1
|
Badillo‐Gómez JI, Suarez‐Antuña I, Mazurenko I, Biaso F, Pécaut J, Lojou E, Delangle P, Hostachy S. Biomimetic Pseudopeptides to Decipher the Interplay between Cu and Methionine-Rich Domains in Proteins. Chemistry 2025; 31:e202403896. [PMID: 39715023 PMCID: PMC11840665 DOI: 10.1002/chem.202403896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/05/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Maintaining tightly copper homeostasis is crucial for the survival of all living organisms, in particular microorganisms like bacteria. They have evolved a number of proteins to capture, transport and deliver Cu(I), while avoiding Fenton-like reactions. Some Cu proteins exhibit methionine-rich (Met-rich) domains, whose role remains elusive. In this work, we designed biomimetic compounds recapitulating the possible Cu(I) binding sites in these domains, in order to examine the parameters important for Cu(I) binding. Five different biomimetic pseudopeptides were synthesized, exhibiting either three methionines or two methionines and a third amino acid likely to be present in the Met-rich domain. The affinities for Cu(I) of these model binding sites were determined, as well as their redox properties and behavior in the presence of Cu(II). Our results highlight the importance of Met residues, and their abundance in Met-rich domains, to efficiently bind Cu(I) in the periplasmic space.
Collapse
Affiliation(s)
| | - Irene Suarez‐Antuña
- Univ. Grenoble AlpesCEA, CNRS, Grenoble INP, IRIG, SyMMES38000GrenobleFrance
| | - Ievgen Mazurenko
- Aix Marseille UnivCNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée31 Chemin Aiguier13402MarseilleFrance
| | - Frédéric Biaso
- Aix Marseille UnivCNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée31 Chemin Aiguier13402MarseilleFrance
| | - Jacques Pécaut
- Univ. Grenoble AlpesCEA, CNRS, Grenoble INP, IRIG, SyMMES38000GrenobleFrance
| | - Elisabeth Lojou
- Aix Marseille UnivCNRS, Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée31 Chemin Aiguier13402MarseilleFrance
| | - Pascale Delangle
- Univ. Grenoble AlpesCEA, CNRS, Grenoble INP, IRIG, SyMMES38000GrenobleFrance
| | - Sarah Hostachy
- Univ. Grenoble AlpesCEA, CNRS, Grenoble INP, IRIG, SyMMES38000GrenobleFrance
| |
Collapse
|
2
|
Caccamo A, Lazzarotto F, Margis-Pinheiro M, Messens J, Remacle C. The ascorbate peroxidase-related protein: insights into its functioning in Chlamydomonas and Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1487328. [PMID: 39445148 PMCID: PMC11496181 DOI: 10.3389/fpls.2024.1487328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
We review the newly classified ascorbate peroxidase-related (APX-R) proteins, which do not use ascorbate as electron donor to scavenge H2O2. We summarize recent discoveries on the function and the characterization of the APX-R protein of the green unicellular alga Chlamydomonas reinhardtii and the land plant Arabidopsis thaliana. Additionally, we conduct in silico analyses on the conserved MxxM motif, present in most of the APX-R protein in different organisms, which is proposed to bind copper. Based on these analyses, we discuss the similarities between the APX-R and the class III peroxidases.
Collapse
Affiliation(s)
- Anna Caccamo
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Liège, Belgium
- Redox Signaling Lab, VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Messens Lab, Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Fernanda Lazzarotto
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcia Margis-Pinheiro
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Joris Messens
- Redox Signaling Lab, VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Messens Lab, Brussels Center for Redox Biology, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Ohse VA, Klotz LO, Priebs J. Copper Homeostasis in the Model Organism C. elegans. Cells 2024; 13:727. [PMID: 38727263 PMCID: PMC11083455 DOI: 10.3390/cells13090727] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Cellular and organismic copper (Cu) homeostasis is regulated by Cu transporters and Cu chaperones to ensure the controlled uptake, distribution and export of Cu ions. Many of these processes have been extensively investigated in mammalian cell culture, as well as in humans and in mammalian model organisms. Most of the human genes encoding proteins involved in Cu homeostasis have orthologs in the model organism, Caenorhabditis elegans (C. elegans). Starting with a compilation of human Cu proteins and their orthologs, this review presents an overview of Cu homeostasis in C. elegans, comparing it to the human system, thereby establishing the basis for an assessment of the suitability of C. elegans as a model to answer mechanistic questions relating to human Cu homeostasis.
Collapse
Affiliation(s)
| | - Lars-Oliver Klotz
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| | - Josephine Priebs
- Nutrigenomics Section, Institute of Nutritional Sciences, Friedrich-Schiller-Universität Jena, 07743 Jena, Germany;
| |
Collapse
|
4
|
Nafaee ZH, Egyed V, Jancsó A, Tóth A, Gerami AM, Dang TT, Heiniger‐Schell J, Hemmingsen L, Hunyadi‐Gulyás É, Peintler G, Gyurcsik B. Revisiting the hydrolysis of ampicillin catalyzed by Temoneira-1 β-lactamase, and the effect of Ni(II), Cd(II) and Hg(II). Protein Sci 2023; 32:e4809. [PMID: 37853808 PMCID: PMC10661098 DOI: 10.1002/pro.4809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/18/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
β-Lactamases grant resistance to bacteria against β-lactam antibiotics. The active center of TEM-1 β-lactamase accommodates a Ser-Xaa-Xaa-Lys motif. TEM-1 β-lactamase is not a metalloenzyme but it possesses several putative metal ion binding sites. The sites composed of His residue pairs chelate borderline transition metal ions such as Ni(II). In addition, there are many sulfur-containing donor groups that can coordinate soft metal ions such as Hg(II). Cd(II) may bind to both types of the above listed donor groups. No significant change was observed in the circular dichroism spectra of TEM-1 β-lactamase on increasing the metal ion content of the samples, with the exception of Hg(II) inducing a small change in the secondary structure of the protein. A weak nonspecific binding of Hg(II) was proven by mass spectrometry and 119m Hg perturbed angular correlation spectroscopy. The hydrolytic process of ampicillin catalyzed by TEM-1 β-lactamase was described by the kinetic analysis of the set of full catalytic progress curves, where the slow, yet observable conversion of the primary reaction product into a second one, identified as ampilloic acid by mass spectrometry, needed also to be considered in the applied model. Ni(II) and Cd(II) slightly promoted the catalytic activity of the enzyme while Hg(II) exerted a noticeable inhibitory effect. Hg(II) and Ni(II), applied at 10 μM concentration, inhibited the growth of E. coli BL21(DE3) in M9 minimal medium in the absence of ampicillin, but addition of the antibiotic could neutralize this toxic effect by complexing the metal ions.
Collapse
Affiliation(s)
- Zeyad H. Nafaee
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
- College of PharmacyUniversity of BabylonBabelIraq
| | - Viktória Egyed
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Attila Jancsó
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Annamária Tóth
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| | - Adeleh Mokhles Gerami
- School of Particles and AcceleratorsInstitute for Research in Fundamental Sciences (IPM)TehranIran
- European Organization for Nuclear Research (CERN)GenevaSwitzerland
| | - Thanh Thien Dang
- Institute for Materials Science and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐EssenEssenGermany
| | - Juliana Heiniger‐Schell
- European Organization for Nuclear Research (CERN)GenevaSwitzerland
- Institute for Materials Science and Center for Nanointegration Duisburg‐Essen (CENIDE)University of Duisburg‐EssenEssenGermany
| | - Lars Hemmingsen
- Department of ChemistryUniversity of CopenhagenCopenhagenDenmark
| | - Éva Hunyadi‐Gulyás
- Laboratory of Proteomics Research, Biological Research CentreHungarian Research Network (HUN‐REN)SzegedHungary
| | - Gábor Peintler
- Department of Physical Chemistry and Material SciencesUniversity of SzegedSzegedHungary
| | - Béla Gyurcsik
- Department of Molecular and Analytical ChemistryUniversity of SzegedSzegedHungary
| |
Collapse
|
5
|
Caccamo A, Vega de Luna F, Wahni K, Volkov AN, Przybyla-Toscano J, Amelii A, Kriznik A, Rouhier N, Messens J, Remacle C. Ascorbate Peroxidase 2 (APX2) of Chlamydomonas Binds Copper and Modulates the Copper Insertion into Plastocyanin. Antioxidants (Basel) 2023; 12:1946. [PMID: 38001799 PMCID: PMC10669542 DOI: 10.3390/antiox12111946] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/18/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Recent phylogenetic studies have unveiled a novel class of ascorbate peroxidases called "ascorbate peroxidase-related" (APX-R). These enzymes, found in green photosynthetic eukaryotes, lack the amino acids necessary for ascorbate binding. This study focuses on the sole APX-R from Chlamydomonas reinhardtii referred to as ascorbate peroxidase 2 (APX2). We used immunoblotting to locate APX2 within the chloroplasts and in silico analysis to identify key structural motifs, such as the twin-arginine transport (TAT) motif for lumen translocation and the metal-binding MxxM motif. We also successfully expressed recombinant APX2 in Escherichia coli. Our in vitro results showed that the peroxidase activity of APX2 was detected with guaiacol but not with ascorbate as an electron donor. Furthermore, APX2 can bind both copper and heme, as evidenced by spectroscopic, and fluorescence experiments. These findings suggest a potential interaction between APX2 and plastocyanin, the primary copper-containing enzyme within the thylakoid lumen of the chloroplasts. Predictions from structural models and evidence from 1H-NMR experiments suggest a potential interaction between APX2 and plastocyanin, emphasizing the influence of APX2 on the copper-binding abilities of plastocyanin. In summary, our results propose a significant role for APX2 as a regulator in copper transfer to plastocyanin. This study sheds light on the unique properties of APX-R enzymes and their potential contributions to the complex processes of photosynthesis in green algae.
Collapse
Affiliation(s)
- Anna Caccamo
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Félix Vega de Luna
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| | - Khadija Wahni
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Alexander N. Volkov
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Jean Jeener NMR Centre, Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Jonathan Przybyla-Toscano
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| | - Antonello Amelii
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| | - Alexandre Kriznik
- CNRS, IMoPA and IBSLor, Université de Lorraine, F-54000 Nancy, France;
| | | | - Joris Messens
- VIB-VUB Center for Structural Biology, 1050 Brussels, Belgium; (K.W.); (A.N.V.)
- Brussels Center for Redox Biology, 1050 Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, 1050 Brussels, Belgium
| | - Claire Remacle
- Genetics and Physiology of Microalgae, InBios/Phytosystems Research Unit, University of Liège, 4000 Liège, Belgium; (A.C.); (F.V.d.L.); (J.P.-T.); (A.A.)
| |
Collapse
|
6
|
Dutta A, Sepehri A, Lazaridis T. Putative Pore Structures of Amyloid β 25-35 in Lipid Bilayers. Biochemistry 2023; 62:2549-2558. [PMID: 37582191 DOI: 10.1021/acs.biochem.3c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
The amyloid β peptide aggregates to form extracellular plaques in the brains of Alzheimer's disease patients. Certain of its fragments have been found to have similar properties to those of the full-length peptide. The best-studied of these is 25-35, which aggregates into fibrils, is toxic to neurons, and forms ion channels in synthetic lipid bilayers. Here, we investigate possible pore-forming structures of oligomers of this peptide in a POPC/POPG membrane. We consider octameric and decameric β-barrels of different topology, strand orientation, and shear, evaluate their stability in an implicit membrane model, and subject the best models to multimicrosecond all-atom molecular dynamics simulations. We find two decameric structures that are kinetically stable in membranes on this time scale: an imperfectly closed antiparallel β-barrel with K28 in the pore lumen and a short parallel β-barrel with K28 toward the membrane interface. Both structures exhibit dehydrated gaps in the pore lumen, which are larger for the antiparallel barrel. Based on these results, the experimental cation selectivity, the dependence of ion channel activity on voltage direction, and certain mutation data, the parallel model seems more compatible with experimental data.
Collapse
Affiliation(s)
- Ankita Dutta
- Department of Chemistry, City College of New York/CUNY, 160 Convent Avenue, New York, New York 10031, United States
- Graduate Program in Biochemistry, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Aliasghar Sepehri
- Department of Chemistry, City College of New York/CUNY, 160 Convent Avenue, New York, New York 10031, United States
| | - Themis Lazaridis
- Department of Chemistry, City College of New York/CUNY, 160 Convent Avenue, New York, New York 10031, United States
- Graduate Programs in Chemistry, Biochemistry, and Physics The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
7
|
Skvortsov AN, Ilyechova EY, Puchkova LV. Chemical background of silver nanoparticles interfering with mammalian copper metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131093. [PMID: 36905906 DOI: 10.1016/j.jhazmat.2023.131093] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The rapidly increasing application of silver nanoparticles (AgNPs) boosts their release into the environment, which raises a reasonable alarm for ecologists and health specialists. This is manifested as increased research devoted to the influence of AgNPs on physiological and cellular processes in various model systems, including mammals. The topic of the present paper is the ability of silver to interfere with copper metabolism, the potential health effects of this interference, and the danger of low silver concentrations to humans. The chemical properties of ionic and nanoparticle silver, supporting the possibility of silver release by AgNPs in extracellular and intracellular compartments of mammals, are discussed. The possibility of justified use of silver for the treatment of some severe diseases, including tumors and viral infections, based on the specific molecular mechanisms of the decrease in copper status by silver ions released from AgNPs is also discussed.
Collapse
Affiliation(s)
- Alexey N Skvortsov
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Laboratory of Molecular Biology of Stem Cells, Institute of Cytology of the Russian Academy of Sciences, Saint Petersburg 194064, Russia
| | - Ekaterina Yu Ilyechova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia.
| | - Ludmila V Puchkova
- Graduate School of Biomedical Systems and Technologies, Institute of Biomedical Systems and Biotechnology, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg 195251, Russia; Department of Molecular Genetics, Institute of Experimental Medicine of the Russian Academy of Sciences, Saint Petersburg 197376, Russia; Research Center of Advanced Functional Materials and Laser Communication Systems (RC AFMLCS), ITMO University, Saint Petersburg 197101, Russia
| |
Collapse
|
8
|
Schulte NB, Pushie MJ, Martinez A, Sendzik M, Escobedo M, Kuter K, Haas KL. Exploration of the Potential Role of Serum Albumin in the Delivery of Cu(I) to Ctr1. Inorg Chem 2023; 62:4021-4034. [PMID: 36826341 DOI: 10.1021/acs.inorgchem.2c03753] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Human serum albumin (HSA) is the major copper (Cu) carrier in blood. The majority of previous studies that have investigated Cu interactions with HSA have focused primarily on the Cu(II) oxidation state. Yet, cellular Cu uptake by the human copper transport protein (Ctr1), a plasma membrane-embedded protein responsible for Cu uptake into cells, requires Cu(I). Recent in vitro work has determined that reducing agents, such as the ascorbate present in blood, are sufficient to reduce the Cu(II)HSA complex to form Cu(I)HSA and that Cu(I) is bound to HSA with pM affinity. The biological accessibility of Cu(I)HSA suggests that HSA-bound Cu(I) may be an unappreciated form of Cu cargo and a key player in extracellular Cu trafficking. To better understand Cu trafficking by HSA, we sought to investigate the exchange of Cu(I) from HSA to a model peptide of the Cu-binding ectodomain of Ctr1. In this study, we used X-ray absorption near-edge spectroscopy to show that Cu(I) becomes more highly coordinated as increasing amounts of the Ctr1-14 model peptide are added to a solution of Cu(I)HSA. Extended X-ray absorption fine structure (EXAFS) spectroscopy was used to further characterize the interaction of Cu(I)HSA with Ctr1-14 by determining the ligands coordinating Cu(I) and their bond lengths. The EXAFS data support that some Cu(I) likely undergoes complete transfer from HSA to Ctr1-14. This finding of HSA interacting with and releasing Cu(I) to an ectodomain model peptide of Ctr1 suggests a mechanism by which HSA delivers Cu(I) to cells under physiological conditions.
Collapse
Affiliation(s)
- Natalie B Schulte
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - M Jake Pushie
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Ana Martinez
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Madison Sendzik
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Maria Escobedo
- Department of Mathematics and Computer Science, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Kristin Kuter
- Department of Mathematics and Computer Science, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Kathryn L Haas
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
9
|
Nardella MI, Fortino M, Barbanente A, Natile G, Pietropaolo A, Arnesano F. Multinuclear Metal-Binding Ability of the N-Terminal Region of Human Copper Transporter Ctr1: Dependence Upon pH and Metal Oxidation State. Front Mol Biosci 2022; 9:897621. [PMID: 35601835 PMCID: PMC9117721 DOI: 10.3389/fmolb.2022.897621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 11/23/2022] Open
Abstract
The 14mer peptide corresponding to the N-terminal region of human copper transporter Ctr1 was used to investigate the intricate mechanism of metal binding to this plasma membrane permease responsible for copper import in eukaryotic cells. The peptide contains a high-affinity ATCUN Cu(II)/Ni(II)-selective motif, a methionine-only MxMxxM Cu(I)/Ag(I)-selective motif and a double histidine HH(M) motif, which can bind both Cu(II) and Cu(I)/Ag(I) ions. Using a combination of NMR spectroscopy and electrospray mass spectrometry, clear evidence was gained that the Ctr1 peptide, at neutral pH, can bind one or two metal ions in the same or different oxidation states. Addition of ascorbate to a neutral solution containing Ctr11-14 and Cu(II) in 1:1 ratio does not cause an appreciable reduction of Cu(II) to Cu(I), which is indicative of a tight binding of Cu(II) to the ATCUN motif. However, by lowering the pH to 3.5, the Cu(II) ion detaches from the peptide and becomes susceptible to reduction to Cu(I) by ascorbate. It is noteworthy that at low pH, unlike Cu(II), Cu(I) stably binds to methionines of the peptide. This redox reaction could take place in the lumen of acidic organelles after Ctr1 internalization. Unlike Ctr11-14-Cu(II), bimetallic Ctr11-14-2Cu(II) is susceptible to partial reduction by ascorbate at neutral pH, which is indicative of a lower binding affinity of the second Cu(II) ion. The reduced copper remains bound to the peptide, most likely to the HH(M) motif. By lowering the pH to 3.5, Cu(I) shifts from HH(M) to methionine-only coordination, an indication that only the pH-insensitive methionine motif is competent for metal binding at low pH. The easy interconversion of monovalent cations between different coordination modes was supported by DFT calculations.
Collapse
Affiliation(s)
| | - Mariagrazia Fortino
- Dipartimento di Scienze Della Salute, University of Catanzaro, Catanzaro, Italy
| | | | - Giovanni Natile
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
| | - Adriana Pietropaolo
- Dipartimento di Scienze Della Salute, University of Catanzaro, Catanzaro, Italy
| | - Fabio Arnesano
- Department of Chemistry, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
10
|
Gioilli BD, Kidane TZ, Fieten H, Tellez M, Dalphin M, Nguyen A, Nguyen K, Linder MC. Secretion and uptake of copper via a small copper carrier in blood fluid. Metallomics 2022; 14:mfac006. [PMID: 35199838 PMCID: PMC8962702 DOI: 10.1093/mtomcs/mfac006] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 02/02/2022] [Indexed: 11/27/2022]
Abstract
Studies with Wilson disease model mice that accumulate excessive copper, due to a dysfunctional ATP7B "copper pump" resulting in decreased biliary excretion, showed that the compensatory increase in urinary copper loss was due to a small copper carrier (∼1 kDa) (SCC). We show here that SCC is also present in the blood plasma of normal and Wilson disease model mice and dogs, as determined by ultrafiltration and size exclusion chromatography (SEC). It is secreted by cultured hepatic and enterocytic cells, as determined by pretreatment with 67Cu nitrilotriacetate (NTA) or nonradioactive 5-10 μM Cu-NTA, and collecting and examining 3 kDa ultrafiltrates of the conditioned media, where a single major copper peak is detected by SEC. Four different cultured cell types exposed to the radiolabeled SCC all took up the 67Cu at various rates. Rates differed somewhat when uptake was from Cu-NTA. Uptake of SCC-67Cu was inhibited by excess nonradioactive Cu(I) or Ag(I) ions, suggesting competition for uptake by copper transporter 1 (CTR1). Knockout of CTR1 in fibroblasts reduced uptake rates by 60%, confirming its participation, but also involvement of other transporters. Inhibitors of endocytosis, or an excess of metal ions taken up by divalent metal transporter 1, did not decrease SCC-67Cu uptake. The results imply that SCC may play a significant role in copper transport and homeostasis, transferring copper particularly from the liver (but also intestinal cells) to other cells within the mammalian organism, as well as spilling excess into the urine in copper overload-as an alternative means of copper excretion.
Collapse
Affiliation(s)
- B D Gioilli
- Department of Chemistry and Biochemistry, California State University, 800 N State College Blvd., Fullerton, CA 92834-6866, USA
| | - T Z Kidane
- Department of Chemistry and Biochemistry, California State University, 800 N State College Blvd., Fullerton, CA 92834-6866, USA
| | - H Fieten
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - M Tellez
- Department of Chemistry and Biochemistry, California State University, 800 N State College Blvd., Fullerton, CA 92834-6866, USA
| | - M Dalphin
- Department of Chemistry and Biochemistry, California State University, 800 N State College Blvd., Fullerton, CA 92834-6866, USA
| | - A Nguyen
- Department of Chemistry and Biochemistry, California State University, 800 N State College Blvd., Fullerton, CA 92834-6866, USA
| | - K Nguyen
- Department of Chemistry and Biochemistry, California State University, 800 N State College Blvd., Fullerton, CA 92834-6866, USA
| | - M C Linder
- Department of Chemistry and Biochemistry, California State University, 800 N State College Blvd., Fullerton, CA 92834-6866, USA
| |
Collapse
|
11
|
Magrì A, Tabbì G, Naletova I, Attanasio F, Arena G, Rizzarelli E. A Deeper Insight in Metal Binding to the hCtr1 N-terminus Fragment: Affinity, Speciation and Binding Mode of Binuclear Cu 2+ and Mononuclear Ag + Complex Species. Int J Mol Sci 2022; 23:ijms23062929. [PMID: 35328348 PMCID: PMC8953729 DOI: 10.3390/ijms23062929] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 01/27/2023] Open
Abstract
Ctr1 regulates copper uptake and its intracellular distribution. The first 14 amino acid sequence of the Ctr1 ectodomain Ctr1(1-14) encompasses the characteristic Amino Terminal Cu2+ and Ni2+ binding motif (ATCUN) as well as the bis-His binding motif (His5 and His6). We report a combined thermodynamic and spectroscopic (UV-vis, CD, EPR) study dealing with the formation of Cu2+ homobinuclear complexes with Ctr1(1-14), the percentage of which is not negligible even in the presence of a small Cu2+ excess and clearly prevails at a M/L ratio of 1.9. Ascorbate fails to reduce Cu2+ when bound to the ATCUN motif, while it reduces Cu2+ when bound to the His5-His6 motif involved in the formation of binuclear species. The histidine diade characterizes the second binding site and is thought to be responsible for ascorbate oxidation. Binding constants and speciation of Ag+ complexes with Ctr1(1-14), which are assumed to mimic Cu+ interaction with N-terminus of Ctr1(1-14), were also determined. A preliminary immunoblot assay evidences that the anti-Ctr1 extracellular antibody recognizes Ctr1(1-14) in a different way from the longer Ctr1(1-25) that encompasses a second His and Met rich domain.
Collapse
Affiliation(s)
- Antonio Magrì
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
| | - Giovanni Tabbì
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
| | - Irina Naletova
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
- Consorzio Interuniversitario per la Ricerca dei Metalli nei Sistemi Biologici, Via Ulpiani 27, 70126 Bari, Italy
| | - Francesco Attanasio
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
- Correspondence: (F.A.); (E.R.); Tel.: +39-095-7385070 (E.R.)
| | - Giuseppe Arena
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
| | - Enrico Rizzarelli
- Institute of Crystallography, National Council of Research, CNR, S.S. Catania, Via P. Gaifami 18, 95126 Catania, Italy; (A.M.); (G.T.); (I.N.)
- Consorzio Interuniversitario per la Ricerca dei Metalli nei Sistemi Biologici, Via Ulpiani 27, 70126 Bari, Italy
- Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy;
- Correspondence: (F.A.); (E.R.); Tel.: +39-095-7385070 (E.R.)
| |
Collapse
|
12
|
The Advantages of EPR Spectroscopy in Exploring Diamagnetic Metal Ion Binding and Transfer Mechanisms in Biological Systems. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry8010003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy has emerged as an ideal biophysical tool to study complex biological processes. EPR spectroscopy can follow minor conformational changes in various proteins as a function of ligand or protein binding or interactions with high resolution and sensitivity. Resolving cellular mechanisms, involving small ligand binding or metal ion transfer, is not trivial and cannot be studied using conventional biophysical tools. In recent years, our group has been using EPR spectroscopy to study the mechanism underlying copper ion transfer in eukaryotic and prokaryotic systems. This mini-review focuses on our achievements following copper metal coordination in the diamagnetic oxidation state, Cu(I), between biomolecules. We discuss the conformational changes induced in proteins upon Cu(I) binding, as well as the conformational changes induced in two proteins involved in Cu(I) transfer. We also consider how EPR spectroscopy, together with other biophysical and computational tools, can identify the Cu(I)-binding sites. This work describes the advantages of EPR spectroscopy for studying biological processes that involve small ligand binding and transfer between intracellular proteins.
Collapse
|
13
|
Stefaniak E, Pushie MJ, Vaerewyck C, Corcelli D, Griggs C, Lewis W, Kelley E, Maloney N, Sendzik M, Bal W, Haas KL. Exploration of the Potential Role for Aβ in Delivery of Extracellular Copper to Ctr1. Inorg Chem 2020; 59:16952-16966. [PMID: 33211469 DOI: 10.1021/acs.inorgchem.0c02100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid beta (Aβ) peptides are notorious for their involvement in Alzheimer's disease (AD), by virtue of their propensity to aggregate to form oligomers, fibrils, and eventually plaques in the brain. Nevertheless, they appear to be essential for correct neurophysiology on the synaptic level and may have additional functions including antimicrobial activity, sealing the blood-brain barrier, promotion of recovery from brain injury, and even tumor suppression. Aβ peptides are also avid copper chelators, and coincidentally copper is significantly dysregulated in the AD brain. Copper (Cu) is released in significant amounts during calcium signaling at the synaptic membrane. Aβ peptides may have a role in maintaining synaptic Cu homeostasis, including as a scavenger for redox-active Cu and as a chaperone for clearing Cu from the synaptic cleft. Here, we employed the Aβ1-16 and Aβ4-16 peptides as well-established non-aggregating models of major Aβ species in healthy and AD brains, and the Ctr1-14 peptide as a model for the extracellular domain of the human cellular copper transporter protein (Ctr1). With these model peptides and a number of spectroscopic techniques, we investigated whether the Cu complexes of Aβ peptides could provide Ctr1 with either Cu(II) or Cu(I). We found that Aβ1-16 fully and rapidly delivered Cu(II) to Ctr1-14 along the affinity gradient. Such delivery was only partial for the Aβ4-16/Ctr1-14 pair, in agreement with the higher complex stability for the former peptide. Moreover, the reaction was very slow and took ca. 40 h to reach equilibrium under the given experimental conditions. In either case of Cu(II) exchange, no intermediate (ternary) species were present in detectable amounts. In contrast, both Aβ species released Cu(I) to Ctr1-14 rapidly and in a quantitative fashion, but ternary intermediate species were detected in the analysis of XAS data. The results presented here are the first direct evidence of a Cu(I) and Cu(II) transfer between the human Ctr1 and Aβ model peptides. These results are discussed in terms of the fundamental difference between the peptides' Cu(II) complexes (pleiotropic ensemble of open structures of Aβ1-16 vs the rigid closed-ring system of amino-terminal Cu/Ni binding Aβ4-16) and the similarity of their Cu(I) complexes (both anchored at the tandem His13/His14, bis-His motif). These results indicate that Cu(I) may be more feasible than Cu(II) as the cargo for copper clearance from the synaptic cleft by Aβ peptides and its delivery to Ctr1. The arguments in favor of Cu(I) include the fact that cellular Cu export and uptake proteins (ATPase7A/B and Ctr1, respectively) specifically transport Cu(I), the abundance of extracellular ascorbate reducing agent in the brain, and evidence of a potential associative (hand-off) mechanism of Cu(I) transfer that may mirror the mechanisms of intracellular Cu chaperone proteins.
Collapse
Affiliation(s)
- Ewelina Stefaniak
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States.,Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - M Jake Pushie
- Department of Surgery, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Catherine Vaerewyck
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - David Corcelli
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Chloe Griggs
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Whitney Lewis
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Emma Kelley
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Noreen Maloney
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Madison Sendzik
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106 Warsaw, Poland
| | - Kathryn L Haas
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, Indiana 46556, United States
| |
Collapse
|
14
|
Stability constants of bio-relevant, redox-active metals with amino acids: The challenges of weakly binding ligands. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213253] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Alwan KB, Welch EF, Blackburn NJ. Catalytic M Center of Copper Monooxygenases Probed by Rational Design. Effects of Selenomethionine and Histidine Substitution on Structure and Reactivity. Biochemistry 2019; 58:4436-4446. [PMID: 31626532 DOI: 10.1021/acs.biochem.9b00823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The M centers of the mononuclear monooxygenases peptidylglycine monooxygenase (PHM) and dopamine β-monooxygenase bind and activate dioxygen en route to substrate hydroxylation. Recently, we reported the rational design of a protein-based model in which the CusF metallochaperone was repurposed via a His to Met mutation to act as a structural and spectroscopic biomimic. The PHM M site exhibits a number of unusual attributes, including a His2Met ligand set, a fluxional Cu(I)-S(Met) bond, tight binding of exogenous ligands CO and N3-, and complete coupling of oxygen reduction to substrate hydroxylation even at extremely low turnover rates. In particular, mutation of the Met ligand to His completely eliminates the catalytic activity despite the propensity of CuI-His3 centers to bind and activate dioxygen in other metalloenzyme systems. Here, we further develop the CusF-based model to explore methionine variants in which Met is replaced by selenomethionine (SeM) and histidine. We examine the effects on coordinate structure and exogenous ligand binding via X-ray absorption spectroscopy and electron paramagnetic resonance and probe the consequences of mutations on redox chemistry via studies of the reduction by ascorbate and oxidation via molecular oxygen. The M-site model is three-coordinate in the Cu(I) state and binds CO to form a four-coordinate carbonyl. In the oxidized forms, the coordination changes to tetragonal five-coordinate with a long axial Met ligand that like the enzymes is undetectable at either the Cu or Se K edges. The EXAFS data at the Se K edge of the SeM variant provide unique information about the nature of the Cu-methionine bond that is likewise weak and fluxional. Kinetic studies document the sluggish reactivity of the Cu(I) complexes with molecular oxygen and rapid rates of reduction of the Cu(II) complexes by ascorbate, indicating a remarkable stability of the Cu(I) state in all three derivatives. The results show little difference between the Met ligand and its SeM and His congeners and suggest that the Met contributes to catalysis in ways that are more complex than simple perturbation of the redox chemistry. Overall, the results stimulate a critical re-examination of the canonical reaction mechanisms of the mononuclear copper monooxygenases.
Collapse
Affiliation(s)
- Katherine B Alwan
- Department of Chemical Physiology and Biochemistry , Oregon Health & Sciences University , Portland , Oregon 97239 , United States
| | - Evan F Welch
- Department of Chemical Physiology and Biochemistry , Oregon Health & Sciences University , Portland , Oregon 97239 , United States
| | - Ninian J Blackburn
- Department of Chemical Physiology and Biochemistry , Oregon Health & Sciences University , Portland , Oregon 97239 , United States
| |
Collapse
|
16
|
Pan W, Wang Y, Wang N. A new metal affinity NCTR 25 tag as a better alternative to the His-tag for the expression of recombinant fused proteins. Protein Expr Purif 2019; 164:105477. [PMID: 31419547 DOI: 10.1016/j.pep.2019.105477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/20/2019] [Accepted: 08/11/2019] [Indexed: 12/18/2022]
Abstract
His-tagging is commonly used in fusion protein production, but the His-tag is usually prohibited in medicinal proteins and must be removed. A fragment (NCTR25-tag) truncated from the N-terminus of human copper transporter 1 was tested for feasibility as a replacement for the His-tag in fusion proteins. The NCTR25-tag and His-tag were separately fused to the transthyretin (TTR) protein, and the expression, affinity purification, refolding and stability of the two kinds of fusions were compared. NCTR25 fusion produced a 63% higher yield of the recombinant protein, which was purified by metal affinity chromatography with an efficiency similar to that of His-tagged protein. NCTR25-tag fusion had much less impact on the foldability, kinetic and thermodynamic stability of tetrameric TTR than His-tag fusion. When the tags were individually fused to enhanced green fluorescent protein (EGFP), NCTR25 fusion yielded 29-128% more product than His-EGFP. NCTR25-EGFP could be purified by metal affinity chromatography and showed better foldability than His-EGFP. Furthermore, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) fusion with the third disulfide loop of TGF-α (TGF3L-TRAIL) fused with the NCTR25-tag retained the stability and superactivity of His-TGF3L-TRAIL. Therefore, the native tag NCTR25-tag is a feasible alternative to the His-tag in medicinal recombinant proteins.
Collapse
Affiliation(s)
- Weitong Pan
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yan Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| | - Nan Wang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China.
| |
Collapse
|
17
|
Saito K, Watanabe K, Yanaoka R, Kageyama L, Miura T. Potential role of serotonin as a biological reductant associated with copper transportation. J Inorg Biochem 2019; 199:110770. [PMID: 31336257 DOI: 10.1016/j.jinorgbio.2019.110770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/21/2019] [Accepted: 07/11/2019] [Indexed: 11/17/2022]
Abstract
Serotonin (5-HT) is a neurotransmitter that is derived from tryptophan. Owing to a hydroxyl group attached to the indole nucleus, 5-HT exhibits a considerably higher redox activity than tryptophan. To gain insight into the biological relevance of the redox activity of 5-HT, the effect of Cu(I)-binding ligands on the 5-HT-mediated copper reduction was investigated. The d-d transition band of Cu(II) complexed with glycine [Cu(II)-Gly2] was not affected by addition of 5-HT alone but was diminished when a thioether-containing compound coexists with 5-HT. Concomitant with disappearance of the d-d transition band of Cu(II)-Gly2, the π-π* transition band of 5-hydroxyindole of 5-HT exhibits a red-shift which is consistently explained by oxidation of 5-HT and subsequent formation of a dimeric species. The redox reactions between 5-HT and copper are also accelerated by a peptide composed of a methionine (Met)-rich region in the extracellular domain of an integral membrane protein, copper transporter 1 (Ctr1). Since Ctr1 transports copper across the plasma membrane with specificity for Cu(I), reduction of extracellular Cu(II) to Cu(I) is required for copper uptake by Ctr1. Metalloreductases that can donate Cu(I) for Ctr1 have been identified in yeast but not yet been found in mammals. The results of this study indicate that the Met-rich region in the N-terminal extracellular domain of Ctr1 promotes the 5-HT-mediated Cu(II) reduction in order to acquire Cu(I) via a non-enzymatic process.
Collapse
Affiliation(s)
- Kaede Saito
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan
| | - Kasumi Watanabe
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan
| | - Risa Yanaoka
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan
| | - Lisa Kageyama
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan
| | - Takashi Miura
- Department of Pharmaceutical Sciences, International University of Health and Welfare, Kitakanemaru 2600-1, Otawara, Tochigi 324-8501, Japan.
| |
Collapse
|
18
|
Alwan KB, Welch EF, Arias RJ, Gambill BF, Blackburn NJ. Rational Design of a Histidine-Methionine Site Modeling the M-Center of Copper Monooxygenases in a Small Metallochaperone Scaffold. Biochemistry 2019; 58:3097-3108. [PMID: 31243953 DOI: 10.1021/acs.biochem.9b00312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mononuclear copper monooxygenases peptidylglycine monooxygenase (PHM) and dopamine β-monooxygenase (DBM) catalyze the hydroxylation of high energy C-H bonds utilizing a pair of chemically distinct copper sites (CuH and CuM) separated by 11 Å. In earlier work, we constructed single-site PHM variants that were designed to allow the study of the M- and H-centers independently in order to place their reactivity sequentially along the catalytic pathway. More recent crystallographic studies suggest that these single-site variants may not be truly representative of the individual active sites. In this work, we describe an alternative approach that uses a rational design to construct an artificial PHM model in a small metallochaperone scaffold. Using site-directed mutagenesis, we constructed variants that provide a His2Met copper-binding ligand set that mimics the M-center of PHM. The results show that the model accurately reproduces the chemical and spectroscopic properties of the M-center, including details of the methionine coordination, and the properties of Cu(I) and Cu(II) states in the presence of endogenous ligands such as CO and azide. The rate of reduction of the Cu(II) form of the model by the chromophoric reductant N,N'-dimethyl phenylenediamine (DMPD) has been compared with that of the PHM M-center, and the reaction chemistry of the Cu(I) forms with molecular oxygen has also been explored, revealing an unusually low reactivity toward molecular oxygen. This latter finding emphasizes the importance of substrate triggering of oxygen reactivity and implies that the His2Met ligand set, while necessary, is insufficient on its own to activate oxygen in these enzyme systems.
Collapse
Affiliation(s)
- Katherine B Alwan
- Department of Chemical Physiology and Biochemistry , Oregon Health & Sciences University , Portland , Oregon 97239 , United States
| | - Evan F Welch
- Department of Chemical Physiology and Biochemistry , Oregon Health & Sciences University , Portland , Oregon 97239 , United States
| | - Renee J Arias
- Department of Chemical Physiology and Biochemistry , Oregon Health & Sciences University , Portland , Oregon 97239 , United States
| | - Ben F Gambill
- Department of Chemical Physiology and Biochemistry , Oregon Health & Sciences University , Portland , Oregon 97239 , United States
| | - Ninian J Blackburn
- Department of Chemical Physiology and Biochemistry , Oregon Health & Sciences University , Portland , Oregon 97239 , United States
| |
Collapse
|
19
|
Puchkova LV, Broggini M, Polishchuk EV, Ilyechova EY, Polishchuk RS. Silver Ions as a Tool for Understanding Different Aspects of Copper Metabolism. Nutrients 2019; 11:E1364. [PMID: 31213024 PMCID: PMC6627586 DOI: 10.3390/nu11061364] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/08/2019] [Accepted: 06/12/2019] [Indexed: 12/11/2022] Open
Abstract
In humans, copper is an important micronutrient because it is a cofactor of ubiquitous and brain-specific cuproenzymes, as well as a secondary messenger. Failure of the mechanisms supporting copper balance leads to the development of neurodegenerative, oncological, and other severe disorders, whose treatment requires a detailed understanding of copper metabolism. In the body, bioavailable copper exists in two stable oxidation states, Cu(I) and Cu(II), both of which are highly toxic. The toxicity of copper ions is usually overcome by coordinating them with a wide range of ligands. These include the active cuproenzyme centers, copper-binding protein motifs to ensure the safe delivery of copper to its physiological location, and participants in the Cu(I) ↔ Cu(II) redox cycle, in which cellular copper is stored. The use of modern experimental approaches has allowed the overall picture of copper turnover in the cells and the organism to be clarified. However, many aspects of this process remain poorly understood. Some of them can be found out using abiogenic silver ions (Ag(I)), which are isoelectronic to Cu(I). This review covers the physicochemical principles of the ability of Ag(I) to substitute for copper ions in transport proteins and cuproenzyme active sites, the effectiveness of using Ag(I) to study copper routes in the cells and the body, and the limitations associated with Ag(I) remaining stable in only one oxidation state. The use of Ag(I) to restrict copper transport to tumors and the consequences of large-scale use of silver nanoparticles for human health are also discussed.
Collapse
Affiliation(s)
- Ludmila V Puchkova
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Department of Molecular Genetics, Research Institute of Experimental Medicine, Acad. Pavlov str., 12, St.-Petersburg 197376, Russia.
- Department of Biophysics, Peter the Great St. Petersburg Polytechnic University, Politekhnicheskaya str., 29, St.-Petersburg 195251, Russia.
| | - Massimo Broggini
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Laboratory of molecular pharmacology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Via La Masa, 19, Milan 20156, Italy.
| | - Elena V Polishchuk
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (NA) 80078, Italy.
| | - Ekaterina Y Ilyechova
- Laboratory of Trace elements metabolism, ITMO University, Kronverksky av., 49, St.-Petersburg 197101, Russia.
| | - Roman S Polishchuk
- Telethon Institute of Genetics and Medicine, Via Campi Flegrei 34, Pozzuoli (NA) 80078, Italy.
| |
Collapse
|
20
|
Hecel A, Kolkowska P, Krzywoszynska K, Szebesczyk A, Rowinska-Zyrek M, Kozlowski H. Ag+ Complexes as Potential Therapeutic Agents in Medicine and Pharmacy. Curr Med Chem 2019; 26:624-647. [DOI: 10.2174/0929867324666170920125943] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 07/28/2017] [Accepted: 08/09/2017] [Indexed: 12/17/2022]
Abstract
Silver is a non-essential element with promising antimicrobial and anticancer properties. This work is a detailed summary of the newest findings on the bioinorganic chemistry of silver, with a special focus on the applications of Ag+ complexes and nanoparticles. The coordination chemistry of silver is given a reasonable amount of attention, summarizing the most common silver binding sites and giving examples of such binding motifs in biologically important proteins. Possible applications of this metal and its complexes in medicine, particularly as antibacterial and antifungal agents and in cancer therapy, are discussed in detail. The most recent data on silver nanoparticles are also summarized.
Collapse
Affiliation(s)
- Aleksandra Hecel
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50383 Wroclaw, Poland
| | - Paulina Kolkowska
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, via A. Moro 2, 53100 Siena, Italy
| | - Karolina Krzywoszynska
- Institute of Cosmetology, Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland
| | - Agnieszka Szebesczyk
- Institute of Cosmetology, Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland
| | | | - Henryk Kozlowski
- Institute of Cosmetology, Public Higher Medical Professional School in Opole, Katowicka 68, 45060 Opole, Poland
| |
Collapse
|
21
|
The Cu(II) affinity of the N-terminus of human copper transporter CTR1: Comparison of human and mouse sequences. J Inorg Biochem 2019; 182:230-237. [PMID: 29402466 DOI: 10.1016/j.jinorgbio.2018.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/08/2018] [Accepted: 01/19/2018] [Indexed: 11/20/2022]
Abstract
Copper Transporter 1 (CTR1) is a homotrimeric membrane protein providing the main route of copper transport into eukaryotic cells from the extracellular milieu. Its N-terminal extracellular domain, rich in His and Met residues, is considered responsible for directing copper into the transmembrane channel. Most of vertebrate CTR1 proteins contain the His residue in position three from N-terminus, creating a well-known Amino Terminal Cu(II)- and Ni(II)-Binding (ATCUN) site. CTR1 from humans, primates and many other species contains the Met-Asp-His (MDH) sequence, while some rodents including mouse have the Met-Asn-His (MNH) N-terminal sequence. CTR1 is thought to collect Cu(II) ions from blood copper transport proteins, including albumin, but previous reports indicated that the affinity of N-terminal peptide/domain of CTR1 is significantly lower than that of albumin, casting serious doubt on this aspect of CTR1 function. Using potentiometry and spectroscopic techniques we demonstrated that MDH-amide, a tripeptide model of human CTR1 N-terminus, binds Cu(II) with K of 1.3 × 1013 M-1 at pH 7.4, ~13 times stronger than Human Serum Albumin (HSA), and MNH-amide is even stronger, K of 3.2 × 1014 M-1 at pH 7.4. These results indicate that the N-terminus of CTR1 may serve as intermediate binding site during Cu(II) transfer from blood copper carriers to the transporter. MDH-amide, but not MNH-amide also forms a low abundance complex with non-ATCUN coordination involving the Met amine, His imidazole and Asp carboxylate. This species might assist Cu(II) relay down the peptide chain or its reduction to Cu(I), both steps necessary for the CTR1 function.
Collapse
|
22
|
Yang Y, Zhu Y, Hu H, Cheng L, Liu M, Ma G, Yuan S, Cui P, Liu Y. Cuprous binding promotes interaction of copper transport protein hCTR1 with cell membranes. Chem Commun (Camb) 2019; 55:11107-11110. [DOI: 10.1039/c9cc04859f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cu(i) binding promotes the interaction of hCTR1 with cell membranes, which could initiate the cellular uptake of copper ions.
Collapse
Affiliation(s)
- Yang Yang
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei Anhui
- China
| | - Yang Zhu
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei Anhui
- China
| | - Hongze Hu
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei Anhui
- China
| | - Lanjun Cheng
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei Anhui
- China
| | - Manman Liu
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei Anhui
- China
| | - Guolin Ma
- Institute of Biosciences and Technology
- College of Medicine
- Texas A&M University
- Houston
- USA
| | - Siming Yuan
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei Anhui
- China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation
- Institute of Soil Science
- the Chinese Academy of Sciences
- Nanjing 210008
- China
| | - Yangzhong Liu
- CAS High Magnetic Field Laboratory
- Department of Chemistry
- University of Science and Technology of China
- Hefei Anhui
- China
| |
Collapse
|
23
|
Carlotto S, Bonna A, Bossak-Ahmad K, Bal W, Porchia M, Casarin M, Tisato F. Coordinative unsaturated CuI entities are crucial intermediates governing cell internalization of copper. A combined experimental ESI-MS and DFT study. Metallomics 2019; 11:1800-1804. [DOI: 10.1039/c9mt00236g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Model peptides relevant to hCtr1 transchelate CuI from the anti-tumour [CuI(PTA)4]+ complex before metal internalization into tumor cells.
Collapse
Affiliation(s)
- Silvia Carlotto
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- Via Marzolo 1
- 35131 Padova
- Italy
| | - Arkadiusz Bonna
- Department of Biochemistry
- University of Cambridge
- Tennis Court Road
- Cambridge
- UK
| | - Karolina Bossak-Ahmad
- Institute of Biochemistry and Biophysics
- Polish Academy of Sciences, Pawińskiego 5a
- 02-106 Warsaw
- Poland
| | - Wojciech Bal
- Institute of Biochemistry and Biophysics
- Polish Academy of Sciences, Pawińskiego 5a
- 02-106 Warsaw
- Poland
| | | | - Maurizio Casarin
- Dipartimento di Scienze Chimiche
- Università degli Studi di Padova
- Via Marzolo 1
- 35131 Padova
- Italy
| | | |
Collapse
|
24
|
Kong L, Price NM. Functional CTR-type Cu(I) transporters in an oceanic diatom. Environ Microbiol 2018; 21:98-110. [DOI: 10.1111/1462-2920.14428] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/02/2018] [Accepted: 09/20/2018] [Indexed: 11/27/2022]
Affiliation(s)
| | - Neil M. Price
- Department of Biology; McGill University; Montréal Canada
| |
Collapse
|
25
|
Logeman BL, Thiele DJ. Reconstitution of a thermophilic Cu + importer in vitro reveals intrinsic high-affinity slow transport driving accumulation of an essential metal ion. J Biol Chem 2018; 293:15497-15512. [PMID: 30131336 PMCID: PMC6177576 DOI: 10.1074/jbc.ra118.004802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/09/2018] [Indexed: 01/01/2023] Open
Abstract
Acquisition of the trace element copper (Cu) is critical to drive essential eukaryotic processes such as oxidative phosphorylation, iron mobilization, peptide hormone biogenesis, and connective tissue maturation. The Ctr1/Ctr3 family of Cu importers, first discovered in fungi and conserved in mammals, are critical for Cu+ movement across the plasma membrane or mobilization from endosomal compartments. Whereas ablation of Ctr1 in mammals is embryonic lethal, and Ctr1 is critical for dietary Cu absorption, cardiac function, and systemic iron distribution, little is known about the intrinsic contribution of Ctr1 for Cu+ permeation through membranes or its mechanism of action. Here, we identify three members of a Cu+ importer family from the thermophilic fungus Chaetomium thermophilum: Ctr3a and Ctr3b, which function on the plasma membrane, and Ctr2, which likely functions in endosomal Cu mobilization. All three proteins drive Cu and isoelectronic silver (Ag) uptake in cells devoid of Cu+ importers. Transport activity depends on signature amino acid motifs that are conserved and essential for all Ctr1/3 transporters. Ctr3a is stable and amenable to purification and was incorporated into liposomes to reconstitute an in vitro Ag+ transport assay characterized by stopped-flow spectroscopy. Ctr3a has intrinsic high-affinity metal ion transport activity that closely reflects values determined in vivo, with slow turnover kinetics. Given structural models for mammalian Ctr1, Ctr3a likely functions as a low-efficiency Cu+ ion channel. The Ctr1/Ctr3 family may be tuned to import essential yet potentially toxic Cu+ ions at a slow rate to meet cellular needs, while minimizing labile intracellular Cu+ pools.
Collapse
Affiliation(s)
| | - Dennis J Thiele
- From the Departments of Pharmacology and Cancer Biology,
- Biochemistry, and
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
26
|
Shenberger Y, Marciano O, Gottlieb HE, Ruthstein S. Insights into the N-terminal Cu(II) and Cu(I) binding sites of the human copper transporter CTR1. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1492717] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yulia Shenberger
- The Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Ortal Marciano
- The Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Hugo E. Gottlieb
- The Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sharon Ruthstein
- The Department of Chemistry, Faculty of Exact Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
27
|
|
28
|
Endrizzi F, Di Bernardo P, Zanonato PL, Tisato F, Porchia M, Ahmed Isse A, Melchior A, Tolazzi M. Cu(i) and Ag(i) complex formation with the hydrophilic phosphine 1,3,5-triaza-7-phosphadamantane in different ionic media. How to estimate the effect of a complexing medium. Dalton Trans 2018; 46:1455-1466. [PMID: 28074209 DOI: 10.1039/c6dt04221j] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The complexes of Cu(i) and Ag(i) with 1,3,5-triaza-7-phosphadamantane (PTA) are currently studied for their potential clinical use as anticancer agents, given the cytotoxicity they exhibited in vitro towards a panel of several human tumor cell lines. These metallodrugs are prepared in the form of [M(PTA)4]+ (M = Cu+, Ag+) compounds and dissolved in physiological solution for their administration. However, the nature of the species involved in the cytotoxic activity of the compounds is often unknown. In the present work, the thermodynamics of formation of the complexes of Cu(i) and Ag(i) with PTA in aqueous solution is investigated by means of potentiometric, spectrophotometric and microcalorimetric methods. The results show that both metal(i) ions form up to four successive complexes with PTA. The formation of Ag(i) complexes is studied at 298.15 K in 0.1 M NaNO3 whereas the formation of the Cu(i) one is studied in 1 M NaCl, where Cu(i) is stabilized by the formation of three successive chloro-complexes. Therefore, for this latter system, conditional stability constants and thermodynamic data are obtained. To estimate the affinity of Cu(i) for PTA in the absence of chloride, Density Functional Theory (DFT) calculations have been done to obtain the stoichiometry and the relative stability of the possible Cu/PTA/Cl species. Results indicate that one chloride ion is involved in the formation of the first two complexes of Cu(i) ([CuCl(PTA)] and [CuCl(PTA)2]) whereas it is absent in the successive ones ([Cu(PTA)3]+ and [Cu(PTA)4]+). The combination of DFT results and thermodynamic experimental data has been used to estimate the stability constants of the four [Cu(PTA)n]+ (n = 1-4) complexes in an ideal non-complexing medium. The calculated stability constants are higher than the corresponding conditional values and show that PTA prefers Cu(i) to the Ag(i) ion. The approach used here to estimate the hidden role of chloride on the conditional stability constants of Cu(i) complexes may be applied to any Cu(i)/ligand system, provided that the stoichiometry of the species in NaCl solution is known. The speciation for the two systems shows that the [M(PTA)4]+ (M = Cu+, Ag+) complexes present in the metallodrugs are dissociated into lower stoichiometry species when diluted to the micromolar concentration range, typical of the in vitro biological testing. Accordingly, [Cu(PTA)2]+, [Cu(PTA)3]+ and [Ag(PTA)2]+ are predicted to be the species actually involved in the cytotoxic activity of these compounds.
Collapse
Affiliation(s)
- Francesco Endrizzi
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy. and Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Plinio Di Bernardo
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Pier Luigi Zanonato
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | | | | | - Abdirisak Ahmed Isse
- Dipartimento di Scienze Chimiche, Università di Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Andrea Melchior
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Laboratori di Scienze e Tecnologie Chimiche, via Cotonificio 108, 33100 Udine, Italy
| | - Marilena Tolazzi
- Dipartimento Politecnico di Ingegneria e Architettura, Università di Udine, Laboratori di Scienze e Tecnologie Chimiche, via Cotonificio 108, 33100 Udine, Italy
| |
Collapse
|
29
|
Bittner HJ, Guixà-González R, Hildebrand PW. Structural basis for the interaction of the beta-secretase with copper. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1105-1113. [PMID: 29391167 DOI: 10.1016/j.bbamem.2018.01.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/21/2018] [Accepted: 01/23/2018] [Indexed: 12/18/2022]
Abstract
The β-secretase (BACE1) features a unique sulfur rich motif (M462xxxC466xxxM470xxxC474xxxC478) in its transmembrane helix (BACE1-TM) which is characteristic for proteins involved in copper ion storage and transport. While this motif has been shown to promote BACE1-TM trimerization and binding of copper ions in vitro, the structural basis for the interaction of copper ions with the BACE1-TM is still not well understood. Using molecular dynamics (MD) simulations, we show that membrane embedded BACE1-TMs adopt a flexible trimeric structure that binds and conducts copper ions through variable coordination. In coarse-grained (CG) MD simulations, the spontaneous assembly of BACE1-TMs trimers results in a right-handed helix packing arrangement. In subsequent atomistic MD simulations the sulfur rich motif defines characteristic copper ion coordination sites along a constricted partially solvated axial pore. Sliding and tilting of BACE1-TMs along smooth A459xxxA463/464xxA467 surfaces, facilitated by a central P472 induced kink, enables copper ions to alternate between different coordination sites, including the prominent C466 and M470. We shed light into the structural arrangement of BACE1-TM trimers and propose a mechanism for copper ion conduction that might also apply to other proteins involved in metal ion transport.
Collapse
Affiliation(s)
- Heiko J Bittner
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Physics and Biophysics {Institut für Medizinische Physik und Biophysik}, AG ProteInFormatics, Charitéplatz 1, 10117 Berlin, Germany; Faculty of Medicine, Leipzig University, Institute for Medical Physics and Biophysics {Institut für Medizinische Physik und Biophysik}, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Ramon Guixà-González
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Physics and Biophysics {Institut für Medizinische Physik und Biophysik}, AG ProteInFormatics, Charitéplatz 1, 10117 Berlin, Germany.
| | - Peter W Hildebrand
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Medical Physics and Biophysics {Institut für Medizinische Physik und Biophysik}, AG ProteInFormatics, Charitéplatz 1, 10117 Berlin, Germany; Faculty of Medicine, Leipzig University, Institute for Medical Physics and Biophysics {Institut für Medizinische Physik und Biophysik}, Härtelstr. 16-18, 04107 Leipzig, Germany.
| |
Collapse
|
30
|
Miotto MC, Pavese MD, Quintanar L, Zweckstetter M, Griesinger C, Fernández CO. Bioinorganic Chemistry of Parkinson’s Disease: Affinity and Structural Features of Cu(I) Binding to the Full-Length β-Synuclein Protein. Inorg Chem 2017; 56:10387-10395. [DOI: 10.1021/acs.inorgchem.7b01292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Marco C. Miotto
- Max Planck Laboratory
for Structural Biology, Chemistry and Molecular Biophysics of Rosario
and Instituto de Investigaciones para el Descubrimiento de Fármacos
de Rosario, Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Mayra D. Pavese
- Max Planck Laboratory
for Structural Biology, Chemistry and Molecular Biophysics of Rosario
and Instituto de Investigaciones para el Descubrimiento de Fármacos
de Rosario, Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK Rosario, Argentina
| | - Liliana Quintanar
- Centro de Investigación y de Estudios Avanzados, Av. Instituto Politécnico
Nacional 2508, 07360 D.F., México
| | - Markus Zweckstetter
- Department of NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
- Deutches Zentrum für Neurodegenerative Erkrankungen, von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, University of Göttingen, Waldweg 33, 37073 Göttingen, Germany
| | - Christian Griesinger
- Department of NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | - Claudio O. Fernández
- Max Planck Laboratory
for Structural Biology, Chemistry and Molecular Biophysics of Rosario
and Instituto de Investigaciones para el Descubrimiento de Fármacos
de Rosario, Universidad Nacional de Rosario, Ocampo y Esmeralda, S2002LRK Rosario, Argentina
- Department of NMR-based
Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| |
Collapse
|
31
|
Maiti BK, Almeida RM, Maia LB, Moura I, Moura JJG. Insights into the Molybdenum/Copper Heterometallic Cluster Assembly in the Orange Protein: Probing Intermolecular Interactions with an Artificial Metal-Binding ATCUN Tag. Inorg Chem 2017; 56:8900-8911. [PMID: 28742344 DOI: 10.1021/acs.inorgchem.7b00840] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Orange protein (ORP) is a small bacterial protein, of unknown function, that contains a unique molybdenum/copper heterometallic cluster, [S2MoVIS2CuIS2MoVIS2]3- (Mo/Cu), non-covalently bound. The native cluster can be reconstituted in a protein-assisted mode by the addition of CuII plus tetrathiomolybdate to apo-ORP under controlled conditions. In the work described herein, we artificially inserted the ATCUN ("amino terminus Cu and Ni") motif in the Desulfovibrio gigas ORP (Ala1Ser2His3 followed by the native amino acid residues; modified protein abbreviated as ORP*) to increase our understanding of the Mo/Cu cluster assembly in ORP. The apo-ORP* binds CuII in a 1:1 ratio to yield CuII-ORP*, as clearly demonstrated by EPR (g||,⊥ = 2.183, 2.042 and ACu||,⊥ = 207 × 10-4 cm-1, 19 × 10-4 cm-1) and UV-visible spectroscopies (typical d-d transition bands at 520 nm, ε = 90 M-1 cm-1). The 1H NMR spectrum shows that His3 and His53 are significantly affected upon the addition of the CuII. The X-ray structure shows that these two residues are very far apart (Cα-Cα ≈ 27.9 Å), leading us to suggest that the metal-induced NMR perturbations are due to the interaction of two protein molecules with a single metal ion. Docking analysis supports the metal-mediated dimer formation. The subsequent tetrathiomolybdate binding, to yield the native Mo/Cu cluster, occurs only upon addition of dithiothreitol, as shown by UV-visible and NMR spectroscopies. Additionally, 1H NMR of AgI-ORP* (AgI used as a surrogate of CuI) showed that AgI strongly binds to a native methionine sulfur atom rather than to the ATCUN site, suggesting that CuII and CuI have two different binding sites in ORP*. A detailed mechanism for the formation of the Mo/Cu cluster is discussed, suggesting that CuII is reduced to CuI and transferred from the ATCUN motif to the methionine site; finally, CuI is transferred to the cluster-binding region, upon the interaction of two protein molecules. This result may suggest that copper trafficking is triggered by redox-dependent coordination properties of copper in a trafficking pathway.
Collapse
Affiliation(s)
- Biplab K Maiti
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | - Rui M Almeida
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | - Luisa B Maia
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | - Isabel Moura
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| | - José J G Moura
- UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa , 2829-516 Caparica, Portugal
| |
Collapse
|
32
|
Logeman BL, Wood LK, Lee J, Thiele DJ. Gene duplication and neo-functionalization in the evolutionary and functional divergence of the metazoan copper transporters Ctr1 and Ctr2. J Biol Chem 2017; 292:11531-11546. [PMID: 28507097 PMCID: PMC5500815 DOI: 10.1074/jbc.m117.793356] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 05/12/2017] [Indexed: 11/06/2022] Open
Abstract
Copper is an essential element for proper organismal development and is involved in a range of processes, including oxidative phosphorylation, neuropeptide biogenesis, and connective tissue maturation. The copper transporter (Ctr) family of integral membrane proteins is ubiquitously found in eukaryotes and mediates the high-affinity transport of Cu+ across both the plasma membrane and endomembranes. Although mammalian Ctr1 functions as a Cu+ transporter for Cu acquisition and is essential for embryonic development, a homologous protein, Ctr2, has been proposed to function as a low-affinity Cu transporter, a lysosomal Cu exporter, or a regulator of Ctr1 activity, but its functional and evolutionary relationship to Ctr1 is unclear. Here we report a biochemical, genetic, and phylogenetic comparison of metazoan Ctr1 and Ctr2, suggesting that Ctr2 arose over 550 million years ago as a result of a gene duplication event followed by loss of Cu+ transport activity. Using a random mutagenesis and growth selection approach, we identified amino acid substitutions in human and mouse Ctr2 proteins that support copper-dependent growth in yeast and enhance copper accumulation in Ctr1-/- mouse embryonic fibroblasts. These mutations revert Ctr2 to a more ancestral Ctr1-like state while maintaining endogenous functions, such as stimulating Ctr1 cleavage. We suggest key structural aspects of metazoan Ctr1 and Ctr2 that discriminate between their biological roles, providing mechanistic insights into the evolutionary, biochemical, and functional relationships between these two related proteins.
Collapse
Affiliation(s)
| | - L Kent Wood
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710 and
| | - Jaekwon Lee
- the Department of Biochemistry and Redox Biology Center, University of Nebraska, Lincoln, Nebraska 68588
| | - Dennis J Thiele
- From the Departments of Pharmacology and Cancer Biology,
- Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina 27710 and
- Biochemistry, and
| |
Collapse
|
33
|
Cadiou JL, Pichat S, Bondanese VP, Soulard A, Fujii T, Albarède F, Oger P. Copper transporters are responsible for copper isotopic fractionation in eukaryotic cells. Sci Rep 2017; 7:44533. [PMID: 28303916 PMCID: PMC5356015 DOI: 10.1038/srep44533] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/06/2017] [Indexed: 12/14/2022] Open
Abstract
Copper isotopic composition is altered in cancerous compared to healthy tissues. However, the rationale for this difference is yet unknown. As a model of Cu isotopic fractionation, we monitored Cu uptake in Saccharomyces cerevisiae, whose Cu import is similar to human. Wild type cells are enriched in 63Cu relative to 65Cu. Likewise, 63Cu isotope enrichment in cells without high-affinity Cu transporters is of slightly lower magnitude. In cells with compromised Cu reductase activity, however, no isotope fractionation is observed and when Cu is provided solely in reduced form for this strain, copper is enriched in 63Cu like in the case of the wild type. Our results demonstrate that Cu isotope fractionation is generated by membrane importers and that its amplitude is modulated by Cu reduction. Based on ab initio calculations, we propose that the fractionation may be due to Cu binding with sulfur-rich amino acids: methionine and cysteine. In hepatocellular carcinoma (HCC), lower expression of the STEAP3 copper reductase and heavy Cu isotope enrichment have been reported for the tumor mass, relative to the surrounding tissue. Our study suggests that copper isotope fractionation observed in HCC could be due to lower reductase activity in the tumor.
Collapse
Affiliation(s)
- Jean-Loup Cadiou
- Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5276, Lyon, France
| | - Sylvain Pichat
- Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5276, Lyon, France
| | - Victor P. Bondanese
- Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5276, Lyon, France
| | - Alexandre Soulard
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Villeurbanne, France
| | - Toshiyuki Fujii
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Francis Albarède
- Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5276, Lyon, France
| | - Philippe Oger
- Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, UMR 5276, Lyon, France
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Villeurbanne, France
| |
Collapse
|
34
|
Okada M, Miura T, Nakabayashi T. Comparison of extracellular Cys/Trp motif between Schizosaccharomyces pombe Ctr4 and Ctr5. J Inorg Biochem 2017; 169:97-105. [PMID: 28167404 DOI: 10.1016/j.jinorgbio.2017.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/07/2017] [Accepted: 01/20/2017] [Indexed: 11/19/2022]
Abstract
The reduction and binding of copper ions to the Cys/Trp motif, which is characterized by two cysteines and two tryptophans, in the extracellular N-terminal domain of the copper transporter (Ctr) protein of fungi are investigated using the model peptides of Ctr4 and Ctr5 from Schizosaccharomyces pombe. The Cys/Trp motif of Ctr5 can reduce Cu(II) and ligate Cu(I), which is the same as that of Ctr4 previously reported. Titration of Cu(II) and Cu(I) ions indicates that both the Cys/Trp motifs of Ctr4 and Ctr5 reduce two Cu(II) and bind two Cu(I) per one peptide. However, the coordination structure of the Cu(I)-peptide complex differs between Ctr4 and Ctr5. Cu(I) is bound to the Cys/Trp motif of Ctr5 via cysteine thiolate-Cu(I) bonds and cation-π interaction with tryptophan, as reported for Ctr4, and a histidine residue in the Cys/Trp motif of Ctr5 is suggested to interact with Cu(I) via its Nτ atom. Ctr4 and Ctr5 exhibit a heterotrimeric form within cell membranes and the copper transport mechanism of the Ctr4/Ctr5 heterotrimer is discussed along with quantitative evaluation of the Cu(I)-binding constant of the Cys/Trp motif.
Collapse
Affiliation(s)
- Mariko Okada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | - Takashi Miura
- Department of Pharmaceutical Sciences, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Takakazu Nakabayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
35
|
Chabert V, Hologne M, Sénèque O, Crochet A, Walker O, Fromm KM. Model peptide studies of Ag+ binding sites from the silver resistance protein SilE. Chem Commun (Camb) 2017; 53:6105-6108. [DOI: 10.1039/c7cc02630g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A model peptide study characterizes several Ag+-binding sites of the bacterial silver resistant protein SilE, providing new insights into its physiological role.
Collapse
Affiliation(s)
- V. Chabert
- Univ. Fribourg
- Department of Chemistry
- 1700 Fribourg
- Switzerland
| | - M. Hologne
- Univ. Lyon
- CNRS
- UCB Lyon 1
- ENS-Lyon
- Institut des Sciences Analytiques
| | - O. Sénèque
- Univ. Grenoble Alpes
- CNRS
- CEA, LCBM (UMR 5249)
- F-38000 Grenoble
- France
| | - A. Crochet
- Univ. Fribourg
- Fribourg Center for Nanomaterials
- FriMat
- 1700 Fribourg
- Switzerland
| | - O. Walker
- Univ. Lyon
- CNRS
- UCB Lyon 1
- ENS-Lyon
- Institut des Sciences Analytiques
| | - K. M. Fromm
- Univ. Fribourg
- Department of Chemistry
- 1700 Fribourg
- Switzerland
| |
Collapse
|
36
|
Levy AR, Nissim M, Mendelman N, Chill J, Ruthstein S. Ctr1 Intracellular Loop Is Involved in the Copper Transfer Mechanism to the Atox1 Metallochaperone. J Phys Chem B 2016; 120:12334-12345. [PMID: 27934216 DOI: 10.1021/acs.jpcb.6b10222] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Understanding the human copper cycle is essential to understand the role of metals in promoting neurological diseases and disorders. One of the cycles controlling the cellular concentration and distribution of copper involves the copper transporter, Ctr1; the metallochaperone, Atox1; and the ATP7B transporter. It has been shown that the C-terminus of Ctr1, specifically the last three amino acids, HCH, is involved in both copper coordination and the transfer mechanism to Atox1. In contrast, the role of the intracellular loop of Ctr1, which is an additional intracellular segment of Ctr1, in facilitating the copper transfer mechanism has not been investigated yet. Here, we combine various biophysical methods to explore the interaction between this Ctr1 segment and metallochaperone Atox1 and clearly demonstrate that the Ctr1 intracellular loop (1) can coordinate Cu(I) via interactions with the side chains of one histidine and two methionine residues and (2) closely interacts with the Atox1 metallochaperone. Our findings are another important step in elucidating the mechanistic details of the eukaryotic copper cycle.
Collapse
Affiliation(s)
- Ariel R Levy
- The Department of Chemistry, Faculty of Exact Science, Bar Ilan University , Ramat-Gan 5290002, Israel
| | - Matan Nissim
- The Department of Chemistry, Faculty of Exact Science, Bar Ilan University , Ramat-Gan 5290002, Israel
| | - Netanel Mendelman
- The Department of Chemistry, Faculty of Exact Science, Bar Ilan University , Ramat-Gan 5290002, Israel
| | - Jordan Chill
- The Department of Chemistry, Faculty of Exact Science, Bar Ilan University , Ramat-Gan 5290002, Israel
| | - Sharon Ruthstein
- The Department of Chemistry, Faculty of Exact Science, Bar Ilan University , Ramat-Gan 5290002, Israel
| |
Collapse
|
37
|
Gmoshinski IV, Shumakova AA, Shipelin VA, Maltsev GY, Khotimchenko SA. Influence of orally introduced silver nanoparticles on content of essential and toxic trace elements in organism. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s1995078016050074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Magrì A, Tabbì G, Giuffrida A, Pappalardo G, Satriano C, Naletova I, Nicoletti VG, Attanasio F. Influence of the N-terminus acetylation of Semax, a synthetic analog of ACTH(4-10), on copper(II) and zinc(II) coordination and biological properties. J Inorg Biochem 2016; 164:59-69. [PMID: 27586814 DOI: 10.1016/j.jinorgbio.2016.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 10/21/2022]
Abstract
Semax is a heptapeptide (Met-Glu-His-Phe-Pro-Gly-Pro) that encompasses the sequence 4-7 of N-terminal domain of the adrenocorticotropic hormone and a C-terminal Pro-Gly-Pro tripeptide. N-terminal amino group acetylation (Ac-Semax) modulates the chemical and biological properties of parental peptide, modifying the ability of Semax to form complex species with Cu(II) ion. At physiological pH, the main complex species formed by Ac-Semax, [CuLH-2]2-, consists in a distorted CuN3O chromophore with a weak apical interaction of the methionine sulphur. Such a complex differs from the Cu(II)-Semax complex system, which exhibits a CuN4 chromophore. The reduced ligand field affects the [CuLH-2]2- formal redox potential, which is more positive than that of Cu(II)-Semax corresponding species. In the amino-free form, the resulting complex species is redox-stable and unreactive against ascorbic acid, unlike the acetylated form. Semax acetylation did not protect from Cu(II) induced toxicity on a SH-SY5Y neuroblastoma cell line, thus demonstrating the crucial role played by the free NH2 terminus in the cell protection. Since several brain diseases are associated either to Cu(II) or Zn(II) dyshomeostasis, here we characterized also the complex species formed by Zn(II) with Semax and Ac-Semax. Both peptides were able to form Zn(II) complex species with comparable strength. Confocal microscopy imaging confirmed that peptide group acetylation does not affect the Zn(II) influx in neuroblastoma cells. Moreover, a punctuate distribution of Zn(II) within the cells suggests a preferred subcellular localization that might explain the zinc toxic effect. A future perspective can be the use of Ac-Semax as ionophore in antibody drug conjugates to produce a dysmetallostasis in tumor cells.
Collapse
Affiliation(s)
- Antonio Magrì
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Giovanni Tabbì
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (CNR), Via P. Gaifami 18, 95126 Catania, Italy.
| | - Alessandro Giuffrida
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Giuseppe Pappalardo
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (CNR), Via P. Gaifami 18, 95126 Catania, Italy
| | - Cristina Satriano
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Irina Naletova
- Dipartimento di Scienze Biomediche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy; Consorzio Interuniversitario C.I.R.C.S.M.B., Via C. Ulpiani 27, 70125 Bari, Italy
| | - Vincenzo G Nicoletti
- Dipartimento di Scienze Biomediche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Francesco Attanasio
- Istituto di Biostrutture e Bioimmagini, Consiglio Nazionale delle Ricerche (CNR), Via P. Gaifami 18, 95126 Catania, Italy.
| |
Collapse
|
39
|
Ramos-Torres KM, Kolemen S, Chang CJ. Thioether Coordination Chemistry for Molecular Imaging of Copper in Biological Systems. Isr J Chem 2016; 56:724-737. [PMID: 31263315 DOI: 10.1002/ijch.201600023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Copper is an essential element in biological systems. Its potent redox activity renders it necessary for life, but at the same time, misregulation of its cellular pools can lead to oxidative stress implicated in aging and various disease states. Copper is commonly thought of as a static cofactor buried in protein active sites; however, evidence of a more loosely bound, labile pool of copper has emerged. To help identify and understand new roles for dynamic copper pools in biology, we have developed selective molecular imaging agents for this metal, drawing inspiration from both biological binding motifs and synthetic model complexes that reveal thioether coordination as a general design strategy for selective and sensitive copper recognition. In this review, we summarize some contributions, primarily from our own laboratory, on fluorescence- and magnetic resonance-based molecular-imaging probes for studying copper in living systems using thioether coordination chemistry.
Collapse
Affiliation(s)
| | - Safacan Kolemen
- Department of Chemistry, University of California Berkeley, CA 94704 (USA)
| | - Christopher J Chang
- Department of Chemistry, University of California Berkeley, CA 94704 (USA).,Department of Molecular and Cell Biology, University of California Berkeley, CA 94704 (USA).,Howard Hughes Medical Institute, Tel.: (+1) 510-642-4704
| |
Collapse
|
40
|
Asiani KR, Williams H, Bird L, Jenner M, Searle MS, Hobman JL, Scott DJ, Soultanas P. SilE is an intrinsically disordered periplasmic "molecular sponge" involved in bacterial silver resistance. Mol Microbiol 2016; 101:731-42. [PMID: 27085056 PMCID: PMC5008109 DOI: 10.1111/mmi.13399] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2016] [Indexed: 12/28/2022]
Abstract
Ag(+) resistance was initially found on the Salmonella enetrica serovar Typhimurium multi-resistance plasmid pMG101 from burns patients in 1975. The putative model of Ag(+) resistance, encoded by the sil operon from pMG101, involves export of Ag(+) via an ATPase (SilP), an effluxer complex (SilCFBA) and a periplasmic chaperon of Ag(+) (SilE). SilE is predicted to be intrinsically disordered. We tested this hypothesis using structural and biophysical studies and show that SilE is an intrinsically disordered protein in its free apo-form but folds to a compact structure upon optimal binding to six Ag(+) ions in its holo-form. Sequence analyses and site-directed mutagenesis established the importance of histidine and methionine containing motifs for Ag(+) -binding, and identified a nucleation core that initiates Ag(+) -mediated folding of SilE. We conclude that SilE is a molecular sponge for absorbing metal ions.
Collapse
Affiliation(s)
- Karishma R Asiani
- School of Biosciences, University of Nottingham, Sutton, Bonington, LE12 5RD, United Kingdom
| | - Huw Williams
- Centre for Biomolecular Sciences, School of Chemistry, University Park, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Louise Bird
- Oxford Protein Production Factory, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, United Kingdom
| | - Matthew Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Mark S Searle
- Centre for Biomolecular Sciences, School of Chemistry, University Park, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Jon L Hobman
- School of Biosciences, University of Nottingham, Sutton, Bonington, LE12 5RD, United Kingdom
| | - David J Scott
- School of Biosciences, University of Nottingham, Sutton, Bonington, LE12 5RD, United Kingdom.,ISIS Neutron and Muon Source and Research Complex at Harwell, Rutherford Appleton Laboratory, Oxfordshire, OX11 0FA, United Kingdom
| | - Panos Soultanas
- Centre for Biomolecular Sciences, School of Chemistry, University Park, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
41
|
Schwab S, Shearer J, Conklin SE, Alies B, Haas KL. Sequence proximity between Cu(II) and Cu(I) binding sites of human copper transporter 1 model peptides defines reactivity with ascorbate and O2. J Inorg Biochem 2016; 158:70-76. [PMID: 26778425 PMCID: PMC4887339 DOI: 10.1016/j.jinorgbio.2015.12.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/25/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
Abstract
The critical nature of the copper transporter 1 (Ctr1) in human health has spurred investigation of Ctr1 structure and function. Ctr1 specifically transports Cu(I), the reduced form of copper, across the plasma membrane. Thus, extracellular Cu(II) must be reduced prior to transport. Unlike yeast Ctr1, mammalian Ctr1 does not rely on any known mammalian reductase. Previous spectroscopic studies of model peptides indicate that human Ctr1 could serve as both copper reductase and transporter. Ctr1 peptides bind Cu(II) at an amino terminal high-affinity Cu(II), Ni(II) ATCUN site. Ascorbate-dependent reduction of the Cu(II)-ATCUN complex is possible by virtue of an adjacent HH (bis-His), as this bis-His motif and one methionine ligand constitute a high affinity Ctr1 Cu(I) binding site. Here, we synthetically varied the distance between the ATCUN and bis-His motifs in a series of peptides based on the human Ctr1 amino terminal, with the general sequence MDHAnHHMGMSYMDS, where n=0-4. We tested the ability of each peptide to reduce Cu(II) with ascorbate and stabilize Cu(I) under ambient conditions (20% O2). This study reveals that significant differences in coordination structure and chemical behavior with ascorbate and O2 result from changes in the sequence proximity of ATCUN and bis-His. Peptides that deviate from the native Ctr1 pattern were less effective at forming stable Cu(I)-peptide complexes and/or resulted in O2-dependent oxidative damage to the peptide.
Collapse
Affiliation(s)
- Stefanie Schwab
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, IN, USA
| | - Jason Shearer
- Department of Chemistry, University of Nevada, Reno, USA
| | | | - Bruno Alies
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Kathryn L Haas
- Department of Chemistry and Physics, Saint Mary's College, Notre Dame, IN, USA.
| |
Collapse
|
42
|
Okada M, Miura T. Copper(I) stabilization by cysteine/tryptophan motif in the extracellular domain of Ctr4. J Inorg Biochem 2016; 159:45-9. [PMID: 26908286 DOI: 10.1016/j.jinorgbio.2016.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/15/2016] [Accepted: 02/10/2016] [Indexed: 11/25/2022]
Abstract
Copper transporter Ctr4 of fission yeast has a quasi-palindromic sequence rich in cysteine and aromatic amino acid residues, CX4YWNWYX4C (where X represents any amino acid), in the N-terminal extracellular domain. A 24-mer peptide comprising this sequence is bound to Cu(I) through the cysteine thiolate coordination. Luminescence, UV absorption and resonance Raman spectra of the Cu(I)-peptide complex show that at least one of the two tryptophan side chains is located in close proximity to the thiolate-Cu(I) center and interacts with the Cu(I) ion via π-electrons of the indole ring. Although the thiolates and Cu(I) are oxidized to disulfide and Cu(II), respectively, only very slowly in air-saturated solutions, replacements of the tryptophan residues to phenylalanine significantly accelerate the oxidation reactions. The results obtained indicate that the interaction between Cu(I) and tryptophan via π-electrons plays a significant role in protecting the thiolate-Cu(I) center against the oxidation. The cysteine- and tryptophan-rich quasi-palindromic sequence may be a metal binding motif that stabilizes Cu(I) in the oxidizing extracellular environment.
Collapse
Affiliation(s)
- Mariko Okada
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan
| | - Takashi Miura
- Graduate School of Pharmaceutical Sciences, Tohoku University, Aobayama, Sendai 980-8578, Japan.
| |
Collapse
|
43
|
Pellegrino S, Facchetti G, Contini A, Gelmi ML, Erba E, Gandolfi R, Rimoldi I. Ctr-1 Mets7 motif inspiring new peptide ligands for Cu(i)-catalyzed asymmetric Henry reactions under green conditions. RSC Adv 2016. [DOI: 10.1039/c6ra16255j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Hybrid catalysts were developed from the Cu(i) binding domain of Ctr1 protein and their activity was evaluated in an asymmetric Henry reaction.
Collapse
Affiliation(s)
- Sara Pellegrino
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Giorgio Facchetti
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Maria Luisa Gelmi
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Emanuela Erba
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Raffaella Gandolfi
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| | - Isabella Rimoldi
- Dipartimento di Scienze Farmaceutiche
- Università degli Studi di Milano
- 20133 Milano
- Italy
| |
Collapse
|
44
|
Dong Z, Guan L, Wang C, Xu H, Li Z, Li F. Reconstruction of a helical trimer by the second transmembrane domain of human copper transporter 2 in micelles and the binding of the trimer to silver. RSC Adv 2016. [DOI: 10.1039/c5ra24889b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The second transmembrane domain of human copper transporter 2 (hCtr2-TMD2) forms a trimer with a weaker intermolecular interaction and a lower affinity for Ag(I) than hCtr1-TMD2 trimer.
Collapse
Affiliation(s)
- Zhe Dong
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Liping Guan
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Chunyu Wang
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| | - Haoran Xu
- Key Laboratory for Molecular Enzymology & Engineering
- The Ministry of Education
- Jilin University
- Changchun 130012
- P. R. China
| | - Zhengqiang Li
- Key Laboratory for Molecular Enzymology & Engineering
- The Ministry of Education
- Jilin University
- Changchun 130012
- P. R. China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
45
|
Pushie MJ, Shaw K, Franz KJ, Shearer J, Haas KL. Model Peptide Studies Reveal a Mixed Histidine-Methionine Cu(I) Binding Site at the N-Terminus of Human Copper Transporter 1. Inorg Chem 2015; 54:8544-51. [PMID: 26258435 DOI: 10.1021/acs.inorgchem.5b01162] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Copper is a vital metal cofactor in enzymes that are essential to myriad biological processes. Cellular acquisition of copper is primarily accomplished through the Ctr family of plasma membrane copper transport proteins. Model peptide studies indicate that the human Ctr1 N-terminus binds to Cu(II) with high affinity through an amino terminal Cu(II), Ni(II) (ATCUN) binding site. Unlike typical ATCUN-type peptides, the Ctr1 peptide facilitates the ascorbate-dependent reduction of Cu(II) bound in its ATCUN site by virtue of an adjacent HH (bis-His) sequence in the peptide. It is likely that the Cu(I) coordination environment influences the redox behavior of Cu bound to this peptide; however, the identity and coordination geometry of the Cu(I) site has not been elucidated from previous work. Here, we show data from NMR, XAS, and structural modeling that sheds light on the identity of the Cu(I) binding site of a Ctr1 model peptide. The Cu(I) site includes the same bis-His site identified in previous work to facilitate ascorbate-dependent Cu(II) reduction. The data presented here are consistent with a rational mechanism by which Ctr1 provides coordination environments that facilitate Cu(II) reduction prior to Cu(I) transport.
Collapse
Affiliation(s)
- M Jake Pushie
- Department of Anatomy and Cell Biology, University of Saskatchewan , Saskatoon, Saskatchewan, Canada.,Canadian Light Source Incorporated, Saskatoon, Saskatchewan, Canada
| | - Katharine Shaw
- Department of Chemistry and Physics, Saint Mary's College , Notre Dame, Indiana 46556, United States
| | - Katherine J Franz
- Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Jason Shearer
- Department of Chemistry, University of Nevada , Reno, Nevada 895030, United States
| | - Kathryn L Haas
- Department of Chemistry and Physics, Saint Mary's College , Notre Dame, Indiana 46556, United States
| |
Collapse
|
46
|
Dong Z, Wang Y, Wang C, Xu H, Guan L, Li Z, Li F. Self-Assembly of the Second Transmembrane Domain of hCtr1 in Micelles and Interaction with Silver Ion. J Phys Chem B 2015; 119:8302-12. [PMID: 26061257 DOI: 10.1021/acs.jpcb.5b03744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human copper transporter 1 (hCtr1) transports copper and silver by a homotrimer. The protein contains three transmembrane domains in which the second transmembrane domain (TMD2) is a key component lining the central pore of the trimer. The MXXXM motif in the C-terminal end of TMD2 plays a significant role in the function of hCtr1. In this study, we characterized the structure and assembly of isolated TMD2 of hCtr1 in sodium dodecyl sulfate (SDS) micelles and the interaction of the micelle-bound peptide with silver ion using nuclear magnetic resonance, circular dichroism, isothermal titration calorimetry and electrophoresis techniques. We detected the formation of a trimer of the isolated hCtr1-TMD2 in SDS micelles and the binding of the trimer to Ag(I) by a chemical stoichiometry of 3:2 of peptide:Ag(I). We showed that either an intensive pretreatment of the TMD2 peptide by 1,1,1,3,3,3-hexafluoro-2-propanol solvent or a conversion from methionine to leucine in the MXXXM motif changes the aggregation structure of the peptide and decreases the binding affinity by 1 order of magnitude. Our results suggest that the intrinsic interaction of the second transmembrane domain itself may be closely associated with the formation of hCtr1 pore in cellular membranes, and two methionine residues in the MXXXM motif may be important for TMD2 both in the trimeric assembly and in a higher-affinity binding to Ag(I).
Collapse
Affiliation(s)
- Zhe Dong
- †State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, PR China
| | - Yunrui Wang
- †State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, PR China
| | - Chunyu Wang
- †State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, PR China
| | | | - Liping Guan
- †State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, PR China
| | | | - Fei Li
- †State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, PR China
| |
Collapse
|
47
|
Meir A, Natan A, Moskovitz Y, Ruthstein S. EPR spectroscopy identifies Met and Lys residues that are essential for the interaction between the CusB N-terminal domain and metallochaperone CusF. Metallomics 2015; 7:1163-72. [PMID: 25940871 DOI: 10.1039/c5mt00053j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Copper plays a key role in all living organisms by serving as a cofactor for a large variety of proteins and enzymes involved in electron transfer, oxidase and oxygenase activities, and the detoxification of oxygen radicals. Due to its toxicity, a conserved homeostasis mechanism is required. In E. coli, the CusCFBA efflux system is a copper-regulating system and is responsible for transferring Cu(I) and Ag(I) out of the periplasm domain into the extracellular domain. Two of the components of this efflux system, the CusF metallochaperone and the N-terminal domain of CusB, have been thought to play significant roles in the function of this efflux system. Resolving the metal ion transport mechanism through this efflux system is vital for understanding metal- and multidrug-resistant microorganisms. This work explores one aspect of the E. coli resistance mechanism by observing the interaction between the N-terminal domain of CusB and the CusF protein, using electron paramagnetic resonance (EPR) spectroscopy, circular dichroism (CD), and chemical cross-linking. The data summarized here show that M36 and M38 of CusB are important residues for both the Cu(I) coordination to the CusB N-terminal domain and the interaction with CusF, and K32 is essential for the interaction with CusF. In contrast, the K29 residue is less consequential for the interaction with CusF, whereas M21 is mostly important for the proper interaction with CusF.
Collapse
Affiliation(s)
- Aviv Meir
- Department of Chemistry, Faculty of Exact Science, Bar Ilan University, Ramat Gan, 5290002, Israel.
| | | | | | | |
Collapse
|
48
|
Shenberger Y, Gottlieb HE, Ruthstein S. EPR and NMR spectroscopies provide input on the coordination of Cu(I) and Ag(I) to a disordered methionine segment. J Biol Inorg Chem 2015; 20:719-27. [DOI: 10.1007/s00775-015-1259-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 03/20/2015] [Indexed: 11/27/2022]
|
49
|
Cotruvo JA, Aron AT, Ramos-Torres KM, Chang CJ. Synthetic fluorescent probes for studying copper in biological systems. Chem Soc Rev 2015; 44:4400-14. [PMID: 25692243 DOI: 10.1039/c4cs00346b] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The potent redox activity of copper is required for sustaining life. Mismanagement of its cellular pools, however, can result in oxidative stress and damage connected to aging, neurodegenerative diseases, and metabolic disorders. Therefore, copper homeostasis is tightly regulated by cells and tissues. Whereas copper and other transition metal ions are commonly thought of as static cofactors buried within protein active sites, emerging data points to the presence of additional loosely bound, labile pools that can participate in dynamic signalling pathways. Against this backdrop, we review advances in sensing labile copper pools and understanding their functions using synthetic fluorescent indicators. Following brief introductions to cellular copper homeostasis and considerations in sensor design, we survey available fluorescent copper probes and evaluate their properties in the context of their utility as effective biological screening tools. We emphasize the need for combined chemical and biological evaluation of these reagents, as well as the value of complementing probe data with other techniques for characterizing the different pools of metal ions in biological systems. This holistic approach will maximize the exciting opportunities for these and related chemical technologies in the study and discovery of novel biology of metals.
Collapse
Affiliation(s)
- Joseph A Cotruvo
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
50
|
Peruzzo V, Tisato F, Porchia M, Santini C, Pellei M, Traldi P. Electrospray ionization multi-stage mass spectrometric study of the interaction products of the cytotoxic complex [Cu(thp)₄][PF₆] with methionine-rich model peptides. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2015; 29:253-262. [PMID: 26411623 DOI: 10.1002/rcm.7100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/14/2014] [Accepted: 11/14/2014] [Indexed: 06/05/2023]
Abstract
RATIONALE The cytotoxic activity of the copper(I) complex [Cu(thp)4][PF6] (CP) (thp = tris(hydroxymethyl) phosphine) is correlated with its high accumulation in cancer cells. Human copper transporter 1 (hCtr1) has been described as the main trans-membrane protein involved in cellular trafficking of physiological copper. Methionine-rich peptide sequences incorporated in the extracellular domain of hCtr1 play a key role in the cellular internalization of copper. We wish to investigate the interaction of CP with model peptides that mimic the extracellular domain of hCtr1. METHODS The interaction of CP with methionine-rich and methionine-free model peptides has been investigated by electrospray ionization mass spectrometry and the interaction products have been characterized by multiple collisional experiments, using an ion trap mass instrument. RESULTS The interaction of CP with selected methionine-rich model peptides, Ac-MMMMPMTFK-NH2 (P1) and Ac-MGMSYMDSK-NH2 (P2), shows that the native copper complex, after sequential loss of phosphines, induces the formation of [Cu(P1)(thp)](+) and [Cu(P1/P2)](+) adducts reasonably by inclusion of the Cu(I) ion in the peptide framework. Collisionally induced fragmentations (MS(n)) of [Cu(P1/P2)](+) give evidence that the metal is coordinated by the thioether-S of two adjacent methionine residues. Interaction of the same peptides with the isostructural complex [Ag(thp)4](+) or AgNO3 yields similar experimental evidence, leading to [Ag(P1/P2)](+). CONCLUSIONS Methionine sequences incorporated in model peptides are crucial for the recruitment of copper from CP. Such a metal-peptide interaction does not take place when methionine-free Ac-NleGNleSYNleDSK-NH2 (P3) is utilized. A mechanism for tumor cell internalization of CP involving: (i) chemically driven sequential loss of phosphines from the native tetrahedral complex, followed by (ii) transfer of Cu(I) to the methionine-rich sequences typical of the hCtr1 transporter, is proposed.
Collapse
Affiliation(s)
| | | | | | - Carlo Santini
- Scuola di Scienze e Tecnologie, Divisione di Chimica, Università di Camerino, Via S. Agostino 1, I 62032, Camerino, (MC), Italy
| | - Maura Pellei
- Scuola di Scienze e Tecnologie, Divisione di Chimica, Università di Camerino, Via S. Agostino 1, I 62032, Camerino, (MC), Italy
| | - Piero Traldi
- CNR - IENI, Corso Stati Uniti 4, 35127, Padova, Italy
| |
Collapse
|