1
|
Wang C, Sayfutyarova ER. Diverging Reaction Pathways and Key Intermediates in Ethylene Forming Enzyme. J Phys Chem B 2025; 129:4335-4349. [PMID: 40272181 DOI: 10.1021/acs.jpcb.5c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Ethylene-forming enzyme (EFE) is a non-heme iron(II)- and 2-oxoglutarate-(Fe(II)/2OG)-dependent oxygenase with distinct catalytic reactivity. While most Fe(II)/2OG-dependent oxygenases catalyze substrate hydroxylation with the 2OG decarboxylation to succinate, EFE primarily converts 2OG into CO2 and ethylene. In this work, we employ a multifaceted approach, including molecular dynamics, quantum mechanics and molecular mechanics methods, theoretical Mössbauer spectroscopy, and the analysis of the intrinsic electric field exerted by the protein environment, to examine possible reaction pathways. Our study reveals a novel second branch point, where the ethylene formation (EF) and 3-hydroxypropionate formation pathways diverge following the Fe(III)-carbonate and C3-C5-derived propion-3-yl radical intermediates, occurring earlier than suggested in previous studies. We identified multiple subsequent EF pathways characterized by a low-energy barrier and the formation of either Fe(II)-carbonates or Fe(II)-pyrocarbonates. Based on these findings, we introduce a revised reaction mechanism for ethylene formation in EFE, which is consistent with available experimental data and highlights the importance of retaining C2-derived CO2, generated in earlier stages, within the active site for the EF pathway. We also identified intermediates that can produce the Mössbauer quadrupole doublet peak observed in recent experiments and associated with unidentified Fe(II)-containing species characteristic to the ethylene-forming reaction pathway. This work provides new insights into both the first and second branchpoints of the ethylene-forming pathway that can be useful in EFE modifications aimed at shifting the product yield in the EF reaction.
Collapse
Affiliation(s)
- Chao Wang
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Elvira R Sayfutyarova
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Jyoti Barman D, Lohmiller T, Katz S, Haumann M, Hildebrandt P, Nam W, Ray K. An Oxoiron(IV) Complex Supported by an N-Alkylated Cyclam Ligand System Containing a Pendant Alcohol Moiety. Chemistry 2025; 31:e202404468. [PMID: 40028930 DOI: 10.1002/chem.202404468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/14/2025] [Accepted: 02/25/2025] [Indexed: 03/05/2025]
Abstract
The effect of a pendant neutral alcohol moiety in the N-alkylated cyclam (1,4,8,11-tetraazacyclotetradecane) ligand backbone is examined for the non-heme mononuclear oxoiron(IV) unit in [FeIV(Osyn)(TMC-HOR)(NCCH3)]2+ (1-syn) (TMC-HOR=2-(4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecan1-yl)ethan-1-ol). Unlike in the related [FeIV(Oanti)(TMC-SR)]+ (3-anti) (TMC-SR=1-mercaptoethyl-4,8,11-trimethyl-1,4,8,11-tetraazacyclotetradecane) complex, bearing an axial mono-anionic thiolate ligand trans to the oxo unit, the alcohol moiety in 1-syn stays protonated and does not axially coordinate to iron. The protonation of the alcohol moiety is a prerequisite for the stabilization of the oxoiron(IV) core; it presumably serves as a hydrogen bonding donor to the oxoiron(IV) unit, which is positioned syn to the three methyl groups. Comparative reactivity studies reveal 1-syn to be a stronger hydrogen atom abstraction but weaker oxygen atom transfer agent relative to the [FeIV(Osyn)(TMC)(NCCH3)]2+ (2-syn) complex, bearing the N-tetramethylated cyclam (TMC) ligand.
Collapse
Affiliation(s)
- Dibya Jyoti Barman
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Thomas Lohmiller
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Str. 16, 12489, Berlin, Germany
| | - Sagie Katz
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| |
Collapse
|
3
|
Li Y, Chen W, Yin J, Xia S, Jiang Y, Ge Q, Liu J, Wang M, Hou Z, Bai Y, Shi P. Biomineralized ZIF-8 Encapsulating SOD from Hydrogenobacter Thermophilus: Maintaining Activity in the Intestine and Alleviating Intestinal Oxidative Stress. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402812. [PMID: 39350464 DOI: 10.1002/smll.202402812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 09/17/2024] [Indexed: 12/13/2024]
Abstract
Oxidative stress is a major factor leading to inflammation and disease occurrence, and superoxide dismutase (SOD) is a crucial antioxidative metalloenzyme capable of alleviating oxidative stress. In this study, a novel thermostable SOD gene is obtained from the Hydrogenobacter thermophilus strain (HtSOD), transformed and efficiently expressed in Escherichia coli with an activity of 3438 U mg-1, exhibiting excellent thermal stability suitable for scalable production. However, the activity of HtSOD is reduced to less than 10% under the acidic environment. To address the acid resistance and gastrointestinal stability issues, a biomimetic mineralization approach is employed to encapsulate HtSOD within the ZIF-8 (HtSOD@ZIF-8). Gastrointestinal simulation results show that HtSOD@ZIF-8 maintained 70% activity in simulated gastric fluid for 2 h, subsequently recovering to 97% activity in simulated intestinal fluid. Cell and in vivo experiments indicated that HtSOD@ZIF-8 exhibited no cytotoxicity and do not impair growth performance. Furthermore, HtSOD@ZIF-8 increased the relative abundance of beneficial microbiota such as Dubosiella and Alistipes, mitigated oxonic stress and intestinal injury by reducing mitochondrial and total reactive oxygen species (ROS) levels in diquat-induced. Together, HtSOD@ZIF-8 maintains and elucidates activity in the intestine and biocompatibility, providing insights into alleviating oxidative stress in hosts and paving the way for scalable production.
Collapse
Affiliation(s)
- Yuying Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
| | - Weihua Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, 300384, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410000, China
| | - Siting Xia
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410000, China
| | - Yayun Jiang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410000, China
| | - Qianqian Ge
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410000, China
| | - Jinping Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410000, China
| | - Mansheng Wang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
| | - Zhenping Hou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Pengjun Shi
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, 410205, China
| |
Collapse
|
4
|
McWhorter KL, Purohit V, Ambarian JA, Jhunjhunwala R, Davis KM. The common chemical logic of 'bridged' peroxo species in mononuclear non-heme iron systems. Crit Rev Biochem Mol Biol 2024; 59:418-433. [PMID: 39878573 DOI: 10.1080/10409238.2025.2455084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 01/31/2025]
Abstract
Mononuclear non-heme iron enzymes catalyze a wide array of important oxidative transformations. They are correspondingly diverse in both structure and mechanism. Despite significant evolutionary distance, it is becoming increasingly apparent that these enzymes nonetheless illustrate a compelling case of mechanistic convergence via the formation of peroxo species bridging metal and substrate. Aromatic amino acid hydroxylases and 2-oxoglutarate (2OG)-dependent enzymes, for example, form bridged acyl- or alkylperoxo intermediates en route to highly oxidizing ferryl species, while catechol dioxygenases utilize such 'bridged' peroxos directly. Analogous acylperoxoiron intermediates have also been demonstrated to precede a perferryl oxidant in biomimetic systems. Herein, we synthesize the results of structural, spectroscopic and computational studies on these systems to gain insight into the shared chemical logic that drives iron-peracid formation and reactivity. In all cases, reactions are tuned via the electron-donating properties of coordinating ligands. Second-sphere residues have also been demonstrated to modulate the orientation of the bridge, thereby influencing reaction outcomes. The effect of carboxylic acid addition to relevant biomimetic catalyst reactions further underscores these fundamental chemical principles. Altogether, we provide a comprehensive analysis of the cross-cutting mechanisms that guide peroxo formation and subsequent oxidative chemistry performed by non-heme mononuclear iron catalysts.
Collapse
Affiliation(s)
| | - Vatsal Purohit
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Joseph A Ambarian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | | | | |
Collapse
|
5
|
Devkota L, Xiong J, Fischer AA, Murphy K, Kumar P, Balensiefen EL, Lindeman SV, Popescu CV, Fiedler AT. Observation of oxygenated intermediates in functional mimics of aminophenol dioxygenase. J Inorg Biochem 2024; 259:112632. [PMID: 38950482 DOI: 10.1016/j.jinorgbio.2024.112632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 07/03/2024]
Abstract
Aminophenol dioxygenases (APDO) are mononuclear nonheme iron enzymes that utilize dioxygen (O2) to catalyze the conversion of o-aminophenols to 2-picolinic acid derivatives in metabolic pathways. This study describes the synthesis and O2 reactivity of two synthetic models of substrate-bound APDO: [FeII(TpMe2)(tBu2APH)] (1) and [FeII(TpMe2)(tBuAPH)] (2), where TpMe2 = hydrotris(3,5-dimethylpyrazole-1-yl)borate, tBu2APH = 4,6-di-tert-butyl-2-aminophenolate, and tBuAPH2 = 4-tert-butyl-2-aminophenolate. Both Fe(II) complexes behave as functional APDO mimics, as exposure to O2 results in oxidative CC bond cleavage of the o-aminophenolate ligand. The ring-cleaved products undergo spontaneous cyclization to give substituted 2-picolinic acids, as verified by 1H NMR spectroscopy, mass spectrometry, and X-ray crystallography. Reaction of the APDO models with O2 at low temperature reveals multiple intermediates, which were probed with UV-vis absorption, electron paramagnetic resonance (EPR), Mössbauer (MB), and resonance Raman (rRaman) spectroscopies. The most stable intermediate at -70 °C in THF exhibits multiple isotopically-sensitive features in rRaman samples prepared with 16O2 and 18O2, confirming incorporation of O2-derived atom(s) into its molecular structure. Insights into the geometric structures, electronic properties, and spectroscopic features of the observed intermediates were obtained from density functional theory (DFT) calculations. Although functional APDO models have been previously reported, this is the first time that an oxygenated ligand-based radical has been detected and spectroscopically characterized in the ring-cleaving mechanism of a relevant synthetic system.
Collapse
Affiliation(s)
- Laxmi Devkota
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Jin Xiong
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Anne A Fischer
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Kate Murphy
- Department of Chemistry, The College of Arts and Sciences, University of St. Thomas, St. Paul, MN 55105, United States
| | - Praveen Kumar
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Ellie L Balensiefen
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Sergey V Lindeman
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States
| | - Codrina V Popescu
- Department of Chemistry, The College of Arts and Sciences, University of St. Thomas, St. Paul, MN 55105, United States.
| | - Adam T Fiedler
- Department of Chemistry, Marquette University, 1414 W. Clybourn St., Milwaukee, WI 53233, United States.
| |
Collapse
|
6
|
Katoch A, Mandal D. Impact of carboxylate ligation on the C-H activation reactivity of a non-heme Fe(IV)O complex: a computational investigation. Dalton Trans 2024; 53:15264-15272. [PMID: 39222036 DOI: 10.1039/d4dt02139h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A comprehensive DFT investigation has been presented to predict how a carboxylate-rich macrocycle would affect the reactivity of a non-heme Fe(IV)O complex towards C-H activation. The popular non-heme iron oxo complex [FeIV(O)(N4Py)]2+, (N4Py = N,N-(bis(2-pyridyl)methyl)N-bis(2-pyridylmethyl)amine) (1), has been selected here as the primary compound. It is transformed to the compound [FeIV(O)(nBu-P2DA)], where nBu-P2DA = N-(1',1'-bis(2-pyridyl)pentyl)iminodiacetate (2) after the replacement of two pyridine donors of N4Py with carboxylate groups. Two other complexes, namely 3 and 4, have been predicted sequentially substituting nitrogen with the carboxylate groups. Ethylbenzene and dihydrotoluene were chosen as substrates. In terms of C-H activation reactivity, an interesting pattern emerges: as the carboxylate group becomes more equatorially enriched, the reactivity increases, following the trend 1 < 2 < 3 < 4. This also aligns with available experimental reports related to complexes 1 and 2. Fe(IV)O complexes exhibit two-state reactivity (triplet and quintet), whereas the quintet state is more favourable due to the stabilization of the transition states through exchange interactions involving a greater number of unpaired electrons. A detailed analysis of the factors influencing reactivity has been performed, including distortion energy (which decreases for the transition state with the addition of carboxylate groups), the triplet-quintet oxidant energy gap (which consistently decreases as carboxylate group enrichment increases), steric factors, and quantum mechanical tunneling. This investigation provides a detailed explanation of the observed outcomes and predicts the higher reactivity of carboxylate-enriched Fe(IV)O complexes. After potential experimental verification, this could lead to the development of new, optimal catalysts for C-H activation.
Collapse
Affiliation(s)
- Akanksha Katoch
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, Punjab, India.
| | - Debasish Mandal
- Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, Punjab, India.
| |
Collapse
|
7
|
Wenger ES, Martinie RJ, Ushimaru R, Pollock CJ, Sil D, Li A, Hoang N, Palowitch GM, Graham BP, Schaperdoth I, Burke EJ, Maggiolo AO, Chang WC, Allen BD, Krebs C, Silakov A, Boal AK, Bollinger JM. Optimized Substrate Positioning Enables Switches in the C-H Cleavage Site and Reaction Outcome in the Hydroxylation-Epoxidation Sequence Catalyzed by Hyoscyamine 6β-Hydroxylase. J Am Chem Soc 2024; 146:24271-24287. [PMID: 39172701 PMCID: PMC11374477 DOI: 10.1021/jacs.4c04406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Hyoscyamine 6β-hydroxylase (H6H) is an iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenase that produces the prolifically administered antinausea drug, scopolamine. After its namesake hydroxylation reaction, H6H then couples the newly installed C6 oxygen to C7 to produce the drug's epoxide functionality. Oxoiron(IV) (ferryl) intermediates initiate both reactions by cleaving C-H bonds, but it remains unclear how the enzyme switches the target site and promotes (C6)O-C7 coupling in preference to C7 hydroxylation in the second step. In one possible epoxidation mechanism, the C6 oxygen would─analogously to mechanisms proposed for the Fe/2OG halogenases and, in our more recent study, N-acetylnorloline synthase (LolO)─coordinate as alkoxide to the C7-H-cleaving ferryl intermediate to enable alkoxyl coupling to the ensuing C7 radical. Here, we provide structural and kinetic evidence that H6H does not employ substrate coordination or repositioning for the epoxidation step but instead exploits the distinct spatial dependencies of competitive C-H cleavage (C6 vs C7) and C-O-coupling (oxygen rebound vs cyclization) steps to promote the two-step sequence. Structural comparisons of ferryl-mimicking vanadyl complexes of wild-type H6H and a variant that preferentially 7-hydroxylates instead of epoxidizing 6β-hydroxyhyoscyamine suggest that a modest (∼10°) shift in the Fe-O-H(C7) approach angle is sufficient to change the outcome. The 7-hydroxylation:epoxidation partition ratios of both proteins increase more than 5-fold in 2H2O, reflecting an epoxidation-specific requirement for cleavage of the alcohol O-H bond, which, unlike in the LolO oxacyclization, is not accomplished by iron coordination in advance of C-H cleavage.
Collapse
Affiliation(s)
- Eliott S Wenger
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Richiro Ushimaru
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ji T, Liaqat F, Khazi MI, Liaqat N, Nawaz MZ, Zhu D. Lignin biotransformation: Advances in enzymatic valorization and bioproduction strategies. INDUSTRIAL CROPS AND PRODUCTS 2024; 216:118759. [DOI: 10.1016/j.indcrop.2024.118759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
9
|
Pan J, Wenger ES, Lin CY, Zhang B, Sil D, Schaperdoth I, Saryazdi S, Grossman RB, Krebs C, Bollinger JM. An Unusual Ferryl Intermediate and Its Implications for the Mechanism of Oxacyclization by the Loline-Producing Iron(II)- and 2-Oxoglutarate-Dependent Oxygenase, LolO. Biochemistry 2024; 63:1674-1683. [PMID: 38898603 PMCID: PMC11219260 DOI: 10.1021/acs.biochem.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
N-Acetylnorloline synthase (LolO) is one of several iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenases that catalyze sequential reactions of different types in the biosynthesis of valuable natural products. LolO hydroxylates C2 of 1-exo-acetamidopyrrolizidine before coupling the C2-bonded oxygen to C7 to form the tricyclic loline core. Each reaction requires cleavage of a C-H bond by an oxoiron(IV) (ferryl) intermediate; however, different carbons are targeted, and the carbon radicals have different fates. Prior studies indicated that the substrate-cofactor disposition (SCD) controls the site of H· abstraction and can affect the reaction outcome. These indications led us to determine whether a change in SCD from the first to the second LolO reaction might contribute to the observed reactivity switch. Whereas the single ferryl complex in the C2 hydroxylation reaction was previously shown to have typical Mössbauer parameters, one of two ferryl complexes to accumulate during the oxacyclization reaction has the highest isomer shift seen to date for such a complex and abstracts H· from C7 ∼ 20 times faster than does the first ferryl complex in its previously reported off-pathway hydroxylation of C7. The detectable hydroxylation of C7 in competition with cyclization by the second ferryl complex is not enhanced in 2H2O solvent, suggesting that the C2 hydroxyl is deprotonated prior to C7-H cleavage. These observations are consistent with the coordination of the C2 oxygen to the ferryl complex, which may reorient its oxo ligand, the substrate, or both to positions more favorable for C7-H cleavage and oxacyclization.
Collapse
Affiliation(s)
- Juan Pan
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: New England Biolabs, Ipswich, Massachusetts 01938, United States
| | - Eliott S. Wenger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Chi-Yun Lin
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bo Zhang
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, Pennsylvania 19477, United States
| | - Debangsu Sil
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: Department of Chemistry, Indian Institute of Science Education and Research, Pune 411008, India
| | - Irene Schaperdoth
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Present address: Department of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Setareh Saryazdi
- Department of Chemistry, The University of Kentucky, Lexington, Kentucky 40506, United States
- Present address: College of Pharmacy, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Robert B. Grossman
- Department of Chemistry, The University of Kentucky, Lexington, Kentucky 40506, United States
| | - Carsten Krebs
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - J. Martin Bollinger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
10
|
Mahto JK, Kayastha A, Kumar P. Expression, purification, kinetics, and crystallization of non-heme mononuclear iron enzymes: Biphenyl, Phthalate, and Terephthalate dioxygenases. Methods Enzymol 2024; 704:39-58. [PMID: 39300656 DOI: 10.1016/bs.mie.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Non-heme iron oxygenases constitute a versatile enzyme family that is crucial for incorporating molecular oxygen into diverse biomolecules. Despite their importance, only a limited number of these enzymes have been structurally and functionally characterized. Surprisingly, there remains a significant gap in understanding how these enzymes utilize a typical architecture and reaction mechanism to catalyze a wide range of reactions. Improving our understanding of these catalysts holds promise for advancing both fundamental enzymology and practical applications. This chapter aims to outline methods for heterologous expression, enzyme preparation, in vitro enzyme assays, and crystallization of biphenyl dioxygenase, phthalate dioxygenase and terephthalate dioxygenase. These enzymes catalyze the dihydroxylation of biphenyl, phthalate and terephthalate molecules, serving as a model for functional and structural analysis of other non-heme iron oxygenases.
Collapse
Affiliation(s)
- Jai Krishna Mahto
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Arpan Kayastha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India.
| |
Collapse
|
11
|
Ren D, Lee YH, Liu HW. Expression, purification and characterization of non-heme iron-dependent mono-oxygenase OzmD in oxazinomycin biosynthesis. Methods Enzymol 2024; 704:113-142. [PMID: 39300645 DOI: 10.1016/bs.mie.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Oxazinomycin is a C-nucleoside natural product characterized by a 1,3-oxazine ring linked to ribose via a C-C glycosidic bond. Construction of the 1,3-oxazine ring depends on the activity of OzmD, which is a mononuclear non-heme iron-dependent enzyme from a family of enzymes that contain a domain of unknown function (DUF) 4243. OzmD catalyzes an unusual oxidative ring rearrangement of a pyridine derivative that releases cyanide as a by-product in the final stage of oxazinomycin biosynthesis. The intrinsic sensitivity of the OzmD substrate to oxygen along with the oxygen dependency of catalysis presents significant challenges in conducting in vitro enzymatic assays. This chapter describes the detailed procedures that have been used to characterize OzmD, including protein preparation, activity assays, and reaction by-product identification.
Collapse
Affiliation(s)
- Daan Ren
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, United States
| | - Yu-Hsuan Lee
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, United States
| | - Hung-Wen Liu
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, University of Texas at Austin, Austin, TX, United States; Department of Chemistry, University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
12
|
Fitzpatrick PF, Daubner SC. Biochemical and biophysical approaches to characterization of the aromatic amino acid hydroxylases. Methods Enzymol 2024; 704:345-361. [PMID: 39300655 DOI: 10.1016/bs.mie.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The aromatic amino acid hydroxylases phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase utilize a non-heme iron to catalyze the hydroxylation of the aromatic rings of their amino acid substrates, with a tetrahydropterin serving as the source of the electrons necessary for the monooxygenation reaction. These enzymes have been subjected to a variety of biochemical and biophysical approaches, resulting in a detailed understanding of their structures and mechanism. We summarize here the experimental approaches that have led to this understanding.
Collapse
Affiliation(s)
- Paul F Fitzpatrick
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, United States.
| | - S Colette Daubner
- Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
13
|
Trezza A, Birgauan A, Geminiani M, Visibelli A, Santucci A. Molecular and Evolution In Silico Studies Unlock the h4-HPPD C-Terminal Tail Gating Mechanism. Biomedicines 2024; 12:1196. [PMID: 38927403 PMCID: PMC11201076 DOI: 10.3390/biomedicines12061196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
The enzyme 4-hydroxyphenylpyruvate dioxygenase (4-HPPD) is involved in the catabolism of the amino acid tyrosine in organisms such as bacteria, plants, and animals. It catalyzes the conversion of 4-hydroxyphenylpyruvate to a homogenisate in the presence of molecular oxygen and Fe(II) as a cofactor. This enzyme represents a key step in the biosynthesis of important compounds, and its activity deficiency leads to severe, rare autosomal recessive disorders, like tyrosinemia type III and hawkinsinuria, for which no cure is currently available. The 4-HPPD C-terminal tail plays a crucial role in the enzyme catalysis/gating mechanism, ensuring the integrity of the active site for catalysis through fine regulation of the C-terminal tail conformation. However, despite growing interest in the 4-HPPD catalytic mechanism and structure, the gating mechanism remains unclear. Furthermore, the absence of the whole 3D structure makes the bioinformatic approach the only possible study to define the enzyme structure/molecular mechanism. Here, wild-type 4-HPPD and its mutants were deeply dissected by applying a comprehensive bioinformatics/evolution study, and we showed for the first time the entire molecular mechanism and regulation of the enzyme gating process, proposing the full-length 3D structure of human 4-HPPD and two novel key residues involved in the 4-HPPD C-terminal tail conformational change.
Collapse
Affiliation(s)
- Alfonso Trezza
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, SI, Italy; (A.B.); (M.G.); (A.V.); (A.S.)
| | - Ancuta Birgauan
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, SI, Italy; (A.B.); (M.G.); (A.V.); (A.S.)
| | - Michela Geminiani
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, SI, Italy; (A.B.); (M.G.); (A.V.); (A.S.)
- SienabioACTIVE, Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, SI, Italy
| | - Anna Visibelli
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, SI, Italy; (A.B.); (M.G.); (A.V.); (A.S.)
| | - Annalisa Santucci
- Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, SI, Italy; (A.B.); (M.G.); (A.V.); (A.S.)
- SienabioACTIVE, Department of Biotechnology, Chemistry, and Pharmacy, University of Siena, Via Aldo Moro, 53100 Siena, SI, Italy
- ARTES 4.0, Viale Rinaldo Piaggio, 34, 56025 Pontedera, PI, Italy
| |
Collapse
|
14
|
Wang Q, Li H, Bujupi U, Gröning J, Stolz A, Bongiorno A, Gupta R. Oxygen Activation in Aromatic Ring Cleaving Salicylate Dioxygenase: Detection of Reaction Intermediates with a Nitro-substituted Substrate Analog. Chembiochem 2024; 25:e202400023. [PMID: 38363551 DOI: 10.1002/cbic.202400023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Cupin dioxygenases such as salicylate 1,2-dioxygense (SDO) perform aromatic C-C bond scission via a 3-His motif tethered iron cofactor. Here, transient kinetics measurements are used to monitor the catalytic cycle of SDO by using a nitro-substituted substrate analog, 3-nitrogentisate. Compared to the natural substrate, the nitro group reduces the enzymatic kcat by 500-fold, thereby facilitating the detection and kinetic characterization of reaction intermediates. Sums and products of reciprocal relaxation times derived from kinetic measurements were found to be linearly dependent on O2 concentration, suggesting reversible formation of two distinct intermediates. Dioxygen binding to the metal cofactor takes place with a forward rate of 5.9×103 M-1 s-1: two orders of magnitude slower than other comparable ring-cleaving dioxygenses. Optical chromophore of the first intermediate is distinct from the in situ generated SDO Fe(III)-O2⋅- complex but closer to the enzyme-substrate precursor.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Blvd. Staten Island, New York, 10314, United States
| | - Hanbin Li
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Blvd. Staten Island, New York, 10314, United States
- Ph.D. Programs in Chemistry and Physics, The Graduate Center of the City University of New York, New York, 10016, United States
| | - Uran Bujupi
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Blvd. Staten Island, New York, 10314, United States
| | - Janosch Gröning
- Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Andreas Stolz
- Institut für Mikrobiologie, Universität Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Angelo Bongiorno
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Blvd. Staten Island, New York, 10314, United States
- Ph.D. Programs in Chemistry and Physics, The Graduate Center of the City University of New York, New York, 10016, United States
| | - Rupal Gupta
- Department of Chemistry, College of Staten Island, The City University of New York, 2800 Victory Blvd. Staten Island, New York, 10314, United States
- Ph.D. Programs in Biochemistry, The Graduate Center of the City University of New York, New York, 10016, United States
- Ph.D. Programs in Chemistry and Physics, The Graduate Center of the City University of New York, New York, 10016, United States
| |
Collapse
|
15
|
Galeotti M, Bietti M, Costas M. Catalyst and Medium Control over Rebound Pathways in Manganese-Catalyzed Methylenic C-H Bond Oxidation. J Am Chem Soc 2024; 146:8904-8914. [PMID: 38506665 PMCID: PMC10996012 DOI: 10.1021/jacs.3c11555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/01/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
The C(sp3)-H bond oxygenation of a variety of cyclopropane containing hydrocarbons with hydrogen peroxide catalyzed by manganese complexes containing aminopyridine tetradentate ligands was carried out. Oxidations were performed in 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP) and 2,2,2-trifluoroethanol (TFE) using different manganese catalysts and carboxylic acid co-ligands, where steric and electronic properties were systematically modified. Functionalization selectively occurs at the most activated C-H bonds that are α- to cyclopropane, providing access to carboxylate or 2,2,2-trifluoroethanolate transfer products, with no competition, in favorable cases, from the generally dominant hydroxylation reaction. The formation of mixtures of unrearranged and rearranged esters (oxidation in HFIP in the presence of a carboxylic acid) and ethers (oxidation in TFE) with full control over diastereoselectivity was observed, confirming the involvement of delocalized cationic intermediates in these transformations. Despite such a complex mechanistic scenario, by fine-tuning of catalyst and carboxylic acid sterics and electronics and leveraging on the relative contribution of cationic pathways to the reaction mechanism, control over product chemoselectivity could be systematically achieved. Taken together, the results reported herein provide powerful catalytic tools to rationally manipulate ligand transfer pathways in C-H oxidations of cyclopropane containing hydrocarbons, delivering novel products in good yields and, in some cases, outstanding selectivities, expanding the available toolbox for the development of synthetically useful C-H functionalization procedures.
Collapse
Affiliation(s)
- Marco Galeotti
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento
di Scienze e Tecnologie Chimiche, Università
“Tor Vergata”, Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Miquel Costas
- QBIS
Research Group, Institut de Química Computacional i Catàlisi
(IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| |
Collapse
|
16
|
Li M, Cao L, Liu D, Su T, Cheng W, Li G, Ma T. Efficient bio-remediation of multiple aromatic hydrocarbons using different types of thermotolerant, ring-cleaving dioxygenases derived from Aeribacillus pallidus HB-1. BIORESOURCE TECHNOLOGY 2024; 398:130472. [PMID: 38387841 DOI: 10.1016/j.biortech.2024.130472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
As toxic contaminants, aromatic compounds are widespread in most environmental matrices, and bioenzymatic catalysis plays a critical role in the degradation of xenobiotics. Here, a thermophillic aromatic hydrocarbon degrader Aeribacillus pallidus HB-1 was found. Bioinformatic analysis of the HB-1 genome revealed two ring-cleaving extradiol dioxygenases (EDOs), among which, EDO-0418 was assigned to a new subfamily of type I.1 EDOs and exhibited a broad substrate specificity, particularly towards biarylic substrate. Both EDOs exhibited optimal activities at elevated temperatures (55 and 65 °C, respectively) and showed remarkable thermostability, pH stability, metal ion resistance and tolerance to chemical reagents. Most importantly, simulated wastewater bioreactor experiments demonstrated efficient and uniform degradation performance of mixed aromatic substrates under harsh environments by the two enzymes combined for potential industrial applications. The unveiling of two thermostable dioxygenases with broad substrate specificities and stress tolerance provides a novel approach for highly efficient environmental bioremediation using composite enzyme systems.
Collapse
Affiliation(s)
- Mingchang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lu Cao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dakun Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tianqi Su
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wei Cheng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China; Tianjin Engineering Technology Center of Green Manufacturing Biobased Materials, Tianjin 300071, China.
| |
Collapse
|
17
|
Yadav S, Yadav V, Siegler MA, Moënne-Loccoz P, Jameson GNL, Goldberg DP. A Nonheme Iron(III) Superoxide Complex Leads to Sulfur Oxygenation. J Am Chem Soc 2024; 146:7915-7921. [PMID: 38488295 PMCID: PMC11318076 DOI: 10.1021/jacs.3c12337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
A new alkylthiolate-ligated nonheme iron complex, FeII(BNPAMe2S)Br (1), is reported. Reaction of 1 with O2 at -40 °C, or reaction of the ferric form with O2•- at -80 °C, gives a rare iron(III)-superoxide intermediate, [FeIII(O2)(BNPAMe2S)]+ (2), characterized by UV-vis, 57Fe Mössbauer, ATR-FTIR, EPR, and CSIMS. Metastable 2 then converts to an S-oxygenated FeII(sulfinate) product via a sequential O atom transfer mechanism involving an iron-sulfenate intermediate. These results provide evidence for the feasibility of proposed intermediates in thiol dioxygenases.
Collapse
Affiliation(s)
- Sudha Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Vishal Yadav
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Pierre Moënne-Loccoz
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Guy N L Jameson
- School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Road,Parkville, Victoria 3010, Australia
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
18
|
Vennelakanti V, Jeon M, Kulik HJ. How Do Differences in Electronic Structure Affect the Use of Vanadium Intermediates as Mimics in Nonheme Iron Hydroxylases? Inorg Chem 2024; 63:4997-5011. [PMID: 38428015 DOI: 10.1021/acs.inorgchem.3c04421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
We study active-site models of nonheme iron hydroxylases and their vanadium-based mimics using density functional theory to determine if vanadyl is a faithful structural mimic. We identify crucial structural and energetic differences between ferryl and vanadyl isomers owing to the differences in their ground electronic states, i.e., high spin (HS) for Fe and low spin (LS) for V. For the succinate cofactor bound to the ferryl intermediate, we predict facile interconversion between monodentate and bidentate coordination isomers for ferryl species but difficult rearrangement for vanadyl mimics. We study isomerization of the oxo intermediate between axial and equatorial positions and find the ferryl potential energy surface to be characterized by a large barrier of ca. 10 kcal/mol that is completely absent for the vanadyl mimic. This analysis reveals even starker contrasts between Fe and V in hydroxylases than those observed for this metal substitution in nonheme halogenases. Analysis of the relative bond strengths of coordinating carboxylate ligands for Fe and V reveals that all of the ligands show stronger binding to V than Fe owing to the LS ground state of V in contrast to the HS ground state of Fe, highlighting the limitations of vanadyl mimics of native nonheme iron hydroxylases.
Collapse
Affiliation(s)
- Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mugyeom Jeon
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Vennelakanti V, Li GL, Kulik HJ. Why Nonheme Iron Halogenases Do Not Fluorinate C-H Bonds: A Computational Investigation. Inorg Chem 2023; 62:19758-19770. [PMID: 37972340 DOI: 10.1021/acs.inorgchem.3c03215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Selective halogenation is necessary for a range of fine chemical applications, including the development of therapeutic drugs. While synthetic processes to achieve C-H halogenation require harsh conditions, enzymes such as nonheme iron halogenases carry out some types of C-H halogenation, i.e., chlorination or bromination, with ease, while others, i.e., fluorination, have never been observed in natural or engineered nonheme iron enzymes. Using density functional theory and correlated wave function theory, we investigate the differences in structural and energetic preferences of the smaller fluoride and the larger chloride or bromide intermediates throughout the catalytic cycle. Although we find that the energetics of rate-limiting hydrogen atom transfer are not strongly impacted by fluoride substitution, the higher barriers observed during the radical rebound reaction for fluoride relative to chloride and bromide contribute to the difficulty of C-H fluorination. We also investigate the possibility of isomerization playing a role in differences in reaction selectivity, and our calculations reveal crucial differences in terms of isomer energetics of the key ferryl intermediate between fluoride and chloride/bromide intermediates. While formation of monodentate isomers believed to be involved in selective catalysis is shown for chloride and bromide intermediates, we find that formation of the fluoride monodentate intermediate is not possible in our calculations, which lack additional stabilizing interactions with the greater protein environment. Furthermore, the shorter Fe-F bonds are found to increase isomerization reaction barriers, suggesting that incorporation of residues that form a halogen bond with F and elongate Fe-F bonds could make selective C-H fluorination possible in nonheme iron halogenases. Our work highlights the differences between the fluoride and chloride/bromide intermediates and suggests potential steps toward engineering nonheme iron halogenases to enable selective C-H fluorination.
Collapse
Affiliation(s)
- Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Grace L Li
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Runda ME, de Kok NAW, Schmidt S. Rieske Oxygenases and Other Ferredoxin-Dependent Enzymes: Electron Transfer Principles and Catalytic Capabilities. Chembiochem 2023; 24:e202300078. [PMID: 36964978 DOI: 10.1002/cbic.202300078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 03/27/2023]
Abstract
Enzymes that depend on sophisticated electron transfer via ferredoxins (Fds) exhibit outstanding catalytic capabilities, but despite decades of research, many of them are still not well understood or exploited for synthetic applications. This review aims to provide a general overview of the most important Fd-dependent enzymes and the electron transfer processes involved. While several examples are discussed, we focus in particular on the family of Rieske non-heme iron-dependent oxygenases (ROs). In addition to illustrating their electron transfer principles and catalytic potential, the current state of knowledge on structure-function relationships and the mode of interaction between the redox partner proteins is reviewed. Moreover, we highlight several key catalyzed transformations, but also take a deeper dive into their engineerability for biocatalytic applications. The overall findings from these case studies highlight the catalytic capabilities of these biocatalysts and could stimulate future interest in developing additional Fd-dependent enzyme classes for synthetic applications.
Collapse
Affiliation(s)
- Michael E Runda
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Niels A W de Kok
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Sandy Schmidt
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
21
|
Song F, Gu T, Zhang L, Zhang J, You S, Qi W, Su R. Rational design of tryptophan hydroxylation 1 for improving 5-Hydroxytryptophan production. Enzyme Microb Technol 2023; 165:110198. [PMID: 36736156 DOI: 10.1016/j.enzmictec.2023.110198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/10/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023]
Abstract
5-Hydroxytryptophan (5-HTP) is a chemical precursor of serotonin, which synthesizes melatonin and serotonin in animals and regulates mood, sleep, and behavior. Tryptophan hydroxylase (TPH) uses tetrahydrobiopterin (BH4) as a cofactor to hydroxylate L-tryptophan (L-Trp) to 5-HTP, and the low catalytic activity of TPH limits the rate of hydroxylation of L-Trp. In this study, the catalytic mechanism and structural features of L-Trp-TPH1-BH4 were investigated, and the catalytic activity was improved using a rational design strategy. Then the S337A/F318Y beneficial mutation was obtained. Molecular dynamics simulations showed that the S337A/F318Y mutant formed a salt bridge with TPH1 while forming an additional hydrogen bond with the substrate indole ring, stabilizing the indole ring and enhancing the binding affinity of the variant to L-Trp. As a result, the yield of 5-HTP was increased by 2.06-fold, resulting in the production of 0.91 g/L of 5-HTP. The rational design of the TPH structure to improve the hydroxylation efficiency of L-Trp offers the prospect of green production of 5-HTP.
Collapse
Affiliation(s)
- Feifei Song
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Tao Gu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Lin Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China.
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China.
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300350, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
22
|
Lin HY, Dong J, Dong J, Yang WC, Yang GF. Insights into 4-hydroxyphenylpyruvate dioxygenase-inhibitor interactions from comparative structural biology. Trends Biochem Sci 2023; 48:568-584. [PMID: 36959016 DOI: 10.1016/j.tibs.2023.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/09/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) plays a key role in tyrosine metabolism and has been identified as a promising target for herbicide and drug discovery. The structures of HPPD complexed with different types of inhibitors have been determined previously. We summarize the structures of HPPD complexed with structurally diverse molecules, including inhibitors, natural products, substrates, and catalytic intermediates; from these structures, the detailed inhibitory mechanisms of different inhibitors were analyzed and compared, and the key structural factors determining the slow-binding behavior of inhibitors were identified. Further, we propose four subpockets that accommodate different inhibitor substructures. We believe that these analyses will facilitate in-depth understanding of the enzymatic reaction mechanism and enable the design of new inhibitors with higher potency and selectivity.
Collapse
Affiliation(s)
- Hong-Yan Lin
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Jin Dong
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Jiangqing Dong
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Wen-Chao Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Guang-Fu Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China.
| |
Collapse
|
23
|
Miller JR, Brunold TC. Spectroscopic analysis of the mammalian enzyme cysteine dioxygenase. Methods Enzymol 2023; 682:101-135. [PMID: 36948699 PMCID: PMC11230041 DOI: 10.1016/bs.mie.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
l-Cysteine (Cys) is an essential building block for the synthesis of new proteins and serves as a precursor for several biologically important sulfur-containing molecules, such as coenzyme A, taurine, glutathione, and inorganic sulfate. However, organisms must tightly regulate the concentration of free Cys, as elevated levels of this semi-essential amino acid can be extremely harmful. The non-heme iron enzyme cysteine dioxygenase (CDO) serves to maintain the proper levels of Cys by catalyzing its oxidation to cysteine sulfinic acid. Crystal structures of resting and substrate-bound mammalian CDO revealed two surprising structural motifs in the first and second coordination spheres of the Fe center. The first is the existence of a neutral three histidine (3-His) facial triad that coordinates the Fe ion, as opposed to an anionic 2-His-1-carboxylate facial triad that is typically observed in mononuclear non-heme Fe(II) dioxygenases. The second unusual structural feature exhibited by mammalian CDO is the presence of a covalent crosslink between the sulfur of a Cys residue and an ortho-carbon of a tyrosine residue. Spectroscopic studies of CDO have provided invaluable insights into the roles that these unusual features play with regards to substrate Cys and co-substrate O2 binding and activation. In this chapter, we summarize results obtained from electronic absorption, electron paramagnetic resonance, magnetic circular dichroism, resonance Raman, and Mössbauer spectroscopic studies of mammalian CDO carried out in the last two decades. Pertinent results obtained from complementary computational studies are also briefly summarized.
Collapse
Affiliation(s)
- Joshua R Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States.
| |
Collapse
|
24
|
Kastner DW, Nandy A, Mehmood R, Kulik HJ. Mechanistic Insights into Substrate Positioning That Distinguish Non-heme Fe(II)/α-Ketoglutarate-Dependent Halogenases and Hydroxylases. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- David W. Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rimsha Mehmood
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Bera A, Sheet D, Paine TK. Iron(II)-α-keto acid complexes of tridentate ligands on gold nanoparticles: the effect of ligand geometry and immobilization on their dioxygen-dependent reactivity. Dalton Trans 2023; 52:1062-1073. [PMID: 36602242 DOI: 10.1039/d2dt02433k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Two mononuclear nonheme iron(II)-benzoylformate (BF) complexes [(6Me2-Me-BPA)Fe(BF)](ClO4) (1a) and [(6Me3-TPMM)Fe(BF)](ClO4) (1b) of tridentate nitrogen donor ligands, bis((6-methylpyridin-2-yl)methyl)(N-methyl)amine (6Me2-Me-BPA) and tris(2-(6-methyl)pyridyl)methoxymethane (6Me3-TPMM), were isolated and characterized. The structural characterization of iron(II)-chloro complexes indicates that the ligand 6Me2-Me-BPA binds to the iron(II) centre in a meridional fashion, whereas 6Me3-TPMM behaves as a facial ligand. Both the ligands were functionalized with terminal thiol for immobilization on gold nanoparticles (AuNPs), and the corresponding iron(II) complexes [(6Me2-BPASH)Fe(BF)(ClO4)]@C8Au (2a) and [(6Me3-TPMSH)Fe(BF)(ClO4)]@C8Au (2b) were prepared to probe the effect of immobilization on their ability to perform bioinspired oxidation reactions. All the complexes react with dioxygen to display the oxidative decarboxylation of the coordinated benzoylformate, but the complexes supported by 6Me3-TPMM and its thiol-appended ligand display faster reactivity compared to their analogues with the 6Me2-Me-BPA-derived ligands. In each case, an electrophilic iron-oxygen oxidant was intercepted as the active oxidant generated from dioxygen. The immobilized complexes (2a and 2b) display enhanced O2-dependent reactivity in oxygen-atom transfer reactions (OAT) and hydrogen-atom transfer (HAT) reactions compared to their homogeneous congeners (1a and 1b). Furthermore, the immobilized complex 2b displays catalytic OAT reactions. This study supports that the ligand geometry and immobilization on AuNPs influence the dioxygen-dependent reactivity of the complexes.
Collapse
Affiliation(s)
- Abhijit Bera
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Debobrata Sheet
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| |
Collapse
|
26
|
Papadopoulou A, Meyer F, Buller RM. Engineering Fe(II)/α-Ketoglutarate-Dependent Halogenases and Desaturases. Biochemistry 2023; 62:229-240. [PMID: 35446547 DOI: 10.1021/acs.biochem.2c00115] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Fe(II)/α-ketoglutarate-dependent dioxygenases (α-KGDs) are widespread enzymes in aerobic biology and serve a remarkable array of biological functions, including roles in collagen biosynthesis, plant and animal development, transcriptional regulation, nucleic acid modification, and secondary metabolite biosynthesis. This functional diversity is reflected in the enzymes' catalytic flexibility as α-KGDs can catalyze an intriguing set of synthetically valuable reactions, such as hydroxylations, halogenations, and desaturations, capturing the interest of scientists across disciplines. Mechanistically, all α-KGDs are understood to follow a similar activation pathway to generate a substrate radical, yet how individual members of the enzyme family direct this key intermediate toward the different reaction outcomes remains elusive, triggering structural, computational, spectroscopic, kinetic, and enzyme engineering studies. In this Perspective, we will highlight how first enzyme and substrate engineering examples suggest that the chemical reaction pathway within α-KGDs can be intentionally tailored using rational design principles. We will delineate the structural and mechanistic investigations of the reprogrammed enzymes and how they begin to inform about the enzymes' structure-function relationships that determine chemoselectivity. Application of this knowledge in future enzyme and substrate engineering campaigns will lead to the development of powerful C-H activation catalysts for chemical synthesis.
Collapse
Affiliation(s)
- Athena Papadopoulou
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Fabian Meyer
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| | - Rebecca M Buller
- Competence Center for Biocatalysis, Zurich University of Applied Sciences, Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland
| |
Collapse
|
27
|
Fu Y, Wang B, Cao Z. Biodegradation of 2,5-Dihydroxypyridine by 2,5-Dihydroxypyridine Dioxygenase and Its Mutants: Insights into O–O Bond Activation and Flexible Reaction Mechanisms from QM/MM Simulations. Inorg Chem 2022; 61:20501-20512. [DOI: 10.1021/acs.inorgchem.2c03229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
28
|
Lindahl PA, Vali SW. Mössbauer-based molecular-level decomposition of the Saccharomyces cerevisiae ironome, and preliminary characterization of isolated nuclei. Metallomics 2022; 14:mfac080. [PMID: 36214417 PMCID: PMC9624242 DOI: 10.1093/mtomcs/mfac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022]
Abstract
One hundred proteins in Saccharomyces cerevisiae are known to contain iron. These proteins are found mainly in mitochondria, cytosol, nuclei, endoplasmic reticula, and vacuoles. Cells also contain non-proteinaceous low-molecular-mass labile iron pools (LFePs). How each molecular iron species interacts on the cellular or systems' level is underdeveloped as doing so would require considering the entire iron content of the cell-the ironome. In this paper, Mössbauer (MB) spectroscopy was used to probe the ironome of yeast. MB spectra of whole cells and isolated organelles were predicted by summing the spectral contribution of each iron-containing species in the cell. Simulations required input from published proteomics and microscopy data, as well as from previous spectroscopic and redox characterization of individual iron-containing proteins. Composite simulations were compared to experimentally determined spectra. Simulated MB spectra of non-proteinaceous iron pools in the cell were assumed to account for major differences between simulated and experimental spectra of whole cells and isolated mitochondria and vacuoles. Nuclei were predicted to contain ∼30 μM iron, mostly in the form of [Fe4S4] clusters. This was experimentally confirmed by isolating nuclei from 57Fe-enriched cells and obtaining the first MB spectra of the organelle. This study provides the first semi-quantitative estimate of all concentrations of iron-containing proteins and non-proteinaceous species in yeast, as well as a novel approach to spectroscopically characterizing LFePs.
Collapse
Affiliation(s)
- Paul A Lindahl
- Department of Chemistry, Texas A&M University, College Station, TX, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station TX, USA
| | - Shaik Waseem Vali
- Department of Chemistry, Texas A&M University, College Station, TX, USA
| |
Collapse
|
29
|
Abstract
The glyoxalase gene family consists of six structurally and functionally diverse enzymes with broad roles in metabolism. The common feature that defines this family is based on structural motifs that coordinate divalent cations which are required for activity. These family members have been implicated in a variety of physiological processes, including amino-acid metabolism (4-hydroxyphenylpyruvate dioxygenase; HPD), primary metabolism (methylmalonyl-CoA epimerase; MCEE), and aldehyde detoxication (glyoxalase 1; GLO1) and therefore have significant associations with disease. A central function of this family is the detoxification of reactive dicarbonyls (e.g., methylglyoxal), which react with cellular nucleophiles, resulting in the modification of lipids, proteins, and DNA. These damaging modifications activate canonical stress responses such as heat shock, unfolded protein, antioxidant, and DNA damage responses. Thus, glyoxalases serve an important role in homeostasis, preventing the pathogenesis of metabolic disease states, including obesity, diabetes, cardiovascular disease, renal failure, and aging. This review presents a thorough overview of the literature surrounding this diverse enzyme class. Although extensive literature exists for some members of this family (e.g., GLO1), little is known about the physiological role of glyoxalase domain-containing protein 4 (GLOD4) and 5 (GLOD5), paving the way for exciting avenues for future research.
Collapse
Affiliation(s)
- Dominique O Farrera
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| | - James J Galligan
- Department of Pharmacology and College of Pharmacy, University of Arizona, Tucson, Arizona85721, United States
| |
Collapse
|
30
|
Fernandez RL, Juntunen ND, Brunold TC. Differences in the Second Coordination Sphere Tailor the Substrate Specificity and Reactivity of Thiol Dioxygenases. Acc Chem Res 2022; 55:2480-2490. [PMID: 35994511 PMCID: PMC9583696 DOI: 10.1021/acs.accounts.2c00359] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In recent years, considerable progress has been made toward elucidating the geometric and electronic structures of thiol dioxygenases (TDOs). TDOs catalyze the conversion of substrates with a sulfhydryl group to their sulfinic acid derivatives via the addition of both oxygen atoms from molecular oxygen. All TDOs discovered to date belong to the family of cupin-type mononuclear nonheme Fe(II)-dependent metalloenzymes. While most members of this enzyme family bind the Fe cofactor by two histidines and one carboxylate side chain (2-His-1-carboxylate) to provide a monoanionic binding motif, TDOs feature a neutral three histidine (3-His) facial triad. In this Account, we present a bioinformatics analysis and multiple sequence alignment that highlight the significance of the secondary coordination sphere in tailoring the substrate specificity and reactivity among the different TDOs. These insights provide the framework within which important structural and functional features of the distinct TDOs are discussed.The best studied TDO is cysteine dioxygenase (CDO), which catalyzes the conversion of cysteine to cysteine sulfinic acid in both eukaryotes and prokaryotes. Crystal structures of resting and substrate-bound mammalian CDOs revealed two surprising structural motifs in the first- and second coordination spheres of the Fe center. The first is the presence of the abovementioned neutral 3-His facial triad that coordinates the Fe ion. The second is the existence of a covalent cross-link between the sulfur of Cys93 and an ortho carbon of Tyr157 (mouse CDO numbering scheme). While the exact role of this cross-link remains incompletely understood, various studies established that it is needed for proper substrate Cys positioning and gating solvent access to the active site. Intriguingly, bacterial CDOs lack the Cys-Tyr cross-link; yet, they are as active as cross-linked eukaryotic CDOs.The other known mammalian TDO is cysteamine dioxygenase (ADO). Initially, it was believed that ADO solely catalyzes the oxidation of cysteamine to hypotaurine. However, it has recently been shown that ADO additionally oxidizes N-terminal cysteine (Nt-Cys) peptides, which indicates that ADO may play a much more significant role in mammalian physiology than was originally anticipated. Though predicted on the basis of sequence alignment, site-directed mutagenesis, and spectroscopic studies, it was not until last year that two crystal structures, one of wild-type mouse ADO (solved by us) and the other of a variant of nickel-substituted human ADO, finally provided direct evidence that this enzyme also features a 3-His facial triad. These structures additionally revealed several features that are unique to ADO, including a putative cosubstrate O2 access tunnel that is lined by two Cys residues. Disulfide formation under conditions of high O2 levels may serve as a gating mechanism to prevent ADO from depleting organisms of Nt-Cys-containing molecules.The combination of kinetic and spectroscopic studies in conjunction with structural characterizations of TDOs has furthered our understanding of enzymatic sulfhydryl substrate regulation. In this article, we take advantage of the fact that the ADO X-ray crystal structures provided the final piece needed to compare and contrast key features of TDOs, an essential family of metalloenzymes found across all kingdoms of life.
Collapse
Affiliation(s)
- Rebeca L. Fernandez
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Nicholas D. Juntunen
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Thomas C. Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
31
|
Zhu G, Yan W, Wang X, Cheng R, Naowarojna N, Wang K, Wang J, Song H, Wang Y, Liu H, Xia X, Costello CE, Liu X, Zhang L, Liu P. Dissecting the Mechanism of the Nonheme Iron Endoperoxidase FtmOx1 Using Substrate Analogues. JACS AU 2022; 2:1686-1698. [PMID: 35911443 PMCID: PMC9326825 DOI: 10.1021/jacsau.2c00248] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
FtmOx1 is a nonheme iron (NHFe) endoperoxidase, catalyzing three disparate reactions, endoperoxidation, alcohol dehydrogenation, and dealkylation, under in vitro conditions; the diversity complicates its mechanistic studies. In this study, we use two substrate analogues to simplify the FtmOx1-catalyzed reaction to either a dealkylation or an alcohol dehydrogenation reaction for structure-function relationship analysis to address two key FtmOx1 mechanistic questions: (1) Y224 flipping in the proposed COX-like model vs α-ketoglutarate (αKG) rotation proposed in the CarC-like mechanistic model and (2) the involvement of a Y224 radical (COX-like model) or a Y68 radical (CarC-like model) in FtmOx1-catalysis. When 13-oxo-fumitremorgin B (7) is used as the substrate, FtmOx1-catalysis changes from the endoperoxidation to a hydroxylation reaction and leads to dealkylation. In addition, consistent with the dealkylation side-reaction in the COX-like model prediction, the X-ray structure of the FtmOx1•CoII•αKG•7 ternary complex reveals a flip of Y224 to an alternative conformation relative to the FtmOx1•FeII•αKG binary complex. Verruculogen (2) was used as a second substrate analogue to study the alcohol dehydrogenation reaction to examine the involvement of the Y224 radical or Y68 radical in FtmOx1-catalysis, and again, the results from the verruculogen reaction are more consistent with the COX-like model.
Collapse
Affiliation(s)
- Guoliang Zhu
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wupeng Yan
- School
of Life Sciences and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200237, China
| | - Xinye Wang
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ronghai Cheng
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Nathchar Naowarojna
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Kun Wang
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Wang
- School
of Life Sciences and Biotechnology, Shanghai
Jiao Tong University, Shanghai 200237, China
| | - Heng Song
- College
of Chemistry and Molecular Sciences, Wuhan
University, Wuhan, Hubei Province 430072, China
| | - Yuyang Wang
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hairong Liu
- Key
Biosensor Laboratory of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy
of Sciences), Jinan, Shandong Province 250013, China
| | - Xuekui Xia
- Key
Biosensor Laboratory of Shandong Province, Biology Institute, Qilu University of Technology (Shandong Academy
of Sciences), Jinan, Shandong Province 250013, China
| | - Catherine E. Costello
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Xueting Liu
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lixin Zhang
- State
Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Pinghua Liu
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
32
|
Pati SG, Bopp CE, Kohler HPE, Hofstetter TB. Substrate-Specific Coupling of O 2 Activation to Hydroxylations of Aromatic Compounds by Rieske Non-heme Iron Dioxygenases. ACS Catal 2022; 12:6444-6456. [PMID: 35692249 PMCID: PMC9171724 DOI: 10.1021/acscatal.2c00383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/09/2022] [Indexed: 02/07/2023]
Abstract
![]()
Rieske dioxygenases
catalyze the initial steps in the hydroxylation
of aromatic compounds and are critical for the metabolism of xenobiotic
substances. Because substrates do not bind to the mononuclear non-heme
FeII center, elementary steps leading to O2 activation
and substrate hydroxylation are difficult to delineate, thus making
it challenging to rationalize divergent observations on enzyme mechanisms,
reactivity, and substrate specificity. Here, we show for nitrobenzene
dioxygenase, a Rieske dioxygenase capable of transforming nitroarenes
to nitrite and substituted catechols, that unproductive O2 activation with the release of the unreacted substrate and reactive
oxygen species represents an important path in the catalytic cycle.
Through correlation of O2 uncoupling for a series of substituted
nitroaromatic compounds with 18O and 13C kinetic
isotope effects of dissolved O2 and aromatic substrates,
respectively, we show that O2 uncoupling occurs after the
rate-limiting formation of FeIII-(hydro)peroxo species
from which substrates are hydroxylated. Substituent effects on the
extent of O2 uncoupling suggest that the positioning of
the substrate in the active site rather than the susceptibility of
the substrate for attack by electrophilic oxygen species is responsible
for unproductive O2 uncoupling. The proposed catalytic
cycle provides a mechanistic basis for assessing the very different
efficiencies of substrate hydroxylation vs unproductive O2 activation and generation of reactive oxygen species in reactions
catalyzed by Rieske dioxygenases.
Collapse
Affiliation(s)
- Sarah G. Pati
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Charlotte E. Bopp
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Hans-Peter E. Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Thomas B. Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
33
|
Vennelakanti V, Mehmood R, Kulik HJ. Are Vanadium Intermediates Suitable Mimics in Non-Heme Iron Enzymes? An Electronic Structure Analysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Rimsha Mehmood
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
34
|
Zaitseva SV, Zdanovich SA, Tyurin DV, Koifman OI. Macroheterocyclic μ-Nitrido- and μ-Carbido Dimeric Iron and Ruthenium Complexes as a Molecular Platform for Modeling Oxidative Enzymes (A Review). RUSS J INORG CHEM+ 2022. [DOI: 10.1134/s0036023622030160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
35
|
Galeotti M, Vicens L, Salamone M, Costas M, Bietti M. Resolving Oxygenation Pathways in Manganese-Catalyzed C(sp 3)-H Functionalization via Radical and Cationic Intermediates. J Am Chem Soc 2022; 144:7391-7401. [PMID: 35417154 PMCID: PMC9052745 DOI: 10.1021/jacs.2c01466] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
![]()
The C(sp3)–H bond oxygenation of the cyclopropane-containing
mechanistic probes 6-tert-butylspiro[2.5]octane and
spiro[2.5]octane with hydrogen peroxide catalyzed by manganese complexes
bearing aminopyridine tetradentate ligands has been studied. Mixtures
of unrearranged and rearranged oxygenation products (alcohols, ketones,
and esters) are obtained, suggesting the involvement of cationic intermediates
and the contribution of different pathways following the initial hydrogen
atom transfer-based C–H bond cleavage step. Despite such a
complex mechanistic scenario, a judicious choice of the catalyst structure
and reaction conditions (solvent, temperature, and carboxylic acid)
could be employed to resolve these oxygenation pathways, leading,
with the former substrate, to conditions where a single unrearranged
or rearranged product is obtained in good isolated yield. Taken together,
the work demonstrates an unprecedented ability to precisely direct
the chemoselectivity of the C–H oxidation reaction, discriminating
among multiple pathways. In addition, these results conclusively demonstrate
that stereospecific C(sp3)–H oxidation can take
place via a cationic intermediate and that this path can become exclusive
in governing product formation, expanding the available toolbox of
aliphatic C–H bond oxygenations. The implications of these
findings are discussed in the framework of the development of synthetically
useful C–H functionalization procedures and the associated
mechanistic features.
Collapse
Affiliation(s)
- Marco Galeotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università"Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Laia Vicens
- QBIS Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università"Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| | - Miquel Costas
- QBIS Research Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17071, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università"Tor Vergata", Via della Ricerca Scientifica, 1, I-00133 Rome, Italy
| |
Collapse
|
36
|
Wojdyla Z, Borowski T. Properties of the Reactants and Their Interactions within and with the Enzyme Binding Cavity Determine Reaction Selectivities. The Case of Fe(II)/2-Oxoglutarate Dependent Enzymes. Chemistry 2022; 28:e202104106. [PMID: 34986268 DOI: 10.1002/chem.202104106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Fe(II)/2-oxoglutarate dependent dioxygenases (ODDs) share a double stranded beta helix (DSBH) fold and utilise a common reactive intermediate, ferryl species, to catalyse oxidative transformations of substrates. Despite the structural similarities, ODDs accept a variety of substrates and facilitate a wide range of reactions, that is hydroxylations, desaturations, (oxa)cyclisations and ring rearrangements. In this review we present and discuss the factors contributing to the observed (regio)selectivities of ODDs. They span from inherent properties of the reactants, that is, substrate molecule and iron cofactor, to the interactions between the substrate and the enzyme's binding cavity; the latter can counterbalance the effect of the former. Based on results of both experimental and computational studies dedicated to ODDs, we also line out the properties of the reactants which promote reaction outcomes other than the "default" hydroxylation. It turns out that the reaction selectivity depends on a delicate balance of interactions between the components of the investigated system.
Collapse
Affiliation(s)
- Zuzanna Wojdyla
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Niezapominajek 8, 30239 Krakow, Poland
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Kraków, Niezapominajek 8, 30239 Krakow, Poland
| |
Collapse
|
37
|
Csizi K, Eckert L, Brunken C, Hofstetter TB, Reiher M. The Apparently Unreactive Substrate Facilitates the Electron Transfer for Dioxygen Activation in Rieske Dioxygenases. Chemistry 2022; 28:e202103937. [PMID: 35072969 PMCID: PMC9306888 DOI: 10.1002/chem.202103937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/29/2022]
Abstract
Rieske dioxygenases belong to the non-heme iron family of oxygenases and catalyze important cis-dihydroxylation as well as O-/N-dealkylation and oxidative cyclization reactions for a wide range of substrates. The lack of substrate coordination at the non-heme ferrous iron center, however, makes it particularly challenging to delineate the role of the substrate for productive O 2 activation. Here, we studied the role of the substrate in the key elementary reaction leading to O 2 activation from a theoretical perspective by systematically considering (i) the 6-coordinate to 5-coordinate conversion of the non-heme FeII upon abstraction of a water ligand, (ii) binding of O 2 , and (iii) transfer of an electron from the Rieske cluster. We systematically evaluated the spin-state-dependent reaction energies and structural effects at the active site for all combinations of the three elementary processes in the presence and absence of substrate using naphthalene dioxygenase as a prototypical Rieske dioxygenase. We find that reaction energies for the generation of a coordination vacancy at the non-heme FeII center through thermoneutral H2 O reorientation and exothermic O 2 binding prior to Rieske cluster oxidation are largely insensitive to the presence of naphthalene and do not lead to formation of any of the known reactive Fe-oxygen species. By contrast, the role of the substrate becomes evident after Rieske cluster oxidation and exclusively for the 6-coordinate non-heme FeII sites in that the additional electron is found at the substrate instead of at the iron and oxygen atoms. Our results imply an allosteric control of the substrate on Rieske dioxygenase reactivity to happen prior to changes at the non-heme FeII in agreement with a strategy that avoids unproductive O 2 activation.
Collapse
Affiliation(s)
- Katja‐Sophia Csizi
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Lina Eckert
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Christoph Brunken
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Thomas B. Hofstetter
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
| | - Markus Reiher
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| |
Collapse
|
38
|
Wu L, Wang Z, Cen Y, Wang B, Zhou J. Structural Insight into the Catalytic Mechanism of the Endoperoxide Synthase FtmOx1. Angew Chem Int Ed Engl 2022; 61:e202112063. [PMID: 34796596 DOI: 10.1002/anie.202112063] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Indexed: 11/11/2022]
Abstract
The 2-oxoglutarate (2OG)-dependent non-heme enzyme FtmOx1 catalyzes the endoperoxide biosynthesis of verruculogen. Although several mechanistic studies have been carried out, the catalytic mechanism of FtmOx1 is not well determined owing to the lack of a reliable complex structure of FtmOx1 with fumitremorgin B. Herein we provide the X-ray crystal structure of the ternary complex FtmOx1⋅2OG⋅fumitremorgin B at a resolution of 1.22 Å. Our structures show that the binding of fumitremorgin B induces significant compression of the active pocket and that Y68 is in close proximity to C26 of the substrate. Further MD simulation and QM/MM calculations support a CarC-like mechanism, in which Y68 acts as the H atom donor for quenching the C26-centered substrate radical. Our results are consistent with all available experimental data and highlight the importance of accurate complex structures in the mechanistic study of enzymatic catalysis.
Collapse
Affiliation(s)
- Lian Wu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhanfeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yixin Cen
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine (IRI), Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiahai Zhou
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| |
Collapse
|
39
|
Liu X, Yuan Z, Su H, Hou X, Deng Z, Xu H, Guo B, Yin D, Sheng X, Rao Y. Molecular Basis of the Unusual Seven-Membered Methylenedioxy Bridge Formation Catalyzed by Fe(II)/α-KG-Dependent Oxygenase CTB9. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xuanzhong Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Hao Su
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences and National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P. R. China
| | - Xiaodong Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Zhiwei Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Huibin Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Baodang Guo
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Dejing Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences and National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, P. R. China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, P. R. China
| |
Collapse
|
40
|
Ferreira P, Fernandes P, Ramos M. The archaeal non-heme iron-containing Sulfur Oxygenase Reductase. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Abstract
The widely distributed, essential redox factor pyrroloquinoline quinone (PQQ, methoxatin) (1) was discovered in the mid-1960s. The breadth and depth of its biological effects are steadily being revealed, and understanding its biosynthesis at the genomic level is a continuing process. In this review, aspects of the chemistry, biology, biosynthesis, and commercial production of 1 at the gene level, and some applications, are presented from discovery through to mid-2021.
Collapse
Affiliation(s)
- Geoffrey A Cordell
- Natural Products Inc., Evanston, Illinois 60202, United States.,Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida 32610, United States
| | | |
Collapse
|
42
|
Monkcom EC, Negenman HA, Masferrer-Rius E, Lutz M, Ye S, Bill E, Klein Gebbink RJ. 2H1C Mimicry: Bioinspired Iron and Zinc Complexes Supported by N,N,O Phenolate Ligands. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Emily C. Monkcom
- Utrecht University: Universiteit Utrecht Organic Chemistry and Catalysis Universiteitsweg 99 3584CG Utrecht NETHERLANDS
| | - Hidde A. Negenman
- Utrecht University: Universiteit Utrecht Organic Chemistry and Catalysis Universiteitsweg 99 3584CG Utrecht NETHERLANDS
| | - Eduard Masferrer-Rius
- Utrecht University: Universiteit Utrecht Organic Chemistry and Catalysis Universiteitsweg 99 3584CG Utrecht NETHERLANDS
| | - Martin Lutz
- Utrecht University: Universiteit Utrecht Crystal and Structural Chemistry Universiteitsweg 99 3584CG Utrecht NETHERLANDS
| | - Shengfa Ye
- Chinese Academy of Sciences Institute of Chemistry 457 Zhongshan Road 116023 Dalian CHINA
| | - Eckhard Bill
- Max Planck Institute of Coal Research: Max-Planck-Institut fur Kohlenforschung Inorganic Spectroscopy Kaiser-Wilhelm-Platz 1 45470 Mülheim an der Ruhr GERMANY
| | | |
Collapse
|
43
|
Wu L, Wang Z, Cen Y, Wang B, Zhou J. Structural Insight into the Catalytic Mechanism of the Endoperoxide Synthase FtmOx1. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lian Wu
- The Research Center of Chiral Drugs Innovation Research Institute of Traditional Chinese Medicine (IRI) Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
- Key Laboratory of Synthetic Biology CAS Center for Excellence in Molecular Plant Sciences University of Chinese Academy of Sciences Shanghai 200032 China
| | - Zhanfeng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Yixin Cen
- The Research Center of Chiral Drugs Innovation Research Institute of Traditional Chinese Medicine (IRI) Shanghai University of Traditional Chinese Medicine Shanghai 201203 China
- Key Laboratory of Synthetic Biology CAS Center for Excellence in Molecular Plant Sciences University of Chinese Academy of Sciences Shanghai 200032 China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Jiahai Zhou
- CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
44
|
Zhang X, Huang Z, Wang D, Zhang Y, Eser BE, Gu Z, Dai R, Gao R, Guo Z. A new thermophilic extradiol dioxygenase promises biodegradation of catecholic pollutants. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126860. [PMID: 34399224 DOI: 10.1016/j.jhazmat.2021.126860] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/22/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Extradiol dioxygenases (EDOs) catalyze the meta cleavage of catechol into 2-hydroxymuconaldehyde, a critical step in the degradation of aromatic compounds in the environment. In the present work, a novel thermophilic extradiol dioxygenase from Thermomonospora curvata DSM43183 was cloned, expressed, and characterized by phylogenetic and biochemical analyses. This enzyme exhibited excellent thermo-tolerance, displaying optimal activity at 50 °C, remaining >40% activity at 70 °C. Structural modeling and molecular docking demonstrated that both active center and pocket-construction loops locate at the C-terminal domain. Site-specific mutants D285A, H205V, F301V based on a rational design were obtained to widen the entrance of substrates; resulting in significantly improved catalytic performance for all the 3 mutants. Compared to the wild-type, the mutant D285A showed remarkably improved activities with respect to the 3,4-dihydroxyphenylacetic acid, catechol, and 3-chlorocatechol, by 17.7, 6.9, and 3.7-fold, respectively. The results thus verified the effectiveness of modeling guided design; and confirmed that the C-terminal loop structure indeed plays a decisive role in determining catalytic ring-opening efficiency and substrate specificity of the enzyme. This study provided a novel thermostable dioxygenase with a broad substrate promiscuity for detoxifying environmental pollutants and provided a new thinking for further enzyme engineering of EDOs.
Collapse
Affiliation(s)
- Xiaowen Zhang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China; Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Zihao Huang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China
| | - Dan Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China
| | - Yan Zhang
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Bekir Engin Eser
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Zhenyu Gu
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China
| | - Rongrong Dai
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of life Science, Jilin University, Changchun 130021, China.
| | - Zheng Guo
- Department of Biological and Chemical Engineering, Faculty of Technical Sciences, Aarhus University, Gustav Wieds Vej 10, Aarhus 8000, Denmark.
| |
Collapse
|
45
|
Fernandez RL, Juntunen ND, Fox BG, Brunold TC. Spectroscopic investigation of iron(III) cysteamine dioxygenase in the presence of substrate (analogs): implications for the nature of substrate-bound reaction intermediates. J Biol Inorg Chem 2021; 26:947-955. [PMID: 34580769 PMCID: PMC8643075 DOI: 10.1007/s00775-021-01904-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/08/2021] [Indexed: 12/15/2022]
Abstract
Thiol dioxygenases (TDOs) are a class of metalloenzymes that oxidize various thiol-containing substrates to their corresponding sulfinic acids. Originally established by X-ray crystallography for cysteine dioxygenase (CDO), all TDOs are believed to contain a 3-histidine facial triad that coordinates the necessary Fe(II) cofactor. However, very little additional information is available for cysteamine dioxygenase (ADO), the only other mammalian TDO besides CDO. Previous spectroscopic characterizations revealed that ADO likely binds substrate cysteamine in a monodentate fashion, while a mass spectrometry study provided evidence that a thioether crosslink can form between Cys206 and Tyr208 (mouse ADO numbering). In the present study, we have used electronic absorption and electron paramagnetic resonance (EPR) spectroscopies to investigate the species formed upon incubation of Fe(III)ADO with sulfhydryl-containing substrates and the superoxide surrogates azide and cyanide. Our data reveal that azide is unable to coordinate to cysteamine-bound Fe(III)ADO, suggesting that the Fe(III) center lacks an open coordination site or azide competes with cysteamine for the same binding site. Alternatively, cyanide binds to either cysteamine- or Cys-bound Fe(III)ADO to yield a low-spin (S = 1/2) EPR signal that is distinct from that observed for cyanide/Cys-bound Fe(III)CDO, revealing differences in the active-site pockets between ADO and CDO. Finally, EPR spectra obtained for cyanide/cysteamine adducts of wild-type Fe(III)ADO and its Tyr208Phe variant are superimposable, implying that either an insignificant fraction of as-isolated wild-type enzyme is crosslinked or that formation of the thioether bond has minimal effects on the electronic structure of the iron cofactor.
Collapse
Affiliation(s)
- Rebeca L Fernandez
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Nicholas D Juntunen
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Brian G Fox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Thomas C Brunold
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
46
|
Mehmood R, Vennelakanti V, Kulik HJ. Spectroscopically Guided Simulations Reveal Distinct Strategies for Positioning Substrates to Achieve Selectivity in Nonheme Fe(II)/α-Ketoglutarate-Dependent Halogenases. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03169] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Rimsha Mehmood
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vyshnavi Vennelakanti
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J. Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
47
|
Lee JL, Ross DL, Barman SK, Ziller JW, Borovik AS. C-H Bond Cleavage by Bioinspired Nonheme Metal Complexes. Inorg Chem 2021; 60:13759-13783. [PMID: 34491738 DOI: 10.1021/acs.inorgchem.1c01754] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The functionalization of C-H bonds is one of the most challenging transformations in synthetic chemistry. In biology, these processes are well-known and are achieved with a variety of metalloenzymes, many of which contain a single metal center within their active sites. The most well studied are those with Fe centers, and the emerging experimental data show that high-valent iron oxido species are the intermediates responsible for cleaving the C-H bond. This Forum Article describes the state of this field with an emphasis on nonheme Fe enzymes and current experimental results that provide insights into the properties that make these species capable of C-H bond cleavage. These parameters are also briefly considered in regard to manganese oxido complexes and Cu-containing metalloenzymes. Synthetic iron oxido complexes are discussed to highlight their utility as spectroscopic and mechanistic probes and reagents for C-H bond functionalization. Avenues for future research are also examined.
Collapse
Affiliation(s)
- Justin L Lee
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Dolores L Ross
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Suman K Barman
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - Joseph W Ziller
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| | - A S Borovik
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, United States
| |
Collapse
|
48
|
From Cell-Free Protein Synthesis to Whole-Cell Biotransformation: Screening and Identification of Novel α-Ketoglutarate-Dependent Dioxygenases for Preparative-Scale Synthesis of Hydroxy-l-Lysine. Catalysts 2021. [DOI: 10.3390/catal11091038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The selective hydroxylation of non-activated C-H bonds is still a challenging reaction in chemistry. Non-heme Fe2+/α-ketoglutarate-dependent dioxygenases are remarkable biocatalysts for the activation of C-H-bonds, catalyzing mainly hydroxylations. The discovery of new Fe2+/α-ketoglutarate-dependent dioxygenases with suitable reactivity for biotechnological applications is therefore highly relevant to expand the limited range of enzymes described so far. In this study, we performed a protein BLAST to identify homologous enzymes to already described lysine dioxygenases (KDOs). Six novel and yet uncharacterized proteins were selected and synthesized by cell-free protein synthesis (CFPS). The subsequent in vitro screening of the selected homologs revealed activity towards the hydroxylation of l-lysine (Lys) into hydroxy-l-lysine (Hyl), which is a versatile chiral building block. With respect to biotechnological application, Escherichia coli whole-cell biocatalysts were developed and characterized in small-scale biotransformations. As the whole-cell biocatalyst expressing the gene coding for the KDO from Photorhabdus luminescens showed the highest specific activity of 8.6 ± 0.6 U gCDW−1, it was selected for the preparative synthesis of Hyl. Multi-gram scale product concentrations were achieved providing a good starting point for further bioprocess development for Hyl production. A systematic approach was established to screen and identify novel Fe2+/α-ketoglutarate-dependent dioxygenases, covering the entire pathway from gene to product, which contributes to accelerating the development of bioprocesses for the production of value-added chemicals.
Collapse
|
49
|
Shteinman AA, Mitra M. Nonheme mono- and dinuclear iron complexes in bio-inspired C H and C C bond hydroxylation reactions: Mechanistic insight. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
50
|
Greve JM, Pinkham AM, Cowan JA. Human Aspartyl (Asparaginyl) Hydroxylase. A Multifaceted Enzyme with Broad Intra- and Extracellular Activity. Metallomics 2021; 13:6324587. [PMID: 34283245 DOI: 10.1093/mtomcs/mfab044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/29/2021] [Indexed: 01/12/2023]
Abstract
Human aspartyl (asparaginyl) β-hydroxylase (HAAH), a unique iron and 2-oxoglutarate dependent oxygenase, has shown increased importance as a suspected oncogenic protein. HAAH and its associated mRNA are upregulated in a wide variety of cancer types, however, the current role of HAAH in the malignant transformation of cells is unknown. HAAH is suspected to play an important role in NOTCH signaling via selective hydroxylation of aspartic acid and asparagine residues of epidermal growth factor (EGF)-like domains. HAAH hydroxylation also potentially mediates calcium signaling and oxygen sensing. In this review we summarize the current state of understanding of the biochemistry and chemical biology of this enzyme, identify key differences from other family members, outline its broader intra- and extracellular roles, and identify the most promising areas for future research efforts.
Collapse
Affiliation(s)
- Jenna M Greve
- Contribution from the Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - Andrew M Pinkham
- Contribution from the Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| | - J A Cowan
- Contribution from the Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA
| |
Collapse
|