1
|
Lu P, Moriwaki Y, Zhang M, Katayama Y, Lu Y, Okamoto K, Terada T, Shimizu K, Wang M, Kamiya T, Fujiwara T, Asakura T, Suzuki M, Yoshimura E, Nagata K. Functional characterisation of two ferric-ion coordination modes of TtFbpA, the periplasmic subunit of an ABC-type iron transporter from Thermus thermophilus HB8. Metallomics 2019; 11:2078-2088. [DOI: 10.1039/c9mt00245f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ferric ion binding protein A of Thermus thermophilus HB8 (TtFbpA) is the periplasmic subunit of an ABC-type iron transporter.
Collapse
|
2
|
Saxena M, Loza-Rosas SA, Gaur K, Sharma S, Pérez Otero SC, Tinoco AD. Exploring titanium(IV) chemical proximity to iron(III) to elucidate a function for Ti(IV) in the human body. Coord Chem Rev 2018; 363:109-125. [PMID: 30270932 PMCID: PMC6159949 DOI: 10.1016/j.ccr.2018.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite its natural abundance and widespread use as food, paint additive, and in bone implants, no specific biological function of titanium is known in the human body. High concentrations of Ti(IV) could result in cellular toxicity, however, the absence of Ti toxicity in the blood of patients with titanium bone implants indicates the presence of one or more biological mechanisms to mitigate toxicity. Similar to Fe(III), Ti(IV) in blood binds to the iron transport protein serum transferrin (sTf), which gives credence to the possibility of its cellular uptake mechanism by transferrin-directed endocytosis. However, once inside the cell, how sTf bound Ti(IV) is released into the cytoplasm, utilized, or stored remain largely unknown. To explain the molecular mechanisms involved in Ti use in cells we have drawn parallels with those for Fe(III). Based on its chemical similarities with Fe(III), we compare the biological coordination chemistry of Fe(III) and Ti(IV) and hypothesize that Ti(IV) can bind to similar intracellular biomolecules. The comparable ligand affinity profiles suggest that at high Ti(IV) concentrations, Ti(IV) could compete with Fe(III) to bind to biomolecules and would inhibit Fe bioavailability. At the typical Ti concentrations in the body, Ti might exist as a labile pool of Ti(IV) in cells, similar to Fe. Ti could exhibit different types of properties that would determine its cellular functions. We predict some of these functions to mimic those of Fe in the cell and others to be specific to Ti. Bone and cellular speciation and localization studies hint toward various intracellular targets of Ti like phosphoproteins, DNA, ribonucleotide reductase, and ferritin. However, to decipher the exact mechanisms of how Ti might mediate these roles, development of innovative and more sensitive methods are required to track this difficult to trace metal in vivo.
Collapse
Affiliation(s)
- Manoj Saxena
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Sergio A. Loza-Rosas
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Kavita Gaur
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Shweta Sharma
- Department of Environmental Sciences, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Sofia C. Pérez Otero
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| | - Arthur D. Tinoco
- Department of Chemistry, University of Puerto Rico Río Piedras, San Juan, PR 00931
| |
Collapse
|
3
|
Bozkurt Varolgunes Y, Demir A. ProteinAC: a frequency domain technique for analyzing protein dynamics. Phys Biol 2018; 15:026009. [DOI: 10.1088/1478-3975/aa9de2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
4
|
Sensoy O, Atilgan AR, Atilgan C. FbpA iron storage and release are governed by periplasmic microenvironments. Phys Chem Chem Phys 2017; 19:6064-6075. [DOI: 10.1039/c6cp06961d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Guven G, Atilgan AR, Atilgan C. Protonation States of Remote Residues Affect Binding–Release Dynamics of the Ligand but Not the Conformation of Apo Ferric Binding Protein. J Phys Chem B 2014; 118:11677-87. [DOI: 10.1021/jp5079218] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gokce Guven
- Sabanci University, Faculty of Engineering
and Natural Sciences, Tuzla
34956 Istanbul, Turkey
| | - Ali Rana Atilgan
- Sabanci University, Faculty of Engineering
and Natural Sciences, Tuzla
34956 Istanbul, Turkey
| | - Canan Atilgan
- Sabanci University, Faculty of Engineering
and Natural Sciences, Tuzla
34956 Istanbul, Turkey
| |
Collapse
|
6
|
Chen W, Ye D, Wang H, Lin D, Huang J, Sun H, Zhong W. Binding of oxo-Cu2 clusters to ferric ion-binding protein A from Neisseria gonorrhoeae: a structural insight. Metallomics 2014; 5:1430-9. [PMID: 23884152 DOI: 10.1039/c3mt00091e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ferric ion-binding protein A (FbpA), a member of transferrin superfamily, is a periplasmic iron transporter employed by many Gram-negative pathogens. Our experiments indicated copper(ii) could bind with Neisseria gonorrhoeae FbpA (NgFbpA), and the binding constant reached up to (8.7 ± 0.2) × 10(8) M(-1)via UV-vis titration. The crystal structure of recombinant Cu-NgFbpA at 2.1 Å revealed that the oxo-Cu2 clusters (dinuclear centres) assembled in the iron binding cleft and were bound to the two adjacent tyrosine residues (Y195 and Y196) of the protein, two Cu ions coordinated with two tyrosines, Y195 and Y196, respectively, which was different from the binding model of Fe ion with FbpA, in which Y195 and Y196 coordinated together with one Fe ion. While this was similar to the binding of Zr and Hf ion clusters, Y195 and Y196 coordinated with two metal ions and the μ-oxo-bridges linking the metal ions. Structural superimposition demonstrated that oxo-Cu2-NgFbpA still keeping an open conformation, similar to the apo-form of NgFbpA. The structure presented additional information towards an understanding of the function of FbpA, and provided a detailed binding model for FbpA protein with the possible metal ions in a biological system.
Collapse
Affiliation(s)
- Weijing Chen
- School of Pharmacy, Second Military Medical University, Shanghai, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Miethke M. Molecular strategies of microbial iron assimilation: from high-affinity complexes to cofactor assembly systems. Metallomics 2013. [DOI: 10.1039/c2mt20193c] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Parker Siburt CJ, Mietzner TA, Crumbliss AL. FbpA--a bacterial transferrin with more to offer. Biochim Biophys Acta Gen Subj 2011; 1820:379-92. [PMID: 21933698 DOI: 10.1016/j.bbagen.2011.09.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/25/2011] [Accepted: 09/02/2011] [Indexed: 01/26/2023]
Abstract
BACKGROUND Gram negative bacteria require iron for growth and virulence. It has been shown that certain pathogenic bacteria such as Neisseria gonorrhoeae possess a periplasmic protein called ferric binding protein (FbpA), which is a node in the transport of iron from the cell exterior to the cytosol. SCOPE OF REVIEW The relevant literature is reviewed which establishes the molecular mechanism of FbpA mediated iron transport across the periplasm to the inner membrane. MAJOR CONCLUSIONS Here we establish that FbpA may be considered a bacterial transferrin on structural and functional grounds. Data are presented which suggest a continuum whereby FbpA may be considered as a naked iron carrier, as well as a Fe-chelate carrier, and finally a member of the larger family of periplasmic binding proteins. GENERAL SIGNIFICANCE An investigation of the molecular mechanisms of action of FbpA as a member of the transferrin super family enhances our understanding of bacterial mechanisms for acquisition of the essential nutrient iron, as well as the modes of action of human transferrin, and may provide approaches to the control of pathogenic diseases. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.
Collapse
|
9
|
Weaver KD, Gabričević M, Anderson DS, Adhikari P, Mietzner TA, Crumbliss AL. Role of citrate and phosphate anions in the mechanism of iron(III) sequestration by ferric binding protein: kinetic studies of the formation of the holoprotein of wild-type FbpA and its engineered mutants. Biochemistry 2010; 49:6021-32. [PMID: 20496864 PMCID: PMC3674840 DOI: 10.1021/bi902231c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ferric binding protein A (FbpA) plays a central role in the iron acquisition processes of pathogenic Neisseria gonorrheae, Neisseria meningitidis, and Haemophilus influenzae. FbpA functions as an iron shuttle within the periplasmic space of these Gram-negative human pathogens. Iron is picked up by FbpA at the periplasmic aspect of the outer membrane with concomitant acquisition of a synergistic anion. Here we report the kinetics and mechanisms involved with loading of iron(III) into iron-free FbpA using iron(III) citrate as an iron source in the presence of excess citrate or phosphate (physiologically available anions) at pH 6.5. In the presence of excess phosphate, iron(III) citrate loads into apo-FbpA in three kinetically distinguishable steps, while in the presence of excess citrate, only two steps are discernible. A stable intermediate containing iron(III) citrate-bound FbpA is observed in each case. The observation of an additional kinetic step and moderate increase in apparent rate constants suggests an active role for phosphate in the iron insertion process. To further elucidate a mechanism for iron loading, we report on the sequestration kinetics of iron(III) citrate in the presence of phosphate with binding site mutant apo-FbpAs, H9E, E57D, E57Q, Q58A, Y195F, and Y196H. Tyrosine mutations drastically alter the kinetics and hamper iron sequestration ability. H9E, E57D, and E57Q have near native iron sequestration behavior; however, iron binding rates are altered, enabling assignment of sequential side chain interactions. Additionally, this investigation elaborates on the function of FbpA as a carrier for iron chelates as well as "naked" or free iron as originally proposed.
Collapse
Affiliation(s)
| | - Mario Gabričević
- Department of Chemistry, Duke University, Durham, North Carolina, 27708
| | - Damon S. Anderson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15206
| | - Pratima Adhikari
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15206
| | - Timothy A. Mietzner
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, 15206
| | | |
Collapse
|
10
|
Niobium uptake and release by bacterial ferric ion binding protein. Bioinorg Chem Appl 2010:307578. [PMID: 20445753 PMCID: PMC2860717 DOI: 10.1155/2010/307578] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 02/11/2010] [Indexed: 11/28/2022] Open
Abstract
Ferric ion binding proteins (Fbps) transport FeIII across the periplasm and are vital for the virulence of many Gram negative bacteria. Iron(III) is tightly bound in a hinged binding cleft with octahedral coordination geometry involving binding to protein side chains (including tyrosinate residues) together with a synergistic anion such as phosphate. Niobium compounds are of interest for their potential biological activity, which has been little explored. We have studied the binding of cyclopentadienyl and nitrilotriacetato NbV complexes to the Fbp from Neisseria gonorrhoeae by UV-vis spectroscopy, chromatography, ICP-OES, mass spectrometry, and Nb K-edge X-ray absorption spectroscopy. These data suggest that NbV binds strongly to Fbp and that a dinuclear NbV centre can be readily accommodated in the interdomain binding cleft. The possibility of designing niobium-based antibiotics which block iron uptake by pathogenic bacteria is discussed.
Collapse
|
11
|
Atilgan C, Atilgan AR. Perturbation-response scanning reveals ligand entry-exit mechanisms of ferric binding protein. PLoS Comput Biol 2009; 5:e1000544. [PMID: 19851447 PMCID: PMC2758672 DOI: 10.1371/journal.pcbi.1000544] [Citation(s) in RCA: 176] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 09/22/2009] [Indexed: 11/18/2022] Open
Abstract
We study apo and holo forms of the bacterial ferric binding protein (FBP) which exhibits the so-called ferric transport dilemma: it uptakes iron from the host with remarkable affinity, yet releases it with ease in the cytoplasm for subsequent use. The observations fit the “conformational selection” model whereby the existence of a weakly populated, higher energy conformation that is stabilized in the presence of the ligand is proposed. We introduce a new tool that we term perturbation-response scanning (PRS) for the analysis of remote control strategies utilized. The approach relies on the systematic use of computational perturbation/response techniques based on linear response theory, by sequentially applying directed forces on single-residues along the chain and recording the resulting relative changes in the residue coordinates. We further obtain closed-form expressions for the magnitude and the directionality of the response. Using PRS, we study the ligand release mechanisms of FBP and support the findings by molecular dynamics simulations. We find that the residue-by-residue displacements between the apo and the holo forms, as determined from the X-ray structures, are faithfully reproduced by perturbations applied on the majority of the residues of the apo form. However, once the stabilizing ligand (Fe) is integrated to the system in holo FBP, perturbing only a few select residues successfully reproduces the experimental displacements. Thus, iron uptake by FBP is a favored process in the fluctuating environment of the protein, whereas iron release is controlled by mechanisms including chelation and allostery. The directional analysis that we implement in the PRS methodology implicates the latter mechanism by leading to a few distant, charged, and exposed loop residues. Upon perturbing these, irrespective of the direction of the operating forces, we find that the cap residues involved in iron release are made to operate coherently, facilitating release of the ion. Upon binding ligands, many proteins undergo structural changes compared to the unbound form. We introduce a methodology to monitor these changes and to study which mechanisms arrange conformational shifts between the liganded and free forms. Our method is simple, yet it efficiently characterizes the response of proteins to a given perturbation on systematically selected residues. The coherent responses predicted are validated by molecular dynamics simulations. The results indicate that the iron uptake by the ferric binding protein is favorable in a thermally fluctuating environment, while release of iron is allosterically moderated. Since ferric binding protein exhibits a high sequence identity with human transferrin whose allosteric anion binding sites generate large conformational changes around the binding region, we suggest mutational studies on remotely controlling sites identified in this work.
Collapse
Affiliation(s)
- Canan Atilgan
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey.
| | | |
Collapse
|
12
|
Parker Siburt CJ, Roulhac PL, Weaver KD, Noto JM, Mietzner TA, Cornelissen CN, Fitzgerald MC, Crumbliss AL. Hijacking transferrin bound iron: protein-receptor interactions involved in iron transport in N. gonorrhoeae. Metallomics 2009; 1:249-55. [PMID: 20161024 PMCID: PMC2749328 DOI: 10.1039/b902860a] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neisseria gonorrhoeae has the capacity to acquire iron from its human host by removing this essential nutrient from serum transferrin. The transferrin binding proteins, TbpA and TbpB constitute the outer membrane receptor complex responsible for binding transferrin, extracting the tightly bound iron from the host-derived molecule, and transporting iron into the periplasmic space of this Gram-negative bacterium. Once iron is transported across the outer membrane, ferric binding protein A (FbpA) moves the iron across the periplasmic space and initiates the process of transport into the bacterial cytosol. The results of the studies reported here define the multiple steps in the iron transport process in which TbpA and TbpB participate. Using the SUPREX technique for assessing the thermodynamic stability of protein-ligand complexes, we report herein the first direct measurement of periplasmic FbpA binding to the outer membrane protein TbpA. We also show that TbpA discriminates between apo- and holo-FbpA; i.e. the TbpA interaction with apo-FbpA is higher affinity than the TbpA interaction with holo-FbpA. Further, we demonstrate that both TbpA and TbpB individually can deferrate transferrin and ferrate FbpA without energy supplied from TonB resulting in sequestration by apo-FbpA.
Collapse
Affiliation(s)
| | - Petra L. Roulhac
- Department of Chemistry, Duke University, Durham, NC 27708-0346, USA
| | | | - Jennifer M. Noto
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| | - Timothy A. Mietzner
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Cynthia N. Cornelissen
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA 23298-0678, USA
| | | | | |
Collapse
|
13
|
Biver T, Friani R, Gattai C, Secco F, Tiné MR, Venturini M. Mechanism of Indium(III) Exchange between NTA and Transferrin: A Kinetic Approach. J Phys Chem B 2008; 112:12168-73. [DOI: 10.1021/jp8045033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tarita Biver
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56100 Pisa, Italy
| | - Rossella Friani
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56100 Pisa, Italy
| | - Chiara Gattai
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56100 Pisa, Italy
| | - Fernando Secco
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56100 Pisa, Italy
| | - Maria Rosaria Tiné
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56100 Pisa, Italy
| | - Marcella Venturini
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via Risorgimento 35, 56100 Pisa, Italy
| |
Collapse
|
14
|
Roulhac PL, Weaver KD, Adhikari P, Anderson DS, DeArmond PD, Mietzner TA, Crumbliss AL, Fitzgerald MC. Ex Vivo Analysis of Synergistic Anion Binding to FbpA in Gram-Negative Bacteria. Biochemistry 2008; 47:4298-305. [DOI: 10.1021/bi701188x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Petra L. Roulhac
- Department of Chemistry, Duke University, Durham, North Carolina 27708, and Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Katherine D. Weaver
- Department of Chemistry, Duke University, Durham, North Carolina 27708, and Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Pratima Adhikari
- Department of Chemistry, Duke University, Durham, North Carolina 27708, and Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Damon S. Anderson
- Department of Chemistry, Duke University, Durham, North Carolina 27708, and Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Patrick D. DeArmond
- Department of Chemistry, Duke University, Durham, North Carolina 27708, and Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Timothy A. Mietzner
- Department of Chemistry, Duke University, Durham, North Carolina 27708, and Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Alvin L. Crumbliss
- Department of Chemistry, Duke University, Durham, North Carolina 27708, and Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| | - Michael C. Fitzgerald
- Department of Chemistry, Duke University, Durham, North Carolina 27708, and Department of Molecular Genetics and Biochemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
15
|
Heymann JJ, Weaver KD, Mietzner TA, Crumbliss AL. Sulfate as a synergistic anion facilitating iron binding by the bacterial transferrin FbpA: the origins and effects of anion promiscuity. J Am Chem Soc 2007; 129:9704-12. [PMID: 17630737 PMCID: PMC3674819 DOI: 10.1021/ja0709268] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ferric binding protein, FbpA, has been demonstrated to facilitate the transport of naked Fe3+ across the periplasmic space of several Gram-negative bacteria. The sequestration of iron by FbpA is facilitated by the presence of a synergistic anion, such as phosphate or sulfate. Here we report the sequestration of Fe3+ by FbpA in the presence of sulfate, at an assumed periplasmic pH of 6.5 to form FeFbpA-SO4 with K'(eff) = 1.7 x 10(16) M(-1) (at 20 degrees C, 50 mM MES, 200 mM KCl). The iron affinity of the FeFbpA-SO4 protein assembly is 2 orders of magnitude lower than when bound with phosphate and is the lowest of any of the FeFbpA-X assemblies yet reported. Iron reduction at the cytosolic membrane receptor may be an essential aspect of the periplasmic iron-transport process, and with an E(1/2) of -158 mV (NHE), FeFbpA-SO4 is the most easily reduced of all FeFbpA-X assemblies yet studied. The variation of FeFbpA-X assembly stability (K'(eff)) and ease of reduction (E(1/2)) with differing synergistic anions X(n-) are correlated over a range of 14 kJ, suggesting that the variations in redox potentials are due to stabilization of Fe3+ in FeFbpA-X by X(n-). Anion promiscuity of FbpA in the diverse composition of the periplasmic space is illustrated by the ex vivo exchange kinetics of FeFbpA-SO4 with phosphate and arsenate, where first-order kinetics with respect to FeFbpA-SO4 (k = 30 s(-1)) are observed at pH 6.5, independent of entering anion concentration and identity. Anion lability and influence on the iron affinity and reduction potential for FeFbpA-X support the hypothesis that synergistic anion exchange may be an important regulator in iron delivery to the cytosol. This structural and thermodynamic analysis of anion binding in FeFbpA-X provides additional insight into anion promiscuity and importance.
Collapse
Affiliation(s)
- J. J. Heymann
- Department of Chemistry, Duke University, Durham, NC 27708−0346
| | - K. D. Weaver
- Department of Chemistry, Duke University, Durham, NC 27708−0346
| | - T. A. Mietzner
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - A. L. Crumbliss
- Department of Chemistry, Duke University, Durham, NC 27708−0346
| |
Collapse
|
16
|
Anderson DS, Adhikari P, Weaver KD, Crumbliss AL, Mietzner TA. The Haemophilus influenzae hFbpABC Fe3+ transporter: analysis of the membrane permease and development of a gallium-based screen for mutants. J Bacteriol 2007; 189:5130-41. [PMID: 17496104 PMCID: PMC1951847 DOI: 10.1128/jb.00145-07] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The obligate human pathogen Haemophilus influenzae utilizes a siderophore-independent (free) Fe(3+) transport system to obtain this essential element from the host iron-binding protein transferrin. The hFbpABC transporter is a binding protein-dependent ABC transporter that functions to shuttle (free) Fe(3+) through the periplasm and across the inner membrane of H. influenzae. This investigation focuses on the structure and function of the hFbpB membrane permease component of the transporter, a protein that has eluded prior characterization. Based on multiple-sequence alignments between permease orthologs, a series of site-directed mutations targeted at residues within the two conserved permease motifs were generated. The hFbpABC transporter was expressed in a siderophore-deficient Escherichia coli background, and effects of mutations were analyzed using growth rescue and radiolabeled (55)Fe(3+) transport assays. Results demonstrate that mutation of the invariant glycine (G418A) within motif 2 led to attenuated transport activity, while mutation of the invariant glycine (G155A/V/E) within motif 1 had no discernible effect on activity. Individual mutations of well-conserved leucines (L154D and L417D) led to attenuated and null transport activities, respectively. As a complement to site-directed methods, a mutant screen based on resistance to the toxic iron analog gallium, an hFbpABC inhibitor, was devised. The screen led to the identification of several significant hFbpB mutations; V497I, I174F, and S475I led to null transport activities, while S146Y resulted in attenuated activity. Significant residues were mapped to a topological model of the hFbpB permease, and the implications of mutations are discussed in light of structural and functional data from related ABC transporters.
Collapse
Affiliation(s)
- Damon S Anderson
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1240 Biomedical Science Tower, Lothrop Street, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
17
|
Khan A, Shouldice S, Tari L, Schryvers A. The role of the synergistic phosphate anion in iron transport by the periplasmic iron-binding protein from Haemophilus influenzae. Biochem J 2007; 403:43-8. [PMID: 17147516 PMCID: PMC1828884 DOI: 10.1042/bj20061589] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The acquisition of iron from transferrin by Gram-negative bacterial pathogens is dependent on a periplasmic ferric-ion-binding protein, FbpA. FbpA shuttles iron from the outer membrane to an inner membrane transport complex. A bound phosphate anion completes the iron co-ordination shell of FbpA and kinetic studies demonstrate that the anion plays a critical role in iron binding and release in vitro. The present study was initiated to directly address the hypothesis that the synergistic anion is required for transport of iron in intact cells. A series of site-directed mutants in the anion-binding amino acids of the Haemophilus influenzae FbpA (Gln-58, Asn-175 and Asn-193) were prepared to provide proteins defective in binding of the phosphate anion. Crystal structures of various mutants have revealed that alteration of the C-terminal domain ligands (Asn-175 or Asn-193) but not the N-terminal domain ligand (Gln-58) abrogated binding of the phosphate anion. The mutant proteins were introduced into H. influenzae to evaluate their ability to mediate iron transport. All of the single site-directed mutants (Q58L, N175L and N193L) were capable of mediating iron acquisition from transferrin and from limiting concentrations of ferric citrate. The results suggest that the transport of iron by FbpA is not dependent on binding of phosphate in the synergistic anion-binding site.
Collapse
Affiliation(s)
- Ali G. Khan
- *Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
| | - Stephen R. Shouldice
- *Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
| | | | - Anthony B. Schryvers
- *Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, AB, Canada T2N 4N1
- To whom correspondence should be addressed (email )
| |
Collapse
|
18
|
Roulhac PL, Powell KD, Dhungana S, Weaver KD, Mietzner TA, Crumbliss AL, Fitzgerald MC. SUPREX (Stability of Unpurified Proteins from Rates of H/D Exchange) analysis of the thermodynamics of synergistic anion binding by ferric-binding protein (FbpA), a bacterial transferrin. Biochemistry 2005; 43:15767-74. [PMID: 15595832 DOI: 10.1021/bi0481848] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
SUPREX (stability of unpurified proteins from rates of H/D exchange) is a H/D exchange- and matrix-assisted laser desorption/ionization (MALDI)-based technique for characterizing the equilibrium unfolding/refolding properties of proteins and protein-ligand complexes. Here, we describe the application of SUPREX to the thermodynamic analysis of synergistic anion binding to iron-loaded ferric-binding protein (Fe(3+)FbpA-X, X = synergistic anion). The in vivo function of FbpA is to transport unchelated Fe(3+) across the periplasmic space of certain Gram-negative bacteria, a process that requires simultaneous binding of a synergistic anion. Our results indicate that Fe(3+)FbpA-X is not a so-called "ideal" protein system for SUPREX analyses because it does not exhibit two-state folding properties and it does not exhibit EX2 H/D exchange behavior. However, despite these nonideal properties of the Fe(3+)FbpA-X protein-folding/unfolding reaction, we demonstrate that the SUPREX technique is still amenable to the quantitative thermodynamic analysis of synergistic anion binding to Fe(3+)FbpA. As part of this work, the SUPREX technique was used to evaluate the DeltaDeltaG(f) values of four synergistic anion-containing complexes of Fe(3+)FbpA (i.e., Fe(3+)FbpA-PO(4), Fe(3+)FbpA-citrate, Fe(3+)FbpA-AsO(4), and Fe(3+)FbpA-SO(4)). The DeltaDeltaG(f) value obtained for Fe(3+)FbpA-citrate relative to Fe(3+)FbpA-PO(4) (1.45 +/- 0.44 kcal/mol), is in good agreement with that reported previously (1.98 kcal/mol). The value obtained for Fe(3+)FbpA-AsO(4) (0.58 +/- 0.45 kcal/mol) was also consistent with that reported previously (0.68 kcal/mol), but the measurement error is very close to the magnitude of the value. This work (i) demonstrates the utility of the SUPREX method for studying anion binding by FbpA, (ii) provides the first evaluation of a DeltaDeltaG(f) value for Fe(3+)FbpA-SO(4), -1.43 +/- 0.17 kcal/mol, and (iii) helps substantiate our hypothesis that the synergistic anion plays a role in controlling the lability of iron bound to FbpA in the transport process.
Collapse
Affiliation(s)
- Petra L Roulhac
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Shouldice SR, McRee DE, Dougan DR, Tari LW, Schryvers AB. Novel anion-independent iron coordination by members of a third class of bacterial periplasmic ferric ion-binding proteins. J Biol Chem 2004; 280:5820-7. [PMID: 15576371 DOI: 10.1074/jbc.m411238200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The uptake of the element iron is vital for the survival of most organisms. Numerous pathogenic Gram-negative bacteria utilize a periplasm-to-cytosol ATP-binding cassette transport pathway to transport this essential atom in to the cell. In this study, we investigated the Yersinia enterocolitica (YfuA) and Serratia marcescens (SfuA) iron-binding periplasmic proteins. We have determined the 1.8-angstroms structures of iron-loaded (YfuA) and iron-free (SfuA) forms of this class of proteins. Although the sequence of these proteins varies considerably from the other members of the transferrin structural superfamily, they adopt the same three-dimensional fold. The iron-loaded YfuA structure illustrates the unique nature of this new class of proteins in that they are able to octahedrally coordinate the ferric ion in the absence of a bound anion. The iron-free SfuA structure contains a bound citrate anion in the iron-binding cleft that tethers the N- and C-terminal domains of the apo protein and stabilizes the partially open structure.
Collapse
Affiliation(s)
- Stephen R Shouldice
- Department of Microbiology and Infectious Diseases, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
20
|
Dhungana S, Anderson DS, Mietzner TA, Crumbliss AL. Phosphate ester hydrolysis is catalyzed by a bacterial transferrin: potential implications for in vivo iron transport mechanisms. J Inorg Biochem 2004; 98:1975-7. [PMID: 15522424 DOI: 10.1016/j.jinorgbio.2004.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 07/19/2004] [Accepted: 08/06/2004] [Indexed: 11/23/2022]
Abstract
Two synergistic anions, p-nitrophenyl phosphate ester (NPP) and SO(4)(2-), were found to form new stable assemblies with Fe(3+) and a bacterial transferrin, FbpA (FbpA=ferric binding protein). Fe(3+)FbpA-SO(4) undergoes rapid anion exchange in the presence of NPP to form Fe(3+)FbpA-NPP. Formation of Fe(3+)FbpA-NPP was found to accelerate the rate of hydrolysis of the bound phosphate ester (k(hyd)=1.6 x 10(-6) s(-1) at 25 degrees C and pH 6.5) by >10(3) fold over the uncatalyzed reaction. These findings suggest a dual function for FbpA in vivo: transport of Fe(3+) across the periplasmic space to the inner membrane in certain gram-negative bacteria and hydrolysis of periplasmic polyphosphates.
Collapse
Affiliation(s)
- Suraj Dhungana
- Department of Chemistry, Duke University, P.O. Box 90346, Durham, NC 27708-0346, USA
| | | | | | | |
Collapse
|
21
|
Gabricević M, Anderson DS, Mietzner TA, Crumbliss AL. Kinetics and mechanism of iron(III) complexation by ferric binding protein: the role of phosphate. Biochemistry 2004; 43:5811-9. [PMID: 15134455 DOI: 10.1021/bi036217y] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Iron transport across the periplasmic space to the cytoplasmic membrane of certain Gram-negative bacteria is mediated by a ferric binding protein (Fbp). This requires Fe(3+) loading of Fbp at the inner leaflet of the outer membrane. A synergistic anion is required for tight Fe(3+) sequestration by Fbp. Although phosphate fills this role in the protein isolated from bacterial cell lysates, nitrilotriacetate anion (NTA) can also satisfy this requirement in vitro. Here, we report the kinetics and mechanism of Fe(3+) loading of Fbp from Fe(NTA)(aq) in the presence of phosphate at pH 6.5. The reaction proceeds in four kinetically distinguishable steps to produce Fe(3+)Fbp(PO(4)) as a final product. The first three steps exhibit half-lives ranging from ca. 20 ms to 0.5 min, depending on the concentrations, and produce Fe(3+)Fbp(NTA) as an intermediate product of significant stability. The rate for the first step is accelerated with an increasing phosphate concentration, while that of the third step is retarded by phosphate. Conversion of Fe(3+)Fbp(NTA) to Fe(3+)Fbp(PO(4)) in the fourth step is a slow process (half-life approximately 2 h) and is facilitated by free phosphate. A mechanism for the Fe(3+)-loading process is proposed in which the synergistic anions, phosphate and NTA, play key roles. These data suggest that not only is a synergistic anion required for tight Fe(3+) sequestration by Fbp, but also the synergistic anion plays a critical role in the process of inserting Fe(3+) into the Fbp binding site.
Collapse
Affiliation(s)
- Mario Gabricević
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina 27708-0346, USA
| | | | | | | |
Collapse
|
22
|
Anderson DS, Adhikari P, Nowalk AJ, Chen CY, Mietzner TA. The hFbpABC transporter from Haemophilus influenzae functions as a binding-protein-dependent ABC transporter with high specificity and affinity for ferric iron. J Bacteriol 2004; 186:6220-9. [PMID: 15342592 PMCID: PMC515168 DOI: 10.1128/jb.186.18.6220-6229.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2004] [Accepted: 06/09/2004] [Indexed: 11/20/2022] Open
Abstract
Pathogenic Haemophilus influenzae, Neisseria spp. (Neisseria gonorrhoeae and N. meningitidis), Serratia marcescens, and other gram-negative bacteria utilize a periplasm-to-cytosol FbpABC iron transporter. In this study, we investigated the H. influenzae FbpABC transporter in a siderophore-deficient Escherichia coli background to assess biochemical aspects of FbpABC transporter function. Using a radiolabeled Fe3+ transport assay, we established an apparent Km=0.9 microM and Vmax=1.8 pmol/10(7)cells/min for FbpABC-mediated transport. Complementation experiments showed that hFbpABC is dependent on the FbpA binding protein for transport. The ATPase inhibitor sodium orthovanadate demonstrated dose-dependent inhibition of FbpABC transport, while the protonmotive-force-inhibitor carbonyl cyanide m-chlorophenyl hydrazone had no effect. Metal competition experiments demonstrated that the transporter has high specificity for Fe3+ and selectivity for trivalent metals, including Ga3+ and Al3+, over divalent metals. Metal sensitivity experiments showed that several divalent metals, including copper, nickel, and zinc, exhibited general toxicity towards E. coli. Significantly, gallium-induced toxicity was specific only to E. coli expressing FbpABC. A single-amino-acid mutation in the gene encoding the periplasmic binding protein, FbpA(Y196I), resulted in a greatly diminished iron binding affinity Kd=5.2 x 10(-4) M(-1), approximately 14 orders of magnitude weaker than that of the wild-type protein. Surprisingly, the mutant transporter [FbpA(Y196I)BC] exhibited substantial transport activity, approximately 35% of wild-type transport, with Km=1.2 microM and Vmax=0.5 pmol/10(7)cells/min. We conclude that the FbpABC complexes possess basic characteristics representative of the family of bacterial binding protein-dependent ABC transporters. However, the specificity and high-affinity binding characteristics suggest that the FbpABC transporters function as specialized transporters satisfying the strict chemical requirements of ferric iron (Fe3+) binding and membrane transport.
Collapse
Affiliation(s)
- Damon S Anderson
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, Room E1240 Biomedical Science Tower, Lothrop St., Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
23
|
Bekker EG, Creagh AL, Sanaie N, Yumoto F, Lau GHY, Tanokura M, Haynes CA, Murphy MEP. Specificity of the Synergistic Anion for Iron Binding by Ferric Binding Protein from Neisseria gonorrhoeae. Biochemistry 2004; 43:9195-203. [PMID: 15248777 DOI: 10.1021/bi036143q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ferric binding protein in Neisseria gonorrhoeae (nFbpA) transports iron from outer membrane receptors for host proteins across the periplasm to a permease in an alternative pathway to the use of siderophores in some pathogenic bacteria. Phosphate and nitrilotriacetate, both at pH 8, and vanadate at pH 9 are shown to be synergistic in promoting ferric binding to nFbpA, in contrast to carbonate and sulfate. Interestingly, only phosphate produces the fully closed conformation of nFbpA as defined by native electrophoresis. The role of phosphate was probed by constructing three mutants: Q58E, Q58R, and G140H. The anion and iron binding properties of the Q58E mutant are similar to the wild-type protein, implying that one phosphate oxygen is a hydrogen bond donor and may in part define the specificity of nFbpA for phosphate over sulfate. Phosphate is a weakly synergistic anion in the Q58R and G140H mutants, and these mutants do not form completely closed structures. Ferric binding was investigated by both isothermal titration and differential scanning calorimetry. The apparent affinity of nFbpA for iron in a solution of 30 mM citrate is 1 order of magnitude larger in the presence (K(app)= 1.7 x 10(5) M(-1)) of phosphate than in its absence (K(app) = 1.6 x 10(4) M(-1)) at pH 7. Similar results were obtained at pH 8. This increase in affinity with phosphate as well as the formation of closed structure allows nFbpA to compete for free ferric ions in solution and suggests that ferric binding to nFbpA is regulated by the synergistic phosphate anion at sites of iron uptake.
Collapse
Affiliation(s)
- Elena G Bekker
- Department of Microbiology and Immunology, University of British Columbia, 6174 University Boulevard, Vancouver, BC V6T 1Z3, Canada
| | | | | | | | | | | | | | | |
Collapse
|