1
|
Yao Z, Fan Y, Lin L, Kellems RE, Xia Y. Tissue transglutaminase: a multifunctional and multisite regulator in health and disease. Physiol Rev 2024; 104:281-325. [PMID: 37712623 DOI: 10.1152/physrev.00003.2023] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/07/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023] Open
Abstract
Tissue transglutaminase (TG2) is a widely distributed multifunctional protein involved in a broad range of cellular and metabolic functions carried out in a variety of cellular compartments. In addition to transamidation, TG2 also functions as a Gα signaling protein, a protein disulfide isomerase (PDI), a protein kinase, and a scaffolding protein. In the nucleus, TG2 modifies histones and transcription factors. The PDI function catalyzes the trimerization and activation of heat shock factor-1 in the nucleus and regulates the oxidation state of several mitochondrial complexes. Cytosolic TG2 modifies proteins by the addition of serotonin or other primary amines and in this way affects cell signaling. Modification of protein-bound glutamines reduces ubiquitin-dependent proteasomal degradation. At the cell membrane, TG2 is associated with G protein-coupled receptors (GPCRs), where it functions in transmembrane signaling. TG2 is also found in the extracellular space, where it functions in protein cross-linking and extracellular matrix stabilization. Of particular importance in transglutaminase research are recent findings concerning the role of TG2 in gene expression, protein homeostasis, cell signaling, autoimmunity, inflammation, and hypoxia. Thus, TG2 performs a multitude of functions in multiple cellular compartments, making it one of the most versatile cellular proteins. Additional evidence links TG2 with multiple human diseases including preeclampsia, hypertension, cardiovascular disease, organ fibrosis, cancer, neurodegenerative diseases, and celiac disease. In conclusion, TG2 provides a multifunctional and multisite response to physiological stress.
Collapse
Affiliation(s)
- Zhouzhou Yao
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Yuhua Fan
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lizhen Lin
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas McGovern Medical School at Houston, Houston, Texas, United States
| | - Yang Xia
- National Medical Metabolomics International Collaborative Research Center, Central South University, Changsha, Hunan, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
2
|
Gallo M, Ferrari E, Terrazzan A, Brugnoli F, Spisni A, Taccioli C, Aguiari G, Trentini A, Volinia S, Keillor JW, Bergamini CM, Bianchi N, Pertinhez TA. Metabolic characterisation of transglutaminase 2 inhibitor effects in breast cancer cell lines. FEBS J 2023; 290:5411-5433. [PMID: 37597264 DOI: 10.1111/febs.16931] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
Transglutaminase 2 (TG2), which mediates post-translational modifications of multiple intracellular enzymes, is involved in the pathogenesis and progression of cancer. We used 1 H-NMR metabolomics to study the effects of AA9, a novel TG2 inhibitor, on two breast cancer cell lines with distinct phenotypes, MCF-7 and MDA-MB-231. AA9 can promote apoptosis in both cell lines, but it is particularly effective in MD-MB-231, inhibiting transamidation reactions and decreasing cell migration and invasiveness. This metabolomics study provides evidence of a major effect of AA9 on MDA-MB-231 cells, impacting glutamate and aspartate metabolism, rather than on MCF-7 cells, characterised by choline and O-phosphocholine decrease. Interestingly, AA9 treatment induces myo-inositol alteration in both cell lines, indicating action on phosphatidylinositol metabolism, likely modulated by the G protein activity of TG2 on phospholipase C. Considering the metabolic deregulations that characterise various breast cancer subtypes, the existence of a metabolic pathway affected by AA9 further points to TG2 as a promising hot spot. The metabolomics approach provides a powerful tool to monitor the effectiveness of inhibitors and better understand the role of TG2 in cancer.
Collapse
Affiliation(s)
- Mariana Gallo
- Department of Medicine and Surgery, University of Parma, Italy
| | - Elena Ferrari
- Department of Medicine and Surgery, University of Parma, Italy
| | - Anna Terrazzan
- Department of Translational Medicine, University of Ferrara, Italy
| | | | - Alberto Spisni
- Department of Medicine and Surgery, University of Parma, Italy
| | - Cristian Taccioli
- Department of Animal Medicine, Production and Health (MAPS), University of Padua, Italy
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Italy
| | - Alessandro Trentini
- Department of Environmental Sciences and Prevention, University of Ferrara, Italy
| | - Stefano Volinia
- Department of Translational Medicine, University of Ferrara, Italy
| | - Jeffrey W Keillor
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Canada
| | - Carlo M Bergamini
- Department of Neuroscience and Rehabilitation, University of Ferrara, Italy
| | | | | |
Collapse
|
3
|
Tatsukawa H, Hitomi K. Role of Transglutaminase 2 in Cell Death, Survival, and Fibrosis. Cells 2021; 10:cells10071842. [PMID: 34360011 PMCID: PMC8307792 DOI: 10.3390/cells10071842] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 12/27/2022] Open
Abstract
Transglutaminase 2 (TG2) is a ubiquitously expressed enzyme catalyzing the crosslinking between Gln and Lys residues and involved in various pathophysiological events. Besides this crosslinking activity, TG2 functions as a deamidase, GTPase, isopeptidase, adapter/scaffold, protein disulfide isomerase, and kinase. It also plays a role in the regulation of hypusination and serotonylation. Through these activities, TG2 is involved in cell growth, differentiation, cell death, inflammation, tissue repair, and fibrosis. Depending on the cell type and stimulus, TG2 changes its subcellular localization and biological activity, leading to cell death or survival. In normal unstressed cells, intracellular TG2 exhibits a GTP-bound closed conformation, exerting prosurvival functions. However, upon cell stimulation with Ca2+ or other factors, TG2 adopts a Ca2+-bound open conformation, demonstrating a transamidase activity involved in cell death or survival. These functional discrepancies of TG2 open form might be caused by its multifunctional nature, the existence of splicing variants, the cell type and stimulus, and the genetic backgrounds and variations of the mouse models used. TG2 is also involved in the phagocytosis of dead cells by macrophages and in fibrosis during tissue repair. Here, we summarize and discuss the multifunctional and controversial roles of TG2, focusing on cell death/survival and fibrosis.
Collapse
|
4
|
Tempest R, Guarnerio S, Maani R, Cooper J, Peake N. The Biological and Biomechanical Role of Transglutaminase-2 in the Tumour Microenvironment. Cancers (Basel) 2021; 13:cancers13112788. [PMID: 34205140 PMCID: PMC8199963 DOI: 10.3390/cancers13112788] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/17/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Transglutaminase-2 (TG2) is the most highly and ubiquitously expressed member of the transglutaminase enzyme family and is primarily involved in protein cross-linking. TG2 has been implicated in the development and progression of numerous cancers, with a direct role in multiple cellular processes and pathways linked to apoptosis, chemoresistance, epithelial-mesenchymal transition, and stem cell phenotype. The tumour microenvironment (TME) is critical in the formation, progression, and eventual metastasis of cancer, and increasing evidence points to a role for TG2 in matrix remodelling, modulation of biomechanical properties, cell adhesion, motility, and invasion. There is growing interest in targeting the TME therapeutically in response to advances in the understanding of its critical role in disease progression, and a number of approaches targeting biophysical properties and biomechanical signalling are beginning to show clinical promise. In this review we aim to highlight the wide array of processes in which TG2 influences the TME, focussing on its potential role in the dynamic tissue remodelling and biomechanical events increasingly linked to invasive and aggressive behaviour. Drug development efforts have yielded a range of TG2 inhibitors, and ongoing clinical trials may inform strategies for targeting the biomolecular and biomechanical function of TG2 in the TME.
Collapse
|
5
|
Ulukan B, Bihorac A, Sipahioglu T, Kiraly R, Fesus L, Telci D. Role of Tissue Transglutaminase Catalytic and Guanosine Triphosphate-Binding Domains in Renal Cell Carcinoma Progression. ACS OMEGA 2020; 5:28273-28284. [PMID: 33163811 PMCID: PMC7643270 DOI: 10.1021/acsomega.0c04226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
Tissue transglutaminase (TG2) is a multifunctional protein that can act as a cross-linking enzyme, GTPase/ATPase, protein kinase, and protein disulfide isomerase. TG2 is involved in cell adhesion, migration, invasion, and growth, as well as epithelial-mesenchymal transition (EMT). Our previous findings indicate that the increased expression of TG2 in renal cell carcinoma (RCC) results in tumor metastasis with a significant decrease in disease- and cancer-specific survival outcome. Given the importance of the prometastatic activity of TG2 in RCC, in the present study, we aim to investigate the relative contribution of TG2's transamidase and guanosine triphosphate (GTP)-binding/GTPase activity in the cell migration, invasion, EMT, and cancer stemness of RCC. For this purpose, the mouse RCC cell line RenCa was transduced with wild-type-TG2 (wt-TG2), GTP-binding deficient-form TG2-R580A, transamidase-deficient form with low GTP-binding affinity TG2-C277S, and transamidase-inactive form TG2-W241A. Our results suggested that predominantly, GTP-binding activity of TG2 is responsible for cell migration and invasion. In addition, CD marker analysis and spheroid assay confirmed that GTP binding/GTPase activity of TG2 is important in the maintenance of mesenchymal character and the cancer stem cell profile. These findings support a prometastatic role for TG2 in RCC that is dependent on the GTP binding/GTPase activity of the enzyme.
Collapse
Affiliation(s)
- Burge Ulukan
- Department
of Genetics and Bioengineering, Yeditepe
University, Istanbul 34755, Turkey
| | - Ajna Bihorac
- Department
of Genetics and Bioengineering, Yeditepe
University, Istanbul 34755, Turkey
| | - Tarik Sipahioglu
- Department
of Genetics and Bioengineering, Yeditepe
University, Istanbul 34755, Turkey
| | - Robert Kiraly
- Department
of Biochemistry and Molecular Biology, University
of Debrecen, Debrecen H4010, Hungary
| | - Laszlo Fesus
- Department
of Biochemistry and Molecular Biology, University
of Debrecen, Debrecen H4010, Hungary
| | - Dilek Telci
- Department
of Genetics and Bioengineering, Yeditepe
University, Istanbul 34755, Turkey
| |
Collapse
|
6
|
CRISPR-based gene knockout screens reveal deubiquitinases involved in HIV-1 latency in two Jurkat cell models. Sci Rep 2020; 10:5350. [PMID: 32210344 PMCID: PMC7093534 DOI: 10.1038/s41598-020-62375-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/10/2020] [Indexed: 12/28/2022] Open
Abstract
The major barrier to a HIV-1 cure is the persistence of latent genomes despite treatment with antiretrovirals. To investigate host factors which promote HIV-1 latency, we conducted a genome-wide functional knockout screen using CRISPR-Cas9 in a HIV-1 latency cell line model. This screen identified IWS1, POLE3, POLR1B, PSMD1, and TGM2 as potential regulators of HIV-1 latency, of which PSMD1 and TMG2 could be confirmed pharmacologically. Further investigation of PSMD1 revealed that an interacting enzyme, the deubiquitinase UCH37, was also involved in HIV-1 latency. We therefore conducted a comprehensive evaluation of the deubiquitinase family by gene knockout, identifying several deubiquitinases, UCH37, USP14, OTULIN, and USP5 as possible HIV-1 latency regulators. A specific inhibitor of USP14, IU1, reversed HIV-1 latency and displayed synergistic effects with other latency reversal agents. IU1 caused degradation of TDP-43, a negative regulator of HIV-1 transcription. Collectively, this study is the first comprehensive evaluation of deubiquitinases in HIV-1 latency and establishes that they may hold a critical role.
Collapse
|
7
|
Eckert RL. Transglutaminase 2 takes center stage as a cancer cell survival factor and therapy target. Mol Carcinog 2019; 58:837-853. [PMID: 30693974 DOI: 10.1002/mc.22986] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 01/22/2019] [Accepted: 01/25/2019] [Indexed: 12/14/2022]
Abstract
Transglutaminase 2 (TG2) has emerged as a key cancer cell survival factor that drives epithelial to mesenchymal transition, angiogenesis, metastasis, inflammation, drug resistance, cancer stem cell survival and stemness, and invasion and migration. TG2 can exist in a GTP-bound signaling-active conformation or in a transamidase-active conformation. The GTP bound conformation of TG2 contributes to cell survival and the transamidase conformation can contribute to cell survival or death. We present evidence suggesting that TG2 has a role in human cancer, summarize what is known about the TG2 mechanism of action in a range of cancer types, and discuss TG2 as a cancer therapy target.
Collapse
Affiliation(s)
- Richard L Eckert
- Department of Biochemistry and Molecular Biology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
8
|
McDonald AJ, Curt KM, Patel RP, Kozlowski H, Sackett DL, Robey RW, Gottesman MM, Bates SE. Targeting mitochondrial hexokinases increases efficacy of histone deacetylase inhibitors in solid tumor models. Exp Cell Res 2018; 375:106-112. [PMID: 30579954 DOI: 10.1016/j.yexcr.2018.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/12/2018] [Accepted: 12/15/2018] [Indexed: 02/06/2023]
Abstract
Hexokinase 1 and 2 have been shown to inhibit Bak- and Bax-mediated apoptosis, leading us to combine the histone deacetylase inhibitor romidepsin with clotrimazole or bifonazole, two compounds that reportedly decrease mitochondrial localization of hexokinases. Cancer cell lines derived from breast, kidney, lung, colon or ovarian cancers were treated with a short-term exposure to 25 ng/ml romidepsin combined with either clotrimazole or bifonazole. The combination of romidepsin with 25 µM clotrimazole or bifonazole resulted in increased annexin staining compared to cells treated with any of the drugs alone. Cell death was caspase-mediated, as the pan-caspase inhibitor Q-VD-OPh was found to inhibit apoptosis induced by the combination. A549 lung cancer cells or HCT-116 cells deficient in Bak and Bax were also resistant to apoptosis with the combination implicating the intrinsic apoptotic pathway. We found that a 24 h treatment with clotrimazole or bifonazole decreased total hexokinase 2 expression, resulting in a 76% or 60% decrease, respectively, of mitochondrial expression of hexokinase 2. Mitochondrial hexokinase 1 levels increased 2-fold or less. Our work suggests that the combination of a short-term romidepsin treatment with bifonazole or clotrimazole leads to increased apoptosis, most likely due to decreased mitochondrial expression of hexokinase 2.
Collapse
Affiliation(s)
- Andrew J McDonald
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Katherine M Curt
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Ruchi P Patel
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Hanna Kozlowski
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Dan L Sackett
- Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Robert W Robey
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States; Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Michael M Gottesman
- Laboratory of Cell Biology, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States
| | - Susan E Bates
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States; Columbia University Medical Center, Division of Hematology/Oncology, New York, NY 10032, United States.
| |
Collapse
|