1
|
Bonnevie-Svendsen M, Nyborg C, Bratseth V, Melau J, Hisdal J. Transient changes in L-arginine, asymmetric and symmetric dimethyl arginine in triathletes following Norseman Xtreme Triathlon. Front Physiol 2024; 15:1451038. [PMID: 39493861 PMCID: PMC11527713 DOI: 10.3389/fphys.2024.1451038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/02/2024] [Indexed: 11/05/2024] Open
Abstract
Arterial vasodilation is dependent on nitric oxide synthesized from L-arginine by endothelial nitric oxide synthase. Triathletes are reported to display altered serum concentrations of nitric oxide metabolites such as L-arginine, asymmetric dimethyl arginine (ADMA) and symmetric dimethyl arginine (SDMA) shortly after completing long-distance triathlon races. In other populations, similar changes to nitric oxide metabolites are established risk markers of cardiovascular disease. The objective of this study was to assess serum concentrations of metabolites for endothelial nitric oxide synthesis in triathletes one week following a long-distance triathlon race. In this prospective observational study, we used high-performance liquid chromatography to measure circulating concentrations of L-arginine, ADMA, and SDMA in triathletes. Venous blood samples were collected before, immediately after, day one, and one week following the triathlon race. Serum concentrations and L-arginine/ADMA ratio were determined for each time-point and compared to baseline. L-arginine/ADMA ratio was reduced on day one (147 ± 32 vs 163 ± 40, p < 0.02). ADMA was reduced immediately after and increased at day one and remained elevated at one week (0.29 ± 0.05 μM, p < 0.001, 0.44 ± 0.08 μM, p < 0.001 and 0.42 ± 0.07 μM, p = 0.04, respectively vs 0.40 ± 0.05 μM). SDMA was increased at all time-points when compared to baseline (0.48 ± 0.10 μM, p < 0.001, 0.53 ± 0.11 μM, p < 0.001 and 0.42 ± 0.08 μM, p = 0.048 vs 0.38 ± 0.05 μM). L-arginine was only decreased immediately after (46.0 ± 9.3 μM vs. 64.6 ± 16.1 μM, p < 0.001). Long-distance triathlon racing induces altered levels of metabolites for endothelial nitric oxide production that mostly normalizes within one week following racing. The clinical relevance of these transient changes has yet to be elucidated in the athletic population.
Collapse
Affiliation(s)
- Martin Bonnevie-Svendsen
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Vascular Surgery, Section of Vascular Investigations, Aker, Oslo University Hospital, Oslo, Norway
| | - Christoffer Nyborg
- Department of Vascular Surgery, Section of Vascular Investigations, Aker, Oslo University Hospital, Oslo, Norway
| | - Vibeke Bratseth
- Oslo Center for Clinical Heart Research-Laboratory, Oslo University Hospital, Department of Cardiology, Oslo, Norway
| | - Jørgen Melau
- Department of Vascular Surgery, Section of Vascular Investigations, Aker, Oslo University Hospital, Oslo, Norway
- Joint Medical Services, Norwegian Armed Forces, Sessvollmoen, Norway
| | - Jonny Hisdal
- Department of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Vascular Surgery, Section of Vascular Investigations, Aker, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
2
|
Drohomirecka A, Waś J, Wiligórska N, Rywik TM, Komuda K, Sokołowska D, Lutyńska A, Zieliński T. L-arginine and Its Derivatives Correlate with Exercise Capacity in Patients with Advanced Heart Failure. Biomolecules 2023; 13:biom13030423. [PMID: 36979359 PMCID: PMC10046255 DOI: 10.3390/biom13030423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Methylated arginine metabolites interrupt nitric oxide synthesis, which can result in endothelium dysfunction and inadequate vasodilation. Since little is known about the dynamics of arginine derivatives in patients with heart failure (HF) during physical exercise, we aimed to determine this as well as its impact on the patient outcomes. Fifty-one patients with HF (left ventricle ejection fraction-LVEF ≤ 35%, mean 21.7 ± 5.4%) underwent the cardiopulmonary exercise test (CPET). Plasma concentrations of L-arginine, citrulline, ornithine, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA) were measured before and directly after CPET. All patients were followed for a mean of 23.5 ± 12.6 months. The combined endpoint was: any death, urgent heart transplantation, or urgent LVAD implantation. L-arginine concentrations increased significantly after CPET (p = 0.02), when ADMA (p = 0.01) and SDMA (p = 0.0005) decreased. The parameters of better exercise capacity were positively correlated with post-CPET concentration of L-arginine and inversely with post-CPET changes in ADMA, SDMA, and baseline and post-CPET SDMA concentrations. Baseline and post-CPET SDMA concentrations increased the risk of endpoint occurrence (HR 1.02, 95% CI 1.009–1.03, p = 0.04 and HR 1.02, 95% CI 1.01–1.03, p = 0.02, respectively). In conclusion, in patients with HF, extensive exercise is accompanied by changes in arginine derivatives that can reflect endothelium function. These observations may contribute to the explanation of the pathophysiology of exercise intolerance in HF.
Collapse
Affiliation(s)
- Anna Drohomirecka
- Department of Heart Failure and Transplantation, National Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland
| | - Joanna Waś
- Department of Medical Biology, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Natalia Wiligórska
- Department of Heart Failure and Transplantation, National Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland
| | - Tomasz M. Rywik
- Department of Heart Failure and Transplantation, National Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland
- Correspondence:
| | - Krzysztof Komuda
- Department of Heart Failure and Transplantation, National Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland
| | - Dorota Sokołowska
- Department of Medical Biology, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Anna Lutyńska
- Department of Medical Biology, National Institute of Cardiology, 04-628 Warsaw, Poland
| | - Tomasz Zieliński
- Department of Heart Failure and Transplantation, National Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland
| |
Collapse
|
3
|
Goni L, Razquin C, Toledo E, Guasch-Ferré M, Clish CB, Babio N, Wittenbecher C, Atzeni A, Li J, Liang L, Dennis C, Alonso-Gómez Á, Fitó M, Corella D, Gómez-Gracia E, Estruch R, Fiol M, Lapetra J, Serra-Majem L, Ros E, Arós F, Salas-Salvadó J, Hu FB, Martínez-González MA, Ruiz-Canela M. Arginine catabolism metabolites and atrial fibrillation or heart failure risk: 2 case-control studies within the Prevención con Dieta Mediterránea (PREDIMED) trial. Am J Clin Nutr 2022; 116:653-662. [PMID: 35575609 PMCID: PMC9437981 DOI: 10.1093/ajcn/nqac139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/25/2022] [Accepted: 05/11/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Arginine-derived metabolites are involved in oxidative and inflammatory processes related to endothelial functions and cardiovascular risks. OBJECTIVES We prospectively examined the associations of arginine catabolism metabolites with the risks of atrial fibrillation (AF) or heart failure (HF), and evaluated the potential modifications of these associations through Mediterranean diet (MedDiet) interventions in a large, primary-prevention trial. METHODS Two nested, matched, case-control studies were designed within the Prevención con Dieta Mediterránea (PREDIMED) trial. We selected 509 incident cases and 547 matched controls for the AF case-control study and 326 cases and 402 matched controls for the HF case-control study using incidence density sampling. Fasting blood samples were collected at baseline and arginine catabolism metabolites were measured using LC-tandem MS. Multivariable conditional logistic regression models were applied to test the associations between the metabolites and incident AF or HF. Interactions between metabolites and intervention groups (MedDiet groups compared with control group) were analyzed with the likelihood ratio test. RESULTS Inverse association with incident AF was observed for arginine (OR per 1 SD, 0.83; 95% CI: 0.73-0.94), whereas a positive association was found for N1-acetylspermidine (OR for Q4 compared with Q1 1.58; 95% CI: 1.13-2.25). For HF, inverse associations were found for arginine (OR per 1 SD, 0.82; 95% CI: 0.69-0.97) and homoarginine (OR per 1 SD, 0.81; 95% CI: 0.68-0.96), and positive associations were found for the asymmetric dimethylarginine (ADMA) and symmetric dimethlyarginine (SDMA) ratio (OR per 1 SD, 1.19; 95% CI: 1.02-1.41), N1-acetylspermidine (OR per 1 SD, 1.34; 95% CI: 1.12-1.60), and diacetylspermine (OR per 1 SD, 1.20; 95% CI: 1.02-1.41). In the stratified analysis according to the dietary intervention, the lower HF risk associated with arginine was restricted to participants in the MedDiet groups (P-interaction = 0.044). CONCLUSIONS Our results suggest that arginine catabolism metabolites could be involved in AF and HF. Interventions with the MedDiet may contribute to strengthen the inverse association between arginine and the risk of HF. This trial was registered at controlled-trials.com as ISRCTN35739639.
Collapse
Affiliation(s)
- Leticia Goni
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain
- Centro de Investigacion Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Razquin
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain
- Centro de Investigacion Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Estefanía Toledo
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain
- Centro de Investigacion Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Guasch-Ferré
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, MA, USA
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nancy Babio
- Centro de Investigacion Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain
- Institut d'Investigació Sanitària Pere i Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Clemens Wittenbecher
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Alessandro Atzeni
- Centro de Investigacion Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain
- Institut d'Investigació Sanitària Pere i Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Jun Li
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | | | - Ángel Alonso-Gómez
- Centro de Investigacion Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, Vitoria-Gasteiz, Spain
- University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Montserrat Fitó
- Centro de Investigacion Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Dolores Corella
- Centro de Investigacion Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Enrique Gómez-Gracia
- Department of Preventive Medicine, University of Malaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
| | - Ramón Estruch
- Centro de Investigacion Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Internal Medicine, Institut d'Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Miquel Fiol
- Centro de Investigacion Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Plataforma de Ensayos Clínicos, Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Jose Lapetra
- Centro de Investigacion Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Family Medicine, Research Unit, Distrito Sanitario Atención Primaria Sevilla, Sevilla, Spain
| | - Lluis Serra-Majem
- Centro de Investigacion Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Nutrition Research Group, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Emilio Ros
- Centro de Investigacion Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Lipid Clinic, Department of Endocrinology and Nutrition, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Fernando Arós
- Centro de Investigacion Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Bioaraba Health Research Institute, Osakidetza Basque Health Service, Araba University Hospital, Vitoria-Gasteiz, Spain
- University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Jordi Salas-Salvadó
- Centro de Investigacion Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició Humana, Reus, Spain
- Institut d'Investigació Sanitària Pere i Virgili, Hospital Universitari Sant Joan de Reus, Reus, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, MA, USA
| | - Miguel A Martínez-González
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain
- Centro de Investigacion Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Miguel Ruiz-Canela
- Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain
- IdiSNA (Instituto de Investigación Sanitaria de Navarra), Pamplona, Spain
- Centro de Investigacion Biomédica en Red Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Mangoni AA, Rodionov RN, McEvoy M, Zinellu A, Carru C, Sotgia S. New horizons in arginine metabolism, ageing and chronic disease states. Age Ageing 2019; 48:776-782. [PMID: 31268522 DOI: 10.1093/ageing/afz083] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/16/2019] [Accepted: 06/10/2019] [Indexed: 11/14/2022] Open
Abstract
The elucidation of the metabolic pathways of the amino acid arginine and their role in health and disease have been an intensive focus of basic and clinical research for over a century. The recent advent of robust analytical techniques for biomarker assessment in large population cohorts has allowed the investigation of the pathophysiological role of specific arginine metabolites in key chronic disease states in old age, particularly those characterised by a reduced synthesis of endothelial nitric oxide, with consequent vascular disease and atherosclerosis. Two arginine metabolites have been increasingly studied in regard to their potential role in risk stratification and in the identification of novel therapeutic targets: the methylated arginine asymmetric dimethylarginine (ADMA) and the arginine analogue homoarginine. Higher circulating concentrations of ADMA, a potent inhibitor of nitric oxide synthesis, have been shown to predict adverse cardiovascular outcomes. By contrast, there is emerging evidence that homoarginine might exert cardioprotective effects. This review highlights recent advances in the biological and clinical role of ADMA and homoarginine in cardiovascular disease and other emerging fields, particularly chronic obstructive pulmonary disease, dementia, and depression. It also discusses opportunities for future research directions with the ultimate goal of translating knowledge of arginine metabolism, and its role in health and disease, into the clinical care of older adults.
Collapse
Affiliation(s)
- Arduino A Mangoni
- Discipline of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Roman N Rodionov
- University Centre for Vascular Medicine, Technische Universität Dresden, Dresden, Germany
| | - Mark McEvoy
- Faculty of Health and Medicine, School of Medicine and Public Health, Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Quality Control Unit, University Hospital of Sassari (AOU-SS), Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|