1
|
Benjamín-Rivera J, Otero MP, Tinoco AD. Reinforcing Protein Biochemistry: A Two-Week Experiment Studying Iron(III) Binding by the Transferrin Protein through Stoichiometric Determination, Stability Analysis, and Visualization of the Binding Site. JOURNAL OF CHEMICAL EDUCATION 2024; 101:1656-1664. [PMID: 38654892 PMCID: PMC11033862 DOI: 10.1021/acs.jchemed.3c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/26/2024]
Abstract
The two-week protein biochemistry experience described herein focuses on reinforcing key biochemical concepts and achieving significant learning domain accomplishments for students (Content Knowledge, Logical Mathematical Reasoning, Visualization, Information Literacy, and Knowledge Integration) and valuable teaching opportunities for instructors. The experience encompasses an exploration of the transport protein serum transferrin as an important regulator of Fe(III) biochemistry and incorporates techniques to assess protein-metal stoichiometry and protein stability and to perform molecular visualization. Students gain practical experience in utilizing spectrophotometric analysis for constructing stoichiometric curves, in performing urea-PAGE, and in applying the PyMOL program to evaluate metal coordination at a protein binding site and the associated protein structural change. The learning and teaching accomplishments provide valuable skills that can be extended into research and translated to other teaching formats.
Collapse
Affiliation(s)
- Josué
A. Benjamín-Rivera
- Department
of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, Puerto Rico 00931, United States
| | - Mariela Pérez Otero
- Department
of Biology, University of Puerto Rico, Río Piedras Campus, Río Piedras, Puerto Rico 00931, United States
| | - Arthur D. Tinoco
- Department
of Chemistry, University of Puerto Rico, Río Piedras Campus, Río Piedras, Puerto Rico 00931, United States
| |
Collapse
|
2
|
Jenner M, Hai Y, Nguyen HH, Passmore M, Skyrud W, Kim J, Garg NK, Zhang W, Ogorzalek Loo RR, Tang Y. Elucidating the molecular programming of a nonlinear non-ribosomal peptide synthetase responsible for fungal siderophore biosynthesis. Nat Commun 2023; 14:2832. [PMID: 37198174 PMCID: PMC10192304 DOI: 10.1038/s41467-023-38484-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/25/2023] [Indexed: 05/19/2023] Open
Abstract
Siderophores belonging to the ferrichrome family are essential for the viability of fungal species and play a key role for virulence of numerous pathogenic fungi. Despite their biological significance, our understanding of how these iron-chelating cyclic hexapeptides are assembled by non-ribosomal peptide synthetase (NRPS) enzymes remains poorly understood, primarily due to the nonlinearity exhibited by the domain architecture. Herein, we report the biochemical characterization of the SidC NRPS, responsible for construction of the intracellular siderophore ferricrocin. In vitro reconstitution of purified SidC reveals its ability to produce ferricrocin and its structural variant, ferrichrome. Application of intact protein mass spectrometry uncovers several non-canonical events during peptidyl siderophore biosynthesis, including inter-modular loading of amino acid substrates and an adenylation domain capable of poly-amide bond formation. This work expands the scope of NRPS programming, allows biosynthetic assignment of ferrichrome NRPSs, and sets the stage for reprogramming towards novel hydroxamate scaffolds.
Collapse
Affiliation(s)
- Matthew Jenner
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
- Warwick Integrative Synthetic Biology Centre (WISB), University of Warwick, Coventry, CV4 7AL, UK.
| | - Yang Hai
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, USA.
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, USA.
| | - Hong H Nguyen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
- Transmed Co., Ltd., Ho Chi Minh City, Vietnam
| | - Munro Passmore
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Will Skyrud
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, USA
- Arzeda, 3421 Thorndyke Ave W, Seattle, WA 98119, USA
| | - Junyong Kim
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, USA
| | | | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, USA
| |
Collapse
|
3
|
Kumar R, Sharma D, Kumar N, Kumari B, Kumar S, Kumar R. Substitution of carbonate by non-physiological synergistic anion modulates the stability and iron release kinetics of serum transferrin. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140856. [PMID: 36252939 DOI: 10.1016/j.bbapap.2022.140856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022]
Abstract
Serum transferrin (sTf) is a bi-lobal protein. Each lobe of sTf binds one Fe3+ ion in the presence of a synergistic anion. Physiologically, carbonate is the main synergistic anion but other anions such as oxalate, malonate, glycolate, maleate, glycine, etc. can substitute for carbonate in vitro. The present work provides the possible pathways by which the substitution of carbonate with oxalate affects the structural, kinetic, thermodynamic, and functional properties of blood plasma sTf. Analysis of equilibrium experiments measuring iron release and structural unfolding of carbonate and oxalate bound diferric-sTf (Fe2sTf) as a function of pH, urea concentration, and temperature reveal that the structural and iron-centers stability of Fe2sTf increase by substitution of carbonate with oxalate. Analysis of isothermal titration calorimetry (ITC) scans showed that the affinity of Fe3+ with apo-sTf is enhanced by substituting carbonate with oxalate. Analysis of kinetic and thermodynamic parameters measured for the iron release from the carbonate and oxalate bound monoferric-N-lobe of sTf (FeNsTf) and Fe2sTf at pH 7.4 and pH 5.6 reveals that the substitution of carbonate with oxalate inhibits/retards the iron release via increasing the enthalpic barriers.
Collapse
Affiliation(s)
- Rajesh Kumar
- School of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Navinder Kumar
- Council of Scientific and Industrial Research-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | - Beeta Kumari
- Deparment of Chemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Sanjeev Kumar
- Deparment of Chemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Rajesh Kumar
- Deparment of Chemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda 151401, India; School of Chemistry and Biochemistry, Thapar University, Patiala 147004, India.
| |
Collapse
|
4
|
Ekaputri S, Choi EK, Sabelli M, Aring L, Green KJ, Chang J, Bao K, Choi HS, Iwase S, Kim J, Corradini E, Pietrangelo A, Burke MD, Seo YA. A small molecule redistributes iron in ferroportin-deficient mice and patient-derived primary macrophages. Proc Natl Acad Sci U S A 2022; 119:e2121400119. [PMID: 35737834 PMCID: PMC9245668 DOI: 10.1073/pnas.2121400119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/28/2022] [Indexed: 12/16/2022] Open
Abstract
Deficiencies of the transmembrane iron-transporting protein ferroportin (FPN1) cause the iron misdistribution that underlies ferroportin disease, anemia of inflammation, and several other human diseases and conditions. A small molecule natural product, hinokitiol, was recently shown to serve as a surrogate transmembrane iron transporter that can restore hemoglobinization in zebrafish deficient in other iron transporting proteins and can increase gut iron absorption in FPN1-deficient flatiron mice. However, whether hinokitiol can restore normal iron physiology in FPN1-deficient animals or primary cells from patients and the mechanisms underlying such targeted activities remain unknown. Here, we show that hinokitiol redistributes iron from the liver to red blood cells in flatiron mice, thereby increasing hemoglobin and hematocrit. Mechanistic studies confirm that hinokitiol functions as a surrogate transmembrane iron transporter to release iron trapped within liver macrophages, that hinokitiol-Fe complexes transfer iron to transferrin, and that the resulting transferrin-Fe complexes drive red blood cell maturation in a transferrin-receptor-dependent manner. We also show in FPN1-deficient primary macrophages derived from patients with ferroportin disease that hinokitiol moves labile iron from inside to outside cells and decreases intracellular ferritin levels. The mobilization of nonlabile iron is accompanied by reductions in intracellular ferritin, consistent with the activation of regulated ferritin proteolysis. These findings collectively provide foundational support for the translation of small molecule iron transporters into therapies for human diseases caused by iron misdistribution.
Collapse
Affiliation(s)
- Stella Ekaputri
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - Eun-Kyung Choi
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109
| | - Manuela Sabelli
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41121 Modena, Italy
| | - Luisa Aring
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109
| | - Kelsie J. Green
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
| | - JuOae Chang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115
| | - Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854
| | - Elena Corradini
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41121 Modena, Italy
| | - Antonello Pietrangelo
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia School of Medicine, 41121 Modena, Italy
| | - Martin D. Burke
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, IL 61801
- Carle Illinois College of Medicine, Urbana, IL 61801
- Carl R. Woese Institute for Genomic Biology, Urbana, IL 61801
- Beckman Institute for Advanced Science and Technology, Urbana, IL 61801
| | - Young Ah Seo
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109
| |
Collapse
|
5
|
Shanmugam A, Chithiravel V, Gunasekar A, Venkattappan A. Siderophores in Antifungal Drug Discovery: A Computational Approach. Fungal Biol 2021. [DOI: 10.1007/978-3-030-53077-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Hai Y, Jenner M, Tang Y. Fungal siderophore biosynthesis catalysed by an iterative nonribosomal peptide synthetase. Chem Sci 2020; 11:11525-11530. [PMID: 34094397 PMCID: PMC8162485 DOI: 10.1039/d0sc03627g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Siderophores play a vital role in the viability of fungi and are essential for the virulence of many pathogenic fungal species. Despite their importance in fungal physiology and pathogenesis, the programming rule of siderophore assembly by fungal nonribosomal peptide synthetases (NRPSs) remains unresolved. Here, we report the characterization of the bimodular fungal NRPS, SidD, responsible for construction of the extracellular siderophore fusarinine C. The use of intact protein mass spectrometry, together with in vitro biochemical assays of native and dissected enzymes, provided snapshots of individual biosynthetic steps during NPRS catalysis. The adenylation and condensation domain of SidD can iteratively load and condense the amino acid building block cis-AMHO, respectively, to synthesize fusarinine C. Our study showcases the iterative programming features of fungal siderophore-producing NRPSs.
Collapse
Affiliation(s)
- Yang Hai
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles California 90095 USA
| | - Matthew Jenner
- Department of Chemistry, Warwick Integrative Synthetic Biology Center, University of Warwick Coventry UK
- Warwick Integrative Synthetic Biology (WISB) Centre, University of Warwick Coventry UK
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles California 90095 USA
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095 USA
| |
Collapse
|
7
|
Pfister J, Lichius A, Summer D, Haas H, Kanagasundaram T, Kopka K, Decristoforo C. Live-cell imaging with Aspergillus fumigatus-specific fluorescent siderophore conjugates. Sci Rep 2020; 10:15519. [PMID: 32968138 PMCID: PMC7511942 DOI: 10.1038/s41598-020-72452-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/04/2020] [Indexed: 12/18/2022] Open
Abstract
Live-cell imaging allows the in vivo analysis of subcellular localisation dynamics of physiological processes with high spatial-temporal resolution. However, only few fluorescent dyes have been custom-designed to facilitate species-specific live-cell imaging approaches in filamentous fungi to date. Therefore, we developed fluorescent dye conjugates based on the sophisticated iron acquisition system of Aspergillus fumigatus by chemical modification of the siderophore triacetylfusarinine C (TAFC). Various fluorophores (FITC, NBD, Ocean Blue, BODIPY 630/650, SiR, TAMRA and Cy5) were conjugated to diacetylfusarinine C (DAFC). Gallium-68 labelling enabled in vitro and in vivo characterisations. LogD, uptake assays and growth assays were performed and complemented by live-cell imaging in different Aspergillus species. Siderophore conjugates were specifically recognised by the TAFC transporter MirB and utilized as an iron source in growth assays. Fluorescence microscopy revealed uptake dynamics and differential subcellular accumulation patterns of all compounds inside fungal hyphae.[Fe]DAFC-NBD and -Ocean Blue accumulated in vacuoles, whereas [Fe]DAFC-BODIPY, -SiR and -Cy5 localised to mitochondria. [Fe]DAFC -FITC showed a uniform cytoplasmic distribution, whereas [Fe]DAFC-TAMRA was not internalised at all. Co-staining experiments with commercially available fluorescent dyes confirmed these findings. Overall, we developed a new class of fluorescent dyes that vary in intracellular fungal targeting , thereby providing novel tools for live-cell imaging applications for Aspergillus fumigatus.
Collapse
Affiliation(s)
- Joachim Pfister
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Alexander Lichius
- Department of Microbiology, University Innsbruck, Innsbruck, Austria
| | - Dominik Summer
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria
| | - Hubertus Haas
- Division of Molecular Biology, Medical University Innsbruck, Innsbruck, Austria
| | - Thines Kanagasundaram
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center, (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Klaus Kopka
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center, (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
8
|
Enhanced labile plasma iron in hematopoietic stem cell transplanted patients promotes Aspergillus outgrowth. Blood Adv 2020; 3:1695-1700. [PMID: 31167821 DOI: 10.1182/bloodadvances.2019000043] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/19/2019] [Indexed: 01/21/2023] Open
Abstract
Key Points
Serum-enhanced labile plasma iron in patients undergoing allogeneic HSCT is critical for Aspergillus fumigatus growth in vitro. Transferrin iron in serum is inaccessible for A fumigatus, and uptake of iron in the form of eLPI involves fungal siderophores.
Collapse
|
9
|
Pfister J, Summer D, Petrik M, Khoylou M, Lichius A, Kaeopookum P, Kochinke L, Orasch T, Haas H, Decristoforo C. Hybrid Imaging of Aspergillus fumigatus Pulmonary Infection with Fluorescent, 68Ga-Labelled Siderophores. Biomolecules 2020; 10:E168. [PMID: 31979017 PMCID: PMC7072563 DOI: 10.3390/biom10020168] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/14/2020] [Accepted: 01/19/2020] [Indexed: 01/16/2023] Open
Abstract
Aspergillus fumigatus (A. fumigatus) is a human pathogen causing severe invasive fungal infections, lacking sensitive and selective diagnostic tools. A. fumigatus secretes the siderophore desferri-triacetylfusarinine C (TAFC) to acquire iron from the human host. TAFC can be labelled with gallium-68 to perform positron emission tomography (PET/CT) scans. Here, we aimed to chemically modify TAFC with fluorescent dyes to combine PET/CT with optical imaging for hybrid imaging applications. Starting from ferric diacetylfusarinine C ([Fe]DAFC), different fluorescent dyes were conjugated (Cy5, SulfoCy5, SulfoCy7, IRDye 800CW, ATTO700) and labelled with gallium-68 for in vitro and in vivo characterisation. Uptake assays, growth assays and live-cell imaging as well as biodistribution, PET/CT and ex vivo optical imaging in an infection model was performed. Novel fluorophore conjugates were recognized by the fungal TAFC transporter MirB and could be utilized as iron source. Fluorescence microscopy showed partial accumulation into hyphae. µPET/CT scans of an invasive pulmonary aspergillosis (IPA) rat model revealed diverse biodistribution patterns for each fluorophore. [68Ga]Ga-DAFC-Cy5/SufloCy7 and -IRDye 800CW lead to a visualization of the infected region of the lung. Optical imaging of ex vivo lungs corresponded to PET images with high contrast of infection versus non-infected areas. Although fluorophores had a decisive influence on targeting and pharmacokinetics, these siderophores have potential as a hybrid imaging compounds combining PET/CT with optical imaging applications.
Collapse
Affiliation(s)
- Joachim Pfister
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria; (J.P.); (D.S.); (P.K.); (L.K.)
| | - Dominik Summer
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria; (J.P.); (D.S.); (P.K.); (L.K.)
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 772-00 Olomouc, Czech Republic; (M.P.); (M.K.)
| | - Marta Khoylou
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 772-00 Olomouc, Czech Republic; (M.P.); (M.K.)
| | - Alexander Lichius
- Department of Microbiology, University Innsbruck, A-6020 Innsbruck, Austria;
| | - Piriya Kaeopookum
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria; (J.P.); (D.S.); (P.K.); (L.K.)
| | - Laurin Kochinke
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria; (J.P.); (D.S.); (P.K.); (L.K.)
| | - Thomas Orasch
- Division of Molecular Biology, Medical University Innsbruck, A-6020 Innsbruck, Austria; (T.O.); (H.H.)
| | - Hubertus Haas
- Division of Molecular Biology, Medical University Innsbruck, A-6020 Innsbruck, Austria; (T.O.); (H.H.)
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria; (J.P.); (D.S.); (P.K.); (L.K.)
| |
Collapse
|
10
|
Kumar S, Sharma D, Kumar R. Role of Macromolecular Crowding on Stability and Iron Release Kinetics of Serum Transferrin. J Phys Chem B 2017; 121:8669-8683. [PMID: 28837344 DOI: 10.1021/acs.jpcb.7b05702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The macromolecular crowding influences the structural stability and functional properties of transferrin (Tf). The equilibrium as well as kinetic studies of Tf at different concentrations of crowding agents (dextran 40, dextran 70, and ficoll 70) and at a fixed concentration of dextran 40 under different concentrations of NaCl at pH 7.4 and 5.6 (±1) revealed that (i) the crowder environment increases the diferric-Tf (Fe2Tf) stability against iron loss and overall denaturation of the protein, (ii) both in the absence and presence of crowder, the presence of salt promotes the loss of iron and overall denaturation of Fe2Tf which is due to ionic screening of electrostatic interactions, (iii) the crowder environment retards iron release from monoferric N-lobe of Tf (FeNTf) by increasing enthalpic barrier, (iv) the retardation of iron release by crowding is enthalpically dominated than the entropic one, (v) both in the absence and presence of crowder, the presence of salt accelerates the iron release from FeNTf due to ionic screening of electrostatic interactions and anion binding to KISAB sites, and (vi) the crowders environment is unable to diminish (a) the salt-induced destabilization of Fe2Tf against the loss of iron and overall denaturation and (b) the anion effect and ionic screening of diffusive counterions responsible to promote iron release from FeNTf.
Collapse
Affiliation(s)
- Sandeep Kumar
- School of Chemistry and Biochemistry, Thapar University , Patiala 147004, India
| | - Deepak Sharma
- Council of Scientific and Industrial Research, Institute of Microbial Technology , Sector 39A, Chandigarh, India
| | - Rajesh Kumar
- Centre for Chemical Sciences, School of Bassic and Applied Sciences, Central University of Punjab , Bathinda 151001, India
| |
Collapse
|
11
|
Fazary AE, Ju YH, Al-Shihri AS, Alfaifi MY, Alshehri MA. Biodegradable siderophores: survey on their production, chelating and complexing properties. REV INORG CHEM 2016. [DOI: 10.1515/revic-2016-0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractThe academic and industrial research on the interactions of complexing agents with the environment has received more attention for more than half a century ago and has always been concerned with the applications of chelating agents in the environment. In contrast, in recent years, an increasing scholarly interest has been demonstrated in the chemical and biological degradation of chelating agents. This is reflected by the increasing number of chelating agents-related publications between 1950 and middle of 2016. Consequently, the discovery of new green biodegradable chelating agents is of great importance and has an impact in the non-biodegradable chelating agent’s replacement with their green chemistry analogs. To acquire iron, many bacteria growing aerobically, including marine species, produce siderophores, which are low-molecular-weight compounds produced to facilitate acquisition of iron. To date and to the best of our knowledge, this is a concise and complete review article of the current and previous relevant studies conducted in the field of production, purification of siderophore compounds and their metal complexes, and their roles in biology and medicine.
Collapse
|
12
|
Tyrrell J, Callaghan M. Iron acquisition in the cystic fibrosis lung and potential for novel therapeutic strategies. MICROBIOLOGY-SGM 2015; 162:191-205. [PMID: 26643057 DOI: 10.1099/mic.0.000220] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Iron acquisition is vital to microbial survival and is implicated in the virulence of many of the pathogens that reside in the cystic fibrosis (CF) lung. The multifaceted nature of iron acquisition by both bacterial and fungal pathogens encompasses a range of conserved and species-specific mechanisms, including secretion of iron-binding siderophores, utilization of siderophores from other species, release of iron from host iron-binding proteins and haemoproteins, and ferrous iron uptake. Pathogens adapt and deploy specific systems depending on iron availability, bioavailability of the iron pool, stage of infection and presence of competing pathogens. Understanding the dynamics of pathogen iron acquisition has the potential to unveil new avenues for therapeutic intervention to treat both acute and chronic CF infections. Here, we examine the range of strategies utilized by the primary CF pathogens to acquire iron and discuss the different approaches to targeting iron acquisition systems as an antimicrobial strategy.
Collapse
Affiliation(s)
- Jean Tyrrell
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin D24KT9, Ireland
| | - Máire Callaghan
- Centre of Microbial Host Interactions, Institute of Technology Tallaght, Dublin D24KT9, Ireland
| |
Collapse
|
13
|
Haas H, Petrik M, Decristoforo C. An iron-mimicking, Trojan horse-entering fungi--has the time come for molecular imaging of fungal infections? PLoS Pathog 2015; 11:e1004568. [PMID: 25634225 PMCID: PMC4310729 DOI: 10.1371/journal.ppat.1004568] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Hubertus Haas
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, Innsbruck, Austria
- * E-mail: (HH); (CD)
| | - Milos Petrik
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Olomouc, Czech Republic
| | - Clemens Decristoforo
- Clinical Department of Nuclear Medicine, Innsbruck Medical University, Innsbruck, Austria
- * E-mail: (HH); (CD)
| |
Collapse
|
14
|
Abstract
Siderophores are chelators synthesized by microbes to sequester iron. This article summarizes the knowledge on the fungal siderophore metabolism with a focus on Aspergillus fumigatus. In recent years, A. fumigatus became a role model for fungal biosynthesis, uptake and degradation of siderophores as well as regulation of siderophore-mediated iron handling and the elucidation of siderophore functions. Siderophore functions comprise uptake, intracellular transport and storage of iron. This proved to be crucial not only for adaptation to iron starvation conditions but also for germination, asexual and sexual propagation, antioxidative defense, mutual interaction, microbial competition as well as virulence in plant and animal hosts. Recent studies also indicate the high potential of siderophores and its biosynthetic pathway to improve diagnosis and therapy of fungal infections.
Collapse
Affiliation(s)
- Hubertus Haas
- Division of Molecular Biology/Biocenter, Innsbruck Medical University, Innrain 80-82, A-6020 Innsbruck, Austria.
| |
Collapse
|
15
|
Mn(II)/Mn(III) and Fe(III) binding capability of two Aspergillus fumigatus siderophores, desferricrocin and N', N″, N‴-triacetylfusarinine C. J Inorg Biochem 2014; 139:30-7. [PMID: 24959697 DOI: 10.1016/j.jinorgbio.2014.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 01/30/2023]
Abstract
Manganese(II) and manganese(III) complexes of the exocyclic desferricrocin (H3DFCR) and endocyclic triacetylfusarinine C (H3TAF) in solution have been studied by using pH-potentiometry, UV-Vis spectrophotometry, relaxometry and cyclic voltammetry. A comparison between the present results and the corresponding ones for the open-chain analogues, desferrioxamine B (DFB) and desferricoprogen (DFC), shows (i) The dissociation processes of H3DFCR occur in the expected pH-range (pH7-10.5), but hydrogen bonding is assumed to be responsible for a quite low proton dissociation constant (pK=4.18) of H3TAF and also an unusually high one (10.59). (ii) Moderate stability complexes with 1:1 Mn(II) to ligand ratio are formed with all four siderophores. (iii) The coordination of the three hydroxamates of a siderophore takes place in stepwise processes, except the case of desferricrocin, with which, large-extent overlapping of the processes occurs. (iv) Out of the four tris-chelated [ML] type complexes, the complex of DFCR is the most compact, as it is indicated by the relaxivity values. (v) Following the stoichiometric oxidation of the Mn(II)-siderophore complexes at pH≥9, tris-chelated Mn(III) complexes are formed. To make a comparison between the stability of the Mn(III) and the corresponding Fe(III) complexes of DFCR and TAF, the determination of the stability of the Fe(III) complexes under our condition has also been performed, by using UV-Vis spectrophotometry. Comparable stability of the corresponding complexes was found. (vi) Correlation study of the stability constants resulted in estimation of the constant of the Mn(III) monohydroxo complex, for which there was no data in the literature under our conditions.
Collapse
|
16
|
Electrostatic effects control the stability and iron release kinetics of ovotransferrin. J Biol Inorg Chem 2014; 19:1009-24. [DOI: 10.1007/s00775-014-1145-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 04/29/2014] [Indexed: 10/25/2022]
|
17
|
Moore MM. The crucial role of iron uptake in Aspergillus fumigatus virulence. Curr Opin Microbiol 2013; 16:692-9. [DOI: 10.1016/j.mib.2013.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 02/01/2023]
|
18
|
Caza M, Kronstad JW. Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans. Front Cell Infect Microbiol 2013; 3:80. [PMID: 24312900 PMCID: PMC3832793 DOI: 10.3389/fcimb.2013.00080] [Citation(s) in RCA: 191] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 10/30/2013] [Indexed: 12/12/2022] Open
Abstract
Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense.
Collapse
Affiliation(s)
| | - James W. Kronstad
- The Michael Smith Laboratories, Department of Microbiology and Immunology, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
19
|
Haas H. Iron - A Key Nexus in the Virulence of Aspergillus fumigatus. Front Microbiol 2012; 3:28. [PMID: 22347220 PMCID: PMC3272694 DOI: 10.3389/fmicb.2012.00028] [Citation(s) in RCA: 162] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 01/16/2012] [Indexed: 01/01/2023] Open
Abstract
Iron is an essential but, in excess, toxic nutrient. Therefore, fungi evolved fine-tuned mechanisms for uptake and storage of iron, such as the production of siderophores (low-molecular mass iron-specific chelators). In Aspergillus fumigatus, iron starvation causes extensive transcriptional remodeling involving two central transcription factors, which are interconnected in a negative transcriptional feed-back loop: the GATA-factor SreA and the bZip-factor HapX. During iron sufficiency, SreA represses iron uptake, including reductive iron assimilation and siderophore-mediated iron uptake, to avoid toxic effects. During iron starvation, HapX represses iron-consuming pathways, including heme biosynthesis and respiration, to spare iron and activates synthesis of ribotoxin AspF1 and siderophores, the latter partly by ensuring supply of the precursor, ornithine. In accordance with the expression pattern and mode of action, detrimental effects of inactivation of SreA and HapX are confined to growth during iron sufficiency and iron starvation, respectively. Deficiency in HapX, but not SreA, attenuates virulence of A. fumigatus in a murine model of aspergillosis, which underlines the crucial role of adaptation to iron limitation in virulence. Consistently, production of both extra and intracellular siderophores is crucial for virulence of A. fumigatus. Recently, the sterol regulatory element binding protein SrbA was found to be essential for adaptation to iron starvation, thereby linking regulation of iron metabolism, ergosterol biosynthesis, azole drug resistance, and hypoxia adaptation.
Collapse
Affiliation(s)
- Hubertus Haas
- Division of Molecular Biology/Biocenter, Innsbruck Medical University Innsbruck, Austria
| |
Collapse
|
20
|
Schrettl M, Haas H. Iron homeostasis--Achilles' heel of Aspergillus fumigatus? Curr Opin Microbiol 2011; 14:400-5. [PMID: 21724450 PMCID: PMC3162135 DOI: 10.1016/j.mib.2011.06.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 06/08/2011] [Indexed: 12/16/2022]
Abstract
The opportunistic fungal pathogen Aspergillus fumigatus adapts to iron limitation by upregulation of iron uptake mechanisms including siderophore biosynthesis and downregulation of iron-consuming pathways to spare iron. These metabolic changes depend mainly on the transcription factor HapX. Consistent with the crucial role of iron in pathophysiology, genetic inactivation of either HapX or the siderophore system attenuates virulence of A. fumigatus in a murine model of aspergillosis. The differences in iron handling between mammals and fungi might serve to improve therapy and diagnosis of fungal infections.
Collapse
|
21
|
Nevitt T. War-Fe-re: iron at the core of fungal virulence and host immunity. Biometals 2011; 24:547-58. [PMID: 21399939 DOI: 10.1007/s10534-011-9431-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Accepted: 02/22/2011] [Indexed: 12/21/2022]
Abstract
Iron acquisition is a bona fide virulence determinant. The successful colonization of the mammalian host requires that microorganisms overcome the Fe aridity of this milieu in which the levels of circulating Fe are maintained exceedingly low both through the compartmentalization of this nutrient within cells as well as the tight binding of Fe to host circulating proteins and ligands. Microbes notoriously employ multiple strategies for high affinity Fe acquisition from the host that rely either on the expression of receptors for host Fe-binding proteins and ligands, its reduction by cell surface reductases or the utilization of siderophores, small organic molecules with very high affinity for Fe(3+). This review will discuss the multiple mechanisms deployed by fungal pathogens in Fe acquisition focusing on the role of siderophore utilization in virulence as well as host immune strategies of iron withholding and emerging clinical evidence that human disorders of Fe homeostasis can act as modifiers of infectious disease.
Collapse
Affiliation(s)
- Tracy Nevitt
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
22
|
Petrik M, Haas H, Dobrozemsky G, Lass-Flörl C, Helbok A, Blatzer M, Dietrich H, Decristoforo C. 68Ga-siderophores for PET imaging of invasive pulmonary aspergillosis: proof of principle. J Nucl Med 2010; 51:639-45. [PMID: 20351354 PMCID: PMC2992174 DOI: 10.2967/jnumed.109.072462] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED The diagnosis of invasive pulmonary aspergillosis (IPA) is difficult and lacks specificity and sensitivity. In the pathophysiology of Aspergillus fumigatus, iron plays an essential role as a nutrient during infection. A. fumigatus uses a specific and highly efficient iron uptake mechanism based on iron-complexing ferric ion Fe(III) siderophores, which are a requirement for A. fumigatus virulence. We aimed to evaluate the potential of siderophores radiolabeled with (68)Ga, a positron emitter with complexing properties comparable to those of Fe(III), as a radiopharmaceutical for imaging IPA. METHODS (68)Ga radiolabeling of the A. fumigatus siderophores desferri-triacetylfusarinine C (TAFC) and desferri-ferricrocin (FC) was performed at high specific activity. Stability, protein binding, and log P values were determined. In vitro uptake in A. fumigatus cultures was tested under varying conditions. Biodistribution was studied in healthy noninfected BALB/c mice, and uptake was studied in a model of A. fumigatus infection using immunosuppressed Lewis rats. RESULTS High-specific-activity (68)Ga labeling could be achieved, and resulting complexes were stable in serum, toward diethylenetriaminepentaacetic acid and Fe(III) challenge. Both siderophores showed hydrophilic properties ((68)Ga-TAFC, log P = -2.59; (68)Ga-FC, log P = -3.17) with low values of protein binding for (68)Ga-TAFC (<2%). Uptake of both siderophores was highly dependent on the mycelial iron load and could be blocked with an excess (10 microM) of siderophore or NaN(3), indicating specific, energy-dependent uptake. In noninfected mice, (68)Ga-TAFC showed rapid renal excretion and low blood values (1.6 +/- 0.37 percentage injected dose per gram [%ID/g] at 30 min); in urine only intact (68)Ga-TAFC was detected. In contrast, (68)Ga-FC revealed high retention in blood (16.1 +/- 1.07 %ID/g at 90 min) and rapid metabolism. In the rat IPA model, lung uptake of (68)Ga-TAFC was dependent on the severity of infection, with less than 0.04 %ID/g in control rats (n = 5) and 0.29 +/- 0.11 %ID/g in mildly infected (n = 3) and 0.95 +/- 0.37 %ID/g in severely infected (n = 4) rats. PET showed focal accumulation in infected lung tissue. CONCLUSION Both siderophores bound (68)Ga with high affinity, and (68)Ga-TAFC, especially, showed high stability. (68)Ga-TAFC displayed highly selective accumulation by A. fumigatus subspecies in vitro and in vivo. The high and specific uptake by A. fumigatus proves the potential of (68)Ga-labeled siderophores for the specific detection of A. fumigatus during infection. They hold promise as new PET agents for IPA.
Collapse
Affiliation(s)
- Milos Petrik
- Clinical Department of Nuclear Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Hubertus Haas
- Department of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Georg Dobrozemsky
- Clinical Department of Nuclear Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Cornelia Lass-Flörl
- Department of Hygiene, Microbiology and Social Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Anna Helbok
- Clinical Department of Nuclear Medicine, Innsbruck Medical University, Innsbruck, Austria
| | - Michael Blatzer
- Department of Molecular Biology, Innsbruck Medical University, Innsbruck, Austria
| | - Hermann Dietrich
- Laboratory Animal Facilities, Innsbruck Medical University, Innsbruck, Austria
| | - Clemens Decristoforo
- Clinical Department of Nuclear Medicine, Innsbruck Medical University, Innsbruck, Austria
| |
Collapse
|
23
|
Kornitzer D. Fungal mechanisms for host iron acquisition. Curr Opin Microbiol 2009; 12:377-83. [PMID: 19540796 DOI: 10.1016/j.mib.2009.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2009] [Revised: 04/29/2009] [Accepted: 05/12/2009] [Indexed: 11/29/2022]
Abstract
The iron scarcity in the host environment presents a challenge for infecting microorganisms. Fungi can assimilate iron via reductive, nonreductive, and host molecule-specific mechanisms. Recent developments in the characterization of iron acquisition mechanisms in the four best-studied fungal pathogens reveal commonalities and differences in those mechanisms as well as in their regulatory pathways.
Collapse
Affiliation(s)
- Daniel Kornitzer
- Department of Molecular Microbiology, B. Rappaport Faculty of Medicine, Technion-IIT, Haifa, Israel.
| |
Collapse
|
24
|
Abergel RJ, Raymond KN. Terephthalamide-containing ligands: fast removal of iron from transferrin. J Biol Inorg Chem 2007; 13:229-40. [DOI: 10.1007/s00775-007-0314-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Accepted: 10/19/2007] [Indexed: 12/01/2022]
|
25
|
Knapp CW, Fowle DA, Kulczycki E, Roberts JA, Graham DW. Methane monooxygenase gene expression mediated by methanobactin in the presence of mineral copper sources. Proc Natl Acad Sci U S A 2007; 104:12040-5. [PMID: 17615240 PMCID: PMC1907314 DOI: 10.1073/pnas.0702879104] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Indexed: 11/18/2022] Open
Abstract
Methane is a major greenhouse gas linked to global warming; however, patterns of in situ methane oxidation by methane-oxidizing bacteria (methanotrophs), nature's main biological mechanism for methane suppression, are often inconsistent with laboratory predictions. For example, one would expect a strong relationship between methanotroph ecology and Cu level because methanotrophs require Cu to sustain particulate methane monooxygenase (pMMO), the most efficient enzyme for methane oxidation. However, no correlation has been observed in nature, which is surprising because methane monooxygenase (MMO) gene expression has been unequivocally linked to Cu availability. Here we provide a fundamental explanation for this lack of correlation. We propose that MMO expression in nature is largely controlled by solid-phase Cu geochemistry and the relative ability of Cu acquisition systems in methanotrophs, such as methanobactins (mb), to obtain Cu from mineral sources. To test this hypothesis, RT-PCR expression assays were developed for Methylosinus trichosporium OB3b (which produces mb) to quantify pMMO, soluble MMO (the alternate MMO expressed when Cu is "unavailable"), and 16S-rRNA gene expression under progressively more stringent Cu supply conditions. When Cu was provided as CuCl(2), pMMO transcript levels increased significantly consistent with laboratory work. However, when Cu was provided as Cu-doped iron oxide, pMMO transcript levels increased only when mb was also present. Finally, when Cu was provided as Cu-doped borosilicate glass, pMMO transcription patterns varied depending on the ambient mb:Cu supply ratio. Cu geochemistry clearly influences MMO expression in terrestrial systems, and, as such, local Cu mineralogy might provide an explanation for methane oxidation patterns in the natural environment.
Collapse
Affiliation(s)
- Charles W Knapp
- Department of Civil, Environmental, University of Kansas, Lawrence, KS 66045, USA
| | | | | | | | | |
Collapse
|