1
|
Wang P, Zhou D, Hu L, Ge P, Cen Z, Hu Z, He Q, Zhou K, Wu B, Huang X. Metabolic profiles and prediction of failure to thrive of citrin deficiency with normal liver function based on metabolomics and machine learning. Nutr Metab (Lond) 2025; 22:42. [PMID: 40355928 PMCID: PMC12070541 DOI: 10.1186/s12986-025-00928-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
PURPOSE This study aimed to explore metabolite pathways and identify residual metabolites during the post-neonatal intrahepatic cholestasis caused by citrin deficiency (post-NICCD) phase, while developing a predictive model for failure to thrive (FTT) using selected metabolites. METHOD A case-control study was conducted from October 2020 to July 2024, including 16 NICCD patients, 31 NICCD-matched controls, 34 post-NICCD patients, and 70 post-NICCD-matched controls. Post-NICCD patients were further stratified into two groups based on growth outcomes. Biomarkers for FTT were identified using Lasso regression and random forest analysis. A non-invasive predictive model was developed, visualized as a nomogram, and internally validated using the enhanced bootstrap method. The model's performance was evaluated with receiver operating characteristic curves and calibration curves. Metabolite concentrations (amino acids, acylcarnitines, organic acids, and free fatty acids) were measured using liquid chromatography or ultra-performance liquid chromatography-tandem mass spectrometry. RESULTS The biosynthesis of unsaturated fatty acids was identified as the most significantly altered pathway in post-NICCD patients. Twelve residual metabolites altered during both NICCD and post-NICCD phases were identified, including: 2-hydroxyisovaleric acid, alpha-ketoisovaleric acid, C5:1, 3-methyl-2-oxovaleric acid, C18:1OH, C20:4, myristic acid, eicosapentaenoic acid, carnosine, hydroxylysine, phenylpyruvic acid, and 2-methylcitric acid. Lasso regression and random forest analysis identified kynurenine, arginine, alanine, and aspartate as the optimal biomarkers for predicting FTT in post-NICCD patients. The predictive model constructed with these four biomarkers demonstrated an AUC of 0.947. CONCLUSION While post-NICCD patients recover clinically and biochemically, their metabolic profiles remain incompletely restored. The predictive model based on kynurenine, arginine, alanine, and aspartate provides robust diagnostic performance for detecting FTT in post-NICCD patients.
Collapse
Affiliation(s)
- Peiyao Wang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou City, Zhejiang Province, 310052, China
| | - Duo Zhou
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou City, Zhejiang Province, 310052, China
| | - Lingwei Hu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou City, Zhejiang Province, 310052, China
| | - Pingping Ge
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou City, Zhejiang Province, 310052, China
| | - Ziyan Cen
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou City, Zhejiang Province, 310052, China
| | - Zhenzhen Hu
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou City, Zhejiang Province, 310052, China
| | - Qimin He
- School of Geography Science and Geomatics Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
- Suzhou Bohe Intelligent Information Technology Co., Ltd., Suzhou, 215100, China.
| | - Kejun Zhou
- Human Metabolomics Institute, Inc., Shenzhen, Guangdong, 518109, China.
| | - Benqing Wu
- Children's Medical Center, Shenzhen Guangming District People's Hospital, Shenzhen, Guangdong, 518106, China.
- Children's Medical Center, University of the Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, Guangdong, China.
| | - Xinwen Huang
- Department of Genetics and Metabolism, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, No. 3333 Binsheng Road, Binjiang District, Hangzhou City, Zhejiang Province, 310052, China.
| |
Collapse
|
2
|
Li T, Raja BR, Liao J, Zheng L, Yin F, Gan S, Sun X, Lyu G, Ma J. The characteristics, influence factors, and regulatory strategies of growth retardation in ruminants: a review. Front Vet Sci 2025; 12:1566427. [PMID: 40206254 PMCID: PMC11979133 DOI: 10.3389/fvets.2025.1566427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Growth retardation represents a main barrier to affect the productivity and efficiency of ruminants production, which is characterized by low growth rate, a disparity between skeletal and physiological maturation, gastrointestinal dysfunction and reduced reproductive performance. This review provides a concise overview of growth retardation in ruminants, and summarizes the key factors that influence their growth and development, including genetics, nutrition, microbiota and environment. Also, this review emphasizes the central role of nutritional management and gastrointestinal development, as well as the regulatory mechanisms involved in growth processes. In addition, recent advances in these aspects are discussed to form an integrative framework aimed at improving physiological function in ruminants. This review provides a comprehensive perspective for understanding the complex mechanism of growth retardation in ruminants, puts forward a theoretical basis for optimizing the production efficiency of ruminants industry and emphasizes the importance of multidisciplinary collaboration to provide a reference for advancing systematic research on growth and development of ruminants.
Collapse
Affiliation(s)
- Tao Li
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Bakhtawar Riaz Raja
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jie Liao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Longqing Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Fuquan Yin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Shangquan Gan
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xuemei Sun
- Xinjiang Taikun Group Co., Ltd., Changji, China
| | - Gang Lyu
- Xinjiang Taikun Group Co., Ltd., Changji, China
| | - Jian Ma
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
- Xinjiang Taikun Group Co., Ltd., Changji, China
| |
Collapse
|
3
|
Wang J, Jiang Y, Zhu C, Liu Z, Qi L, Ding H, Wang J, Huang Y, Li Y, Song Y, Feng G, Zhang L, Liu L. Mitochondria-engine with self-regulation to restore degenerated intervertebral disc cells via bioenergetic robust hydrogel design. Bioact Mater 2024; 40:1-18. [PMID: 38873262 PMCID: PMC11167444 DOI: 10.1016/j.bioactmat.2024.05.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024] Open
Abstract
Previous studies have confirmed that intervertebral disc degeneration (IDD) is closely associated with inflammation-induced reactive oxygen species (ROS) and resultant cell mitochondrial membrane potential (MMP) decline. Clearance of ROS in an inflammatory environment is essential for breaking the vicious cycle of MMP decline. Additionally, re-energizing the mitochondria damaged in the inflammatory milieu to restore their function, is equally important. Herein, we proposed an interesting concept of mitochondrion-engine equipped with coolant, which enables first to "cool-down" the inflammatory environment, next to restore the MMP, finally to allow cells to regain normal energy metabolism through materials design. As such, we developed a multi-functional composite composed of a reactive oxygen species (ROS)-responsive sodium alginate/gelatin hydrogel infused into a rigid 3D-printed thermoplastic polyurethane (TPU) scaffold. The TPU scaffold was coated with conductive polypyrrole (PPy) to electrophoretically deposit l-arginine, which could upregulate the Mammalian target of rapamycin (mTOR) pathway, thus increasing MMP and energy metabolism to stimulate extracellular matrix synthesis for IVD repair. While the ROS-responsive hydrogel acting as the "mito-engine coolant" could scavenge the excessive ROS to create a favorable environment for IVD cells recovery. Demonstrated by in vitro and in vivo evaluations, the mito-engine system markedly promoted the proliferation and collagen synthesis of nucleus pulposus cells while enhancing the mitochondrial respiration and MMP under oxidative stress. Radiological and histological assessments in vivo revealed the efficacy of this system in IVD repair. This unique bioinspired design integrated biomaterial science with mitochondrial biology, presents a promising paradigm for IDD treatment.
Collapse
Affiliation(s)
| | | | - Ce Zhu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Zheng Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Lin Qi
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Hong Ding
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Jing Wang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yong Huang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yubao Li
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yueming Song
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Ganjun Feng
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Li Zhang
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Limin Liu
- Analytical & Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Zhou M, Wei Y, Feng Y, Zhang S, Ma N, Wang K, Tan P, Zhao Y, Zhao J, Ma X. Arginine Regulates Skeletal Muscle Fiber Type Formation via mTOR Signaling Pathway. Int J Mol Sci 2024; 25:6184. [PMID: 38892371 PMCID: PMC11173221 DOI: 10.3390/ijms25116184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
The composition of skeletal muscle fiber types affects the quality of livestock meat and human athletic performance and health. L-arginine (Arg), a semi-essential amino acid, has been observed to promote the formation of slow-twitch muscle fibers in animal models. However, the precise molecular mechanisms are still unclear. This study investigates the role of Arg in skeletal muscle fiber composition and mitochondrial function through the mTOR signaling pathway. In vivo, 4-week C56BL/6J male mice were divided into three treatment groups and fed a basal diet supplemented with different concentrations of Arg in their drinking water. The trial lasted 7 weeks. The results show that Arg supplementation significantly improved endurance exercise performance, along with increased SDH enzyme activity and upregulated expression of the MyHC I, MyHC IIA, PGC-1α, and NRF1 genes in the gastrocnemius (GAS) and quadriceps (QUA) muscles compared to the control group. In addition, Arg activated the mTOR signaling pathway in the skeletal muscle of mice. In vitro experiments using cultured C2C12 myotubes demonstrated that Arg elevated the expression of slow-fiber genes (MyHC I and Tnnt1) as well as mitochondrial genes (PGC-1α, TFAM, MEF2C, and NRF1), whereas the effects of Arg were inhibited by the mTOR inhibitor rapamycin. In conclusion, these findings suggest that Arg modulates skeletal muscle fiber type towards slow-twitch fibers and enhances mitochondrial functions by upregulating gene expression through the mTOR signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xi Ma
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.Z.); (Y.W.); (Y.F.); (S.Z.); (N.M.); (K.W.); (P.T.); (Y.Z.); (J.Z.)
| |
Collapse
|
5
|
Wang X, Zhang T, Li W, Wang H, Yan L, Zhang X, Zhao L, Wang N, Zhang B. Arginine alleviates Clostridium perfringens α toxin-induced intestinal injury in vivo and in vitro via the SLC38A9/mTORC1 pathway. Front Immunol 2024; 15:1357072. [PMID: 38638435 PMCID: PMC11024335 DOI: 10.3389/fimmu.2024.1357072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Clostridium perfringens α toxin is a main virulence factor responsible for gut damage in animals. Arginine is a functional amino acid exhibiting significant immunoregulatory activities. However, the effects and immunoregulatory mechanisms of arginine supplementation on α toxin-induced intestinal injury remain unclear. Methods In vivo, 256 male Arbor Acres chickens were randomly assigned to a 2×2 factorial arrangement, involving diet treatments (with or without 0.3% arginine supplementation) and immunological stress (with or without α toxin challenge). In vitro, IEC-6 cells were treated with or without arginine in the presence or absence of α toxin. Moreover, IEC-6 cells were transfected with siRNA targeting mTOR and SLC38A9 to explore the underlying mechanisms. Results and discussion The results showed that in vivo, arginine supplementation significantly alleviated the α toxin-induced growth performance impairment, decreases in serum immunoglobulin (Ig)A and IgG levels, and intestinal morphology damage. Arginine supplementation also significantly reduced the α toxin-induced increase in jejunal proinflammatory cytokines interleukin (IL)-1β, IL-6 and IL-17 mRNA expression. Clostridium perfringens α toxin significantly decreased jejunal mechanistic target of rapamycin (mTOR) and solute carrier family 38 member 9 (SLC38A9) mRNA expression, while arginine supplementation significantly increased mTOR and SLC38A9 mRNA expression. In vitro, arginine pretreatment mitigated the α toxin-induced decrease in cell viability and the increase in cytotoxicity and apoptosis. Arginine pretreatment also alleviated the α toxin-induced upregulation of mRNA expression of inflammation-related cytokines IL-6, C-X-C motif chemokine ligand (CXCL)10, CXCL11 and transforming growth factor-β (TGF-β), as well as apoptosis-related genes B-cell lymphoma-2 associated X protein (Bax), B-cell lymphoma-2 (Bcl-2), B-cell lymphoma-extra large (Bcl-XL) and cysteinyl aspartate specific proteinase 3 (Caspase-3) and the ratio of Bax to Bcl-2. Arginine pretreatment significantly increased the α toxin-induced decrease in mTOR, SLC38A9, eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4EBP1) and ribosomal protein S6 kinase (S6K) mRNA expression. Knockdown SLC38A9 and mTOR largely abrogated the positive effects of arginine pretreatment on α toxin-induced intracellular changes. Furthermore, SLC38A9 silencing abolished the increased mTOR mRNA expression caused by arginine pretreatment. In conclusion, arginine administration attenuated α toxin-induced intestinal injury in vivo and in vitro, which could be associated with the downregulation of inflammation via regulating SLC38A9/mTORC1 pathway.
Collapse
Affiliation(s)
- Xiaohui Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Tong Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Wenli Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Heliang Wang
- Qingdao Sino-science Gene Technology Co., Ltd, Qingdao, China
| | - Lei Yan
- Shandong New Hope Liuhe Group, Qingdao, China
| | - Xiaowen Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Lianwen Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Nianxue Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
George A, Holderread BM, Lambert BS, Harris JD, McCulloch PC. Post-operative protein supplementation following orthopaedic surgery: A systematic review. SPORTS MEDICINE AND HEALTH SCIENCE 2024; 6:16-24. [PMID: 38463662 PMCID: PMC10918348 DOI: 10.1016/j.smhs.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 03/12/2024] Open
Abstract
Decreased mechanical loading after orthopaedic surgery predisposes patients to develop muscle atrophy. The purpose of this review was to assess whether the evidence supports oral protein supplementation can help decrease postoperative muscle atrophy and/or improve patient outcomes following orthopaedic surgery. A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). PubMed (MEDLINE), Embase, Scopus, and Web of Science were searched for randomized controlled trials that assessed protein or amino acid supplementation in patients undergoing orthopaedic surgery. Two investigators independently conducted the search using relevant Boolean operations. Primary outcomes included functional or physiologic measures of muscle atrophy or strength. Fourteen studies including 611 patients (224 males, 387 females) were analyzed. Three studies evaluated protein supplementation after ACL reconstruction (ACLR), 3 after total hip arthroplasty (THA), 5 after total knee arthroplasty (TKA), and 3 after surgical treatment of hip fracture. Protein supplementation showed beneficial effects across all types of surgery. The primary benefit was a decrease in muscle atrophy compared to placebo as measured by muscle cross sectional area. Multiple authors also demonstrated improved functional measures and quicker achievement of rehabilitation benchmarks. Protein supplementation has beneficial effects on mitigating muscle atrophy in the postoperative period following ACLR, THA, TKA, and surgical treatment of hip fracture. These effects often correlate with improved functional measures and quicker achievement of rehabilitation benchmarks. Further research is needed to evaluate long-term effects of protein supplementation and to establish standardized population-specific regimens that maximize treatment efficacy in the postoperative period.
Collapse
Affiliation(s)
- Andrew George
- Houston Methodist Orthopedics and Sports Medicine, 6445 Main Street Suite 2300, Houston, TX, 77030, USA
| | - Brendan M. Holderread
- Houston Methodist Orthopedics and Sports Medicine, 6445 Main Street Suite 2300, Houston, TX, 77030, USA
| | - Bradley S. Lambert
- Houston Methodist Orthopedics and Sports Medicine, 6445 Main Street Suite 2300, Houston, TX, 77030, USA
- Houston Methodist Orthopedic Biomechanics Research Laboratory, 6670 Bertner Ave, Houston, TX, 77030, USA
| | - Joshua D. Harris
- Houston Methodist Orthopedics and Sports Medicine, 6445 Main Street Suite 2300, Houston, TX, 77030, USA
| | - Patrick C. McCulloch
- Houston Methodist Orthopedics and Sports Medicine, 6445 Main Street Suite 2300, Houston, TX, 77030, USA
- Houston Methodist Orthopedic Biomechanics Research Laboratory, 6670 Bertner Ave, Houston, TX, 77030, USA
| |
Collapse
|
7
|
Hosseini A, Germic N, Markov N, Stojkov D, Oberson K, Yousefi S, Simon HU. The regulatory role of eosinophils in adipose tissue depends on autophagy. Front Immunol 2024; 14:1331151. [PMID: 38235134 PMCID: PMC10792036 DOI: 10.3389/fimmu.2023.1331151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Introduction Obesity is a metabolic condition that elevates the risk of all-cause mortality. Brown and beige adipose tissues, known for their thermogenic properties, offer potential therapeutic targets for combating obesity. Recent reports highlight the role of immune cells, including eosinophils, in adipose tissue homeostasis, while the underlying mechanisms are poorly understood. Methods To study the role of autophagy in eosinophils in this process, we used a genetic mouse model lacking autophagy-associated protein 5 (Atg5), specifically within the eosinophil lineage (Atg5 eoΔ). Results The absence of Atg5 in eosinophils led to increased body weight, impaired glucose metabolism, and alterations in the cellular architecture of adipose tissue. Our findings indicate that Atg5 modulates the functional activity of eosinophils within adipose tissue rather than their abundance. Moreover, RNA-seq analysis revealed upregulation of arginase 2 (Arg2) in Atg5-knockout eosinophils. Increased Arg2 activity was shown to suppress adipocyte beiging. Furthermore, we observed enrichment of the purine pathway in the absence of Atg5 in eosinophils, leading to a pro-inflammatory shift in macrophages and a further reduction in beiging. Discussion The data shed light on the importance of autophagy in eosinophils and its impact on adipose tissue homeostasis by suppressing Arg2 expression and limiting inflammation in adipose tissue.
Collapse
Affiliation(s)
- Aref Hosseini
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Nina Germic
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Nikita Markov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Kevin Oberson
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| |
Collapse
|
8
|
Xie S, Li X, Yang Y, Guo C, Zhang X, Zhu T, Luo J, Yang Z, Zhao W, Cui Y, Jiao L, Zhou Q, Tocher DR, Jin M. Effects of dietary isoleucine level on growth and expression of genes related to nutritional and physiological metabolism of swimming crab (Portunus trituberculatus). AQUACULTURE 2023; 574:739700. [DOI: 10.1016/j.aquaculture.2023.739700] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Ruocco C, Malavazos AE, Ragni M, Carruba MO, Valerio A, Iacobellis G, Nisoli E. Amino acids contribute to adaptive thermogenesis. New insights into the mechanisms of action of recent drugs for metabolic disorders are emerging. Pharmacol Res 2023; 195:106892. [PMID: 37619907 DOI: 10.1016/j.phrs.2023.106892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Adaptive thermogenesis is the heat production by muscle contractions (shivering thermogenesis) or brown adipose tissue (BAT) and beige fat (non-shivering thermogenesis) in response to external stimuli, including cold exposure. BAT and beige fat communicate with peripheral organs and the brain through a variegate secretory and absorption processes - controlling adipokines, microRNAs, extracellular vesicles, and metabolites - and have received much attention as potential therapeutic targets for managing obesity-related disorders. The sympathetic nervous system and norepinephrine-releasing adipose tissue macrophages (ATM) activate uncoupling protein 1 (UCP1), expressed explicitly in brown and beige adipocytes, dissolving the electrochemical gradient and uncoupling tricarboxylic acid cycle and the electron transport chain from ATP production. Mounting evidence has attracted attention to the multiple effects of dietary and endogenously synthesised amino acids in BAT thermogenesis and metabolic phenotype in animals and humans. However, the mechanisms implicated in these processes have yet to be conclusively characterized. In the present review article, we aim to define the principal investigation areas in this context, including intestinal microbiota constitution, adipose autophagy modulation, and secretome and metabolic fluxes control, which lead to increased brown/beige thermogenesis. Finally, also based on our recent epicardial adipose tissue results, we summarise the evidence supporting the notion that the new dual and triple agonists of glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon (GCG) receptor - with never before seen weight loss and insulin-sensitizing efficacy - promote thermogenic-like amino acid profiles in BAT with robust heat production and likely trigger sympathetic activation and adaptive thermogenesis by controlling amino acid metabolism and ATM expansion in BAT and beige fat.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alexis Elias Malavazos
- Endocrinology Unit, Clinical Nutrition and Cardiovascular Prevention Service, IRCCS Policlinico San Donato, Piazza Edmondo Malan, 2, San Donato Milanese, 20097 Milan, Italy; Department of Biomedical, Surgical and Dental Sciences, University of Milan, via della Commenda, 10, 20122 Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, University of Brescia, viale Europa, 11, 25123 Brescia, Italy
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL, USA
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, via Vanvitelli, 32, 20129 Milan, Italy.
| |
Collapse
|
10
|
Zhang CZ, Sang D, Wu BS, Li SL, Zhang CH, Jin L, Li JX, Gu Y, Ga NMR, Hua M, Sun HZ. Effects of dietary supplementation with N-carbamylglutamate on maternal endometrium and fetal development during early pregnancy in Inner Mongolia white cashmere goats. Anim Sci J 2022; 93:e13693. [PMID: 35258155 DOI: 10.1111/asj.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/10/2022] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
Abstract
This study investigated the effects of dietary supplementation with N-carbamylglutamate (NCG) on maternal endometrium and fetal development during early pregnancy of Inner Mongolia white cashmere goats. Forty-eight pregnant Inner Mongolia white cashmere goats (average age 3 years old, average lactation parity 2, and average body weight 43.81 ± 2.66 kg) were randomly allocated to three groups: a basal diet (control group, n = 16), a basal diet plus 0.30-g NCG/d (NCG1 group, n = 16), and a basal diet plus 0.40-g NCG/d (NCG2 group, n = 16). All of the does were housed in individual pens and the NCG treatment was conducted from Days 0 to 90 of pregnancy. At Days 17 and 90 of pregnancy, six representative pregnant does in each group were slaughtered. The current study results demonstrated that maternal NCG administration during early pregnancy effectively increased the arginine family of amino acids and the glucogenic amino acids concentrations and promoted the mRNA expression of osteopontin (OPN), αv and β3 integrins, and endometrial development of Inner Mongolia white cashmere goats. The supplementation improved the fetal brown adipose tissue (BAT) stores and the mRNA expression of UCP-1 and BMP7, thereby helping to the fetal early development.
Collapse
Affiliation(s)
- Chong Zhi Zhang
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Dan Sang
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Bao Sheng Wu
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Sheng Li Li
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Chun Hua Zhang
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Lu Jin
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Jin Xia Li
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Ying Gu
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Na Mei Ri Ga
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| | - Mei Hua
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, China
| | - Hai Zhou Sun
- Institute for Animal Nutrition and Feed Research, Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot, China
| |
Collapse
|
11
|
Wu G, Bazer FW, Satterfield MC, Gilbreath KR, Posey EA, Sun Y. L-Arginine Nutrition and Metabolism in Ruminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1354:177-206. [PMID: 34807443 DOI: 10.1007/978-3-030-85686-1_10] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
L-Arginine (Arg) plays a central role in the nitrogen metabolism (e.g., syntheses of protein, nitric oxide, polyamines, and creatine), blood flow, nutrient utilization, and health of ruminants. This amino acid is produced by ruminal bacteria and is also synthesized from L-glutamine, L-glutamate, and L-proline via the formation of L-citrulline (Cit) in the enterocytes of young and adult ruminants. In pre-weaning ruminants, most of the Cit formed de novo by the enterocytes is used locally for Arg production. In post-weaning ruminants, the small intestine-derived Cit is converted into Arg primarily in the kidneys and, to a lesser extent, in endothelial cells, macrophages, and other cell types. Under normal feeding conditions, Arg synthesis contributes 65% and 68% of total Arg requirements for nonpregnant and late pregnany ewes fed a diet with ~12% crude protein, respectively, whereas creatine production requires 40% and 36% of Arg utilized by nonpregnant and late pregnant ewes, respectively. Arg has not traditionally been considered a limiting nutrient in diets for post-weaning, gestating, or lactating ruminants because it has been assumed that these animals can synthesize sufficient Arg to meet their nutritional and physiological needs. This lack of a full understanding of Arg nutrition and metabolism has contributed to suboptimal efficiencies for milk production, reproductive performance, and growth in ruminants. There is now considerable evidence that dietary supplementation with rumen-protected Arg (e.g., 0.25-0.5% of dietary dry matter) can improve all these production indices without adverse effects on metabolism or health. Because extracellular Cit is not degraded by microbes in the rumen due to the lack of uptake, Cit can be used without any encapsulation as an effective dietary source for the synthesis of Arg in ruminants, including dairy and beef cows, as well as sheep and goats. Thus, an adequate amount of supplemental rumen-protected Arg or unencapsulated Cit is necessary to support maximum survival, growth, lactation, reproductive performance, and feed efficiency, as well as optimum health and well-being in all ruminants.
Collapse
Affiliation(s)
- Guoyao Wu
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| | - Fuller W Bazer
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - M Carey Satterfield
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Kyler R Gilbreath
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Erin A Posey
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Yuxiang Sun
- Departments of Animal Science and Nutrition, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
12
|
Arginine Regulates TOR Signaling Pathway through SLC38A9 in Abalone Haliotis discus hannai. Cells 2021; 10:cells10102552. [PMID: 34685533 PMCID: PMC8534056 DOI: 10.3390/cells10102552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Arginine plays an important role in the regulation of the target of the rapamycin (TOR) signaling pathway, and Solute Carrier Family 38 Member 9 (SLC38A9) was identified to participate in the amino acid-dependent activation of TOR in humans. However, the regulations of arginine on the TOR signaling pathway in abalone are still unclear. In this study, slc38a9 of abalone was cloned, and the slc38a9 was knocked down and overexpressed to explore its function in the regulation of the TOR signaling pathway. The results showed that knockdown of slc38a9 decreased the expression of tor, ribosomal s6 protein kinase (s6k) and eukaryotic translation initiation factor 4e (eif4e) and inhibited the activation of the TOR signaling pathway by arginine. Overexpression of slc38a9 up-regulated the expression of TOR-related genes. In addition, hemocytes of abalone were treated with 0, 0.2, 0.5, 1, 2 and 4 mmol/L of arginine, and abalones were fed diets with 1.17%, 1.68% and 3.43% of arginine, respectively, for 120 days. Supplementation of arginine (0.5–4 mmol/L) increased the expressions of slc38a9, tor, s6k and eif4e in hemocytes, and abalone fed with 1.68% of dietary arginine showed higher mRNA levels of slc38a9, tor, s6k and eif4e and phosphorylation levels of TOR, S6 and 4E-BP. In conclusion, the TOR signaling pathway of abalone can be regulated by arginine, and SLC38A9 plays an essential role in this regulation.
Collapse
|
13
|
Szabo Z, Koczka V, Marosvolgyi T, Szabo E, Frank E, Polyak E, Fekete K, Erdelyi A, Verzar Z, Figler M. Possible Biochemical Processes Underlying the Positive Health Effects of Plant-Based Diets-A Narrative Review. Nutrients 2021; 13:2593. [PMID: 34444753 PMCID: PMC8398942 DOI: 10.3390/nu13082593] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/11/2022] Open
Abstract
Plant-based diets are becoming more popular for many reasons, and epidemiological as well as clinical data also suggest that a well-balanced vegan diet can be adopted for the prevention, and in some cases, in the treatment of many diseases. In this narrative review, we provide an overview of the relationships between these diets and various conditions and their potential biochemical background. As whole plant foods are very rich in food-derived antioxidants and other phytochemicals, they have many positive physiological effects on different aspects of health. In the background of the beneficial health effects, several biochemical processes could stand, including the reduced formation of trimethylamine oxide (TMAO) or decreased serum insulin-like growth factor 1 (IGF-1) levels and altered signaling pathways such as mechanistic target of rapamycin (mTOR). In addition, the composition of plant-based diets may play a role in preventing lipotoxicity, avoiding N-glycolylneuraminic acid (Neu5Gc), and reducing foodborne endotoxin intake. In this article, we attempt to draw attention to the growing knowledge about these diets and provide starting points for further research.
Collapse
Affiliation(s)
- Zoltan Szabo
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Viktor Koczka
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary; (V.K.); (E.S.)
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary
| | - Tamas Marosvolgyi
- Institute of Bioanalysis, Medical School, University of Pecs, 7624 Pecs, Hungary;
- Szentagothai Research Center, University of Pecs, 7624 Pecs, Hungary
| | - Eva Szabo
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pecs, 7624 Pecs, Hungary; (V.K.); (E.S.)
| | - Eszter Frank
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Eva Polyak
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Kata Fekete
- Institute for Translational Medicine, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Attila Erdelyi
- Institute of Health Insurance, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary;
| | - Zsofia Verzar
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
| | - Maria Figler
- Institute of Nutritional Sciences and Dietetics, Faculty of Health Sciences, University of Pecs, 7621 Pecs, Hungary; (E.F.); (E.P.); (Z.V.); (M.F.)
- 2nd Department of Internal Medicine and Nephrology Centre, Clinical Centre, University of Pecs, 7624 Pecs, Hungary
| |
Collapse
|
14
|
Methionine and Arginine Supply Alters Abundance of Amino Acid, Insulin Signaling, and Glutathione Metabolism-Related Proteins in Bovine Subcutaneous Adipose Explants Challenged with N-Acetyl-d-sphingosine. Animals (Basel) 2021; 11:ani11072114. [PMID: 34359242 PMCID: PMC8300206 DOI: 10.3390/ani11072114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 01/03/2023] Open
Abstract
The objective was to perform a proof-of-principle study to evaluate the effects of methionine (Met) and arginine (Arg) supply on protein abundance of amino acid, insulin signaling, and glutathione metabolism-related proteins in subcutaneous adipose tissue (SAT) explants under ceramide (Ce) challenge. SAT from four lactating Holstein cows was incubated with one of the following media: ideal profile of amino acid as the control (IPAA; Lys:Met 2.9:1, Lys:Arg 2:1), increased Met (incMet; Lys:Met 2.5:1), increased Arg (incArg; Lys:Arg 1:1), or incMet plus incArg (Lys:Met 2.5:1 Lys:Arg 1:1) with or without 100 μM exogenous cell-permeable Ce (N-Acetyl-d-sphingosine). Ceramide stimulation downregulated the overall abundance of phosphorylated (p) protein kinase B (AKT), p-mechanistic target of rapamycin (mTOR), and p-eukaryotic elongation factor 2 (eEF2). Without Ce stimulation, increased Met, Arg, or Met + Arg resulted in lower p-mTOR. Compared with control SAT stimulated with Ce, increased Met, Arg, or Met + Arg resulted in greater activation of mTOR (p-mTOR/total mTOR) and AKT (p-AKT/total AKT), with a more pronounced response due to Arg. The greatest protein abundance of glutathione S-transferase Mu 1 (GSTM1) was detected in response to increased Met supply during Ce stimulation. Ceramide stimulation decreased the overall protein abundance of the Na-coupled neutral amino acid transporter SLC38A1 and branched-chain alpha-ketoacid dehydrogenase kinase (BCKDK). However, compared with controls, increased Met or Arg supply attenuated the downregulation of BCKDK induced by Ce. Circulating ceramides might affect amino acid, insulin signaling, and glutathione metabolism in dairy cow adipose tissue. Further in vivo studies are needed to confirm the role of rumen-protected amino acids in regulating bovine adipose function.
Collapse
|
15
|
Dahabiyeh LA, Mujammami M, Arafat T, Benabdelkamel H, Alfadda AA, Abdel Rahman AM. A Metabolic Pattern in Healthy Subjects Given a Single Dose of Metformin: A Metabolomics Approach. Front Pharmacol 2021; 12:705932. [PMID: 34335266 PMCID: PMC8319764 DOI: 10.3389/fphar.2021.705932] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/28/2021] [Indexed: 01/27/2023] Open
Abstract
Metformin is a widely prescribed medication for the treatment of type 2 diabetes mellitus (T2DM). It possesses effective roles in various disorders, including cancer, dyslipidemia, and obesity. However, the underlying mechanisms of metformin's multiple benefits are not fully understood. Herein, a mass spectrometry-based untargeted metabolomics approach was used to investigate the metabolic changes associated with the administration of a single dose of metformin in the plasma of 26 healthy subjects at five-time points; pre-dose, before the maximum concentration of metformin (Cmax), Cmax, after Cmax, and 36 h post-dose. A total of 111 metabolites involved in various biochemical processes were perturbed, with branched-chain amino acid (BCAA) being the most significantly altered pathway. Additionally, the Pearson similarity test revealed that 63 metabolites showed a change in their levels dependent on metformin level. Out of these 63, the level of 36 metabolites was significantly altered by metformin. Significantly altered metformin-dependent metabolites, including hydroxymethyl uracil, propionic acid, glycerophospholipids, and eicosanoids, pointed to fundamental biochemical processes such as lipid network signaling, energy homeostasis, DNA lesion repair mechanisms, and gut microbiota functions that could be linked to the multiple beneficial roles of metformin. Thus, the distinctive metabolic pattern linked to metformin administration can be used as a metabolic signature to predict the potential effect and mechanism of actions of new chemical entities during drug development.
Collapse
Affiliation(s)
- Lina A Dahabiyeh
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Muhammad Mujammami
- Endocrinology and Diabetes Unit, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,University Diabetes Center, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Tawfiq Arafat
- Jordan Center for Pharmaceutical Research, Amman, Jordan
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Assim A Alfadda
- Endocrinology and Diabetes Unit, Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia.,Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia.,Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
16
|
Li S, Wang C, Wu Z. Dietary L-arginine supplementation of tilapia (Oreochromis niloticus) alters the microbial population and activates intestinal fatty acid oxidation. Amino Acids 2021; 54:339-351. [PMID: 34212252 DOI: 10.1007/s00726-021-03018-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022]
Abstract
Currently, little is known about the function of L-arginine in the homeostasis of intestinal lipid metabolism. This study was conducted to test the hypothesis that dietary L-arginine supplementation may alter intestinal microbiota and lipid metabolism in tilapia. Tilapia were fed a basal diet (containing 16.9 g L-arginine per kilogram diets) or the basal diet supplemented with 1% or 2% L-arginine for 8 wks. In the present study, we found that dietary supplementation with 1% or 2% L-arginine induced a shift in the community structure of gut microbiota, as showed by increased (p < 0.05) α-diversity, altered (p < 0.05) β-diversity and function profile. This finding coincided with decreased lipid accretion in the intestine of tilapia, which was associated with an enhancement in mRNA levels for peroxisome proliferator-activated receptor α (Pparα), acyl-coenzyme a oxidase 1 (Acox1), and peroxisome proliferator-activated receptor γ coactivator-1α (Pgc-1α). Using intestinal epithelial cell culture, we demonstrated that the lipid-lowering effect of L-arginine was mainly mediated by activating the AMP-activated protein kinase (AMPK) signaling pathway, carnitine palmitoyltransferase 1 (CPT1), and PPARα, as well as mRNA levels for Acox1 and Acox2. Collectively, our results suggest that dietary L-arginine supplementation of tilapia changed the intestinal microbiota and activated intestinal fatty acid oxidation. However, future studies are warranted to determine the relationship between microbiota and lipid metabolism in the intestine.
Collapse
Affiliation(s)
- Senlin Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China
| | - Chao Wang
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing, 100193, China. .,Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
17
|
Chairuk P, Zaman RU, Naphatthalung J, Jansakul C. Effect of consumption of whole egg and egg fractions on cardiovascular disease factors in adult rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3942-3951. [PMID: 33348458 DOI: 10.1002/jsfa.11034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND While eggs are a low-cost source of protein, rich in macro- and micronutrients, the association of egg intake and cardiovascular disease (CVD) remains controversial. This study investigated the effect of egg consumption on CVD parameters. Eggs were boiled, separated into four fractions (whole egg, 50% yolk-reduced whole egg, egg yolk and egg white) and then freeze-dried. The different egg fractions or distilled water (control) were orally gavaged to adult male Wistar rats at 1 g kg-1 rat body weight, each day for 8 weeks, following which basal blood pressure, heart rate, complete blood cell count, blood biochemistry, body fat and liver cell lipid accumulation were determined. The vascular functions of isolated thoracic aorta were studied using classical pharmacological techniques. RESULTS In comparison to the control group, none of the egg fractions affected body weight, food intake, plasma glucose or lipid profile. The yolk group experienced increased plasma alkaline phosphatase and creatinine levels, while egg white caused decreased plasma cholesterol and blood urea nitrogen. Whole egg and egg yolk increased blood pressure and mean hemoglobin concentration and the yolk increased liver lipid accumulation. Egg white decreased the white blood cell count and body fat lipids. No changes were found in basal heart rate or vascular functions in any of the groups. CONCLUSIONS Consumption of whole egg or egg yolk at the dosage given caused hypertension, with impairment of liver and kidney functions following the intake of yolk alone. However, egg white is beneficial for the cardiovascular system as it decreased plasma cholesterol and body fat accumulation. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Pilaipan Chairuk
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Raihan Uz Zaman
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Jomkarn Naphatthalung
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Chaweewan Jansakul
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
18
|
Xie F, Liu Z, Liu M, Chen L, Ding W, Zhang H. Amino Acids Regulate Glycolipid Metabolism and Alter Intestinal Microbial Composition. Curr Protein Pept Sci 2021; 21:761-765. [PMID: 32072901 DOI: 10.2174/1389203721666200219100216] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/19/2019] [Accepted: 08/14/2019] [Indexed: 12/17/2022]
Abstract
Amino acids (AAs) and their metabolites regulate key metabolic pathways that are necessary for growth, reproduction, immunity and metabolism of the body. It has been convinced that metabolic diseases are closely related to disorders of glycolipid metabolism. A growing number of studies have shown that AAs are closely related to energy metabolism. This review focuses on the effects of amino acids (arginine, branched-chain amino acids, glutamine) and their metabolites (short chain fatty acids) on glycolipid metabolism by regulating PI3K/AKT/mTOR and AMPK signaling pathways and GPCRs receptors, reducing intestinal Firmicutes/Bacteroidetes ratio associated with obesity.
Collapse
Affiliation(s)
- Fei Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing 100193, China
| | - Zhengqun Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing 100193, China
| | - Ming Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing 100193, China
| | - Liang Chen
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing 100193, China
| | - Wei Ding
- Department of Gerontology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences,
Beijing 100193, China
| |
Collapse
|
19
|
Peng XP, Ding W, Ma JM, Zhang J, Sun J, Cao Y, Lei LH, Zhao J, Li YF. Effect of Escherichia Coli Infection on Metabolism of Dietary Protein in Intestine. Curr Protein Pept Sci 2021; 21:772-776. [PMID: 31724511 DOI: 10.2174/1389203720666191113144049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 07/26/2019] [Accepted: 09/23/2019] [Indexed: 11/22/2022]
Abstract
Dietary proteins are linked to the pathogenic Escherichia coli (E. coli) through the intestinal tract, which is the site where both dietary proteins are metabolized and pathogenic E. coli strains play a pathogenic role. Dietary proteins are degraded by enzymes in the intestine lumen and their metabolites are transferred into enterocytes to be further metabolized. Seven diarrheagenic E. coli pathotypes have been identified, and they damage the intestinal epithelium through physical injury and effector proteins, which lead to inhibit the digestibility and absorption of dietary proteins in the intestine tract. But the increased tryptophan (Trp) content in the feed, low-protein diet or milk fractions supplementation is effective in preventing and controlling infections by pathogenic E. coli in the intestine.
Collapse
Affiliation(s)
- Xiao-Pei Peng
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Wei Ding
- Department of Gerontology, Shanghai General Hospital, Shanghai Jiao Tong University, China
| | - Jian-Min Ma
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Jie Zhang
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Jian Sun
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Yun Cao
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Li-Hui Lei
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Shandong, China
| | - Yun-Fu Li
- Beijing Vocational College of Agriculture, Beijing, China
| |
Collapse
|
20
|
Peng XP, Nie C, Guan WY, Qiao LD, Lu L, Cao SJ. Regulation of Probiotics on Metabolism of Dietary Protein in Intestine. Curr Protein Pept Sci 2021; 21:766-771. [PMID: 31713481 DOI: 10.2174/1389203720666191111112941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/07/2019] [Accepted: 09/23/2019] [Indexed: 11/22/2022]
Abstract
Proteins are indispensable components of living organisms, which are derived mainly from diet through metabolism. Dietary proteins are degraded by endogenous digestive enzymes to di- or tripeptides and free amino acids (AAs) in the small intestine lumen and then absorbed into blood and lymph through intestinal epithelial cells via diverse transporters. Microorganisms are involved not only in the proteins' catabolism, but also the AAs, especially essential AAs, anabolism. Probiotics regulate these processes by providing exogenous proteases and AAs and peptide transporters, and reducing hazardous substances in the food and feed. But the core mechanism is modulating of the composition of intestinal microorganisms through their colonization and exclusion of pathogens. The other effects of probiotics are associated with normal intestinal morphology, which implies that the enterocytes secrete more enzymes to decompose dietary proteins and absorb more nutrients.
Collapse
Affiliation(s)
- Xiao-Pei Peng
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Wen-Yi Guan
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Li-Dong Qiao
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| | - Lin Lu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Shou-Jun Cao
- Department of Animal Husbandry and Veterinary Medicine, Beijing Vocational College of Agriculture, Beijing, China
| |
Collapse
|
21
|
Che D, Nyingwa PS, Ralinala KM, Maswanganye GMT, Wu G. Amino Acids in the Nutrition, Metabolism, and Health of Domestic Cats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:217-231. [PMID: 33770409 DOI: 10.1007/978-3-030-54462-1_11] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Domestic cats (carnivores) require high amounts of dietary amino acids (AAs) for normal growth, development, and reproduction. Amino acids had been traditionally categorised as nutritionally essential (EAAs) or nonessential (NEAAs), depending on whether they are synthesized de novo in the body. This review will focus on AA nutrition and metabolism in cats. Like other mammals, cats do not synthesize the carbon skeletons of twelve proteinogenic AAs: Arg, Cys, His, Ile, Leu, Lys, Met, Phe, Thr, Trp, Tyr, and Val. Like other feline carnivores but unlike many mammals, cats do not synthesize citrulline and have a very limited ability to produce taurine from Cys. Except for Leu and Lys that are strictly ketogenic AAs, most EAAs are both glucogenic and ketogenic AAs. All the EAAs (including taurine) must be provided in diets for cats. These animals are sensitive to dietary deficiencies of Arg and taurine, which rapidly result in life-threatening hyperammonemia and retinal damage, respectively. Although the National Research Council (NCR, Nutrient requirements of dogs and cats. National Academies Press, Washington, DC, 2006) does not recommend dietary requirements of cats for NEAAs, much attention should be directed to this critical issue of nutrition. Cats can synthesize de novo eight proteinogenic AAs: Ala, Asn, Asp, Gln, Glu, Gly, Pro, and Ser, as well as some nonproteinogenic AAs, such as γ-aminobutyrate, ornithine, and β-alanine with important physiological functions. Some of these AAs (e.g., Gln, Glu, Pro, and Gly) are crucial for intestinal integrity and health. Except for Gln, AAs in the arterial blood of cats may not be available to the mucosa of the small intestine. Plant-source foodstuffs lack taurine and generally contain inadequate Met and Cys and, therefore, should not be fed to cats in any age group. Besides meat, animal-source foodstuffs (including ruminant meat & bone meal, poultry by-product meal, porcine mucosal protein, and chicken visceral digest) are good sources of proteinogenic AAs and taurine for cats. Meeting dietary requirements for both EAAs and NEAAs in proper amounts and balances is crucial for improving the health, wellbeing, longevity, and reproduction of cats.
Collapse
Affiliation(s)
- Dongsheng Che
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Pakama S Nyingwa
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Khakhathi M Ralinala
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gwen M T Maswanganye
- College of Animal Science and Technology, Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, and Key Laboratory of Animal Production, Product Quality and Security of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
22
|
Iqbal S, Ayyub A, Iqbal H, Chen XD. Protein microspheres as structuring agents in lipids: potential for reduction of total and saturated fat in food products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:820-830. [PMID: 32629545 DOI: 10.1002/jsfa.10645] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 06/20/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Excess consumption of total and saturated fats is linked to the development of chronic diseases, such as obesity, heart disease, diabetes, and cancer. There is therefore considerable interest in the development of foods containing lower levels of total and saturated fats, but that still have the same desirable physicochemical and sensory characteristics as the original foods. Solid fats normally contribute a number of key functional attributes to foods due to their ability to form crystalline networks that alter texture (such as elasticity, plasticity, and spreadability) and appearance (such as opacity and creaminess). The aim of this review is to provide an overview and to discuss the potential applications of food proteins as fat structuring agents that may be able to offer some of the desirable attributes normally supplied by saturated and trans fats. Previous studies have shown that globular proteins (such as whey proteins) trapped inside water-in-oil emulsions form protein microspheres when they are thermally denatured, which leads to the creation of highly viscous or solid-like lipid phases, having higher rheological properties. These protein microspheres may therefore be useful for the development of reduced fat margarines and spreads with reduced level of saturated/trans-fat contents. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shahid Iqbal
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan, Pakistan
| | - Azhar Ayyub
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Haroon Iqbal
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xiao Dong Chen
- Life Quality Engineering Interest Group, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| |
Collapse
|
23
|
Gilbreath KR, Bazer FW, Satterfield MC, Wu G. Amino Acid Nutrition and Reproductive Performance in Ruminants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:43-61. [PMID: 33770402 DOI: 10.1007/978-3-030-54462-1_4] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amino acids (AAs) are essential for the survival, growth and development of ruminant conceptuses. Most of the dietary AAs (including L-arginine, L-lysine, L-methionine and L-glutamine) are extensively catabolized by the ruminal microbes of ruminants to synthesize AAs and microbial proteins (the major source of AAs utilized by cells in ruminant species) in the presence of sufficient carbohydrates (mainly cellulose and hemicellulose), nitrogen, and sulfur. Results of recent studies indicate that the ruminal microbes of adult steers and sheep do not degrade extracellular L-citrulline and have a limited ability to metabolize extracellular L-glutamate due to little or no uptake by the cells. Although traditional research in ruminant protein nutrition has focused on AAs (e.g., lysine and methionine for lactating cows) that are not synthesized by eukaryotic cells, there is growing interest in the nutritional and physiological roles of AAs (e.g., L-arginine, L-citrulline, L-glutamine and L-glutamate) in gestating ruminants (e.g., cattle, sheep and goats) and lactating dairy cows. Results of recent studies show that intravenous administration of L-arginine to underfed, overweight or prolific ewes enhances fetal growth, the development of brown fat in fetuses, and the survival of neonatal lambs. Likewise, dietary supplementation with either rumen-protected L-arginine or unprotected L-citrulline to gestating sheep or beef cattle improved embryonic survival. Because dietary L-citrulline and L-glutamate are not degraded by ruminal microbes, addition of these two amino acids may be a new useful, cost-effective method for improving the reproductive efficiency of ruminants.
Collapse
Affiliation(s)
- Kyler R Gilbreath
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - M Carey Satterfield
- Department of Animal Science, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
24
|
Cao Y, Yao J, Sun X, Liu S, Martin GB. Amino Acids in the Nutrition and Production of Sheep and Goats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:63-79. [PMID: 33770403 DOI: 10.1007/978-3-030-54462-1_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In sheep and goats, amino acid nutrition is essential for the maintenance of health and productivity. In this review, we analysed literature, mostly from the past two decades, focusing on assessment of amino acid requirements, especially on the balance of amino acid profiles between ruminal microbial protein and animal production protein (foetal growth, body weight gain, milk and wool). Our aim was to identify amino acids that might limit genetic potential for production. We propose that much attention should be paid to amino acid nutrition of individuals with greater abilities to produce meat, milk or wool, or to nourish large litters. Moreover, research is warranted to identify interactions among amino acids, particularly these amino acids that can send positive and negative signals at the same time.
Collapse
Affiliation(s)
- Yangchun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaoting Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Shimin Liu
- UWA Institute of Agriculture, The University of Western Australia, Crawley, Australia.
| | - Graeme B Martin
- UWA Institute of Agriculture, The University of Western Australia, Crawley, Australia
| |
Collapse
|
25
|
Role of L-Arginine in Nitric Oxide Synthesis and Health in Humans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1332:167-187. [PMID: 34251644 DOI: 10.1007/978-3-030-74180-8_10] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
As a functional amino acid (AA), L-arginine (Arg) serves not only as a building block of protein but also as an essential substrate for the synthesis of nitric oxide (NO), creatine, polyamines, homoarginine, and agmatine in mammals (including humans). NO (a major vasodilator) increases blood flow to tissues. Arg and its metabolites play important roles in metabolism and physiology. Arg is required to maintain the urea cycle in the active state to detoxify ammonia. This AA also activates cellular mechanistic target of rapamycin (MTOR) and focal adhesion kinase cell signaling pathways in mammals, thereby stimulating protein synthesis, inhibiting autophagy and proteolysis, enhancing cell migration and wound healing, promoting spermatogenesis and sperm quality, improving conceptus survival and growth, and augmenting the production of milk proteins. Although Arg is formed de novo from glutamine/glutamate and proline in humans, these synthetic pathways do not provide sufficient Arg in infants or adults. Thus, humans and other animals do have dietary needs of Arg for optimal growth, development, lactation, and fertility. Much evidence shows that oral administration of Arg within the physiological range can confer health benefits to both men and women by increasing NO synthesis and thus blood flow in tissues (e.g., skeletal muscle and the corpora cavernosa of the penis). NO is a vasodilator, a neurotransmitter, a regulator of nutrient metabolism, and a killer of bacteria, fungi, parasites, and viruses [including coronaviruses, such as SARS-CoV and SARS-CoV-2 (the virus causing COVID-19). Thus, Arg supplementation can enhance immunity, anti-infectious, and anti-oxidative responses, fertility, wound healing, ammonia detoxification, nutrient digestion and absorption, lean tissue mass, and brown adipose tissue development; ameliorate metabolic syndromes (including dyslipidemia, obesity, diabetes, and hypertension); and treat individuals with erectile dysfunction, sickle cell disease, muscular dystrophy, and pre-eclampsia.
Collapse
|
26
|
Bergen WG. Amino Acids in Beef Cattle Nutrition and Production. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1285:29-42. [PMID: 33770401 DOI: 10.1007/978-3-030-54462-1_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Proteins have been recognized for a long time as an important dietary nutritional component for all animals. Most amino acids were isolated and characterized in the late nineteenth and early twentieth century. Initially dietary proteins were ranked high to low quality by growth and N balance studies. By the 1950s interest had shifted to studying the roles of individual amino acids in amino acid requirements by feeding studies with non-ruminants as rodents, poultry and pigs. The direct protein feeding approaches followed by measurements of nutritional outcomes were not possible however in ruminants (cattle and sheep). The development of measuring free amino acids by ion exchange chromatography enabled plasma amino acid analysis. It was thought that plasma amino acid profiles were useful in nutritional studies on proteins and amino acids. With non-ruminants, nutritional interpretations of plasma amino acid studies were possible. Unfortunately with beef cattle, protein/amino acid nutritional adequacy or requirements could not be routinely determined with plasma amino acid studies. In dairy cows, however, much valuable understanding was gained from amino acid studies. Concurrently, others studied amino acid transport in ruminant small intestines, the role of peptides in ruminant N metabolism, amino acid catabolism (in the animal) with emphasis on branched-chain amino acid catabolism. In addition, workable methodologies for studying protein turnover in ruminants were developed. By the 1990s, nutritionists could still not determine amino acid requirements with empirical experimental studies in beef cattle. Instead, computer software (expert systems) based on the accumulated knowledge in animal and ruminal amino acids, energy metabolism and protein production were realized and revised frequently. With these tools, the amino acid requirements, daily energy needs, ruminal and total gastrointestinal tract digestion and performance of growing beef cattle could be predicted.
Collapse
Affiliation(s)
- Werner G Bergen
- Department of Animal Sciences, Auburn University, Auburn, AL, USA.
| |
Collapse
|
27
|
Ruocco C, Ragni M, Rossi F, Carullo P, Ghini V, Piscitelli F, Cutignano A, Manzo E, Ioris RM, Bontems F, Tedesco L, Greco CM, Pino A, Severi I, Liu D, Ceddia RP, Ponzoni L, Tenori L, Rizzetto L, Scholz M, Tuohy K, Bifari F, Di Marzo V, Luchinat C, Carruba MO, Cinti S, Decimo I, Condorelli G, Coppari R, Collins S, Valerio A, Nisoli E. Manipulation of Dietary Amino Acids Prevents and Reverses Obesity in Mice Through Multiple Mechanisms That Modulate Energy Homeostasis. Diabetes 2020; 69:2324-2339. [PMID: 32778569 PMCID: PMC7576563 DOI: 10.2337/db20-0489] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
Reduced activation of energy metabolism increases adiposity in humans and other mammals. Thus, exploring dietary and molecular mechanisms able to improve energy metabolism is of paramount medical importance because such mechanisms can be leveraged as a therapy for obesity and related disorders. Here, we show that a designer protein-deprived diet enriched in free essential amino acids can 1) promote the brown fat thermogenic program and fatty acid oxidation, 2) stimulate uncoupling protein 1 (UCP1)-independent respiration in subcutaneous white fat, 3) change the gut microbiota composition, and 4) prevent and reverse obesity and dysregulated glucose homeostasis in multiple mouse models, prolonging the healthy life span. These effects are independent of unbalanced amino acid ratio, energy consumption, and intestinal calorie absorption. A brown fat-specific activation of the mechanistic target of rapamycin complex 1 seems involved in the diet-induced beneficial effects, as also strengthened by in vitro experiments. Hence, our results suggest that brown and white fat may be targets of specific amino acids to control UCP1-dependent and -independent thermogenesis, thereby contributing to the improvement of metabolic health.
Collapse
Affiliation(s)
- Chiara Ruocco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Maurizio Ragni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Fabio Rossi
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Pierluigi Carullo
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
- Institute of Genetic and Biomedical Research, National Research Council, Rozzano, Italy
| | - Veronica Ghini
- Interuniversity Consortium for Magnetic Resonance, Sesto Fiorentino, Italy
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Adele Cutignano
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Emiliano Manzo
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | - Rafael Maciel Ioris
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Franck Bontems
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Laura Tedesco
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | | | - Annachiara Pino
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Ilenia Severi
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Center of Obesity, Ancona, Italy
| | - Dianxin Liu
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Ryan P Ceddia
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Luisa Ponzoni
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
- Institute of Neuroscience, National Research Council, Milan, Italy
| | - Leonardo Tenori
- FiorGen Foundation, Sesto Fiorentino, Italy
- Center of Magnetic Resonance, University of Florence, Sesto Fiorentino, Italy
| | - Lisa Rizzetto
- Department of Food Quality and Nutrition, Research and Innovation Center, Edmund Mach Foundation, San Michele all'Adige, Italy
| | - Matthias Scholz
- Department of Food Quality and Nutrition, Research and Innovation Center, Edmund Mach Foundation, San Michele all'Adige, Italy
| | - Kieran Tuohy
- Department of Food Quality and Nutrition, Research and Innovation Center, Edmund Mach Foundation, San Michele all'Adige, Italy
| | - Francesco Bifari
- Laboratory of Cell Metabolism and Regenerative Medicine, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Vincenzo Di Marzo
- Canada Excellence Research Chair Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval, Quebec City, Canada
- Joint International Research Unit for Chemical and Biochemical Research on the Microbiome and Its Impact on Metabolic Health and Nutrition, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy and Université Laval, Quebec City, Canada
| | - Claudio Luchinat
- Interuniversity Consortium for Magnetic Resonance, Sesto Fiorentino, Italy
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Michele O Carruba
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| | - Saverio Cinti
- Department of Experimental and Clinical Medicine, Marche Polytechnic University, Center of Obesity, Ancona, Italy
| | - Ilaria Decimo
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Gianluigi Condorelli
- IRCCS Humanitas Clinical and Research Center, Rozzano, Italy
- Institute of Genetic and Biomedical Research, National Research Council, Rozzano, Italy
- Humanitas University, Rozzano, Italy
| | - Roberto Coppari
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sheila Collins
- Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Alessandra Valerio
- Department of Molecular and Translational Medicine, Brescia University, Brescia, Italy
| | - Enzo Nisoli
- Center for Study and Research on Obesity, Department of Biomedical Technology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
28
|
McKnight SM, Simmons RM, Wu G, Satterfield MC. Maternal arginine supplementation enhances thermogenesis in the newborn lamb. J Anim Sci 2020; 98:5819648. [PMID: 32283549 DOI: 10.1093/jas/skaa118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 04/09/2020] [Indexed: 01/02/2023] Open
Abstract
Body temperature maintenance is one of the most important physiological processes initiated after birth. Brown adipose tissue (BAT) is an essential mediator of thermogenesis in many species and is responsible for 50% of the heat generated in the newborn lamb. To determine if maternal arginine supplementation could enhance thermogenesis in the neonate, we randomly assigned 31 multiparous Suffolk ewes, gestating singletons or twins, to receive intravenous injections of either l-arginine (27 mg/kg body weight; n = 17) or sterile saline (n = 14) three times daily from day 75 to 125 of gestation (term = 147). Following parturition, lambs were removed from their mothers and subjected to 0 °C cold challenges at 4 and 22 h of age. Rectal temperatures were higher for the duration of the cold challenges in lambs from arginine-treated ewes compared with lambs from saline-treated ewes (P < 0.05). Elevated rectal temperatures were associated with increased (P < 0.05) circulating glycine and serine concentrations in lambs. The mRNA expression of genes related to BAT function changed over time, but not between lambs from arginine-treated vs. saline-treated ewes. Results indicate that maternal arginine treatment increases neonatal thermogenesis after birth. Although the underlying mechanisms remain to be elucidated, these data are a first step in improving neonatal survival in response to cold.
Collapse
Affiliation(s)
- Sorin M McKnight
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Rebecca M Simmons
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| | | |
Collapse
|
29
|
Zeinali Khosroshahi M, Asbaghi O, Moradi S, Rezaei kelishadi M, Kaviani M, Mardani M, Jalili C. The effects of supplementation with L-arginine on anthropometric indices and body composition in overweight or obese subjects: A systematic review and meta-analysis. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
30
|
Alborzi P, Jafari Atrabi M, Akbarinejad V, Khanbabaei R, Fathi R. Incorporation of arginine, glutamine or leucine in culture medium accelerates in vitro activation of primordial follicles in 1-day-old mouse ovary. ZYGOTE 2020; 28:1-8. [PMID: 32482183 DOI: 10.1017/s096719942000026x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In vitro activation of primordial follicles provides cancer patients subjected to oncotherapy with a safe therapeutic strategy for fertility preservation, however a successful protocol for activation of primordial follicles in prepubertal patients has not yet been defined comprehensively. There is evidence that amino acids such as leucine, arginine and glutamine could stimulate the mammalian target of rapamycin (mTOR) pathway, which plays a pivotal role in primordial follicle activation. Nevertheless, there has been no report that elucidates the effect of these amino acids on in vitro development of ovarian follicles. Therefore, the present study was conducted to evaluate the effects of these amino acids and their combination on the formation and activation of primordial follicles in 1-day-old murine ovaries during an 11-day culture period. The experimental groups consisted of base medium (BM), base medium + arginine (ARG), base medium + glutamine (GLU), base medium + leucine (LEU) and base medium + a combination of arginine, glutamine and leucine (AGL). The proportions of different stages of ovarian follicles and gene expression of regulatory factors were assessed using histology and quantitative real-time PCR on days 5 and 11 of culture. The proportion of transitional and primary follicles was greater in all amino acid-treated groups compared with the BM group (P < 0.05). Moreover, leucine resulted in elevated expression of Gdf9 and Bmp15, and glutamine augmented the expression of Pi3k on day 11 of culture. In conclusion, the present study showed that inclusion of leucine, glutamine, arginine or their combination in the culture medium for murine ovarian tissue could accelerate the activation of primordial follicles and alter the expression of the corresponding factors.
Collapse
Affiliation(s)
- Parimah Alborzi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Jafari Atrabi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Vahid Akbarinejad
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ramezan Khanbabaei
- Department of Biology, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
| | - Rouhollah Fathi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| |
Collapse
|
31
|
Gilbreath KR, Bazer FW, Satterfield MC, Cleere JJ, Wu G. Ruminal microbes of adult sheep do not degrade extracellular l-citrulline. J Anim Sci 2020; 98:skaa164. [PMID: 32415842 PMCID: PMC7344112 DOI: 10.1093/jas/skaa164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/09/2020] [Indexed: 12/20/2022] Open
Abstract
This study determined whether extracellular citrulline is degraded by ruminal bacteria of sheep. In the first experiment, whole rumen fluid (3 mL) from six adult Suffolk sheep was incubated at 37 °C with 5 mM l-glutamine (Gln), l-glutamate (Glu), l-arginine (Arg), or l-citrulline (Cit) for 0, 0.5, 1, and 2 h or with 0, 0.5, 2, or 5 mM Gln, Glu, Arg, or Cit for 2 h. An aliquot (50 µL) of the incubation solution was collected at the predetermined time points for amino acids (AA) analyses. Results showed extensive hydrolysis of Gln into Glu and ammonia, of Arg into l-ornithine and l-proline, but little or no degradation of extracellular Cit or Glu by ruminal microbes. In the second experiment, six adult Suffolk sheep were individually fed each of three separate supplements (8 g Gln , Cit, or urea) on three separate days along with regular feed (800 g/animal). Blood (2 mL) was sampled from the jugular vein prior to feeding (time 0) and at 0.5, 1, 2, and 4 h after consuming the supplement. Plasma was analyzed for AA, glucose, ammonia, and urea. The concentrations of Cit in the plasma of sheep consuming this AA increased (P < 0.001) by 117% at 4 h and those of Arg increased by 23% at 4 h, compared with the baseline values. Urea or Gln feeding did not affect (P > 0.05) the concentrations of Cit or Arg in plasma. These results indicate that Cit is not metabolized by ruminal microbes of sheep and is, therefore, absorbed as such by the small intestine and used for the synthesis of Arg by extrahepatic tissues.
Collapse
Affiliation(s)
- Kyler R Gilbreath
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, College Station, TX
| | | | - Jason J Cleere
- Department of Animal Science, Texas A&M University, College Station, TX
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX
| |
Collapse
|
32
|
Protein Level and Infantile Diarrhea in a Postweaning Piglet Model. Mediators Inflamm 2020; 2020:1937387. [PMID: 32565721 PMCID: PMC7281817 DOI: 10.1155/2020/1937387] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/08/2020] [Indexed: 12/27/2022] Open
Abstract
Infantile diarrhea is a serious public health problem around worldwide and results in millions of deaths each year. The levels and sources of dietary protein are potential sources of diarrhea, but the relationship between the pathogenesis causes of infantile diarrhea and protein intake remains poorly understood. Many studies have indicated that the key to understanding the relationship between the protein in the diet and the postweaning diarrhea of piglets is to explore the influences of protein sources and levels on the mammalian digestion system. The current study was designed to control diarrhea control by choosing different protein levels in the diet and aimed at providing efficient regulatory measures for infantile diarrhea by controlling the protein levels in diets using a postweaning piglets model. To avoid influences from other protein sources, casein was used as the only protein source in this study. Fourteen piglets (7.98 ± 0.14 kg, weaned at 28 d) were randomly allotted to two dietary treatments: a control group (Cont, containing 17% casein) and a high protein group (HP, containing 30% casein). The experiment lasted for two weeks and all animals were free to eat and drink water ad libitum. The diarrhea score (1 = normal; 3 = watery diarrhea) and growth performance were recorded daily. The results showed that the piglets in HP group had persistent diarrhea during the whole study, while no diarrhea was noticed in the control groups. Also, the feed intake and body weights were reduced in the HP groups compared with the other group (P < 0.05). The diarrhea-related mRNA abundances were analyzed by real-time PCR; the results showed that HP treatment markedly decreased the expression of aquaporin (AQP, P < 0.05) and the tight junction protein (P<0.05), but increased inflammatory cytokines (P < 0.01) than those in control group. In addition, the Adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway (P < 0.01) was inhibited in the HP group. Intestinal microbiota was tested by 16S sequencing, and we found that the HP group had a low diversity compared the other group. In conclusion, despite being highly digestible, a high casein diet induced postweaning diarrhea and reduced the growth performance of the postweaning piglets. Meanwhile, AQP, tight junction protein, and intestinal immune were compromised. Thus, the mechanism of how a highly digestible protein diet induces diarrhea might be associated with the AMPK signaling pathway and intestinal microbiome.
Collapse
|
33
|
Ma N, Ma R, Tang K, Li X, He B. Roux-en-Y Gastric Bypass in Obese Diabetic Rats Promotes Autophagy to Improve Lipid Metabolism through mTOR/p70S6K Signaling Pathway. J Diabetes Res 2020; 2020:4326549. [PMID: 32309446 PMCID: PMC7136782 DOI: 10.1155/2020/4326549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/28/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022] Open
Abstract
PURPOSE To investigate the effects of Roux-en-Y gastric bypass (RYGB) surgery on markers of liver mitochondrial dynamics and find new therapeutic basis on obese type 2 diabetes mellitus (T2DM) patients. Materials and Methods. Thirty-two rats were divided into nondiabetic group, diabetic group, sham group, and RYGB group. The Dual-energy X-ray absorptiometry (DEXA) was used to detect short-term curriculum vitae for rat body component and fat and lean mass. Hepatic lipid content and triglyceride levels were detected by Oil Red O staining. Western blotting was used to examine autophagy and mammalian target of rapamycin/P70S6 kinase (mTOR/p70S6K) pathway-related proteins. The carbon dioxide production from the oxidation of [14C] oleate was measured. Plasma glucose was measured by glucose oxidase assay. The insulin and C-peptide were detected. Triacylglyceride (TG) and free fat acid (FFA) in plasma were determined by enzymatic colorimetric assays. RESULTS RYGB improved metabolic parameters and enhanced plasma GLP-1 level, ameliorated the lipopexia, and increased insulin sensitivity in the liver; RYGB promoted the hepatic autophagy and inhibited the mTOR/p70S6K signaling pathway. GLP-1 reduced fat load and increased fatty acid β-oxidation by activated autophagy to regulate the hepatic lipid pathway through mTOR/p70S6K signaling pathway. CONCLUSIONS RYGB may reduce liver lipid toxicity and improve insulin sensitivity through activating the hepatic fat hydrolysis pathway and inhibiting the liver fat synthesis pathway. However, the transport pathway of liver fat does not play a key role.
Collapse
Affiliation(s)
- Nanxi Ma
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rui Ma
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kaixin Tang
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Xuesong Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Bing He
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| |
Collapse
|
34
|
Che D, Adams S, Zhao B, Qin G, Jiang H. Effects of Dietary L-arginine Supplementation from Conception to Post- Weaning in Piglets. Curr Protein Pept Sci 2019; 20:736-749. [PMID: 30678624 DOI: 10.2174/1389203720666190125104959] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/13/2022]
Abstract
Weaned piglets experience sudden changes in their dietary patterns such as withdrawal from the easily digestible watery milk to a coarse cereal diet with both systemic and intestinal disruptions coupling with the expression of pro-inflammatory proteins which affects the immune system and the concentrations of haptoglobin including both positive and negative acute-phase proteins in the plasma. L-arginine is an important protein amino acid for piglets, but its inadequate synthesis is a nutritional problem for both sows and piglets. Recent studies indicated that dietary supplementation of L-arginine increased feed intake, uterine growth, placental growth and nutrient transport, maternal growth and health, embryonic survival, piglets birth weight, piglet's growth, and productivity, and decreased stillbirths. L-arginine is essential in several important pathways involved in the growth and development of piglets such as nitric oxide synthesis, energy metabolism, polyamine synthesis, cellular protein production and muscle accretion, and the synthesis of other functional amino acids. However, the underlying molecular mechanism in these key pathways remains largely unresolved. This review was conducted on the general hypothesis that L-arginine increased the growth and survival of post-weaning piglets. We discussed the effects of dietary L-arginine supplementation during gestation, parturition, lactation, weaning, and post-weaning in pigs as each of these stages influences the health and survival of sows and their progenies. Therefore, the aim of this review was to discuss through a logical approach the effects of L-arginine supplementation on piglet's growth and survival from conception to postweaning.
Collapse
Affiliation(s)
- Dongsheng Che
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Seidu Adams
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Bao Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Guixin Qin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| | - Hailong Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.,Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun 130118, China.,Key Lab of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118 China
| |
Collapse
|
35
|
Nie C, Xie F, Ma N, Bai Y, Zhang W, Ma X. Nutrients Mediate Bioavailability and Turnover of Proteins in Mammals. Curr Protein Pept Sci 2019; 20:661-665. [DOI: 10.2174/1389203720666190125111235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/31/2022]
Abstract
As a major component of biologically active compounds in the body, proteins contribute to the synthesis of body tissues for the renewal and growth of the body. The high level of dietary protein and the imbalance of amino acid (AA) composition in mammals result in metabolic disorders, inefficient utilization of protein resources and increased nitrogen excretion. Fortunately, nutritional interventions can be an effective way of attenuating the nitrogen excretion and increasing protein utilization, which include, but are not limited to, formulating the AA balance and protein-restricted diet supplementing with essential AAs, and adding probiotics in the diet. This review highlights recent advances in the turnover of dietary proteins and mammal’s metabolism for health, in order to improve protein bioavailability through nutritional approach.
Collapse
Affiliation(s)
- Cunxi Nie
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Fei Xie
- State key Lab of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Science, Beijing 100193, China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yueyu Bai
- Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xi Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| |
Collapse
|
36
|
Chumphoochai K, Chalorak P, Suphamungmee W, Sobhon P, Meemon K. Saponin-enriched extracts from body wall and Cuvierian tubule of Holothuria leucospilota reduce fat accumulation and suppress lipogenesis in Caenorhabditis elegans. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:4158-4166. [PMID: 30767223 DOI: 10.1002/jsfa.9646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/11/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Saponins have been shown to possess many pharmacological properties, including altered fat metabolism. The black sea cucumber, Holothuria leucospilota, is a marine animal that contains a specialized organ called a Cuvierian tubule that produces and secrete the bioactive saponins into the tubules and body wall. Therefore, the aims of this study are to investigate the anti-obesity effect of saponins extracted from body wall and Cuvierian tubules of H. leucospilota. RESULTS The butanol extracts of H. leucospilota body wall and Cuvierian tubules containing high amounts of saponins significantly reduced fat deposition and triglyceride levels in Caenorhabditis elegans fed with 50 mmol L-1 glucose. Moreover, the saponin-enriched extracts of H. leucospilota significantly restored the lifespan of 2% glucose-fed worms (18.71%). Green fluorescence protein-labeled sbp-1 gene expression and nuclear translocation of daf-16 were also significantly decreased in H. leucospilota treatment. The saponin-enriched extracts downregulated the messenger RNA expressions of genes involved in fat storage and metabolism, including sbp-1, cebp, and daf-16 but upregulated the expression of nhr-49 gene. CONCLUSION Our results suggest that H. leucospilota-derived saponins may mediate the reduction of glucose-induced fat accumulation through sbp-1, cebp, daf-16 and nhr-9 pathways. Therefore, the H. leucospilota extracts could be used as nutraceuticals for anti-obesity prevention. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kawita Chumphoochai
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Pawanrat Chalorak
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Worawit Suphamungmee
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
| | - Prasert Sobhon
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| | - Krai Meemon
- Faculty of Science, Department of Anatomy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
37
|
Bian X, Liu X, Liu J, Zhao Y, Li H, Zhang L, Li P, Gao Y. Hepatoprotective effect of chiisanoside from Acanthopanax sessiliflorus against LPS/D-GalN-induced acute liver injury by inhibiting NF-κB and activating Nrf2/HO-1 signaling pathways. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3283-3290. [PMID: 30552777 DOI: 10.1002/jsfa.9541] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 11/12/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND In China, Acanthopanax sessiliflorus is a delicious wild vegetable. It is also used to treat inflammation and pain. Chiisanoside (CSS) is the main constituent of the leaf of A. sessiliflorus. Combined use of lipopolysaccharide and d-galactosamine (LPS/D-GalN) can induce acute liver failure in human beings, and there are no reports on the protective effect of CSS against LPS/D-GalN-induced acute liver injury in mice. RESULTS Chiisanoside pretreatment evidently reduced the activities of alanine transaminase (ALT) and aspartate transaminase (AST) in the changes induced by LPS/D-GalN, and these histopathological changes induced by LPS/GalN were significantly weakened. Catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD) activities increased, and malondialdehyde (MDA) activity decreased after CSS treatment compared with LPS/D-GalN treatment. Pretreatment with CSS also inhibited the expression levels of inflammatory factors. The administration of CSS prevented the phosphorylated expression of inhibitor kappa B (IκB) kinase, and led to a significant increase in heme oxygenase-1 (HO-1) expression and nuclear factor erythroid 2-related factor2 (Nrf2) nuclear translocation. CONCLUSION The protective effects of CSS are attributed to its antioxidative effect and inflammatory suppression in Nuclear factor kappa beta (NF-κB) and Nrf2/HO-1 signaling pathways. Chiisanoside might therefore be a potential ingredient for drug and food development against acute liver injury in the future. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xingbo Bian
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, China
| | | | | | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, China
| | | | - Lianxue Zhang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, China
| | | | - Yugang Gao
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, China
| |
Collapse
|
38
|
Zhou JY, Huang DG, Qin YC, Li XG, Gao CQ, Yan HC, Wang XQ. mTORC1 signaling activation increases intestinal stem cell activity and promotes epithelial cell proliferation. J Cell Physiol 2019; 234:19028-19038. [PMID: 30937902 DOI: 10.1002/jcp.28542] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 03/02/2019] [Accepted: 03/06/2019] [Indexed: 12/22/2022]
Abstract
The crypt-villus axis of the intestine undergoes a continuous renewal process that is driven by intestinal stem cells (ISCs). However, the homeostasis is disturbed under constant exposure to high ambient temperatures, and the precise mechanism is unclear. We found that both EdU+ and Ki67+ cell ratios were significantly reduced after exposure to 41°C, as well as the protein synthesis rate of IPEC-J2 cells, and the expression of ubiquitin and heat shock protein 60, 70, and 90 were significantly increased. Additionally, heat exposure decreased enteroid expansion and budding efficiency, as well as induced apoptosis after 48 hr; however, no significant difference was observed in the apoptosis ratio after 24 hr. In the process of heat exposure, the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway was significantly inhibited in both IPEC-J2 cells and enteroids. Correspondingly, treatment of IPEC-J2 and enteroids with the mTORC1 agonist MHY1485 at 41°C significantly attenuated the inhibition of proliferation and protein synthesis, increased the ISC activity, and promoted expansion and budding of enteroid. In summary, we conclude that the mTORC1 signaling pathway regulates intestinal epithelial cell and stem cell activity during heat exposure-induced injury.
Collapse
Affiliation(s)
- Jia-Yi Zhou
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Deng-Gui Huang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Ying-Chao Qin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiang-Guang Li
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Chun-Qi Gao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hui-Chao Yan
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xiu-Qi Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Gupta MB, Jansson T. Novel roles of mechanistic target of rapamycin signaling in regulating fetal growth†. Biol Reprod 2019; 100:872-884. [PMID: 30476008 PMCID: PMC6698747 DOI: 10.1093/biolre/ioy249] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022] Open
Abstract
Mechanistic target of rapamycin (mTOR) signaling functions as a central regulator of cellular metabolism, growth, and survival in response to hormones, growth factors, nutrients, energy, and stress signals. Mechanistic TOR is therefore critical for the growth of most fetal organs, and global mTOR deletion is embryonic lethal. This review discusses emerging evidence suggesting that mTOR signaling also has a role as a critical hub in the overall homeostatic control of fetal growth, adjusting the fetal growth trajectory according to the ability of the maternal supply line to support fetal growth. In the fetus, liver mTOR governs the secretion and phosphorylation of insulin-like growth factor binding protein 1 (IGFBP-1) thereby controlling the bioavailability of insulin-like growth factors (IGF-I and IGF-II), which function as important growth hormones during fetal life. In the placenta, mTOR responds to a large number of growth-related signals, including amino acids, glucose, oxygen, folate, and growth factors, to regulate trophoblast mitochondrial respiration, nutrient transport, and protein synthesis, thereby influencing fetal growth. In the maternal compartment, mTOR is an integral part of a decidual nutrient sensor which links oxygen and nutrient availability to the phosphorylation of IGFBP-1 with preferential effects on the bioavailability of IGF-I in the maternal-fetal interface and in the maternal circulation. These new roles of mTOR signaling in the regulation fetal growth will help us better understand the molecular underpinnings of abnormal fetal growth, such as intrauterine growth restriction and fetal overgrowth, and may represent novel avenues for diagnostics and intervention in important pregnancy complications.
Collapse
Affiliation(s)
- Madhulika B Gupta
- Department of Pediatrics, University of Western Ontario, London, Ontario, Canada
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
- Children's Health Research Institute, London, Ontario, Canada
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado | Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
40
|
Zhang J, He W, Yi D, Zhao D, Song Z, Hou Y, Wu G. Regulation of protein synthesis in porcine mammary epithelial cells by L-valine. Amino Acids 2019; 51:717-726. [PMID: 30798466 DOI: 10.1007/s00726-019-02709-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 02/06/2019] [Indexed: 12/17/2022]
Abstract
This study was conducted to determine the catabolism of L-valine in porcine mammary epithelial cells (PMECs) and its role in stimulating protein synthesis in these cells. PMECs were incubated with 0.05-, 0.10-, 0.25-, 0.5-, and 1.0-mM L-valine at 37 oC for 2 h. Cell viability and expressions of α-lactalbumin and β-casein were measured after culture with L-valine for 3 days. L-[1-14C]valine was used to study valine catabolism, whereas [3H]phenylalanine was employed as a tracer to determine protein synthesis and degradation in PMECs. The abundances of proteins involved in the mTOR signaling pathway and the mRNA levels for the related key genes were determined using the western blot and RT-PCR techniques, respectively. Cell numbers and the synthesis of proteins (including α-lactalbumin and β-casein) were greater (P < 0.05) in the presence of 0.5-mM L-valine, compared with 0.05- or 0.1-mM L-valine. L-Valine at 0.5 mM also enhanced (P < 0.05) the production of α-lactalbumin by PMECs, in comparison with 0.25 mM L-valine. Increasing the extracellular concentration of L-valine from 0.05 to 0.5 mM stimulated protein synthesis in a concentration-dependent manner without affecting proteolysis. Although L-valine was actively transaminated in PMECs, its α-ketoacid product (α-ketoisovalerate) at 0.05-0.2 mM did not affect protein synthesis or degradation in the cells. Thus, the effect of L-valine on protein synthesis was independent of its metabolism to yield α-ketoisovalerate. At the molecular level, 0.5-mM L-valine increased (P < 0.05) the mRNA levels for Ras, ERK1/2, and p70S6K, and the abundances of mTOR, p-4EBP1, total 4EBP1, p-ERK1/2, and total ERK1/2 proteins. These findings establish the critical role of L-valine in enhancing PMEC growth and milk protein synthesis possibly by regulating the mTOR and Ras/ERK signaling pathways. Further studies are warranted to understand how L-valine regulates gene expression and mTOR activation in PMECs.
Collapse
Affiliation(s)
- Junmei Zhang
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Wenliang He
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| | - Dan Yi
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Di Zhao
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Zhuan Song
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Yongqing Hou
- Hubei International Scientific and Technological Cooperation Base of Animal Nutrition and Gut Health, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
41
|
Zheng Y, Zhang WC, Wu ZY, Fu CX, Hui AL, Gao H, Chen PP, Du B, Zhang HW. Two macamide extracts relieve physical fatigue by attenuating muscle damage in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:1405-1412. [PMID: 30120787 DOI: 10.1002/jsfa.9318] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 08/06/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Macamides, the main active components contained in maca, have attracted increasing attention due to their various bioactivities. In this study, crude macamide extract (CME) and purified macamide extract (PME) were prepared by enzyme-assisted extraction and macroporous resin separation, and the anti-fatigue effects of CME and PME were evaluated in a forced swimming model. RESULTS The composition analysis results revealed that both CME and PME mainly contain eight kinds of macamide. Based on the results of a weight-loaded forced swimming test, compared with a control group, CME and and PME groups could prolong exhaustive swimming time, increase levels of liver glycogen (LG) and muscle glycogen (MG), accelerate fatty acid oxidation in serum to provide energy, eliminate the accumulation of blood lactic acid (BLA) and blood urea nitrogen (BUN), and decrease the serum biomarkers for muscle damage, such as lactate dehydrogenase (LDH) and creatine kinase (CK). Histological analysis also indicated that CME and PME attenuated damage to skeletal muscle and the myocardium in mice during exercise. CONCLUSION Two macamide extracts have a beneficial effect on relieving physical fatigue by attenuating the damage of skeletal muscle and myocardium during exercise, and a better effect was observed in the PME group. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Zheng
- School of Food Science and Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Wen-Cheng Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, P. R. China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, P. R. China
| | - Ze-Yu Wu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, P. R. China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, P. R. China
| | - Chuan-Xiang Fu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Ai-Ling Hui
- School of Food Science and Engineering, Hefei University of Technology, Hefei, P. R. China
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, P. R. China
| | - Han Gao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Peng-Peng Chen
- School of Food Science and Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Biao Du
- Anhui Sunshine Pharmaceutical Co., Ltd, Bozhou, P. R. China
| | - Hua-Wei Zhang
- Anhui Sunshine Pharmaceutical Co., Ltd, Bozhou, P. R. China
| |
Collapse
|
42
|
Beal FLR, Beal PR, Beal JR, Carvalho-Neves N, Franco OL, Silva ON. Perspectives on the Therapeutic Benefits of Arginine Supplementation in Cancer Treatment. Endocr Metab Immune Disord Drug Targets 2019; 19:913-920. [PMID: 30652655 DOI: 10.2174/1871530319666190116121451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Arginine is considered a semi-essential amino acid in healthy adults and the elderly. This amino acid seems to improve the immune system, stimulate cell growth and differentiation, and increase endothelial permeability, among other effects. For those reasons, it has been theorized that arginine supplementation may be used as an adjuvant to conventional cancer therapy treatments. OBJECTIVE This review aims to evaluate the existing knowledge of the scientific community on arginine supplementation in order to improve the efficacy of current cancer treatment. RESULTS Despite the continued efforts of science to improve treatment strategies, cancer remains one of the greatest causes of death on the planet in adults and elderly people. Chemo and radiotherapy are still the most effective treatments but at the cost of significant side effects. CONCLUSION Thus, new therapeutic perspectives have been studied in recent years, to be used in addition to traditional treatments or not, seeking to treat or even cure the various types of cancer with fewer side effects.
Collapse
Affiliation(s)
- Fabiani L R Beal
- Department of Nutrition, Health and Medicine School, Catholic University of Brasilia, UCB, Brasilia, DF, Brazil.,Department of Gerontology, Faculty of Catholic University of Brasilia, Brasilia, UCB, DF, Brazil
| | - Pedro R Beal
- Department of Medicine, Medical College, University of Brasilia, UnB, Brasilia, DF, Brazil
| | - Juliana R Beal
- Oncology Center, Albert Einstein Hospital, Sao Paulo, SP, Brazil
| | - Natan Carvalho-Neves
- Center for Proteomic and Biochemical Analysis, Department of Genomic Sciences and Biotechnology, University Catholic Church of Brasilia, UCB, Brasilia, DF, Brazil
| | - Octávio L Franco
- Center for Proteomic and Biochemical Analysis, Department of Genomic Sciences and Biotechnology, University Catholic Church of Brasilia, UCB, Brasilia, DF, Brazil.,Department of Molecular Pathology, University of Brasilia, Brasilia, UnB, DF, Brazil
| | - Osmar N Silva
- Department of Biotechnology, S-Inova Biotech, University Catholic Don Bosco, UCDB, Campo Grande, MS, Brazil
| |
Collapse
|
43
|
Yang D, Wu W, Wang S. Biocompatibility and degradability of alginate-poly- L-arginine microcapsules prepared by high-voltage electrostatic process. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2017.1417291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dayun Yang
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, China
| | - Wenguo Wu
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, China
| | - Shibin Wang
- Fujian Provincial Key Laboratory of Biochemical Technology, Huaqiao University, Xiamen, Fujian, China
- Institute of Biomaterials and Tissue Engineering, Huaqiao University, Xiamen, Fujian, China
| |
Collapse
|
44
|
Lin CC, Wu JJ, Pan YG, Chao YH, Lin FC, Lee YR, Chu CL. Gold lotion from citrus peel extract ameliorates imiquimod-induced psoriasis-like dermatitis in murine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5509-5517. [PMID: 29691866 DOI: 10.1002/jsfa.9097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Gold lotion (GL), a natural mixed product made from the peels of six citrus fruits, has recently been identified as possessing anti-oxidative, anti-inflammatory, and immunomodulatory effects. GL has been used to protect skin against UV-induced damage, but its activity against psoriasis, a chronic autoimmune skin disease caused by dysregulation between immune cells and keratinocytes, is not known. We therefore evaluated the effect of GL on imiquimod (IMQ)-induced psoriasis-like inflammation in mice. RESULTS GL treatment significantly attenuated IMQ-induced psoriasis-like symptoms in mice. The inflammatory cytokines upregulated by IMQ in skin lesions were also inhibited by feeding GL. In addition, GL treatment reduced the infiltration of CD4+ T cells/neutrophils in skin lesions and the percentage of IL-17-/IL-22-producing T cells in lymph nodes. Furthermore, GL impaired IMQ-induced type I interferon production by plasmacytoid dendritic cells (pDCs) in vitro. CONCLUSION Our results indicate GL can act to suppress the initiation of psoriasis and strongly suggest that GL may have potential to be applied to the treatment of psoriasis. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chi-Chien Lin
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Jung-Ju Wu
- Department of Chinese Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Yi-Gen Pan
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ya-Hsuan Chao
- Institute of Biomedical Sciences, National Chung-Hsing University, Taichung, Taiwan
| | - Fang-Chu Lin
- Department of Chinese Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Ying-Ray Lee
- Translational Medicine Research Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Ching-Liang Chu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
45
|
Liang X, Han H, Zhao X, Cao X, Yang M, Tao D, Wu R, Yue X. Quantitative analysis of amino acids in human and bovine colostrum milk samples through iTRAQ labeling. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:5157-5163. [PMID: 29577310 DOI: 10.1002/jsfa.9032] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The types and quantity of proteins vary widely between bovine and human milk, with corresponding differences in free and hydrolytic amino acids. In this study, the free and hydrolytic amino acids of bovine and human colostrum were for the first time qualitatively and quantitatively determined using isobaric tags for relative and absolute quantification technology combined with liquid chromatography tandem mass spectrometry detection. RESULTS Total free amino acid content was 0.32 g L-1 and 0.63 g L-1 in bovine and human colostrum respectively, with free amino acid content in human colostrum twice that of bovine colostrum. However, total hydrolytic amino acid content was 4.2 g L-1 and 2.2 g L-1 in bovine and human colostrum respectively. We found that the hydrolytic amino acid content in bovine colostrum was higher than that in human colostrum; however, the amount of free amino acids and the overall amino acid content in human colostrum were respectively substantially higher and more varied than in bovine colostrum. CONCLUSION Our findings revealed differences between bovine and human colostrum, with these data providing the basis for further research into amino acid metabolomics and infant formula. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaona Liang
- College of Food Science, ShenYang Agricultural University, ShenYang, P. R. China
| | - Hongjiao Han
- College of Food Science, ShenYang Agricultural University, ShenYang, P. R. China
| | - Xue Zhao
- College of Food Science, ShenYang Agricultural University, ShenYang, P. R. China
| | - Xueyan Cao
- College of Food Science, ShenYang Agricultural University, ShenYang, P. R. China
| | - Mei Yang
- College of Food Science, ShenYang Agricultural University, ShenYang, P. R. China
| | - Dongbing Tao
- College of Food Science, ShenYang Agricultural University, ShenYang, P. R. China
| | - Rina Wu
- College of Food Science, ShenYang Agricultural University, ShenYang, P. R. China
| | - Xiqing Yue
- College of Food Science, ShenYang Agricultural University, ShenYang, P. R. China
| |
Collapse
|
46
|
Tajiri K, Shimizu Y. Branched-chain amino acids in liver diseases. Transl Gastroenterol Hepatol 2018; 3:47. [PMID: 30148232 PMCID: PMC6088198 DOI: 10.21037/tgh.2018.07.06] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 07/06/2018] [Indexed: 02/05/2023] Open
Abstract
Branched chain amino acids (BCAAs) are involved in various bioprocess such as protein metabolism, gene expression, insulin resistance and proliferation of hepatocytes. BCAAs have also been reported to suppress the growth of hepatocellular carcinoma (HCC) cells in vitro and to be required for immune cells to perform the function. In advanced cirrhotic patients, it has been clarified that serum concentrations of BCAA are decreased, whereas those of aromatic amino acids (AAAs) are increased. These alterations are thought to be the causes of hepatic encephalopathy (HE), sarcopenia and hepatocarcinogenesis and may be associated with the poor prognosis of patients with these conditions. Administration of BCAA-rich medicines has shown positive results in patients with cirrhosis.
Collapse
Affiliation(s)
- Kazuto Tajiri
- Department of Gastroenterology, Toyama University Hospital, Toyama, Japan
| | | |
Collapse
|
47
|
He L, Zhang J, Zhao J, Ma N, Kim SW, Qiao S, Ma X. Autophagy: The Last Defense against Cellular Nutritional Stress. Adv Nutr 2018; 9:493-504. [PMID: 30032222 PMCID: PMC6054220 DOI: 10.1093/advances/nmy011] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Homeostasis of nutrient metabolism is critical for maintenance of the normal physiologic status of the cell and the integral health of humans and mammals. In vivo, there is a highly efficient and precise process involved in nutrient recycling and organelle cleaning. This process is named autophagy, and it can be induced in response to the dynamic change of nutrients. When cells face nutritional stress, such as stress caused by nutrient deficiency or nutrient excess, the autophagy pathway will be activated. Generally, when nutrients are withdrawn, cells will sense the signs of starvation and respond. AMP-activated protein kinase and the mammalian target of rapamycin, two of the major metabolic kinases, are responsible for monitoring cellular energy and the concentration of amino acids, respectively. Nutrient excess also induces autophagy, mainly via the reactive oxygen species and endoplasmic reticulum stress pathway. When nutritional stress activates the autophagy pathway, the nutrients or damaged organelles will be recycled for cell survival. However, if autophagy is overwhelmingly induced, autophagic cell death will possibly occur. The balance of the autophagy induction is the crucial factor for cell survival or death. Herein, we summarize the current knowledge on the induction of autophagy, the autophagy response under nutritional stresses, and autophagic cell death and related diseases, which will highlight the process of nutritional stress-induced autophagy and its important physiologic and/or pathologic roles in cell metabolism and diseases, and shed light on the research into the mechanism and clinical applications of autophagy induced by nutritional stresses.
Collapse
Affiliation(s)
- Long He
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China
| | - Jie Zhang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China
| | - Jinshan Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Ning Ma
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Center, China Agricultural University, Beijing, China,College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China,Department of Internal Medicine, Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX,Address correspondence to XM (e-mail: )
| |
Collapse
|
48
|
McNeal CJ, Meininger CJ, Wilborn CD, Tekwe CD, Wu G. Safety of dietary supplementation with arginine in adult humans. Amino Acids 2018; 50:1215-1229. [PMID: 29858688 DOI: 10.1007/s00726-018-2594-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/25/2018] [Indexed: 02/05/2023]
Abstract
Previous studies with animals and humans have shown beneficial effects of dietary supplementation with L-arginine (Arg) on reducing white fat and improving health. At present, a long-term safe level of Arg administration to adult humans is unknown. The objective of this study was to conduct a randomized, placebo-controlled, clinical trial to evaluate the safety and tolerability of oral Arg in overweight or obese but otherwise healthy adults with a body mass index of ≥ 25 kg/m2. A total of 142 subjects completed a 7-day wash-in period using a 12 g Arg/day dose. All the remaining eligible 101 subjects who tolerated the wash-in dose (45 men and 56 women) were assigned randomly to ingest 0, 15 or 30 g Arg (as pharmaceutical-grade Arg-HCl) per day for 90 days. Arg was taken daily in at least two divided doses by mixing with a flavored beverage. At Days 0 and 90, blood pressures of study subjects were recorded, their physical examinations were performed, and their blood and 24-h urine samples were obtained to measure: (1) serum concentrations of amino acids, glucose, fatty acids, and related metabolites; and (2) renal, hepatic, endocrine and metabolic parameters. Our results indicate that the serum concentration of Arg in men or women increased (P < 0.05) progressively with increasing oral Arg doses from 0 to 30 g/day. Dietary supplementation with 30 g Arg/day reduced (P < 0.05) systolic blood pressure and serum glucose concentration in females, as well as serum concentrations of free fatty acids in both males and females. Based on physiological and biochemical variables, study subjects tolerated oral administration of 15 and 30 g Arg/day without adverse events. We conclude that a long-term safe level of dietary Arg supplementation is at least 30 g/day in adult humans.
Collapse
Affiliation(s)
- Catherine J McNeal
- Department of Internal Medicine, Baylor Scott & White Health, Temple, TX, 76508, USA
| | - Cynthia J Meininger
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, TX, 76504, USA
| | - Colin D Wilborn
- Department of Exercise and Sport Science, University of Mary Hardin-Baylor, Belton, TX, 76513, USA
| | - Carmen D Tekwe
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M Health Science Center, College Station, TX, 77843, USA
| | - Guoyao Wu
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Temple, TX, 76504, USA. .,Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
49
|
Nie C, He T, Zhang W, Zhang G, Ma X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int J Mol Sci 2018; 19:E954. [PMID: 29570613 PMCID: PMC5979320 DOI: 10.3390/ijms19040954] [Citation(s) in RCA: 466] [Impact Index Per Article: 66.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/01/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022] Open
Abstract
Branched chain amino acids (BCAAs), including leucine (Leu), isoleucine (Ile), and valine (Val), play critical roles in the regulation of energy homeostasis, nutrition metabolism, gut health, immunity and disease in humans and animals. As the most abundant of essential amino acids (EAAs), BCAAs are not only the substrates for synthesis of nitrogenous compounds, they also serve as signaling molecules regulating metabolism of glucose, lipid, and protein synthesis, intestinal health, and immunity via special signaling network, especially phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) signal pathway. Current evidence supports BCAAs and their derivatives as the potential biomarkers of diseases such as insulin resistance (IR), type 2 diabetes mellitus (T2DM), cancer, and cardiovascular diseases (CVDs). These diseases are closely associated with catabolism and balance of BCAAs. Hence, optimizing dietary BCAA levels should have a positive effect on the parameters associated with health and diseases. This review focuses on recent findings of BCAAs in metabolic pathways and regulation, and underlying the relationship of BCAAs to related disease processes.
Collapse
Affiliation(s)
- Cunxi Nie
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing 100193, China.
- College of Animal Science and Technology, Shihezi University, No. 221. Beisi Road, Shihezi, Xinjiang 832003, China.
| | - Ting He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing 100193, China.
| | - Wenju Zhang
- College of Animal Science and Technology, Shihezi University, No. 221. Beisi Road, Shihezi, Xinjiang 832003, China.
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2. Yuanmingyuan West Road, Beijing 100193, China.
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
50
|
L-Arginine regulates protein turnover in porcine mammary epithelial cells to enhance milk protein synthesis. Amino Acids 2018; 50:621-628. [PMID: 29435722 DOI: 10.1007/s00726-018-2541-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/29/2018] [Indexed: 10/18/2022]
Abstract
Milk is an important food for mammalian neonates, but its insufficient production is a nutritional problem for humans and other animals. Recent studies indicate that dietary supplementation with L-arginine (Arg) increases milk production in mammals, including sows, rabbits, and cows. However, the underlying molecular mechanisms remain largely unknown. The present study was conducted with porcine mammary epithelial cells (PMECs) to test the hypothesis that Arg enhances milk protein synthesis via activation of the mechanistic target of rapamycin (mTOR) cell signaling. PMECs were cultured for 4 days in Arg-free basal medium supplemented with 10, 50, 200, or 500 μmol/L Arg. Rates of protein synthesis and degradation in cells were determined with the use of L-[ring-2,4-3H]phenylalanine. Cell medium was analyzed for β-casein and α-lactalbumin, whereas cells were used for quantifying total and phosphorylated levels of mTOR, ribosomal protein S6 kinase (p70S6K), 4E-binding protein 1 (4EBP1), ubiquitin, and proteasome. Addition of 50-500 μmol/L Arg to culture medium increased (P < 0.05) the proliferation of PMECs and the synthesis of proteins (including β-casein and α-lactalbumin), while reducing the rates of proteolysis, in a dose-dependent manner. The phosphorylated levels of mTOR, p70S6K and 4EBP1 were elevated (P < 0.05), but the abundances of ubiquitin and proteasome were lower (P < 0.05), in PMECs supplemented with 200-500 μmol/L Arg, compared with 10-50 μmol/L Arg. These results provide a biochemical basis for the use of Arg to enhance milk production by sows and have important implications for improving lactation in other mammals (including humans and cows).
Collapse
|