1
|
Xu R, Lu Y, Cai L, Zhang L. Utilizing Extracellular Vesicles from Phaeodactylum tricornutum as a Novel Approach for Protecting the Skin from Oxidative Damage. ACS Biomater Sci Eng 2025. [PMID: 40396567 DOI: 10.1021/acsbiomaterials.4c02346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Oxidative stress is a principal factor contributing to skin damage induced by deleterious stimuli, including ultraviolet (UV) radiation. Microalgae-derived extracellular vesicles (EVs), particularly those from Phaeodactylum tricornutum (PTEV), are gaining recognition as a potential therapeutic avenue for restoring skin homeostasis, owing to their scalable production and multifaceted biological activities. This study evaluates the therapeutic effects of PTEV on oxidative damage in H2O2-stimulated HaCaT cells and UV-exposed KM mouse models, based on the extraction and characterization of PTEV. Subsequently, the oxidative stress injury model of HaCaT cells induced by H2O2 and the acute photodamage model of KM mice skin induced by UV were established. The results show that HaCaT cells exhibit a time-dependent uptake of PTEV, confirming that PTEV is nontoxic and has the potential for intercellular cross-boundary regulation. Treatment with PTEV can enhance the vitality of H2O2-stimulated HaCaT cells, reduce intracellular ROS levels, and increase antioxidant enzyme activity in the cells. Further evaluation revealed that PTEV can inhibit UV-induced thickening of the epidermis and degradation of collagen fibers in mice by suppressing the overexpression of matrix metalloproteinase (MMP-3) induced by UV. It enhances the expression of type I collagen (COL1A1) and increases the activity of antioxidant enzymes, as well as the overall antioxidant capacity of tissues. Additionally, PTEV reduces the increase in malondialdehyde levels and lowers the expression levels of inflammatory factors TNF-α and IL-6, thereby protecting the skin barrier and function in mice with acute photodamage. Continuous production of PTEV offers promising applications in therapeutic strategies.
Collapse
Affiliation(s)
- Ran Xu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ying Lu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Luyun Cai
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Litao Zhang
- CAS and Shandong Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
2
|
Młynarczyk G, Domian N, Lewandowska A, Kasacka I. Evaluation of CacyBP/SIP expression and its relationship with ERK1/2 and p38 kinase in testicular seminoma. Pathol Res Pract 2025; 266:155750. [PMID: 39644709 DOI: 10.1016/j.prp.2024.155750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/09/2024]
Abstract
Testicular cancer accounts for approximately 5 % of all urologic cancers. The most common histopathological diagnosis of testicular neoplastic lesions are germ cell tumors (90-95 % of cases), among which the majority of cases are seminomas, the most common malignant tumors among men aged 15-44. For better clinical diagnosis and treatment, it is important to understand the molecular mechanisms of tumor formation. In this study, the expression of the CacyBP/SIP protein and ERK1/2 and p38 kinases was analyzed for the first time in seminomas and normal testicular tissues. The research was carried out using archival tissue material from 30 patients undergoing surgery due to testicular seminoma, whereas the comparative material consisted of the adjacent normal tissues. Immunohistochemistry and qRT-PCR were used to identify the expression of CacyBP/SIP, ERK1/2, and p38. A marked weakening of the immunohistochemical reaction was observed in the cancerous tissue compared to the control tissue. PCR testing of the marked proteins confirmed their lower expression in seminoma. Our findings suggest the involvement of the CacyBP/SIP protein in the ERK1/2 and p38 signalling pathways, which may be involved in the processes of testicular seminoma carcinogenesis. The results of our research provide the basis for further research in this area.
Collapse
Affiliation(s)
| | - Natalia Domian
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Alicja Lewandowska
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Białystok, Białystok, Poland.
| |
Collapse
|
3
|
Smereczańska M, Domian N, Młynarczyk M, Pędzińska-Betiuk A, Kasacka I. Evaluation of the Expression and Localization of the Multifunctional Protein CacyBP/SIP and Elements of the MAPK Signaling Pathway in the Adrenal Glands of Rats with Primary and Secondary Hypertension. Int J Mol Sci 2023; 25:84. [PMID: 38203261 PMCID: PMC10779320 DOI: 10.3390/ijms25010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Hypertension is a global civilization disease and one of the most common causes of death in the world. Organ dysfunction is a serious health consequence of hypertension, which involves damage to the heart, kidneys and adrenals. The interaction of recently discovered multifunctional protein-CacyBP/SIP with ERK1/2 and p38 kinases by regulating the activity and intracellular localization of these kinases may play an important role in the signaling pathways involved in the pathogenesis of hypertension. Due to the lack of data on this subject, we decided to investigate the localization, expression and possible relationship between the studied parameters in the adrenals under arterial hypertension. The study was conducted on the adrenals of rats with spontaneous and DOCA-salt hypertension. The expression of CacyBP/SIP, p-ERK1/2 and p-p38 was detected by immunohistochemistry and qRT-PCR. The results show a statistically significant decrease in CacyBP/SIP expression in the adrenal glands of hypertensive rats. With ERK1/2, there was a decrease in cortical immunoreactivity and an increase in the adrenal medulla of primary hypertensive rats. In contrast, in the adrenals of DOCA-salt rats, ERK1/2 immunoreactivity increased in the cortex and decreased in the medulla. In turn, p38 expression was higher in the adrenal glands of rats with primary and secondary hypertension. The obtained results may suggest the involvement of CacyBP/SIP in the regulation of signaling pathways in which MAP kinases play an important role and provide new insight into molecular events in hypertension. Moreover, they show the participation of CacyBP/SIP in response to oxidative stress.
Collapse
Affiliation(s)
- Magdalena Smereczańska
- Department of Histology and Cytophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Natalia Domian
- Department of Histology and Cytophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Maryla Młynarczyk
- Department of Histology and Cytophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, 15-222 Białystok, Poland
| | - Irena Kasacka
- Department of Histology and Cytophysiology, Medical University of Bialystok, 15-222 Bialystok, Poland
| |
Collapse
|
4
|
Wang J, Zhang X, Ma X, Chen D, Cai M, Xiao L, Li J, Huang Z, Huang Y, Lian Y. Blockage of CacyBP inhibits macrophage recruitment and improves anti-PD-1 therapy in hepatocellular carcinoma. J Exp Clin Cancer Res 2023; 42:303. [PMID: 37968706 PMCID: PMC10652496 DOI: 10.1186/s13046-023-02885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Despite remarkable advancements in cancer immunotherapy, the overall response rate to anti-programmed cell death-1 (anti-PD-1) therapy in hepatocellular carcinoma (HCC) patients remains low. Our previous study has demonstrated the critical role of CacyBP/SIP (Calcyclin-Binding Protein and Siah-1 Interacting Protein) as a regulator of HCC development and progression. However, the possible impact of CacyBP on the tumor immune microenvironment has not yet been clarified. METHODS The expressions of CacyBP and Myd88 in HCC cell lines and tissues was detected by bioinformatics analysis, real-time quantitative PCR, western blotting and immunohistochemistry. The interaction between CacyBP and Myd88 was measured using co-immunoprecipitation and immunofluorescence. In vitro and in vivo assays were used to investigate the regulation of CacyBP on tumor-associated macrophages (TAMs). RESULTS We identified that CacyBP was positively correlated with Myd88, a master regulator of innate immunity, and Myd88 was a novel binding substrate downstream of CacyBP in HCC. Additionally, CacyBP protected Myd88 from Siah-1-mediated proteasome-dependent degradation by competitively binding to its Toll/interleukin-1 receptor (TIR) domain. Inhibition of CacyBP-Myd88 signaling subsequently diminished HDAC1-mediated H3K9ac and H3K27ac modifications on the CX3CL1 promoter and reduced its transcription and secretion in HCC cells. Moreover, by using in vitro and in vivo strategies, we demonstrated that depletion of CacyBP impaired the infiltration of TAMs and the immunosuppressive state of the tumor microenvironment, further sensitizing HCC-bearing anti-PD-1 therapy. CONCLUSIONS Our findings suggest that targeting CacyBP may be a novel treatment strategy for improving the efficacy of anti-PD-1 immunotherapy in HCC.
Collapse
Affiliation(s)
- Jialiang Wang
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Xiaoyu Zhang
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Xinyi Ma
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Dongmei Chen
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Meina Cai
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Lexin Xiao
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Jing Li
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Zexuan Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China
| | - Yuehua Huang
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China.
- Department of Infectious Diseases, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China.
| | - Yifan Lian
- Guangdong Provincial Key Laboratory of Liver Disease Research, the Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Rd., Guangzhou, 510630, China.
| |
Collapse
|
5
|
Leśniak W, Bohush A, Maksymowicz M, Piwowarczyk C, Karolak NK, Jurewicz E, Filipek A. Involvement of CacyBP/SIP in differentiation and the immune response of HaCaT keratinocytes. Immunobiology 2023; 228:152385. [PMID: 37156124 DOI: 10.1016/j.imbio.2023.152385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/05/2023] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
CacyBP/SIP is a multifunctional protein present in various cells and tissues. However, its expression and role in the epidermis has not been explored so far. In this work, using RT-qPCR, Western blot analysis and three-dimensional (3D) organotypic cultures of HaCaT keratinocytes we show that CacyBP/SIP is present in the epidermis. To investigate the possible role of CacyBP/SIP in keratinocytes we obtained CacyBP/SIP knockdown cells and studied the effect of CacyBP/SIP deficiency on their differentiation and response to viral infection. We found that CacyBP/SIP knockdown results in reduced expression of epidermal differentiation markers in both undifferentiated and differentiated HaCaT cells. Since epidermis is engaged in immune defense, the impact of CacyBP/SIP knockdown on this process was also analyzed. By applying RT-qPCR and Western blot it was found that poly(I:C), a synthetic analog of double-stranded RNA that mimics viral infection, stimulated the expression of genes involved in antiviral response, such as IFIT1, IFIT2 and OASL. Interestingly, following poly(I:C) stimulation, the level of expression of these genes was significantly lower in cells with CacyBP/SIP knockdown than control ones. Since the signaling pathway mediating cellular responses to viral infection involves, among others, the STAT1 transcription factor, we measured its activity using luciferase assay and found that it was lower in CacyBP/SIP knockdown HaCaT cells. Altogether, the presented results indicate that CacyBP/SIP promotes epidermal differentiation and might be involved in response of the skin cells to viral infection.
Collapse
Affiliation(s)
- Wiesława Leśniak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| | - Anastasiia Bohush
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Małgorzata Maksymowicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Cezary Piwowarczyk
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Natalia Katarzyna Karolak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland; Department of Chemistry, University of Warsaw, 1 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewelina Jurewicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland.
| |
Collapse
|
6
|
Latoszek E, Wiweger M, Ludwiczak J, Dunin-Horkawicz S, Kuznicki J, Czeredys M. Siah-1-interacting protein regulates mutated huntingtin protein aggregation in Huntington’s disease models. Cell Biosci 2022; 12:34. [PMID: 35305696 PMCID: PMC8934500 DOI: 10.1186/s13578-022-00755-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/04/2022] [Indexed: 11/17/2022] Open
Abstract
Background Huntington’s disease (HD) is a neurodegenerative disorder whereby mutated huntingtin protein (mHTT) aggregates when polyglutamine repeats in the N-terminal of mHTT exceeds 36 glutamines (Q). However, the mechanism of this pathology is unknown. Siah1-interacting protein (SIP) acts as an adaptor protein in the ubiquitination complex and mediates degradation of other proteins. We hypothesized that mHTT aggregation depends on the dysregulation of SIP activity in this pathway in HD. Results A higher SIP dimer/monomer ratio was observed in the striatum in young YAC128 mice, which overexpress mHTT. We found that SIP interacted with HTT. In a cellular HD model, we found that wildtype SIP increased mHTT ubiquitination, attenuated mHTT protein levels, and decreased HTT aggregation. We predicted mutations that should stabilize SIP dimerization and found that SIP mutant-overexpressing cells formed more stable dimers and had lower activity in facilitating mHTT ubiquitination and preventing exon 1 mHTT aggregation compared with wildtype SIP. Conclusions Our data suggest that an increase in SIP dimerization in HD medium spiny neurons leads to a decrease in SIP function in the degradation of mHTT through a ubiquitin–proteasome pathway and consequently an increase in mHTT aggregation. Therefore, SIP could be considered a potential target for anti-HD therapy during the early stage of HD pathology. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00755-0.
Collapse
|
7
|
Atypical p38 Signaling, Activation, and Implications for Disease. Int J Mol Sci 2021; 22:ijms22084183. [PMID: 33920735 PMCID: PMC8073329 DOI: 10.3390/ijms22084183] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/29/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) p38 is an essential family of kinases, regulating responses to environmental stress and inflammation. There is an ever-increasing plethora of physiological and pathophysiological conditions attributed to p38 activity, ranging from cell division and embryonic development to the control of a multitude of diseases including retinal, cardiovascular, and neurodegenerative diseases, diabetes, and cancer. Despite the decades of intense investigation, a viable therapeutic approach to disrupt p38 signaling remains elusive. A growing body of evidence supports the pathological significance of an understudied atypical p38 signaling pathway. Atypical p38 signaling is driven by a direct interaction between the adaptor protein TAB1 and p38α, driving p38 autophosphorylation independent from the classical MKK3 and MKK6 pathways. Unlike the classical MKK3/6 signaling pathway, atypical signaling is selective for just p38α, and at present has only been characterized during pathophysiological stimulation. Recent studies have linked atypical signaling to dermal and vascular inflammation, myocardial ischemia, cancer metastasis, diabetes, complications during pregnancy, and bacterial and viral infections. Additional studies are required to fully understand how, when, where, and why atypical p38 signaling is induced. Furthermore, the development of selective TAB1-p38 inhibitors represents an exciting new opportunity to selectively inhibit pathological p38 signaling in a wide array of diseases.
Collapse
|
8
|
Shi YS, Zhang Y, Li HT, Wu CH, El-Seedi HR, Ye WK, Wang ZW, Li CB, Zhang XF, Kai GY. Limonoids from Citrus: Chemistry, anti-tumor potential, and other bioactivities. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104213] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
Zhao M, Zhang RZ, Qi DW, Chen HY, Zhang GC. CacyBP/SIP promotes tumor progression by regulating apoptosis and arresting the cell cycle in osteosarcoma. Exp Ther Med 2020; 20:1397-1404. [PMID: 32742374 PMCID: PMC7388306 DOI: 10.3892/etm.2020.8843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 04/21/2020] [Indexed: 12/30/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor in pediatric and adolescent patients. The calcyclin-binding protein/Siah-1-interacting protein (CacyBP/SIP) performs an essential function in cell proliferation and apoptosis. The present study investigated the effect of CacyBP/SIP in OS cell proliferation and apoptosis. CacyBP/SIP mRNA expression levels were evaluated in four OS cell lines by quantitative PCR. CacyBP/SIP expression was downregulated in Saos-2 cells using a lentivirus transfection system and the transfection efficiency was analyzed. The effects of CacyBP/SIP downregulation on Saos-2 cell proliferation and colony-formation ability were evaluated by MTT and colony-formation assays. The effect of CacyBP/SIP knockdown on Saos-2 cell cycle and apoptosis was analyzed by flow cytometry cell sorting. The Cancer Genome Atlas (TCGA) data was analyzed for validation. Human OS cell lines Saos-2, MG-63, HOS and U20S expressed CacyBP/SIP mRNA. CacyBP/SIP knockdown significantly inhibited cell proliferation and colony-formation ability. G1/S phase arrest was induced by CacyBP/SIP downregulation, which also resulted in the downregulation of CDK and cyclins and the upregulation of p21. In addition, CacyBP/SIP downregulation induced Saos-2 cell apoptosis mediated by Bax and Bcl-2. High expression of CacyBP/SIP was significantly associated with poor prognosis in TCGA sarcoma database. Thus, CacyBP/SIP performs important functions in the proliferation and apoptosis of human OS cells.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Musculoskeletal Tumors, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Run-Zi Zhang
- Department of Musculoskeletal Tumors, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Dian-Wen Qi
- Department of Musculoskeletal Tumors, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Hong-Yi Chen
- Department of Musculoskeletal Tumors, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| | - Guo-Chuan Zhang
- Department of Musculoskeletal Tumors, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei 050051, P.R. China
| |
Collapse
|
10
|
Han J, Wu J, Silke J. An overview of mammalian p38 mitogen-activated protein kinases, central regulators of cell stress and receptor signaling. F1000Res 2020; 9. [PMID: 32612808 PMCID: PMC7324945 DOI: 10.12688/f1000research.22092.1] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/18/2020] [Indexed: 12/19/2022] Open
Abstract
The p38 family is a highly evolutionarily conserved group of mitogen-activated protein kinases (MAPKs) that is involved in and helps co-ordinate cellular responses to nearly all stressful stimuli. This review provides a succinct summary of multiple aspects of the biology, role, and substrates of the mammalian family of p38 kinases. Since p38 activity is implicated in inflammatory and other diseases, we also discuss the clinical implications and pharmaceutical approaches to inhibit p38.
Collapse
Affiliation(s)
- Jiahuai Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jianfeng Wu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - John Silke
- The Walter and Eliza Hall Institute, IG Royal Parade, Parkville, Victoria, 3052, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, 3050, Australia
| |
Collapse
|
11
|
Jurewicz E, Miazga K, Fabczak H, Sławińska U, Filipek A. CacyBP/SIP in the rat spinal cord in norm and after transection - Influence on the phosphorylation state of ERK1/2 and p38 kinases. Neurochem Int 2020; 138:104757. [PMID: 32544715 DOI: 10.1016/j.neuint.2020.104757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 01/10/2023]
Abstract
INTRODUCTION CacyBP/SIP is a multifunctional protein present in various mammalian tissues, among them in brain. Recently, it has been shown that CacyBP/SIP exhibits phosphatase activity towards ERK1/2 and p38 kinases. OBJECTIVES The aim of our study was to analyze the localization and level of CacyBP/SIP and its substrates, phosphorylated ERK1/2 (p-ERK1/2) and phosphorylated p38 (p-p38) kinases, in an intact and transected rat spinal cord. METHODS To achieve our goals we have performed Western blot/densitometric analysis and double immunofluorescence staining using rat spinal cord tissue, intact and after total transection at different time points. RESULTS We have observed a decrease in the level of CacyBP/SIP and an increase in the level of p-ERK1/2 and of p-p38 in fragments of the spinal cord excised 1 and 3 months after transection. Moreover, immunofluorescence staining has shown that CacyBP/SIP, p-ERK1/2 or p-p38 co-localized with a neuronal marker, NeuN, and with an oligodendrocyte marker, Olig2. CONCLUSION The inverse correlation between CacyBP/SIP and p-ERK1/2 or p-p38 levels suggests that CacyBP/SIP may dephosphorylate p-ERK1/2 and p-p38 kinases and be involved in neural plasticity following spinal cord injury.
Collapse
Affiliation(s)
- Ewelina Jurewicz
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| | - Krzysztof Miazga
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| | - Hanna Fabczak
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| | - Urszula Sławińska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Str., 02-093, Warsaw, Poland.
| |
Collapse
|
12
|
Xuan C, Gao Y, Jin M, Xu S, Wang L, Wang Y, Han R, Shi K, Chen X, An Q. Bioinformatic analysis of Cacybp-associated proteins using human glioma databases. IUBMB Life 2019; 71:827-834. [PMID: 30762928 DOI: 10.1002/iub.1999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022]
Abstract
The ubiquitin-proteasome system is the primary cellular pathway for protein degradation, mediating 80% of intracellular protein degradation. Because of the widespread presence of ubiquitin-modified protein substrates, ubiquitination can regulate a variety of cellular activities including cell proliferation, apoptosis, autophagy, endocytosis, DNA damage repair, and immune responses. With the continuous generation of genomics data in recent years it has become particularly important to analyze these data effectively and reasonably. Cacybp forms a complex with the E3 ubiquitinated ligase Siah1 to participate in ubiquitination. We analyzed Cacybp-associated genes using the Gene Expression Omnibus (GEO) and CGGA (Chinese Glioma Genome Atlas) databases and identified 121 differentially expressed genes (DEGs), of which 46 were downregulated and 75 were upregulated. The biological processes, molecular functions, and protein-protein interaction (PPI) network of differential genes were analyzed by Cytoscape software and STRING software. We found no difference in Cacybp expression among different grades of gliomas and there was no significant association between the expression level of Cacybp and the prognosis of patients with glioma in LGG and GBM. © 2019 IUBMB Life, 1-8, 2019.
Collapse
Affiliation(s)
- Chengmin Xuan
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| | - Yong Gao
- Department of Orthopaedics, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| | - Mingwei Jin
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| | - Shumei Xu
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| | - Lei Wang
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| | - Yuan Wang
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| | - Rui Han
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| | - Kunpeng Shi
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| | - Xincheng Chen
- Department of Neurosurgery, Xinyi People's Hospital, Xinyi, Jiangsu, People's Republic of China
| | - Qi An
- Department of Hematology, Xuzhou Children's Hospital of Xuzhou Medical University, Xuzhou, Jiangsu
| |
Collapse
|
13
|
Rosińska S, Filipek A. Interaction of CacyBP/SIP with NPM1 and its influence on NPM1 localization and function in oxidative stress. J Cell Physiol 2018; 233:8826-8838. [PMID: 29806702 DOI: 10.1002/jcp.26797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/30/2018] [Indexed: 12/25/2022]
Abstract
Calcyclin (S100A6) binding protein/Siah-1 interacting protein (CacyBP/SIP) is mainly a cytoplasmic protein; however, some literature data suggested its presence in the nucleus. In this work we examined more precisely the nuclear localization and function of CacyBP/SIP. By applying mass spectrometry, we have identified several nuclear proteins, among them is nucleophosmin (NPM1), that may interact with CacyBP/SIP. Subsequent assays revealed that CacyBP/SIP forms complexes with NPM1 in the cell and that the interaction between these two proteins is direct. Interestingly, although CacyBP/SIP exhibits phosphatase activity, we have found that its overexpression favors phosphorylation of NPM1 on S125. In turn, the RNA immunoprecipitation assay indicated that the altered CacyBP/SIP level has an impact on the amount of 28S and 18S rRNA bound to NPM1. The overexpression of CacyBP/SIP resulted in a significant increase in the binding of 28S and 18S rRNA to NPM1, whereas silencing of CacyBP/SIP expression decreased 28S rRNA binding and had no effect on the binding of 18S rRNA. Further studies have shown that under oxidative stress, CacyBP/SIP overexpression alters NPM1 distribution in cell nuclei. In addition, staining for a nucleolar marker, fibrillarin, revealed that CacyBP/SIP is indispensable for maintaining the nucleolar structure. These results are in agreement with data obtained by western blot analysis, which show that upon oxidative stress the NPM1 level decreases but that CacyBP/SIP overexpression counteracts the effect of stress. Altogether, our results show for the first time that CacyBP/SIP binds to and affects the properties of a nuclear protein, NPM1, and that it is indispensable for preserving the structure of nucleoli under oxidative stress.
Collapse
Affiliation(s)
- Sara Rosińska
- Nencki Institute of Experimental Biology, Laboratory of Calcium Binding Proteins, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Filipek
- Nencki Institute of Experimental Biology, Laboratory of Calcium Binding Proteins, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
14
|
Kądziołka B, Dębski KJ, Bieganowski P, Leśniak W, Filipek A. Transcriptional regulation of CacyBP/SIP gene and the influence of increased CacyBP/SIP level on gene expression pattern in colorectal cancer HCT116 cells. IUBMB Life 2017; 70:50-59. [PMID: 29197151 DOI: 10.1002/iub.1698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/13/2017] [Indexed: 11/09/2022]
Abstract
The CacyBP/SIP protein is expressed at a particularly high level in brain, spleen, and various tumors. In this work, we have studied transcriptional regulation of the CacyBP/SIP gene and the influence of increased CacyBP/SIP level on gene expression in colorectal cancer HCT116 cells. We have shown that E2F1, EGR1, and CREB transcription factors bind to the CacyBP/SIP gene promoter and stimulate transcription of CacyBP/SIP gene. The role of CREB was further confirmed by the observation that forskolin, a strong activator of CREB phosphorylation/activity, increased CacyBP/SIP gene promoter activity. Moreover, we have shown that CREB dominant negative mutants, CREB133 and KCREB, inhibits CacyBP/SIP promoter activity. To check the biological significance of increased CacyBP/SIP expression/level we have applied RNA microarray analysis and have found that upregulation of CacyBP/SIP entails changes in mRNA level of many genes involved, among others, in immune processes. © 2017 IUBMB Life, 70(1):50-59, 2018.
Collapse
Affiliation(s)
- Beata Kądziołka
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Konrad J Dębski
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Paweł Bieganowski
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, Warsaw, Poland
| | - Wiesława Leśniak
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Filipek
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|