakhireva
- College of Pharmacy Substance Use Research Education Center, University of New Mexico Health Sciences Center, Albuquerque, NM, United States of America
| |
Collapse
|
7
|
Tan KML, Tint MT, Kothandaraman N, Michael N, Sadananthan SA, Velan SS, Fortier MV, Yap F, Tan KH, Gluckman PD, Chong YS, Chong MFF, Lee YS, Godfrey KM, Eriksson JG, Cameron-Smith D. The Kynurenine Pathway Metabolites in Cord Blood Positively Correlate With Early Childhood Adiposity. J Clin Endocrinol Metab 2022; 107:e2464-e2473. [PMID: 35150259 PMCID: PMC9113811 DOI: 10.1210/clinem/dgac078] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT The kynurenine pathway generates metabolites integral to energy metabolism, neurotransmission, and immune function. Circulating kynurenine metabolites positively correlate with adiposity in children and adults, yet it is not known whether this relationship is present already at birth. OBJECTIVE In this prospective longitudinal study, we investigate the relationship between cord blood kynurenine metabolites and measures of adiposity from birth to 4.5 years. METHODS Liquid chromatography-tandem mass spectrometry was used to quantify cord blood kynurenine metabolites in 812 neonates from the Growing Up in Singapore Towards healthy Outcomes (GUSTO) study. Fat percentage was measured by air displacement plethysmography and abdominal adipose tissue compartment volumes; superficial (sSAT) and deep subcutaneous (dSAT) and internal adipose tissue were quantified by magnetic resonance imaging at early infancy in a smaller subset of neonates, and again at 4 to 4.5 years of age. RESULTS Cord blood kynurenine metabolites appeared to be higher in female newborns, higher in Indian newborns compared with Chinese newborns, and higher in infants born by cesarean section compared with vaginal delivery. Kynurenine, xanthurenic acid, and quinolinic acid were positively associated with birthweight, but not with subsequent weight during infancy and childhood. Quinolinic acid was positively associated with sSAT at birth. Kynurenic acid and quinolinic acid were positively associated with fat percentage at 4 years. CONCLUSION Several cord blood kynurenine metabolite concentrations were positively associated with birthweight, with higher kynurenic acid and quinolinic acid correlating to higher percentage body fat in childhood, suggesting these cord blood metabolites as biomarkers of early childhood adiposity.
Collapse
Affiliation(s)
- Karen Mei-Ling Tan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 117609, Singapore
- Department of Laboratory Medicine, National University Hospital, 119074, Singapore
| | - Mya-Thway Tint
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 117609, Singapore
- Department of Obstetrics and Gynaecology, Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (YLLSOM), National University of Singapore, 119228, Singapore
| | - Narasimhan Kothandaraman
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 117609, Singapore
| | - Navin Michael
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 117609, Singapore
| | - Suresh Anand Sadananthan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 117609, Singapore
| | - S Sendhil Velan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 117609, Singapore
- Institute of Bioengineering and Bioimaging (IBB), Agency for Science Technology and Research, 138669, Singapore
| | - Marielle V Fortier
- Department of Diagnostic and Interventional Imaging, KK Women’s and Children’s Hospital, 229899, Singapore
| | - Fabian Yap
- Duke-National University of Singapore (NUS) Medical School, 169857, Singapore
- Department of Pediatric Endocrinology, KK Women’s and Children’s Hospital, 229899, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 636921, Singapore
| | - Kok Hian Tan
- Duke-National University of Singapore (NUS) Medical School, 169857, Singapore
- Perinatal Audit and Epidemiology, Department of Maternal Fetal Medicine, KK Women’s and Children’s Hospital, 119228, Singapore
| | - Peter D Gluckman
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 117609, Singapore
- Liggins Institute, University of Auckland, Auckland 1023, New Zealand
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 117609, Singapore
- Department of Obstetrics and Gynaecology, Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (YLLSOM), National University of Singapore, 119228, Singapore
- Yong Loo Lin School of Medicine (YLLSOM), National University of Singapore, 117597, Singapore
| | - Mary F F Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 117609, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, 117549, Singapore
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 117609, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore
- Khoo Teck Puat – National University Children’s Medical Institute, National University Health System, 119074, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton SO16 6YD, United Kingdom
- NIHR Southampton Biomedical Research Centre, University of Southampton Hospital, Southampton SO16 6YD, United Kingdom
| | - Johan G Eriksson
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 117609, Singapore
- Department of Obstetrics and Gynaecology, Human Potential Translational Research Programme, Yong Loo Lin School of Medicine (YLLSOM), National University of Singapore, 119228, Singapore
- Folkhälsan Research Center, 00250 Helsinki, Finland
- Department of General Practice and Primary Health Care, University of Helsinki, 00290 Helsinki, Finland
| | - David Cameron-Smith
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), 117609, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore
- Correspondence: Professor David Cameron Smith, Singapore Institute for Clinical Sciences, Brenner Centre for Molecular Medicine, Agency for Science, Technology and Research, 30 Medical Drive 117609, Singapore.
| |
Collapse
|
8
|
Choi W, Kim J, Ko JW, Choi A, Kwon YH. Effects of maternal branched-chain amino acid and alanine supplementation on growth and biomarkers of protein metabolism in dams fed a low-protein diet and their offspring. Amino Acids 2022; 54:977-988. [PMID: 35353249 DOI: 10.1007/s00726-022-03157-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/13/2022] [Indexed: 11/24/2022]
Abstract
A considerable number of studies have reported that maternal protein restriction may disturb fetal growth and organ development due to a lower availability of amino acids. Leucine, one of branched-chain amino acid (BCAA) promotes protein synthesis through mechanistic target of rapamycin signaling. Here, we investigated the effects of BCAA supplementation in the dams fed a low-protein diet on serum and hepatic biochemical parameters of protein metabolism of dams and their offspring. Female ICR mice were fed a control (20% casein), a low-protein (10% casein), a low-protein with 2% BCAAs or a low-protein with 2% alanine diet for 2 weeks before mating and then throughout pregnancy and lactation. Alanine was used as an amino nitrogen control for the BCAA. Dams and their male offspring were sacrificed at postnatal day 21. There were no changes in body weight and fat mass in low-protein fed dams; however, BCAA supplementation significantly increased fat mass and serum leptin levels. Low-protein diet consumption reduced maternal protein synthesis based on biochemical analysis of serum albumin and hepatic protein levels and immunoblotting of S6 protein, which were increased by BCAA and alanine supplementation. Offspring from dams fed a low-protein diet exhibited lower body and organ weights. Body weight and hepatic protein levels of the offspring were increased by alanine supplementation. However, the decreased serum biochemical parameters, including glucose, triglyceride, total protein and albumin levels in the low-protein offspring group were not changed in response to BCAA or alanine supplementation. A reduced density of the hepatic vessel system in the offspring from dams fed a low-protein diet was restored in the offspring from dams fed either BCAA and alanine-supplemented diet. These results suggest that supplementation of amino nitrogen per se may be responsible for inducing hepatic protein synthesis in the dams fed a low-protein diet and alleviating the distorted growth and liver development of their offspring.
Collapse
Affiliation(s)
- Wooseon Choi
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.,Department of Pharmacology, The Catholic University of Korea, Seoul, 06591, South Korea
| | - Juhae Kim
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Je Won Ko
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Alee Choi
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea. .,Research Institute of Human Ecology, Seoul National University, Seoul, South Korea.
| |
Collapse
|
9
|
Broekhuizen M, Danser AHJ, Reiss IKM, Merkus D. The Function of the Kynurenine Pathway in the Placenta: A Novel Pharmacotherapeutic Target? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111545. [PMID: 34770059 PMCID: PMC8582682 DOI: 10.3390/ijerph182111545] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/26/2021] [Accepted: 10/30/2021] [Indexed: 12/21/2022]
Abstract
(L-)tryptophan is metabolized via the kynurenine pathway into several kynurenine metabolites with distinct functions. Dysfunction of the kynurenine pathway can lead to impairments in vascular regulation, immune regulation, and tolerance. The first and rate limiting enzyme of this pathway, indoleamine 2,3-dioxygenase (IDO), is highly expressed in the placenta and reduced in placentas from complicated pregnancies. IDO is essential during pregnancy, as IDO inhibition in pregnant mice resulted in fetal loss. However, the exact function of placental IDO, as well as its exact placental localization, remain controversial. This review identified that two isoforms of IDO; IDO1 and IDO2, are differently expressed between placental cells, suggesting spatial segregation. Furthermore, this review summarizes how the placental kynurenine pathway is altered in pregnancy complications, including recurrent miscarriage, preterm birth, preeclampsia, and fetal growth restriction. Importantly, we describe that these alterations do not affect maternally circulating metabolite concentrations, suggesting that the kynurenine pathway functions as a local signaling pathway. In the placenta, it is an important source of de novo placental NAD+ synthesis and regulates fetal tryptophan and kynurenine metabolite supply. Therefore, kynurenine pathway interventions might provide opportunities to treat pregnancy complications, and this review discusses how such treatment could affect placental function and pregnancy development.
Collapse
Affiliation(s)
- Michelle Broekhuizen
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Division of Neonatology, Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Correspondence:
| | - A. H. Jan Danser
- Division of Pharmacology and Vascular Medicine, Department of Internal Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Irwin K. M. Reiss
- Division of Neonatology, Department of Pediatrics, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Daphne Merkus
- Division of Experimental Cardiology, Department of Cardiology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Walter Brendel Center of Experimental Medicine, University Clinic Munich, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
10
|
Reduction of In Vivo Placental Amino Acid Transport Precedes the Development of Intrauterine Growth Restriction in the Non-Human Primate. Nutrients 2021; 13:nu13082892. [PMID: 34445051 PMCID: PMC8401823 DOI: 10.3390/nu13082892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 11/17/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is associated with reduced placental amino acid transport (AAT). However, it remains to be established if changes in AAT contribute to restricted fetal growth. We hypothesized that reduced in vivo placental AAT precedes the development of IUGR in baboons with maternal nutrient restriction (MNR). Baboons were fed either a control (ad libitum) or MNR diet (70% of control diet) from gestational day (GD) 30. At GD 140, in vivo transplacental AA transport was measured by infusing nine (13)C- or (2)H-labeled essential amino acids (EAAs) as a bolus into the maternal circulation at cesarean section. A fetal vein-to-maternal artery mole percent excess ratio for each EAA was measured. Microvillous plasma membrane (MVM) system A and system L transport activity were determined. Fetal and placental weights were not significantly different between MNR and control. In vivo, the fetal vein-to-maternal artery mole percent excess ratio was significantly decreased for tryptophan in MNR. MVM system A and system L activity was markedly reduced in MNR. Reduction of in vivo placental amino acid transport precedes fetal growth restriction in the non-human primate, suggesting that reduced placental amino acid transfer may contribute to IUGR.
Collapse
|
11
|
Horackova H, Karahoda R, Cerveny L, Vachalova V, Ebner R, Abad C, Staud F. Effect of Selected Antidepressants on Placental Homeostasis of Serotonin: Maternal and Fetal Perspectives. Pharmaceutics 2021; 13:pharmaceutics13081306. [PMID: 34452265 PMCID: PMC8397948 DOI: 10.3390/pharmaceutics13081306] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
Depression is a prevalent condition affecting up to 20% of pregnant women. Hence, more than 10% are prescribed antidepressant drugs, mainly serotonin reuptake inhibitors (SSRIs) and selective serotonin and noradrenaline reuptake inhibitors (SNRIs). We hypothesize that antidepressants disturb serotonin homeostasis in the fetoplacental unit by inhibiting serotonin transporter (SERT) and organic cation transporter 3 (OCT3) in the maternal- and fetal-facing placental membranes, respectively. Paroxetine, citalopram, fluoxetine, fluvoxamine, sertraline, and venlafaxine were tested in situ (rat term placenta perfusion) and ex vivo (uptake studies in membrane vesicles isolated from healthy human term placenta). All tested antidepressants significantly inhibited SERT- and OCT3-mediated serotonin uptake in a dose-dependent manner. Calculated half-maximal inhibitory concentrations (IC50) were in the range of therapeutic plasma concentrations. Using in vitro and in situ models, we further showed that the placental efflux transporters did not compromise mother-to-fetus transport of antidepressants. Collectively, we suggest that antidepressants have the potential to affect serotonin levels in the placenta or fetus when administered at therapeutic doses. Interestingly, the effect of antidepressants on serotonin homeostasis in rat placenta was sex dependent. As accurate fetal programming requires optimal serotonin levels in the fetoplacental unit throughout gestation, inhibition of SERT-/OCT3-mediated serotonin uptake may help explain the poor outcomes of antidepressant use in pregnancy.
Collapse
|
12
|
Sano M, Nagura H, Ueno S, Nakashima A. Amino Acid Composition of Amniotic Fluid during the Perinatal Period Reflects Mother's Fat and Carbohydrate Intake. Nutrients 2021; 13:nu13072136. [PMID: 34206490 PMCID: PMC8308307 DOI: 10.3390/nu13072136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/31/2022] Open
Abstract
Dietary content during pregnancy is important because it is necessary for the growth of the fetus. With the assumption that the nutritional status of the fetus can be monitored by measuring amino acid concentrations in the amniotic fluid, we investigated whether the habitual dietary intake of pregnant women affected the composition of the amniotic fluid and the significance of performing amniotic fluid analysis. The subjects were 34 mothers who delivered full-term babies by cesarean section. Three biological samples were collected from the mothers: blood, cord blood, and amniotic fluid. At the same time, the mothers' prenatal nutritional intake information was also recorded. When the amino acid contents of the samples were compared with the mothers' nutrient intake, many amino acids in the amniotic fluid were positively correlated with lipid intake, but not with protein intake. There was a negative correlation between lipid intake and carbohydrate intake, and the amino acid contents of the amniotic fluid were also negatively correlated with carbohydrate intake. The results of this study were consistent with those found in animal models, suggesting that the analysis of amniotic fluid may be a useful method to investigate the effects of habitual diet during human pregnancy on the fetus.
Collapse
Affiliation(s)
- Mitsue Sano
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture, Hikone 522-8533, Shiga, Japan; (H.N.); (S.U.)
- Correspondence: ; Tel.: +81-749-28-8454
| | - Haruna Nagura
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture, Hikone 522-8533, Shiga, Japan; (H.N.); (S.U.)
| | - Sayako Ueno
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture, Hikone 522-8533, Shiga, Japan; (H.N.); (S.U.)
| | - Akira Nakashima
- Jinno Ladies Clinic-Branch Hospital “Alice”, Hikone 522-0057, Shiga, Japan;
| |
Collapse
|
13
|
Abad C, Karahoda R, Kastner P, Portillo R, Horackova H, Kucera R, Nachtigal P, Staud F. Profiling of Tryptophan Metabolic Pathways in the Rat Fetoplacental Unit During Gestation. Int J Mol Sci 2020; 21:ijms21207578. [PMID: 33066440 PMCID: PMC7589826 DOI: 10.3390/ijms21207578] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/11/2020] [Accepted: 10/11/2020] [Indexed: 01/11/2023] Open
Abstract
Placental homeostasis of tryptophan is essential for fetal development and programming. The two main metabolic pathways (serotonin and kynurenine) produce bioactive metabolites with immunosuppressive, neurotoxic, or neuroprotective properties and their concentrations in the fetoplacental unit must be tightly regulated throughout gestation. Here, we investigated the expression/function of key enzymes/transporters involved in tryptophan pathways during mid-to-late gestation in rat placenta and fetal organs. Quantitative PCR and heatmap analysis revealed the differential expression of several genes involved in serotonin and kynurenine pathways. To identify the flux of substrates through these pathways, Droplet Digital PCR, western blot, and functional analyses were carried out for the rate-limiting enzymes and transporters. Our findings show that placental tryptophan metabolism to serotonin is crucial in mid-gestation, with a subsequent switch to fetal serotonin synthesis. Concurrently, at term, the close interplay between transporters and metabolizing enzymes of both placenta and fetal organs orchestrates serotonin homeostasis and prevents hyper/hypo-serotonemia. On the other hand, the placental production of kynurenine increases during pregnancy, with a low contribution of fetal organs throughout gestation. Any external insult to this tightly regulated harmony of transporters and enzymes within the fetoplacental unit may affect optimal in utero conditions and have a negative impact on fetal programming.
Collapse
Affiliation(s)
- Cilia Abad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (C.A.); (R.K.); (R.P.); (H.H.)
| | - Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (C.A.); (R.K.); (R.P.); (H.H.)
| | - Petr Kastner
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (P.K.); (R.K.)
| | - Ramon Portillo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (C.A.); (R.K.); (R.P.); (H.H.)
| | - Hana Horackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (C.A.); (R.K.); (R.P.); (H.H.)
| | - Radim Kucera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (P.K.); (R.K.)
| | - Petr Nachtigal
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic;
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic; (C.A.); (R.K.); (R.P.); (H.H.)
- Correspondence: ; Tel.: +420-495-067-407
| |
Collapse
|
14
|
Karahoda R, Abad C, Horackova H, Kastner P, Zaugg J, Cerveny L, Kucera R, Albrecht C, Staud F. Dynamics of Tryptophan Metabolic Pathways in Human Placenta and Placental-Derived Cells: Effect of Gestation Age and Trophoblast Differentiation. Front Cell Dev Biol 2020; 8:574034. [PMID: 33072756 PMCID: PMC7530341 DOI: 10.3389/fcell.2020.574034] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
L-Tryptophan is an essential amino acid and a precursor of several physiologically active metabolites. In the placenta, the serotonin and kynurenine metabolic pathways of tryptophan metabolism have been identified, giving rise to various molecules of neuroactive or immunoprotective properties, such as serotonin, melatonin, kynurenine, kynurenic acid, or quinolinic acid. Current literature suggests that optimal levels of these molecules in the fetoplacental unit are crucial for proper placenta functions, fetal development and programming. Placenta is a unique endocrine organ that, being equipped with a battery of biotransformation enzymes and transporters, precisely orchestrates homeostasis of tryptophan metabolic pathways. However, because pregnancy is a dynamic process and placental/fetal needs are continuously changing throughout gestation, placenta must adapt to these changes and ensure proper communication in the feto-placental unit. Therefore, in this study we investigated alterations of placental tryptophan metabolic pathways throughout gestation. Quantitative polymerase chain reaction (PCR) analysis of 21 selected genes was carried out in first trimester (n = 13) and term (n = 32) placentas. Heatmap analysis with hierarchical clustering revealed differential gene expression of serotonin and kynurenine pathways across gestation. Subsequently, digital droplet PCR, Western blot, and functional analyses of the rate-limiting enzymes suggest preferential serotonin synthesis early in pregnancy with a switch to kynurenine production toward term. Correspondingly, increased function and/or protein expression of serotonin degrading enzyme and transporters at term indicates efficient placental uptake and metabolic degradation of serotonin. Lastly, gene expression analysis in choriocarcinoma-derived cell lines (BeWo, BeWo b30, JEG-3) revealed dissimilar expression patterns and divergent effect of syncytialization compared to primary trophoblast cells isolated from human term placentas; these findings show that the commonly used in vitro placental models are not suitable to study placental handling of tryptophan. Altogether, our data provide the first comprehensive evidence of changes in placental homeostasis of tryptophan and its metabolites as a function of gestational age, which is critical for proper placental function and fetal development.
Collapse
Affiliation(s)
- Rona Karahoda
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Cilia Abad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Hana Horackova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Petr Kastner
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Jonas Zaugg
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Lukas Cerveny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Radim Kucera
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland.,Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Bern, Switzerland
| | - Frantisek Staud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| |
Collapse
|
15
|
Hanswijk SI, Spoelder M, Shan L, Verheij MMM, Muilwijk OG, Li W, Liu C, Kolk SM, Homberg JR. Gestational Factors throughout Fetal Neurodevelopment: The Serotonin Link. Int J Mol Sci 2020; 21:E5850. [PMID: 32824000 PMCID: PMC7461571 DOI: 10.3390/ijms21165850] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/24/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
Serotonin (5-HT) is a critical player in brain development and neuropsychiatric disorders. Fetal 5-HT levels can be influenced by several gestational factors, such as maternal genotype, diet, stress, medication, and immune activation. In this review, addressing both human and animal studies, we discuss how these gestational factors affect placental and fetal brain 5-HT levels, leading to changes in brain structure and function and behavior. We conclude that gestational factors are able to interact and thereby amplify or counteract each other's impact on the fetal 5-HT-ergic system. We, therefore, argue that beyond the understanding of how single gestational factors affect 5-HT-ergic brain development and behavior in offspring, it is critical to elucidate the consequences of interacting factors. Moreover, we describe how each gestational factor is able to alter the 5-HT-ergic influence on the thalamocortical- and prefrontal-limbic circuitry and the hypothalamo-pituitary-adrenocortical-axis. These alterations have been associated with risks to develop attention deficit hyperactivity disorder, autism spectrum disorders, depression, and/or anxiety. Consequently, the manipulation of gestational factors may be used to combat pregnancy-related risks for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sabrina I. Hanswijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Marcia Spoelder
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Ling Shan
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands;
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Otto G. Muilwijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| | - Weizhuo Li
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Chunqing Liu
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China; (W.L.); (C.L.)
| | - Sharon M. Kolk
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, The Netherlands;
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen Medical Centre, 6525 EN Nijmegen, The Netherlands; (S.I.H.); (M.S.); (M.M.M.V.); (O.G.M.)
| |
Collapse
|
16
|
Karahoda R, Horackova H, Kastner P, Matthios A, Cerveny L, Kucera R, Kacerovsky M, Duintjer Tebbens J, Bonnin A, Abad C, Staud F. Serotonin homeostasis in the materno-foetal interface at term: Role of transporters (SERT/SLC6A4 and OCT3/SLC22A3) and monoamine oxidase A (MAO-A) in uptake and degradation of serotonin by human and rat term placenta. Acta Physiol (Oxf) 2020; 229:e13478. [PMID: 32311818 DOI: 10.1111/apha.13478] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/18/2022]
Abstract
AIM Serotonin is crucial for proper foetal development, and the placenta has been described as a 'donor' of serotonin for the embryo/foetus. However, in later stages of gestation the foetus produces its own serotonin from maternally-derived tryptophan and placental supply is no longer needed. We propose a novel model of serotonin homeostasis in the term placenta with special focus on the protective role of organic cation transporter 3 (OCT3/SLC22A3). METHODS Dually perfused rat term placenta was employed to quantify serotonin/tryptophan transport and metabolism. Placental membrane vesicles isolated from human term placenta were used to characterize serotonin transporters on both sides of the syncytiotrophoblast. RESULTS We obtained the first evidence that serotonin is massively taken up from the foetal circulation by OCT3. This uptake is concentration-dependent and inhibitable by OCT3 blockers of endogenous (glucocorticoids) or exogenous (pharmaceuticals) origin. Population analyses in rat placenta revealed that foetal sex influences placental extraction of serotonin from foetal circulation. Negligible foetal serotonin levels were detected in maternal-to-foetal serotonin/tryptophan transport and metabolic studies. CONCLUSION We demonstrate that OCT3, localized on the foetus-facing membrane of syncytiotrophoblast, is an essential component of foeto-placental homeostasis of serotonin. Together with serotonin degrading enzyme, monoamine oxidase-A, this offers a protective mechanism against local vasoconstriction effects of serotonin in the placenta. However, this system may be compromised by OCT3 inhibitory molecules, such as glucocorticoids or antidepressants. Our findings open new avenues to explore previously unsuspected/unexplained complications during pregnancy including prenatal glucocorticoid excess and pharmacotherapeutic risks of treating pregnant women with OCT3 inhibitors.
Collapse
Affiliation(s)
- Rona Karahoda
- Faculty of Pharmacy in Hradec Kralove Department of Pharmacology and Toxicology Charles University Hradec Kralove Czech Republic
| | - Hana Horackova
- Faculty of Pharmacy in Hradec Kralove Department of Pharmacology and Toxicology Charles University Hradec Kralove Czech Republic
| | - Petr Kastner
- Faculty of Pharmacy in Hradec Kralove Department of Pharmaceutical Chemistry and Pharmaceutical Analysis Charles University Hradec Kralove Czech Republic
| | - Andreas Matthios
- Faculty of Pharmacy in Hradec Kralove Department of Biophysics and Physical Chemistry Charles University Hradec Kralove Czech Republic
| | - Lukas Cerveny
- Faculty of Pharmacy in Hradec Kralove Department of Pharmacology and Toxicology Charles University Hradec Kralove Czech Republic
| | - Radim Kucera
- Faculty of Pharmacy in Hradec Kralove Department of Pharmaceutical Chemistry and Pharmaceutical Analysis Charles University Hradec Kralove Czech Republic
| | - Marian Kacerovsky
- Department of Gynecology and Obstetrics University Hospital in Hradec Kralove Hradec Kralove Czech Republic
| | - Jurjen Duintjer Tebbens
- Faculty of Pharmacy in Hradec Kralove Department of Biophysics and Physical Chemistry Charles University Hradec Kralove Czech Republic
| | - Alexandre Bonnin
- Department of Physiology and Neuroscience University of Southern California Los Angeles CA USA
| | - Cilia Abad
- Faculty of Pharmacy in Hradec Kralove Department of Pharmacology and Toxicology Charles University Hradec Kralove Czech Republic
| | - Frantisek Staud
- Faculty of Pharmacy in Hradec Kralove Department of Pharmacology and Toxicology Charles University Hradec Kralove Czech Republic
| |
Collapse
|
17
|
Notarangelo FM, Beggiato S, Schwarcz R. Assessment of Prenatal Kynurenine Metabolism Using Tissue Slices: Focus on the Neosynthesis of Kynurenic Acid in Mice. Dev Neurosci 2019; 41:102-111. [PMID: 31117076 DOI: 10.1159/000499736] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 03/19/2019] [Indexed: 01/17/2023] Open
Abstract
Several lines of evidence support the hypothesis that abnormally elevated brain levels of kynurenic acid (KYNA), a metabolite of the kynurenine pathway (KP) of tryptophan degradation, play a pathophysiologically significant role in schizophrenia and other major neurodevelopmental disorders. Studies in experimental animal models suggest that KP impairments in these diseases may originate already in utero since prenatal administration of KYNA's bioprecursor, kynurenine, leads to biochemical and structural abnormalities as well as distinct cognitive impairments in adulthood. As KP metabolism during pregnancy is still insufficiently understood, we designed this study to examine the de novo synthesis of KYNA and 3-hydroxykynurenine (3-HK), an alternative biologically active product of kynurenine degradation, in tissue slices obtained from pregnant mice on gestational day (GD) 18. Fetal brain and liver, placenta, and maternal brain and liver were collected, and the tissues were incubated in vitroin the absence or presence of micromolar concentrations of kynurenine. KYNA and 3-HK were measured in the extracellular milieu. Basal and newly produced KYNA was detected in all cases. As KYNA formation exceeded 3-HK production by 2-3 orders of magnitude in the placenta and maternal brain, and as very little 3-HK neosynthesis was detectable in fetal brain tissue, detailed follow-up experiments focused on KYNA only. The fetal brain produced 3-4 times more KYNA than the maternal brain and placenta, though less than the maternal and fetal liver. No significant differences were observed when using tissues obtained on GD 14 and GD 18. Pharmacological inhibition of KYNA's main biosynthetic enzymes, kynurenine aminotransferase (KAT) I and KAT II, revealed qualitative and quantitative differences between the tissues, with a preferential role of KAT I in the fetal and maternal brain and of KAT II in the fetal and maternal liver. Findings using tissue slices from KAT II knockout mice confirmed these conclusions. Together, these results clarify the dynamics of KP metabolism during pregnancy and provide the basis for the conceptualization of interventions aimed at manipulating cerebral KP function in the prenatal period.
Collapse
Affiliation(s)
- Francesca M Notarangelo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA,
| | - Sarah Beggiato
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
18
|
Alves MB, Laureano DP, Dalle Molle R, Machado TD, Salvador APDA, Miguel PM, Lupinsky D, Dalmaz C, Silveira PP. Intrauterine growth restriction increases impulsive behavior and is associated with altered dopamine transmission in both medial prefrontal and orbitofrontal cortex in female rats. Physiol Behav 2019; 204:336-346. [PMID: 30880239 DOI: 10.1016/j.physbeh.2019.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/20/2019] [Accepted: 03/11/2019] [Indexed: 12/25/2022]
Abstract
Recent studies have implicated a role for impulsivity in the altered eating behaviors and the increased risk for obesity consistently associated with intrauterine growth restriction (IUGR). Changes in dopamine transmission within prefrontal areas are believed to contribute to these adverse outcomes. Here we investigated the impulsive behavior toward a delayed reward and evaluated dopamine levels and its receptors in the medial prefrontal (mPFC) and orbitofrontal (OFC) cortex of female adult rats exposed to IUGR. From day 10 of pregnancy and until birth, Sprague-Dawley dams received either an ad libitum (Adlib) or a 50% food-restricted (FR) diet. At birth, all pups were adopted by Adlib mothers, generating the groups Adlib/Adlib (control) and FR/Adlib (intrauterine growth-restricted). Adult impulsive behavior was evaluated using a Tolerance to Delay of Reward Task. In vivo dopamine responses to sweet food intake were measured by voltammetry, and D1, D2 and DAT levels were accessed by Western Blot. Animals from FR group showed a pronounced aversion to delayed rewards. DA response to sweet food was found to be blunted in the mPFC of FR animals, whereas in the OFC, the DA levels appear to be unaffected by reward consumption. Moreover, FR animals presented reduced D1 receptors in the OFC and a later increase in the mPFC D2 levels. These findings suggest that IUGR female rats are more impulsive and that the associated mechanism involves changes in the dopamine signaling in both the mPFC and OFC.
Collapse
Affiliation(s)
- Márcio Bonesso Alves
- Programa de Pós Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Daniela Pereira Laureano
- Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberta Dalle Molle
- Programa de Pós Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Tania Diniz Machado
- Programa de Pós Graduação em Saúde da Criança e do Adolescente, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Patrícia Maidana Miguel
- Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Derek Lupinsky
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Carla Dalmaz
- Programa de Pós Graduação em Bioquímica, Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Patrícia Pelufo Silveira
- Programa de Pós Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Sackler Program for Epigenetics & Psychobiology, McGill University, Canada
| |
Collapse
|
19
|
Leitner M, Fragner L, Danner S, Holeschofsky N, Leitner K, Tischler S, Doerfler H, Bachmann G, Sun X, Jaeger W, Kautzky-Willer A, Weckwerth W. Combined Metabolomic Analysis of Plasma and Urine Reveals AHBA, Tryptophan and Serotonin Metabolism as Potential Risk Factors in Gestational Diabetes Mellitus (GDM). Front Mol Biosci 2017; 4:84. [PMID: 29312952 PMCID: PMC5742855 DOI: 10.3389/fmolb.2017.00084] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 11/28/2017] [Indexed: 12/12/2022] Open
Abstract
Gestational diabetes mellitus during pregnancy has severe implications for the health of the mother and the fetus. Therefore, early prediction and an understanding of the physiology are an important part of prenatal care. Metabolite profiling is a long established method for the analysis and prediction of metabolic diseases. Here, we applied untargeted and targeted metabolomic protocols to analyze plasma and urine samples of pregnant women with and without GDM. Univariate and multivariate statistical analyses of metabolomic profiles revealed markers such as 2-hydroxybutanoic acid (AHBA), 3-hydroxybutanoic acid (BHBA), amino acids valine and alanine, the glucose-alanine-cycle, but also plant-derived compounds like sitosterin as different between control and GDM patients. PLS-DA and VIP analysis revealed tryptophan as a strong variable separating control and GDM. As tryptophan is biotransformed to serotonin we hypothesized whether serotonin metabolism might also be altered in GDM. To test this hypothesis we applied a method for the analysis of serotonin, metabolic intermediates and dopamine in urine by stable isotope dilution direct infusion electrospray ionization mass spectrometry (SID-MS). Indeed, serotonin and related metabolites differ significantly between control and GDM patients confirming the involvement of serotonin metabolism in GDM. Clustered correlation coefficient visualization of metabolite correlation networks revealed the different metabolic signatures between control and GDM patients. Eventually, the combination of selected blood plasma and urine sample metabolites improved the AUC prediction accuracy to 0.99. The detected GDM candidate biomarkers and the related systemic metabolic signatures are discussed in their pathophysiological context. Further studies with larger cohorts are necessary to underpin these observations.
Collapse
Affiliation(s)
- Miriam Leitner
- Gender Medicine Unit, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Lena Fragner
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Sarah Danner
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | | | - Karoline Leitner
- Gender Medicine Unit, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sonja Tischler
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Hannes Doerfler
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Gert Bachmann
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Xiaoliang Sun
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Walter Jaeger
- Vienna Metabolomics Center, University of Vienna, Vienna, Austria.,Department of Clinical Pharmacy and Diagnostics, University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Gender Medicine Unit, Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Xu K, Liu H, Bai M, Gao J, Wu X, Yin Y. Redox Properties of Tryptophan Metabolism and the Concept of Tryptophan Use in Pregnancy. Int J Mol Sci 2017; 18:E1595. [PMID: 28737706 PMCID: PMC5536082 DOI: 10.3390/ijms18071595] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/11/2017] [Accepted: 07/19/2017] [Indexed: 12/30/2022] Open
Abstract
During pregnancy, tryptophan (Trp) is required for several purposes, and Trp metabolism varies over time in the mother and fetus. Increased oxidative stress (OS) with high metabolic, energy and oxygen demands during normal pregnancy or in pregnancy-associated disorders has been reported. Taking the antioxidant properties of Trp and its metabolites into consideration, we made four hypotheses. First, the use of Trp and its metabolites is optional based on their antioxidant properties during pregnancy. Second, dynamic Trp metabolism is an accommodation mechanism in response to OS. Third, regulation of Trp metabolism could be used to control/attenuate OS according to variations in Trp metabolism during pregnancy. Fourth, OS-mediated injury could be alleviated by regulation of Trp metabolism in pregnancy-associated disorders. Future studies in normal/abnormal pregnancies and in associated disorders should include measurements of free Trp, total Trp, Trp metabolites, and activities of Trp-degrading enzymes in plasma. Abnormal pregnancies and some associated disorders may be associated with disordered Trp metabolism related to OS. Mounting evidence suggests that the investigation of the use of Trp and its metabolites in pregnancy will be meanful.
Collapse
Affiliation(s)
- Kang Xu
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| | - Hongnan Liu
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| | - Miaomiao Bai
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| | - Jing Gao
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| | - Xin Wu
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| | - Yulong Yin
- Chinese Academy of Sciences, Institute of Subtropical Agriculture, Key Laboratory of Agroecological Processes in Subtropical Region, Changsha 410125, China.
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha 410125, China.
- Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha 410125, China.
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South Central, Ministry of Agriculture, Changsha 410125, China.
| |
Collapse
|
21
|
Ji F, Luan H, Huang Y, Cai Z, Li M. MS-Based Metabolomics for the Investigation of Neuro-Metabolic Changes Associated with BDE-47 Exposure in C57BL/6 Mice. JOURNAL OF ANALYSIS AND TESTING 2017; 1:233-244. [DOI: 10.1007/s41664-017-0026-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
22
|
Notarangelo FM, Schwarcz R. Restraint Stress during Pregnancy Rapidly Raises Kynurenic Acid Levels in Mouse Placenta and Fetal Brain. Dev Neurosci 2017; 38:458-468. [PMID: 28214871 DOI: 10.1159/000455228] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 12/19/2016] [Indexed: 12/13/2022] Open
Abstract
Stressful events during pregnancy adversely affect brain development and may increase the risk of psychiatric disorders later in life. Early changes in the kynurenine (KYN) pathway (KP) of tryptophan (TRP) degradation, which contains several neuroactive metabolites, including kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and quinolinic acid (QUIN), may constitute a molecular link between prenatal stress and delayed pathological consequences. To begin testing this hypothesis experimentally, we examined the effects of a 2-h restraint stress on KP metabolism in pregnant FVB/N mice on gestational day 17. TRP, KYN, KYNA, 3-HK, and QUIN levels were measured in maternal and fetal plasma and brain, as well as in the placenta, immediately after stress termination and 2 h later. In the same animals, we determined the activity of TRP 2,3-dioxygenase (TDO) in the maternal liver and in the placenta. Compared to unstressed controls, mostly transient changes in KP metabolism were observed in all of the tissues examined. Specifically, stress caused significant elevations of KYNA levels in the maternal plasma, placenta, and fetal brain, and also resulted in increased levels of TRP and KYN in the placenta, fetal plasma, and fetal brain. In contrast, 3-HK and QUIN levels remained unchanged from control values in all tissues at any time point. In the maternal liver, TDO activity was increased 2 h after stress cessation. Taken together, these findings indicate that an acute stress during the late gestational period preferentially affects the KYNA branch of KP metabolism in the fetal brain. Possible long-term consequences for postnatal brain development and pathology remain to be examined.
Collapse
Affiliation(s)
- Francesca M Notarangelo
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
23
|
Honório de Melo Martimiano P, de Sa Braga Oliveira A, Ferchaud-Roucher V, Croyal M, Aguesse A, Grit I, Ouguerram K, Lopes de Souza S, Kaeffer B, Bolaños-Jiménez F. Maternal protein restriction during gestation and lactation in the rat results in increased brain levels of kynurenine and kynurenic acid in their adult offspring. J Neurochem 2016; 140:68-81. [PMID: 27778340 DOI: 10.1111/jnc.13874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/14/2016] [Accepted: 10/14/2016] [Indexed: 12/31/2022]
Abstract
Early malnutrition is a risk factor for depression and schizophrenia. Since the offspring of malnourished dams exhibit increased brain levels of serotonin (5-HT), a tryptophan-derived neurotransmitter involved in the pathophysiology of these mental disorders, it is believed that the deleterious effects of early malnutrition on brain function are due in large part to altered serotoninergic neurotransmission resulting from impaired tryptophan (Trp) metabolism. However, tryptophan is also metabolized through the kynurenine (KYN) pathway yielding several neuroactive compounds including kynurenic (KA), quinolinic (QA) and xanthurenic (XA) acids. Nevertheless, the impact of perinatal malnutrition on brain kynurenine pathway metabolism has not been examined to date. Here, we used ultra-performance liquid chromatography-tandem mass spectrometry for the simultaneous quantification of tryptophan and a set of seven compounds spanning its metabolism through the serotonin and kynurenine pathways, in the brain of embryos and adult offspring of rat dams fed a protein-restricted (PR) diet. Protein-restricted embryos showed reduced brain levels of Trp, serotonin and KA, but not of KYN, XA, or QA. In contrast, PR adult rats exhibited enhanced levels of Trp in the brainstem and cortex along with increased concentrations of 5-HT, kynurenine and XA. The levels of XA and KA were also increased in the hippocampus of adult PR rats. These results show that early protein deficiency induces selective and long-lasting changes in brain kynurenine metabolism. Given the regulatory role of KYN pathway metabolites on brain development and function, these changes might contribute to the risk of developing psychiatric disorders induced by early malnutrition.
Collapse
Affiliation(s)
- Paula Honório de Melo Martimiano
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France.,Departamento de Anatomia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - André de Sa Braga Oliveira
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France.,Departamento de Anatomia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Véronique Ferchaud-Roucher
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France.,Centre de Recherche en Nutrition Humaine de l'Ouest, Nantes, France
| | - Mikaël Croyal
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France.,Centre de Recherche en Nutrition Humaine de l'Ouest, Nantes, France
| | - Audrey Aguesse
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France.,Centre de Recherche en Nutrition Humaine de l'Ouest, Nantes, France
| | - Isabelle Grit
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France
| | - Khadija Ouguerram
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France
| | - Sandra Lopes de Souza
- Departamento de Anatomia, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Bertrand Kaeffer
- UMR 1280 Physiologie des Adaptations Nutritionnelles, INRA-Université de Nantes, Nantes, France
| | | |
Collapse
|
24
|
Bai M, Liu H, Xu K, Oso AO, Wu X, Liu G, Tossou MCB, Al-Dhabi NA, Duraipandiyan V, Xi Q, Yin Y. A review of the immunomodulatory role of dietary tryptophan in livestock and poultry. Amino Acids 2016; 49:67-74. [PMID: 27778165 DOI: 10.1007/s00726-016-2351-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 10/13/2016] [Indexed: 10/20/2022]
Abstract
Tryptophan, a nutritionally essential amino acid, is active in the regulation of immune responses in animals. The products of tryptophan metabolism, such as indoleamine 2,3-dioxygenase, kynurenine, quinolinic acid, and melatonin, may improve immunity in an organism and induce anti-inflammatory responses. The immune tolerance processes mediated by tryptophan metabolites are not well understood. Recent studies have reported that the enzymes that break down tryptophan through the kynurenine metabolic pathway are found in numerous cell types, including immunocytes. Moreover, some tryptophan metabolites have been shown to play a role in the inhibition of T lymphocyte proliferation, elevation of immunoglobulin levels in the blood, and promotion of antigen-presenting organization in tissues. This review summarizes the effects and mechanisms of tryptophan and metabolites in immune functions in livestock and poultry. It also highlights the areas in which our understanding of the role(s) of tryptophan is incomplete and suggests possible future research that might prove of benefit to livestock and poultry producers.
Collapse
Affiliation(s)
- Miaomiao Bai
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, Hunan, China.,College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Hongnan Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, Hunan, China.
| | - Kang Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, Hunan, China
| | - Abimbola Oladele Oso
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, Hunan, China.,Department of Animal Nutrition, College of Animal Science and Livestock Production, Federal University of Agriculture, Abeokuta, PMB 2240, Nigeria
| | - Xin Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330029, Jiangxi, China.,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, Hunan, China
| | - Gang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, Hunan, China
| | - Myrlene Carine B Tossou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, Hunan, China
| | - Naif Abdullah Al-Dhabi
- Addiriyah Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Veeramuthu Duraipandiyan
- Addiriyah Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Qianyun Xi
- College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yinlong Yin
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330029, Jiangxi, China. .,Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, 410125, Hunan, China. .,College of Animal Science, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|