1
|
Wang P, Hu X, Shan X, Gao J, Guo F, Wang B, Liu G. Effects of α-Ketoglutarate Peripartum Supplementation on Reproductive, Lactational, Productive and Immunological Outcomes in Dairy Cows. Animals (Basel) 2025; 15:1110. [PMID: 40281944 PMCID: PMC12024322 DOI: 10.3390/ani15081110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/02/2025] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
In dairy cow, the peripartum metabolic stage is critical as may affect post-partum metabolic and reproductive recovery, colostrum quality, and overall reproductive fitness. This study aimed to evaluate the effects of varying doses of α-ketoglutarate (AKG) on lactation performance, reproductive performance, immune function, and antioxidant capacity in periparturient dairy cows. A total of 180 periparturient dairy cows were randomly assigned to four groups, with each cow receiving 1 g, 5 g, or 10 g of AKG in their prepartum diets. Results indicated that feeding 5 g and 10 g of AKG significantly increased the colostrum fat and protein content, reduced somatic cell counts, and improved daily milk yield. Regarding reproduction, AKG supplementation regulated reproductive hormones, increased postpartum estrogen levels, improved conception rates, and shortened the interval between breeding periods. For immune and antioxidant functions, AKG significantly increased serum IL-10 levels while reducing TNF-α and interleukins 1β and 6. It also significantly elevated glutathione peroxidase (GSH-PX) levels, reducing oxidative stress and demonstrating anti-inflammatory and immunomodulatory effects. Additionally, cows receiving medium-to-high doses of AKG had a significantly lower incidence of postpartum diseases such as mastitis. In conclusion, appropriate AKG supplementation can improve lactation performance, reproductive performance, immune function, and overall health in periparturient dairy cows, providing a theoretical basis for its use in dairy cow nutrition management.
Collapse
Affiliation(s)
- Peng Wang
- Beijing Key Laboratory for Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xin Hu
- Beijing Changping District Animal Disease Prevention and Control Centre, Beijing 102200, China
| | - Xiang’ao Shan
- Beijing Key Laboratory for Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jiarui Gao
- Beijing Key Laboratory for Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fei Guo
- Beijing Key Laboratory for Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Bingyuan Wang
- Beijing Key Laboratory for Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guoshi Liu
- Beijing Key Laboratory for Animal Genetic Improvement, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agricultural, State Key Laboratory of Animal Biotech Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Lu J, Liu G, Sun W, Jia G, Zhao H, Chen X, Wang J. Dietary α-Ketoglutarate Alleviates Escherichia coli LPS-Induced Intestinal Barrier Injury by Modulating the Endoplasmic Reticulum-Mitochondrial System Pathway in Piglets. J Nutr 2024; 154:2087-2096. [PMID: 38453028 DOI: 10.1016/j.tjnut.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND α-Ketoglutarate (AKG) plays a pivotal role in mitigating inflammation and enhancing intestinal health. OBJECTIVES This study aimed to investigate whether AKG could protect against lipopolysaccharide (LPS)-induced intestinal injury by alleviating disorders in mitochondria-associated endoplasmic reticulum (MAM) membranes, dysfunctional mitochondrial dynamics, and endoplasmic reticulum (ER) stress in a piglet model. METHODS Twenty-four piglets were subjected to a 2 × 2 factorial design with dietary factors (basal diet or 1% AKG diet) and LPS treatment (LPS or saline). After 21 d of consuming either the basal diet or AKG diet, piglets received injections of LPS or saline. The experiment was divided into 4 treatment groups [control (CON) group: basal diet + saline; LPS group: basal diet +LPS; AKG group: AKG diet + saline; and AKG_LPS group: AKG + LPS], each consisting of 6 piglets. RESULTS The results demonstrated that compared with the CON group, AKG enhanced jejunal morphology, antioxidant capacity, and the messenger RNA and protein expression of tight junction proteins. Moreover, it has shown a reduction in serum diamine oxidase activity and D-lactic acid content in piglets. In addition, fewer disorders in the ER-mitochondrial system were reflected by AKG, as evidenced by AKG regulating the expression of key molecules of mitochondrial dynamics (mitochondrial calcium uniporter, optic atrophy 1, fission 1, and dynamin-related protein 1), ER stress [activating transcription factor (ATF) 4, ATF 6, CCAAT/enhancer binding protein homologous protein, eukaryotic initiation factor 2α, glucose-regulated protein (GRP) 78, and protein kinase R-like ER kinase], and MAM membranes [mitofusin (Mfn)-1, Mfn-2, GRP 75, and voltage-dependent anion channel-1]. CONCLUSIONS Dietary AKG can prevent mitochondrial dynamic dysfunction, ER stress, and MAM membrane disorder, ultimately alleviating LPS-induced intestinal damage in piglets.
Collapse
Affiliation(s)
- Jiajia Lu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China.
| | - Weixiao Sun
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Gang Jia
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Hua Zhao
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Xiaoling Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Chengdu, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Zong J, Shen J, Liu X, Liu J, Zhang J, Zhou C, Fan Y, Jin Y. Lithium Chloride Promotes Milk Protein and Fat Synthesis in Bovine Mammary Epithelial Cells via HIF-1α and β-Catenin Signaling Pathways. Biol Trace Elem Res 2023; 201:180-195. [PMID: 35080710 DOI: 10.1007/s12011-022-03131-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/21/2022] [Indexed: 01/11/2023]
Abstract
Lithium is one of the trace elements with many physiological properties, such as being anti-cancer, anti-viral, and anti-inflammatory. However, little is known about its effect on milk synthesis during lactation. Therefore, we selected different concentrations (5 mM, 10 mM, and 20 mM) of lithium chloride (LiCl) and assessed the effect of LiCl on bovine mammary epithelial (MAC-T) cells that underwent 4 days of differentiation induction. Moreover, we analyzed the effect of LiCl on the expression of genes related to milk fat and milk protein synthesis. Herein, LiCl (5-20 mM) significantly increased the expression of β-casein, promoted mRNA expression and phosphorylated protein expression of the signal transduction molecule and activator of transcription 5β (STAT5-β), and inhibited mRNA and protein expression of suppressor of cytokine signaling 2 (SOCS2). In contrast, 5 and 10 mM LiCl significantly inhibited expression of SOCS3. LiCl at concentration of 5-20 mM enhanced phosphorylation level of mTOR protein; at 10 mM and 20 mM, LiCl significantly promoted expression and phosphorylation of downstream ribosomal protein S6 kinase beta-1 (S6K1) protein. Considering milk fat synthesis, mRNA expression of acetyl CoA carboxylase (ACC) and lipoprotein lipase (LPL) genes was considerably increased in the presence of LiCl (5-20 mM). Additionally, increased protein expression levels of stearoyl-CoA desaturase (SCD), peroxisome proliferator-activated receptor-γ (PPARγ), and sterol regulatory element-binding protein 1 (SREBP1) were observed at all LiCl concentrations tested. Subsequently, LiCl (5-20 mM) significantly promoted protein expression and phosphorylation of β-catenin, while 10 mM and 20 mM of LiCl significantly promoted protein expression of hypoxia-inducible factor-1α (HIF-1α). Collectively, it has been shown that 10 mM LiCl can effectively activate HIF-1α, β-catenin, and β-catenin downstream signaling pathways. Conversely, at 10 mM, LiCl inhibited SOCS2 and SOCS3 protein expression through JAK2/STAT5, mTOR, and SREBP1 signaling pathways, improving synthesis of milk protein and fat. Therefore, LiCl can be used as a potential nutrient to regulate milk synthesis in dairy cows.
Collapse
Affiliation(s)
- Jinxin Zong
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Jinglin Shen
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Xinlu Liu
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Jiayi Liu
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Jing Zhang
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Changhai Zhou
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Yating Fan
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China
| | - Yongcheng Jin
- Department of Animal Science, College of Animal Science, Jilin University, Changchun, 130062, People's Republic of China.
| |
Collapse
|
4
|
Rezaei R, Wu G. Branched-chain amino acids regulate intracellular protein turnover in porcine mammary epithelial cells. Amino Acids 2022; 54:1491-1504. [DOI: 10.1007/s00726-022-03203-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/23/2022] [Indexed: 01/17/2023]
|
5
|
Mimicking caloric restriction for anti-aging effects: the pro-oxidant role of alpha-ketoglutarate. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
6
|
Gyanwali B, Lim ZX, Soh J, Lim C, Guan SP, Goh J, Maier AB, Kennedy BK. Alpha-Ketoglutarate dietary supplementation to improve health in humans. Trends Endocrinol Metab 2022; 33:136-146. [PMID: 34952764 DOI: 10.1016/j.tem.2021.11.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 01/02/2023]
Abstract
Alpha-ketoglutarate (AKG) is an intermediate in the Krebs cycle involved in various metabolic and cellular pathways. As an antioxidant, AKG interferes in nitrogen and ammonia balance, and affects epigenetic and immune regulation. These pleiotropic functions of AKG suggest it may also extend human healthspan. Recent studies in worms and mice support this concept. A few studies published in the 1980s and 1990s in humans suggested the potential benefits of AKG in muscle growth, wound healing, and in promoting faster recovery after surgery. So far there are no recently published studies demonstrating the role of AKG in treating aging and age-related diseases; hence, further clinical studies are required to better understand the role of AKG in humans. This review will discuss the regulatory role of AKG in aging, as well as its potential therapeutic use in humans to treat age-related diseases.
Collapse
Affiliation(s)
- Bibek Gyanwali
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Zi Xiang Lim
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Janjira Soh
- Centre for Healthy Longevity, National University Health System, Singapore
| | - Clarissa Lim
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shou Ping Guan
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jorming Goh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Andrea B Maier
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Medicine and Aged Care, @AgeMelbourne, The Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia; Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Brian K Kennedy
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Healthy Longevity, National University Health System, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Singapore Institute of Clinical Sciences, A*STAR, Singapore.
| |
Collapse
|
7
|
Han M, Zhang M. The regulatory mechanism of amino acids on milk protein and fat synthesis in mammary epithelial cells: a mini review. Anim Biotechnol 2021; 34:402-412. [PMID: 34339350 DOI: 10.1080/10495398.2021.1950743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Mammary epithelial cell (MEC) is the basic unit of the mammary gland that synthesizes milk components including milk protein and milk fat. MECs can sense to extracellular stimuli including nutrients such as amino acids though different sensors and signaling pathways. Here, we review recent advances in the regulatory mechanism of amino acids on milk protein and fat synthesis in MECs. We also highlight how these mechanisms reflect the amino acid requirements of MECs and discuss the current and future prospects for amino acid regulation in milk production.
Collapse
Affiliation(s)
- Meihong Han
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Minghui Zhang
- College of Animal Science, Yangtze University, Jingzhou, China
| |
Collapse
|
8
|
Hue-Beauvais C, Faulconnier Y, Charlier M, Leroux C. Nutritional Regulation of Mammary Gland Development and Milk Synthesis in Animal Models and Dairy Species. Genes (Basel) 2021; 12:genes12040523. [PMID: 33916721 PMCID: PMC8067096 DOI: 10.3390/genes12040523] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/30/2021] [Indexed: 12/16/2022] Open
Abstract
In mammals, milk is essential for the growth, development, and health. Milk quantity and quality are dependent on mammary development, strongly influenced by nutrition. This review provides an overview of the data on nutritional regulations of mammary development and gene expression involved in milk component synthesis. Mammary development is described related to rodents, rabbits, and pigs, common models in mammary biology. Molecular mechanisms of the nutritional regulation of milk synthesis are reported in ruminants regarding the importance of ruminant milk in human health. The effects of dietary quantitative and qualitative alterations are described considering the dietary composition and in regard to the periods of nutritional susceptibly. During lactation, the effects of lipid supplementation and feed restriction or deprivation are discussed regarding gene expression involved in milk biosynthesis, in ruminants. Moreover, nutrigenomic studies underline the role of the mammary structure and the potential influence of microRNAs. Knowledge from three lactating and three dairy livestock species contribute to understanding the variety of phenotypes reported in this review and highlight (1) the importance of critical physiological stages, such as puberty gestation and early lactation and (2) the relative importance of the various nutrients besides the total energetic value and their interaction.
Collapse
Affiliation(s)
- Cathy Hue-Beauvais
- INRAE, AgroParisTech, GABI, University of Paris-Saclay, F-78350 Jouy-en-Josas, France;
- Correspondence:
| | - Yannick Faulconnier
- INRAE, VetAgro Sup, UMR Herbivores, University of Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France; (Y.F.); (C.L.)
| | - Madia Charlier
- INRAE, AgroParisTech, GABI, University of Paris-Saclay, F-78350 Jouy-en-Josas, France;
| | - Christine Leroux
- INRAE, VetAgro Sup, UMR Herbivores, University of Clermont Auvergne, F-63122 Saint-Genès-Champanelle, France; (Y.F.); (C.L.)
| |
Collapse
|
9
|
Pleiotropic effects of alpha-ketoglutarate as a potential anti-ageing agent. Ageing Res Rev 2021; 66:101237. [PMID: 33340716 DOI: 10.1016/j.arr.2020.101237] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/23/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
An intermediate of tricarboxylic acid cycle alpha-ketoglutarate (AKG) is involved in pleiotropic metabolic and regulatory pathways in the cell, including energy production, biosynthesis of certain amino acids, collagen biosynthesis, epigenetic regulation of gene expression, regulation of redox homeostasis, and detoxification of hazardous substances. Recently, AKG supplement was found to extend lifespan and delay the onset of age-associated decline in experimental models such as nematodes, fruit flies, yeasts, and mice. This review summarizes current knowledge on metabolic and regulatory functions of AKG and its potential anti-ageing effects. Impact on epigenetic regulation of ageing via being an obligate substrate of DNA and histone demethylases, direct antioxidant properties, and function as mimetic of caloric restriction and hormesis-induced agent are among proposed mechanisms of AKG geroprotective action. Due to influence on mitochondrial respiration, AKG can stimulate production of reactive oxygen species (ROS) by mitochondria. According to hormesis hypothesis, moderate stimulation of ROS production could have rather beneficial biological effects, than detrimental ones, because of the induction of defensive mechanisms that improve resistance to stressors and age-related diseases and slow down functional senescence. Discrepancies found in different models and limitations of AKG as a geroprotective drug are discussed.
Collapse
|
10
|
Jiang Q, Adebowale TO, Tian J, Yin Y, Yao K. Effects of dietary alpha-ketoglutarate on bacteria profiles in the faeces of lactating sows and their suckling piglets. Arch Anim Nutr 2019; 74:39-56. [PMID: 31552757 DOI: 10.1080/1745039x.2019.1639443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The aim of the study was to investigate the effects of dietary alpha-ketoglutarate (AKG) on the faecal bacteria composition of suckling piglets after supplementation of AKG to the diet of lactating sows. After farrowing, the sows were assigned to either a normal lactation diet (control group, n = 12) or a diet supplemented with 0.25% AKG (AKG group, n = 12) based on body weight (BW) and parity. During the 21-d suckling period, BW and diarrhoea occurrences of piglets were recorded daily, while faeces were sampled weekly from sows and piglets. The levels of pH, ammonia, short-chain fatty acids (SCFA) and lactate in the faeces of piglets were determined. In particular, bacteria profiles in faeces of sows and their suckling piglets were examined by Illumina sequencing. The results showed that the AKG diet altered the faecal bacteria composition in sows during the 21-d lactation period, leading to increases (p < 0.05) in the abundances of genera Prevotella, Lactobacillus, Bacteroides and Methanobrevibacter, but decreases (p < 0.05) in the abundances of genera Oscillospira and Dorea. AKG supplement to the sows during lactation indirectly enhanced (p < 0.05) bacterial richness and SCFA levels (especially, acetate) in the faeces of piglets during the 21-d suckling period. It is suggested that maternal AKG supplementation alters the composition of faecal bacteria in the sows, and increases the faecal bacteria richness and acetate levels in the piglets, which might be associated with an enhanced growth performance of piglets.
Collapse
Affiliation(s)
- Qian Jiang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Tolulope Oluwadamilare Adebowale
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Junquan Tian
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China.,University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China
| | - Kang Yao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, P.R. China
| |
Collapse
|
11
|
Jiang Q, Adebowale TO, Tian J, Yin Y, Yao K. Effects of maternal alpha-ketoglutarate supplementation during lactation on the performance of lactating sows and suckling piglets. Arch Anim Nutr 2019; 73:457-471. [PMID: 31454268 DOI: 10.1080/1745039x.2019.1640023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The aim of the study was to investigate if dietary alpha-ketoglutarate (AKG) supplementation may improve the performance of lactating sows and their suckling piglets. After farrowing, 24 lactating sows (Large White × Landrace) with similar body weight (BW) were assigned to the control and AKG groups based on parity, and their lactation diets were supplemented with 0.00 or 0.25% AKG, respectively. It was found that supplementing the diet of lactating sows with 0.25% AKG enhanced growth performance of the suckling piglets from d 7 to d 21 of the lactation period, improved villus height of ileum and tended (p = 0.085) to increase mean volumetric bone mineral density of femur in the weanling piglets. In the lactating sows, dietary supplementation of AKG decreased plasma urea level on d 14 of lactation, decreased plasma calcium (Ca) concentrations from d 7 to d 21 of lactation and increased lactose and Ca levels in ordinary milk. Thus, it was proposed that AKG supplementation stimulates the capacity for lactose synthesis and Ca uptake in the mammary gland, thereby altering the composition of the ordinary milk which might be associated with the enhanced performance of piglets during the suckling period. These findings could lead to a better application of AKG in lactating nutrition, and therefore, promoting pork production.
Collapse
Affiliation(s)
- Qian Jiang
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha , P. R. China.,University of Chinese Academy of Sciences , Beijing , P.R. China
| | - Tolulope Oluwadamilare Adebowale
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha , P. R. China.,University of Chinese Academy of Sciences , Beijing , P.R. China
| | - Junquan Tian
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha , P. R. China.,University of Chinese Academy of Sciences , Beijing , P.R. China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha , P. R. China
| | - Kang Yao
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Sciences , Changsha , P. R. China
| |
Collapse
|
12
|
Tekwe CD, Yao K, Lei J, Li X, Gupta A, Luan Y, Meininger CJ, Bazer FW, Wu G. Oral administration of α-ketoglutarate enhances nitric oxide synthesis by endothelial cells and whole-body insulin sensitivity in diet-induced obese rats. Exp Biol Med (Maywood) 2019; 244:1081-1088. [PMID: 31357871 DOI: 10.1177/1535370219865229] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Obesity is a risk factor for many chronic diseases, including hypertension, type-2 diabetes, and cancer. Interestingly, concentrations of branched-chain amino acids (BCAAs) in plasma are commonly associated with endothelial dysfunction in humans and animals with obesity. Because L-leucine inhibits nitric oxide synthesis by endothelial cells (EC), we hypothesized that dietary supplementation with AKG (a substrate for BCAA transaminase) may stimulate BCAA catabolism in the small intestine and extra-intestinal tissues, thereby reducing the circulating concentrations of BCAAs and increasing nitric oxide synthesis by endothelial cells. Beginning at four weeks of age, male Sprague-Dawley rats were fed a low-fat or a high-fat diet for 15 weeks. At 19 weeks of age, lean or obese rats continued to be fed for 12 weeks their respective diets and received drinking water containing 0 or 1% AKG ( n = 8/group). At 31 weeks of age, the rats were euthanized to obtain tissues. Food intake did not differ ( P > 0.05) between rats supplemented with or without AKG. Oral administration of AKG (250 mg/kg BW per day) reduced ( P < 0.05) concentrations of BCAAs, glucose, ammonia, and triacylglycerols in plasma, adiposity, and glutamine:fructose-6-phosphate transaminase activity in endothelial cells, and enhanced ( P < 0.05) concentrations of the reduced form of glutathione in tissues, nitric oxide synthesis by endothelial cells, and whole-body insulin sensitivity (indicated by oral glucose tolerance test) in both low-fat and high-fat rats. AKG administration reduced ( P < 0.05) white adipose tissue weights of rats in the low-fat and high-fat groups. These novel results indicate that AKG can reduce adiposity and increase nitric oxide production by endothelial cells in diet-induced obese rats. Impact statement Obesity is associated with elevated concentrations of branched-chain amino acids, including L-leucine. L-Leucine inhibits the synthesis of nitric oxide from L-arginine by endothelial cells, contributing to impairments in angiogenesis, blood flow, and vascular dysfunction, as well as insulin resistance. Reduction in the circulating levels of branched-chain amino acids through dietary supplementation with α-ketoglutarate to promote their transamination in the small intestine and other tissues can restore nitric oxide synthesis in the vasculature and reduce the weights of white adipose tissues, thereby improving metabolic profiles and whole-body insulin sensitivity (indicated by oral glucose tolerance test) in diet-induced obese rats. Our findings provide a simple and effective nutritional means to alleviate metabolic syndrome in obese subjects. This is highly significant to combat the current obesity epidemic and associated health problems in humans worldwide.
Collapse
Affiliation(s)
- Carmen D Tekwe
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.,Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Kang Yao
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Jian Lei
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Xilong Li
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Anand Gupta
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Yuanyuan Luan
- Department of Epidemiology and Biostatistics, Texas A&M University, College Station, TX 77843, USA
| | - Cynthia J Meininger
- Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX 77843, USA.,Department of Medical Physiology, Texas A&M Health Science Center, College Station, TX 77843, USA
| |
Collapse
|
13
|
Jiang Q, Tian J, Liu G, Yin Y, Yao K. Endoplasmic Reticulum Stress and Unfolded Protein Response Pathways Involved in the Health-Promoting Effects of Allicin on the Jejunum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:6019-6031. [PMID: 31067048 DOI: 10.1021/acs.jafc.9b02180] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Intestinal endoplasmic reticulum stress (ERS) triggered by adverse factors disturbs the normal function of the intestine. Allicin has been reported to promote intestinal health and development. In the present study, we established in vivo (35-day-old weaned piglets, 4-week-old mice) and in vitro (IPEC-J2 cell line) ERS models to explore the possible mechanisms by which allicin may benefit intestinal health. This study revealed the following: (1) allicin supplementation improved intestinal morphological indices and ameliorated mild ERS in the jejunum of the weaned piglets; (2) allicin supplementation decreased cellular reactive oxygen species and upregulated the XBP-1s signaling pathways in IPEC-J2 cells; (3) allicin supplementation reduced the prolonged ERS-mediated apoptosis of IPEC-J2 cells and in the jejunal tissues of the KM mice; (4) allicin supplementation enhanced the intercellular junction protein levels of jejunal cells by alleviating the prolonged ERS. These novel findings suggest that eating garlic could alleviate some intestinal malfunctions associated with ERS.
Collapse
Affiliation(s)
- Qian Jiang
- Laboratory of Animal Nutritional Physiology and Metabolic Process , Institute of Subtropical Agriculture Chinese Academy of Sciences , Changsha , Hunan 410125 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100043 , P.R. China
- Department of Animal Science , University of Manitoba , Winnipeg , MB R3T 2N2 , Canada
| | - Junquan Tian
- Laboratory of Animal Nutritional Physiology and Metabolic Process , Institute of Subtropical Agriculture Chinese Academy of Sciences , Changsha , Hunan 410125 , P.R. China
| | - Gang Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process , Institute of Subtropical Agriculture Chinese Academy of Sciences , Changsha , Hunan 410125 , P.R. China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process , Institute of Subtropical Agriculture Chinese Academy of Sciences , Changsha , Hunan 410125 , P.R. China
| | - Kang Yao
- Laboratory of Animal Nutritional Physiology and Metabolic Process , Institute of Subtropical Agriculture Chinese Academy of Sciences , Changsha , Hunan 410125 , P.R. China
| |
Collapse
|
14
|
L-Arginine regulates protein turnover in porcine mammary epithelial cells to enhance milk protein synthesis. Amino Acids 2018; 50:621-628. [PMID: 29435722 DOI: 10.1007/s00726-018-2541-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
Milk is an important food for mammalian neonates, but its insufficient production is a nutritional problem for humans and other animals. Recent studies indicate that dietary supplementation with L-arginine (Arg) increases milk production in mammals, including sows, rabbits, and cows. However, the underlying molecular mechanisms remain largely unknown. The present study was conducted with porcine mammary epithelial cells (PMECs) to test the hypothesis that Arg enhances milk protein synthesis via activation of the mechanistic target of rapamycin (mTOR) cell signaling. PMECs were cultured for 4 days in Arg-free basal medium supplemented with 10, 50, 200, or 500 μmol/L Arg. Rates of protein synthesis and degradation in cells were determined with the use of L-[ring-2,4-3H]phenylalanine. Cell medium was analyzed for β-casein and α-lactalbumin, whereas cells were used for quantifying total and phosphorylated levels of mTOR, ribosomal protein S6 kinase (p70S6K), 4E-binding protein 1 (4EBP1), ubiquitin, and proteasome. Addition of 50-500 μmol/L Arg to culture medium increased (P < 0.05) the proliferation of PMECs and the synthesis of proteins (including β-casein and α-lactalbumin), while reducing the rates of proteolysis, in a dose-dependent manner. The phosphorylated levels of mTOR, p70S6K and 4EBP1 were elevated (P < 0.05), but the abundances of ubiquitin and proteasome were lower (P < 0.05), in PMECs supplemented with 200-500 μmol/L Arg, compared with 10-50 μmol/L Arg. These results provide a biochemical basis for the use of Arg to enhance milk production by sows and have important implications for improving lactation in other mammals (including humans and cows).
Collapse
|
15
|
l-Glutamine Attenuates Apoptosis Induced by Endoplasmic Reticulum Stress by Activating the IRE1α-XBP1 Axis in IPEC-J2: A Novel Mechanism of l-Glutamine in Promoting Intestinal Health. Int J Mol Sci 2017; 18:ijms18122617. [PMID: 29206200 PMCID: PMC5751220 DOI: 10.3390/ijms18122617] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/28/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022] Open
Abstract
Intestinal absorption and barrier malfunctions are associated with endoplasmic reticulum stress (ERS) in the intestine. We induced ERS by exposing the intestinal porcine epithelial cell line J2 (IPEC-J2) to tunicamycin (TUNI) to explore the potential of l-glutamine to reduce ERS-induced apoptosis. Our experiments demonstrated that exposing cells to TUNI results in spontaneous ERS and encourages the upregulation of glucose-regulated protein 78 (GRP78). Prolonged TUNI-induced ERS was found to increase apoptosis mediated by C/enhancer binding protein homologous protein (CHOP), accompanied by GRP78 downregulation. Treatment with l-glutamine was found to promote cell proliferation within the growth medium but to have little effect in basic Dulbecco’s modified Eagle medium. Finally, in the milieu of TUNI-induced ERS, l-glutamine was found to maintain a high level of GRP78, alleviate CHOP-mediated apoptosis and activate the inositol requiring enzyme 1α (IRE1α)-X-box binding protein 1 (XBP1) axis. A specific inhibitor of the IRE1α-XBP1 axis reversed the protective effect of l-glutamine by blocking the expression of IRE1α/XBP1s. We propose that the functional effect of l-glutamine on intestinal health may be partly due to its modulation of ERS and CHOP-mediated apoptosis.
Collapse
|
16
|
Yuan Y, Xu Y, Xu J, Liang B, Cai X, Zhu C, Wang L, Wang S, Zhu X, Gao P, Wang X, Zhang Y, Jiang Q, Shu G. Succinate promotes skeletal muscle protein synthesis via Erk1/2 signaling pathway. Mol Med Rep 2017; 16:7361-7366. [PMID: 28944867 PMCID: PMC5865866 DOI: 10.3892/mmr.2017.7554] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/07/2017] [Indexed: 12/25/2022] Open
Abstract
It is well known that endurance training is effective to attenuate skeletal muscle atrophy. Succinate is a typical TCA metabolite, of which exercise could dramatically increase the content. The present study aimed to investigate the effect of succinate on protein synthesis in skeletal muscle, and try to delineate the underlying mechanism. The in vitro study revealed that succinate dose‑dependently increased protein synthesis in C2C12 myotube along with the enhancement of phosphorylation levels of AKT Serine/Threonine Kinase 1(Akt), mammalian target of rapamycin, S6, eukaryotic translation initiation factor 4E, 4E binding protein 1 and forkhead box O (FoxO) 3a. Furthermore, it was demonstrated that 20 mM succinate markedly increased [Ca2+]i. Then, the phospho‑extracellular regulated kinase (Erk), ‑Akt level and the crosstalk between Erk and Akt were elevated in response to succinate. Notably, the Erk antagonist (U0126) or mTOR inhibitor (rapamycin) abolished the effect of succinate on protein synthesis. The in vivo study verified that succinate dose‑dependently increased the protein synthesis, in addition to phosphorylation levels of Erk, Akt and FoxO3a in gastrocnemius muscle. In summary, these findings demonstrated that succinate promoted skeletal muscle protein deposition via Erk/Akt signaling pathway.
Collapse
Affiliation(s)
- Yexian Yuan
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Yaqiong Xu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Jingren Xu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Bingqing Liang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Xingcai Cai
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Canjun Zhu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Lina Wang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Songbo Wang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Xiaotong Zhu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Ping Gao
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Xiuqi Wang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Yongliang Zhang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Qingyan Jiang
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| | - Gang Shu
- Guangdong Province Key Laboratory of Animal Nutritional Regulation, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
- Animal Nutrition Control Research Alliance, South China Agricultural University, Guangzhou, Guangdong 510642, P.R. China
| |
Collapse
|
17
|
Jiang Q, Chen S, Ren W, Liu G, Yao K, Wu G, Yin Y. Escherichia coli aggravates endoplasmic reticulum stress and triggers CHOP-dependent apoptosis in weaned pigs. Amino Acids 2017; 49:2073-2082. [PMID: 28929337 DOI: 10.1007/s00726-017-2492-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/11/2017] [Indexed: 01/10/2023]
Abstract
Intestinal cells can sense the presence of pathogens and trigger many important signaling pathways to maintain tissue homeostasis and normal function. Escherichia coli and lipopolysaccharides (LPS) are the main pathogenic factors of intestinal disease in pigs. However, the roles of endoplasmic reticulum stress (ERS) and its mediated apoptosis in intestinal malfunction induced by E. coli or LPS remain unclear. In the present study, we aimed to evaluate whether ERS could be activated by E. coli fed to piglets and whether the underlying mechanisms of this disease process could be exploited. Eighteen weaned pigs (21 days old) were randomly assigned to one of two treatment groups (n = 9 per group). After pre-feeding for 1 week, the diets of the piglets in one group were supplemented with E. coli (W25 K, 109 cells kg-1 diet) for 7 days. At the end of the experiment, all piglets were slaughtered to collect jejunum and ileum samples. Western blotting and immunofluorescence experiments were used to determine the expression levels and histological locations of ERS and its downstream signaling proteins. The intestinal porcine epithelial cell line J2 (IPEC-J2) was used as in vitro model to investigate the possible mechanism. The results showed that E. coli supplementation in the diet increased the GRP78 expression in the jejunum and ileum, especially in the jejunal epithelium and ileac germinal center, and elevated the expression levels of CHOP (in both the jejunum and ileum) and caspase-11 (in the ileum), indicating that ERS and CHOP-caspase-11 dependent apoptosis were activated in the porcine small intestine. Moreover, as demonstrated by in vitro experiments, the CHOP inhibitor 4-phenylbutyrate alleviated the damage to IPEC-J2 cells induced by LPS derived from E. coli. Taken together, these data strongly suggest that ERS can be triggered in the small intestine by dietary supplementation with E. coli and that CHOP-caspase-11 dependent apoptosis may play a key role in maintaining normal homeostasis of the intestine in response to pathogenic factors.
Collapse
Affiliation(s)
- Qian Jiang
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, Hunan, China.,University of the Chinese Academy of Sciences, Beijing, 10008, China
| | - Shuai Chen
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, Hunan, China.,University of the Chinese Academy of Sciences, Beijing, 10008, China
| | - Wenkai Ren
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, Hunan, China.,University of the Chinese Academy of Sciences, Beijing, 10008, China
| | - Gang Liu
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, Hunan, China.
| | - Kang Yao
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, Hunan, China. .,Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, 410128, China. .,College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China.
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Yulong Yin
- Key Laboratory of Agroecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, 410125, Hunan, China.,Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients, Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, 410128, China.,College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| |
Collapse
|
18
|
He L, Huang N, Li H, Tian J, Zhou X, Li T, Yao K, Wu G, Yin Y. AMPK/α-Ketoglutarate Axis Regulates Intestinal Water and Ion Homeostasis in Young Pigs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:2287-2298. [PMID: 28241728 DOI: 10.1021/acs.jafc.7b00324] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Water and ion absorption via sensitive aquaporins (AQPs) and ion channels is of critical importance in intestinal health. However, whether α-ketoglutarate (AKG) could improve intestinal water and ion homeostasis in lipopolysaccharide (LPS)-challenged piglets and whether the AMP-activated protein kinase (AMPK) pathway is involved remains largely unknown. This study was conducted to investigate the effect of dietary AKG supplementation on the small intestinal water and ion homeostasis through modulating the AMPK pathway in a piglet diarrhea model. A total of 32 weaned piglets were used in a 2 × 2 factorial design; the major factors were diet (basal diet or 1% AKG diet) and challenge (Escherichia coli LPS or saline). The results showed that LPS challenge increased the diarrhea index and affected the concentrations of serum Na+, K+, Cl-, glucose, and AKG and its metabolites in piglets fed the basal or AKG diet. However, the addition of AKG attenuated diarrhea incidence and reversed these serum parameter concentrations. Most AQPs (e.g., AQP1, AQP3, AQP4, AQP5, AQP8, AQP10, and AQP11) and ion transporters (NHE3, ENaC, and DRA/PAT1) were widely distributed in the duodenum and jejunum of piglets. We also found that AKG up-regulated the expression of intestinal epithelial AQPs while inhibiting the expression of ion transporters. LPS challenge decreased (P < 0.05) the gene and protein expression of the AMPK pathway (AMPKα1, AMPKα2, SIRT1, PGC-1α, ACC, and TORC2) in the jejunum and ileum. Notably, AKG supplementation enhanced the abundance of these proteins in the LPS-challenged piglets. Collectively, AKG plays an important role in increasing water and ion homeostasis through modulating the AMPK pathway. Our novel finding has important implications for the prevention and treatment of gut dysfunction in neonates.
Collapse
Affiliation(s)
- Liuqin He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production , Changsha, Hunan 410125, China
- University of the Chinese Academy of Sciences , Beijing 10008, China
| | - Niu Huang
- College of Animal Science and Technology, Hunan Agricultural University , Changsha, Hunan 410128, China
| | - Huan Li
- College of Animal Science and Technology, Hunan Agricultural University , Changsha, Hunan 410128, China
| | - Junquan Tian
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production , Changsha, Hunan 410125, China
- University of the Chinese Academy of Sciences , Beijing 10008, China
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production , Changsha, Hunan 410125, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production , Changsha, Hunan 410125, China
| | - Kang Yao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production , Changsha, Hunan 410125, China
- College of Animal Science and Technology, Hunan Agricultural University , Changsha, Hunan 410128, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University , College Station, Texas 77843, United States
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production , Changsha, Hunan 410125, China
| |
Collapse
|