1
|
Liu Y, Rodríguez‐Jiménez S, Song H, Pannwitz A, Kim D, Coito AM, Manuel RR, Webb S, Su L, Bonke SA, Milton RD, Pereira IAC, Bonnet S, Hammarström L, Reisner E. Bio-Inspired Self-Assembly of Enzyme-Micelle Systems for Semi-Artificial Photosynthesis. Angew Chem Int Ed Engl 2025; 64:e202424222. [PMID: 39951445 PMCID: PMC12036810 DOI: 10.1002/anie.202424222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/16/2025]
Abstract
Supramolecular surfactants provide a versatile platform to construct systems for solar fuel synthesis, for example via the self-assembly of amphiphilic photosensitizers and catalysts into diverse supramolecular structures. However, the utilization of amphiphilic photosensitizers in solar fuel production has predominantly focused on yielding gaseous products, such as molecular hydrogen (H2), carbon monoxide (CO), and methane (CH4) with turnover numbers (TONs) of synthetic catalysts typically in the range of hundreds to thousands. Inspired by biological lipid-protein interactions, we present herein a bio-hybrid assembly strategy that utilizes photosensitizers as surfactants to form micellar scaffolds that interface with enzymes, namely hydrogenases and formate dehydrogenases, for semi-artificial photosynthesis. Specifically, surfactants with a tris(2,2'-bipyridine)ruthenium(II) head group provide high photocatalytic activity upon association with the enzymes as their positively charged [Ru(bpy)3]2+ complex electrostatically interacts with the enzymes favorably to enable direct electron transfer at the micelle-enzyme interface. Time-resolved absorption and emission spectroscopy support the beneficial charge carrier dynamics of the reductively quenched [Ru(bpy)3]+ species when the enzymes are introduced in the micellar solution. Thus, a biohybrid concept is introduced for solar fuel synthesis using a biomimetic enzyme-micellar system, providing also a platform for other photocatalytic transformations using enzymes in the future.
Collapse
Affiliation(s)
- Yongpeng Liu
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | | | - Hongwei Song
- Department of Chemistry – Angstrom LaboratoryUppsala University751 20UppsalaSweden
| | - Andrea Pannwitz
- Leiden Institute of ChemistryLeiden University2333 CCLeiden, TheNetherlands
| | - Dongseok Kim
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Ana M. Coito
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA)Universidade NOVA de Lisboa2780-157OeirasPortugal
| | - Rita R. Manuel
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA)Universidade NOVA de Lisboa2780-157OeirasPortugal
| | - Sophie Webb
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
- National Centre of Competence in Research (NCCR) CatalysisUniversity of Geneva1211Geneva 4Switzerland
| | - Lin Su
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Shannon A. Bonke
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Ross D. Milton
- Department of Inorganic and Analytical ChemistryUniversity of Geneva1211Geneva 4Switzerland
- National Centre of Competence in Research (NCCR) CatalysisUniversity of Geneva1211Geneva 4Switzerland
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA)Universidade NOVA de Lisboa2780-157OeirasPortugal
| | - Sylvestre Bonnet
- Leiden Institute of ChemistryLeiden University2333 CCLeiden, TheNetherlands
| | - Leif Hammarström
- Department of Chemistry – Angstrom LaboratoryUppsala University751 20UppsalaSweden
| | - Erwin Reisner
- Yusuf Hamied Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
2
|
Kamatsos F, Drosou M, Zarkadoulas A, Bethanis K, Mitsopoulou CA. Enhanced Homogeneous Photocatalytic Hydrogen Evolution in a Binuclear Bio-Inspired Ni-Ni Complex Bearing Phenanthroline and Sulfidophenolate Ligands. Chemistry 2025; 31:e202404396. [PMID: 39868769 PMCID: PMC11924997 DOI: 10.1002/chem.202404396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 01/28/2025]
Abstract
The prominence of binuclear, bimetallic catalysts underlines the need for the design and development of diverse bifunctional ligand frameworks that exhibit tunable electronic and structural properties. Such strategies enable metal-metal and ligand-metal cooperation towards catalytic applications, improve catalytic activity, and are essential for advancing multi-electron transfers for catalytic application. In this work we present the synthesis, crystal structure, and photocatalytic properties of a binuclear Ni(II) complex, [Ni2(1,10-phenanthroline)2(2-sulfidophenolate)2] (1). Complex 1 crystallizes in the centrosymmetric triclinic system (P-1) showing extensive intra- and inter- non-coordinated interactions. 1 is employed as a catalyst for light driven hydrogen evolution. Its catalytic efficiency in a noble-metal-free photo-driven system using fluorescein as photosensitizer and triethanolamine as the electron donor, reaches TON 2900, threefold the efficiency of the corresponding homoleptic mononuclear complex [Ni(2-sulfidophenolate)2]. Efficiency rises up to 9000 TONs when thioglycolic-coated CdTe quantum dots are used as photosensitizers in the presence of ascorbic acid at pH 4.5. UV-Vis spectroscopy, dynamic light scattering techniques, and Hg-poisoning measurements reveal that 1 maintains its molecular structure during catalysis. Electrochemical studies in DMF with TFA as the proton source were also performed for the elucidation of the mechanism of its catalytic action and its stability, suggesting that the proximity of two nickel ions plays a part in the increased catalytic activity, facilitating hydrogen evolution.
Collapse
Affiliation(s)
- Fotios Kamatsos
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
| | - Maria Drosou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz1, 45470, Mülheiman der Ruhr, Germany
| | - Athanasios Zarkadoulas
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
| | - Kostas Bethanis
- Physics Laboratory, Department of Biotechnology, Agricultural University of Athens, 11855, Athens, Greece
| | - Christiana A Mitsopoulou
- Inorganic Chemistry Laboratory, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou 15771, Athens, Greece
| |
Collapse
|
3
|
Liu Y, Pulignani C, Webb S, Cobb SJ, Rodríguez-Jiménez S, Kim D, Milton RD, Reisner E. Electrostatic [FeFe]-hydrogenase-carbon nitride assemblies for efficient solar hydrogen production. Chem Sci 2024; 15:6088-6094. [PMID: 38665532 PMCID: PMC11040649 DOI: 10.1039/d4sc00640b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024] Open
Abstract
The assembly of semiconductors as light absorbers and enzymes as redox catalysts offers a promising approach for sustainable chemical synthesis driven by light. However, achieving the rational design of such semi-artificial systems requires a comprehensive understanding of the abiotic-biotic interface, which poses significant challenges. In this study, we demonstrate an electrostatic interaction strategy to interface negatively charged cyanamide modified graphitic carbon nitride (NCNCNX) with an [FeFe]-hydrogenase possessing a positive surface charge around the distal FeS cluster responsible for electron uptake into the enzyme. The strong electrostatic attraction enables efficient solar hydrogen (H2) production via direct interfacial electron transfer (DET), achieving a turnover frequency (TOF) of 18 669 h-1 (4 h) and a turnover number (TON) of 198 125 (24 h). Interfacial characterizations, including quartz crystal microbalance (QCM), photoelectrochemical impedance spectroscopy (PEIS), intensity-modulated photovoltage spectroscopy (IMVS), and transient photocurrent spectroscopy (TPC) have been conducted on the semi-artificial carbon nitride-enzyme system to provide a comprehensive understanding for the future development of photocatalytic hybrid assemblies.
Collapse
Affiliation(s)
- Yongpeng Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Carolina Pulignani
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Sophie Webb
- Department of Inorganic and Analytical Chemistry, University of Geneva Geneva 41211 Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva Geneva 41211 Switzerland
| | - Samuel J Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | | | - Dongseok Kim
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| | - Ross D Milton
- Department of Inorganic and Analytical Chemistry, University of Geneva Geneva 41211 Switzerland
- National Centre of Competence in Research (NCCR) Catalysis, University of Geneva Geneva 41211 Switzerland
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge Cambridge CB2 1EW UK
| |
Collapse
|
4
|
Cabotaje P, Walter K, Zamader A, Huang P, Ho F, Land H, Senger M, Berggren G. Probing Substrate Transport Effects on Enzymatic Hydrogen Catalysis: An Alternative Proton Transfer Pathway in Putatively Sensory [FeFe] Hydrogenase. ACS Catal 2023; 13:10435-10446. [PMID: 37560193 PMCID: PMC10407848 DOI: 10.1021/acscatal.3c02314] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Indexed: 08/11/2023]
Abstract
[FeFe] hydrogenases, metalloenzymes catalyzing proton/dihydrogen interconversion, have attracted intense attention due to their remarkable catalytic properties and (bio-)technological potential for a future hydrogen economy. In order to unravel the factors enabling their efficient catalysis, both their unique organometallic cofactors and protein structural features, i.e., "outer-coordination sphere" effects have been intensively studied. These structurally diverse enzymes are divided into distinct phylogenetic groups, denoted as Group A-D. Prototypical Group A hydrogenases display high turnover rates (104-105 s-1). Conversely, the sole characterized Group D representative, Thermoanaerobacter mathranii HydS (TamHydS), shows relatively low catalytic activity (specific activity 10-1 μmol H2 mg-1 min-1) and has been proposed to serve a H2-sensory function. The various groups of [FeFe] hydrogenase share the same catalytic cofactor, the H-cluster, and the structural factors causing the diverging reactivities of Group A and D remain to be elucidated. In the case of the highly active Group A enzymes, a well-defined proton transfer pathway (PTP) has been identified, which shuttles H+ between the enzyme surface and the active site. In Group D hydrogenases, this conserved pathway is absent. Here, we report on the identification of highly conserved amino acid residues in Group D hydrogenases that constitute a possible alternative PTP. We varied two proposed key amino acid residues of this pathway (E252 and E289, TamHydS numbering) via site-directed mutagenesis and analyzed the resulting variants via biochemical and spectroscopic methods. All variants displayed significantly decreased H2-evolution and -oxidation activities. Additionally, the variants showed two redox states that were not characterized previously. These findings provide initial evidence that these amino acid residues are central to the putative PTP of Group D [FeFe] hydrogenase. Since the identified residues are highly conserved in Group D exclusively, our results support the notion that the PTP is not universal for different phylogenetic groups in [FeFe] hydrogenases.
Collapse
Affiliation(s)
| | | | - Afridi Zamader
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Ping Huang
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Felix Ho
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Henrik Land
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Moritz Senger
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| | - Gustav Berggren
- Molecular Biomimetics, Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, SE-75120 Uppsala, Sweden
| |
Collapse
|
5
|
Pauleta SR, Grazina R, Carepo MS, Moura JJ, Moura I. Iron-sulfur clusters – functions of an ancient metal site. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:105-173. [DOI: 10.1016/b978-0-12-823144-9.00116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
6
|
Ruiz-Rodríguez MA, Cooper CD, Rocchia W, Casalegno M, López de los Santos Y, Raos G. Modeling of the Electrostatic Interaction and Catalytic Activity of [NiFe] Hydrogenases on a Planar Electrode. J Phys Chem B 2022; 126:8777-8790. [PMID: 36269122 PMCID: PMC9639099 DOI: 10.1021/acs.jpcb.2c05371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hydrogenases are a group of enzymes that have caught the interest of researchers in renewable energies, due to their ability to catalyze the redox reaction of hydrogen. The exploitation of hydrogenases in electrochemical devices requires their immobilization on the surface of suitable electrodes, such as graphite. The orientation of the enzyme on the electrode is important to ensure a good flux of electrons to the catalytic center, through an array of iron-sulfur clusters. Here we present a computational approach to determine the possible orientations of a [NiFe] hydrogenase (PDB 1e3d) on a planar electrode, as a function of pH, salinity, and electrode potential. The calculations are based on the solution of the linearized Poisson-Boltzmann equation, using the PyGBe software. The results reveal that electrostatic interactions do not truly immobilize the enzyme on the surface of the electrode, but there is instead a dynamic equilibrium between different orientations. Nonetheless, after averaging over all thermally accessible orientations, we find significant differences related to the solution's salinity and pH, while the effect of the electrode potential is relatively weak. We also combine models for the protein adsoption-desorption equilibria and for the electron transfer between the proteins and the electrode to arrive at a prediction of the electrode's activity as a function of the enzyme concentration.
Collapse
Affiliation(s)
| | - Christopher D. Cooper
- Department
of Mechanical Engineering and Centro Científico Tecnológico
de Valparaíso, Universidad Técnica
Federico Santa María, Valparaíso, 2340000, Chile
| | - Walter Rocchia
- CONCEPT
Lab, Istituto Italiano di Tecnologia, 16163Genova, Italy
| | - Mosè Casalegno
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, 20133Milano, Italy
| | - Yossef López de los Santos
- Centre
Armand-Frappier Santé, Biotechnologie, Institut national de
la recherche scientifique (INRS), Université
du Québec, Laval, QuébecHV7 1B7, Canada
| | - Guido Raos
- Dipartimento
di Chimica, Materiali e Ingegneria Chimica “G. Natta”, Politecnico di Milano, 20133Milano, Italy,
| |
Collapse
|
7
|
Stripp ST, Duffus BR, Fourmond V, Léger C, Leimkühler S, Hirota S, Hu Y, Jasniewski A, Ogata H, Ribbe MW. Second and Outer Coordination Sphere Effects in Nitrogenase, Hydrogenase, Formate Dehydrogenase, and CO Dehydrogenase. Chem Rev 2022; 122:11900-11973. [PMID: 35849738 PMCID: PMC9549741 DOI: 10.1021/acs.chemrev.1c00914] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gases like H2, N2, CO2, and CO are increasingly recognized as critical feedstock in "green" energy conversion and as sources of nitrogen and carbon for the agricultural and chemical sectors. However, the industrial transformation of N2, CO2, and CO and the production of H2 require significant energy input, which renders processes like steam reforming and the Haber-Bosch reaction economically and environmentally unviable. Nature, on the other hand, performs similar tasks efficiently at ambient temperature and pressure, exploiting gas-processing metalloenzymes (GPMs) that bind low-valent metal cofactors based on iron, nickel, molybdenum, tungsten, and sulfur. Such systems are studied to understand the biocatalytic principles of gas conversion including N2 fixation by nitrogenase and H2 production by hydrogenase as well as CO2 and CO conversion by formate dehydrogenase, carbon monoxide dehydrogenase, and nitrogenase. In this review, we emphasize the importance of the cofactor/protein interface, discussing how second and outer coordination sphere effects determine, modulate, and optimize the catalytic activity of GPMs. These may comprise ionic interactions in the second coordination sphere that shape the electron density distribution across the cofactor, hydrogen bonding changes, and allosteric effects. In the outer coordination sphere, proton transfer and electron transfer are discussed, alongside the role of hydrophobic substrate channels and protein structural changes. Combining the information gained from structural biology, enzyme kinetics, and various spectroscopic techniques, we aim toward a comprehensive understanding of catalysis beyond the first coordination sphere.
Collapse
Affiliation(s)
- Sven T Stripp
- Freie Universität Berlin, Experimental Molecular Biophysics, Berlin 14195, Germany
| | | | - Vincent Fourmond
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Christophe Léger
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Institut Microbiologie, Bioénergies et Biotechnologie, CNRS, Aix Marseille Université, Marseille 13402, France
| | - Silke Leimkühler
- University of Potsdam, Molecular Enzymology, Potsdam 14476, Germany
| | - Shun Hirota
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
| | - Yilin Hu
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Andrew Jasniewski
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Hideaki Ogata
- Nara Institute of Science and Technology, Division of Materials Science, Graduate School of Science and Technology, Nara 630-0192, Japan
- Hokkaido University, Institute of Low Temperature Science, Sapporo 060-0819, Japan
- Graduate School of Science, University of Hyogo, Hyogo 678-1297, Japan
| | - Markus W Ribbe
- Department of Molecular Biology & Biochemistry, University of California, Irvine, California 92697-3900, United States
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
8
|
Synthesis, Structures and Chemical Reactivity of Dithiolato-Bridged Ni-Fe Complexes as Biomimetics for the Active Site of [NiFe]-Hydrogenases. INORGANICS 2022. [DOI: 10.3390/inorganics10070090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To develop the structural and functional modeling chemistry of [NiFe]-H2ases, we have carried out a study regarding the synthesis, structural characterization and reactivity of a new series of [NiFe]-H2ase model complexes. Thus, treatment of diphosphine dppb-chelated Ni complex (dppb)NiCl2 (dppb = 1,2-(Ph2P)2C6H4) with (dppv)Fe(CO)2(pdt) (dppv = 1,2-(Ph2P)2C2H2, pdt = 1,3-propanedithiolate) and NaBF4 gave dicarbonyl complex [(dppb)Ni(pdt)Fe(CO)2(dppv)](BF4)2 ([A](BF4)2). Further treatment of [A](BF4)2 with Me3NO and Bu4NCN or KSCN afforded t-cyanido and t-isothiocyanato complexes [(dppb)Ni(pdt)Fe(CO)(t-R)(dppv)]BF4 ([1]BF4, R = CN; [2]BF4, R = NCS), respectively. While azadiphosphine MeN(CH2PPh2)2-chelated t-hydride complex [MeN(CH2PPh2)2Ni(pdt)Fe(CO)(t-H)(dppv)]BF4 ([3]BF4) was prepared by treatment of dicarbonyl complex [MeN(CH2PPh2)2Ni(pdt)Fe(CO)2(dppv)](BF4)2 ([B](BF4)2) with Me3NO and 1.5 MPa of H2, treatment of dicarbonyl complex [B](BF4)2 with Me3NO (without H2) in pyridine resulted in formation of a novel monocarbonyl complex [MeN(CH2PPh2)2Ni(SCHCH2CH2S)Fe(CO)(dppv)]BF4 ([4]BF4) via the unexpected sp3 C-H bond activation reaction. Furthermore, azadiphosphine PhN(CH2PPh2)2-chelated µ-mercapto complex [PhN(CH2PPh2)2Ni(pdt)Fe(CO)(µ-SH)(dppv)]BF4 ([5]BF4) was prepared by treatment of dicarbonyl complex [PhN(CH2PPh2)2Ni(pdt)Fe(CO)2(dppv)](BF4)2 ([C](BF4)2) with Me3NO and H2S gas, whereas treatment of azadiphosphine Ph2CHN(CH2PPh2)2-chelated dicarbonyl complex [Ph2CHN(CH2PPh2)2Ni(pdt)Fe(CO)2(dppe)](BF4)2 ([D](BF4)2, dppe = 1,2-(Ph2P)2C2H4) with Me3NO⋅2H2O gave rise to µ-hydroxo complex [Ph2CHN(CH2PPh2)2Ni(pdt)Fe(CO)(µ-OH)(dppe)]BF4 ([6]BF4). All the possible pathways for formation of the new model complexes are briefly discussed, and their structures were fully characterized by various spectroscopic techniques and for six of them by X-ray crystallography.
Collapse
|
9
|
|
10
|
Badiani VM, Cobb SJ, Wagner A, Oliveira AR, Zacarias S, Pereira IAC, Reisner E. Elucidating Film Loss and the Role of Hydrogen Bonding of Adsorbed Redox Enzymes by Electrochemical Quartz Crystal Microbalance Analysis. ACS Catal 2022; 12:1886-1897. [PMID: 35573129 PMCID: PMC9097293 DOI: 10.1021/acscatal.1c04317] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/13/2021] [Indexed: 12/17/2022]
Abstract
![]()
The immobilization of redox enzymes
on electrodes enables the efficient
and selective electrocatalysis of useful reactions such as the reversible
interconversion of dihydrogen (H2) to protons (H+) and formate to carbon dioxide (CO2) with hydrogenase
(H2ase) and formate dehydrogenase (FDH), respectively.
However, their immobilization on electrodes to produce electroactive
protein films for direct electron transfer (DET) at the protein–electrode
interface is not well understood, and the reasons for their activity
loss remain vague, limiting their performance often to hour timescales.
Here, we report the immobilization of [NiFeSe]-H2ase and
[W]-FDH from Desulfovibrio vulgaris Hildenborough on a range of charged and neutral self-assembled monolayer
(SAM)-modified gold electrodes with varying hydrogen bond (H-bond)
donor capabilities. The key factors dominating the activity and stability
of the immobilized enzymes are determined using protein film voltammetry
(PFV), chronoamperometry (CA), and electrochemical quartz crystal
microbalance (E-QCM) analysis. Electrostatic and H-bonding interactions
are resolved, with electrostatic interactions responsible for enzyme
orientation while enzyme desorption is strongly limited when H-bonding
is present at the enzyme–electrode interface. Conversely, enzyme
stability is drastically reduced in the absence of H-bonding, and
desorptive enzyme loss is confirmed as the main reason for activity
decay by E-QCM during CA. This study provides insights into the possible
reasons for the reduced activity of immobilized redox enzymes and
the role of film loss, particularly H-bonding, in stabilizing bioelectrode
performance, promoting avenues for future improvements in bioelectrocatalysis.
Collapse
Affiliation(s)
- Vivek M. Badiani
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Cambridge Graphene Centre, University of Cambridge, Cambridge CB3 0FA, U.K
| | - Samuel J. Cobb
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Andreas Wagner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Ana Rita Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Sónia Zacarias
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Inês A. C. Pereira
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Erwin Reisner
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
11
|
Synthesis of Novel Heteroleptic Oxothiolate Ni(II) Complexes and Evaluation of Their Catalytic Activity for Hydrogen Evolution. Catalysts 2021. [DOI: 10.3390/catal11030401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Two heteroleptic nickel oxothiolate complexes, namely [Ni(bpy)(mp)] (1) and [Ni(dmbpy)(mp)] (2), where mp = 2-hydroxythiophenol, bpy = 2,2′-bipyridine and dmbpy = 4,4′-dimethyl-2,2′-bipyridine were synthesized and characterized with various physical and spectroscopic methods. Complex 2 was further characterized by single crystal X-ray diffraction data. The complex crystallizes in the monoclinic P 21/c system and in its neutral form. The catalytic properties of both complexes for proton reduction were evaluated with photochemical and electrochemical studies. Two different in their nature photosensitizers, namely fluorescein and CdTe-TGA-coated quantum dots, were tested under various conditions. The role of the electron donating character of the methyl substituents was revealed in the light of the studies. Thus, catalyst 2 performs better than 1, reaching 39.1 TONs vs. 4.63 TONs in 3 h, respectively, in electrochemical experiments. In contrast, complex 1 is more photocatalytically active than 2, achieving a TON of over 6700 in 120 h of irradiation. This observed reverse catalytic activity suggests that HER mechanism follows different pathways in electrocatalysis and photocatalysis.
Collapse
|
12
|
Su Z, Zhang Y, Jia X, Xiang X, Zhou J. Research on enhancement of zero-valent iron on dissimilatory nitrate/nitrite reduction to ammonium of Desulfovibrio sp. CMX. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141126. [PMID: 32750580 DOI: 10.1016/j.scitotenv.2020.141126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/18/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
The process of nitrate dissimilation to ammonium (DNRA) is an important way for storing nitrogen in nature and DNRA is a key step in efficient recovery of nitrogen in wastewater. However, in view of the low conversion efficiency of DNRA, zero-valent iron (ZVI) was used to enhance the DNRA process of Desulfovibrio sp. CMX. ZVI can obviously promote the nitrate/nitrite reduction. The experiment indicated that 5 g/L 300 mesh ZVI could convert 5 mmol/L nitrate or nitrite to ammonium in 48 h or 36 h respectively, and the conversion ratio of NO2- to NH4+ could reach more than 90%. The ZVI provided a suitable growth environment for the Desulfovibrio sp. CMX through chemical reduction of nitrite, production of divalent iron (Fe2+), reduction of oxidation-reduction potential (ORP) and adjustment of pH, which strengthened the DNRA performance. This experiment is advantageous for increasing efficiency of DNRA and provides a new idea for efficient recovery of nitrogen resources.
Collapse
Affiliation(s)
- Zhiqiang Su
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Yu Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China.
| | - Xue Jia
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Xuemin Xiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
13
|
Grba DN, Hirst J. Mitochondrial complex I structure reveals ordered water molecules for catalysis and proton translocation. Nat Struct Mol Biol 2020; 27:892-900. [PMID: 32747785 PMCID: PMC7612091 DOI: 10.1038/s41594-020-0473-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/26/2020] [Indexed: 01/09/2023]
Abstract
Mitochondrial complex I powers ATP synthesis by oxidative phosphorylation, exploiting the energy from ubiquinone reduction by NADH to drive protons across the energy-transducing inner membrane. Recent cryo-EM analyses of mammalian and yeast complex I have revolutionized structural and mechanistic knowledge and defined structures in different functional states. Here, we describe a 2.7-Å-resolution structure of the 42-subunit complex I from the yeast Yarrowia lipolytica containing 275 structured water molecules. We identify a proton-relay pathway for ubiquinone reduction and water molecules that connect mechanistically crucial elements and constitute proton-translocation pathways through the membrane. By comparison with known structures, we deconvolute structural changes governing the mammalian 'deactive transition' (relevant to ischemia-reperfusion injury) and their effects on the ubiquinone-binding site and a connected cavity in ND1. Our structure thus provides important insights into catalysis by this enigmatic respiratory machine.
Collapse
Affiliation(s)
- Daniel N Grba
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Judy Hirst
- The Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Benoit SL, Maier RJ, Sawers RG, Greening C. Molecular Hydrogen Metabolism: a Widespread Trait of Pathogenic Bacteria and Protists. Microbiol Mol Biol Rev 2020; 84:e00092-19. [PMID: 31996394 PMCID: PMC7167206 DOI: 10.1128/mmbr.00092-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pathogenic microorganisms use various mechanisms to conserve energy in host tissues and environmental reservoirs. One widespread but often overlooked means of energy conservation is through the consumption or production of molecular hydrogen (H2). Here, we comprehensively review the distribution, biochemistry, and physiology of H2 metabolism in pathogens. Over 200 pathogens and pathobionts carry genes for hydrogenases, the enzymes responsible for H2 oxidation and/or production. Furthermore, at least 46 of these species have been experimentally shown to consume or produce H2 Several major human pathogens use the large amounts of H2 produced by colonic microbiota as an energy source for aerobic or anaerobic respiration. This process has been shown to be critical for growth and virulence of the gastrointestinal bacteria Salmonella enterica serovar Typhimurium, Campylobacter jejuni, Campylobacter concisus, and Helicobacter pylori (including carcinogenic strains). H2 oxidation is generally a facultative trait controlled by central regulators in response to energy and oxidant availability. Other bacterial and protist pathogens produce H2 as a diffusible end product of fermentation processes. These include facultative anaerobes such as Escherichia coli, S Typhimurium, and Giardia intestinalis, which persist by fermentation when limited for respiratory electron acceptors, as well as obligate anaerobes, such as Clostridium perfringens, Clostridioides difficile, and Trichomonas vaginalis, that produce large amounts of H2 during growth. Overall, there is a rich literature on hydrogenases in growth, survival, and virulence in some pathogens. However, we lack a detailed understanding of H2 metabolism in most pathogens, especially obligately anaerobic bacteria, as well as a holistic understanding of gastrointestinal H2 transactions overall. Based on these findings, we also evaluate H2 metabolism as a possible target for drug development or other therapies.
Collapse
Affiliation(s)
- Stéphane L Benoit
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Robert J Maier
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - R Gary Sawers
- Institute of Microbiology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Chris Greening
- School of Biological Sciences, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash Biomedicine Discovery Institute, Clayton, VIC, Australia
| |
Collapse
|
15
|
Raje S, Mani K, Kandasamy P, Butcher RJ, Angamuthu R. Bioinspired Oxidative Cleavage of Aliphatic C–C Bonds Utilizing Aerial Oxygen by Nickel Acireductone Dioxygenase Mimics. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sakthi Raje
- Laboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC) Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| | - Kalaikodikumaran Mani
- Laboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC) Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| | - Parameswaran Kandasamy
- Laboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC) Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| | - Ray J. Butcher
- Department of Chemistry Howard University 20059 Washington, D.C. United States
| | - Raja Angamuthu
- Laboratory of Inorganic Synthesis and Bioinspired Catalysis (LISBIC) Department of Chemistry Indian Institute of Technology Kanpur 208016 Kanpur India
| |
Collapse
|
16
|
Zanello P. Structure and electrochemistry of proteins harboring iron-sulfur clusters of different nuclearities. Part IV. Canonical, non-canonical and hybrid iron-sulfur proteins. J Struct Biol 2019; 205:103-120. [PMID: 30677521 DOI: 10.1016/j.jsb.2019.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 01/11/2019] [Accepted: 01/11/2019] [Indexed: 12/26/2022]
Abstract
A plethora of proteins are able to express iron-sulfur clusters, but have a clear picture of the different types of proteins and the different iron-sulfur clusters they harbor it is not easy. In the last five years we have reviewed structure/electrochemistry of metalloproteins expressing: (i) single types of iron-sulfur clusters (namely: {Fe(Cys)4}, {[Fe2S2](Cys)4}, {[Fe2S2](Cys)3(X)} (X = Asp, Arg, His), {[Fe2S2](Cys)2(His)2}, {[Fe3S4](Cys)3}, {[Fe4S4](Cys)4} and {[Fe4S4](Cys)3(nonthiolate ligand)} cores); (ii) metalloproteins harboring iron-sulfur centres of different nuclearities (namely: [4Fe-4S] and [2Fe-2S], [4Fe-4S] and [3Fe-4S], and [4Fe-4S], [3Fe-4S] and [2Fe-2S] clusters. Our target is now to review structure and electrochemistry of proteins harboring canonical, non-canonical and hybrid iron-sulfur proteins.
Collapse
Affiliation(s)
- Piero Zanello
- Dipartimento di Biotecnologie, Chimica e Farmacia dell'Università di Siena, Via A. De Gasperi 2, 53100 Siena, Italy
| |
Collapse
|
17
|
Muras V, Toulouse C, Fritz G, Steuber J. Respiratory Membrane Protein Complexes Convert Chemical Energy. Subcell Biochem 2019; 92:301-335. [PMID: 31214991 DOI: 10.1007/978-3-030-18768-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The invention of a biological membrane which is used as energy storage system to drive the metabolism of a primordial, unicellular organism represents a key event in the evolution of life. The innovative, underlying principle of this key event is respiration. In respiration, a lipid bilayer with insulating properties is chosen as the site for catalysis of an exergonic redox reaction converting substrates offered from the environment, using the liberated Gibbs free energy (ΔG) for the build-up of an electrochemical H+ (proton motive force, PMF) or Na+ gradient (sodium motive force, SMF) across the lipid bilayer. Very frequently , several redox reactions are performed in a consecutive manner, with the first reaction delivering a product which is used as substrate for the second redox reaction, resulting in a respiratory chain. From today's perspective, the (mostly) unicellular bacteria and archaea seem to be much simpler and less evolved when compared to multicellular eukaryotes. However, they are overwhelmingly complex with regard to the various respiratory chains which permit survival in very different habitats of our planet, utilizing a plethora of substances to drive metabolism. This includes nitrogen, sulfur and carbon compounds which are oxidized or reduced by specialized, respiratory enzymes of bacteria and archaea which lie at the heart of the geochemical N, S and C-cycles. This chapter gives an overview of general principles of microbial respiration considering thermodynamic aspects, chemical reactions and kinetic restraints. The respiratory chains of Escherichia coli and Vibrio cholerae are discussed as models for PMF- versus SMF-generating processes, respectively. We introduce main redox cofactors of microbial respiratory enzymes, and the concept of intra-and interelectron transfer. Since oxygen is an electron acceptor used by many respiratory chains, the formation and removal of toxic oxygen radicals is described. Promising directions of future research are respiratory enzymes as novel bacterial targets, and biotechnological applications relying on respiratory complexes.
Collapse
Affiliation(s)
- Valentin Muras
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Charlotte Toulouse
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Günter Fritz
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany
| | - Julia Steuber
- Institute of Microbiology, University of Hohenheim, Garbenstr. 30, 70599, Stuttgart, Germany.
| |
Collapse
|
18
|
Zacarias S, Vélez M, Pita M, De Lacey AL, Matias PM, Pereira IAC. Characterization of the [NiFeSe] hydrogenase from Desulfovibrio vulgaris Hildenborough. Methods Enzymol 2018; 613:169-201. [PMID: 30509465 DOI: 10.1016/bs.mie.2018.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The [NiFeSe] hydrogenases are a subgroup of the well-characterized family of [NiFe] hydrogenases, in which a selenocysteine is a ligand to the nickel atom in the binuclear NiFe active site instead of cysteine. These enzymes display very interesting catalytic properties for biological hydrogen production and bioelectrochemical applications: high H2 production activity, bias for H2 evolution, low H2 inhibition, and some degree of O2 tolerance. Here we describe the methodologies employed to study the [NiFeSe] hydrogenase isolated from the sulfate-reducing bacteria D. vulgaris Hildenborough and the creation of a homologous expression system for production of variant forms of the enzyme.
Collapse
Affiliation(s)
- Sónia Zacarias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Marisela Vélez
- Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, Spain
| | - Marcos Pita
- Instituto de Catálisis y Petroleoquímica, CSIC, Madrid, Spain
| | | | - Pedro M Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal.
| | - Inês A C Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
19
|
Noor NDM, Matsuura H, Nishikawa K, Tai H, Hirota S, Kim J, Kang J, Tateno M, Yoon KS, Ogo S, Kubota S, Shomura Y, Higuchi Y. Redox-dependent conformational changes of a proximal [4Fe-4S] cluster in Hyb-type [NiFe]-hydrogenase to protect the active site from O 2. Chem Commun (Camb) 2018; 54:12385-12388. [PMID: 30328414 DOI: 10.1039/c8cc06261g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Citrobacter sp. S-77 [NiFe]-hydrogenase harbors a standard [4Fe-4S] cluster proximal to the Ni-Fe active site. The presence of relocatable water molecules and a flexible aspartate enables the [4Fe-4S] to display redox-dependent conformational changes. These structural features are proposed to be the key aspects that protect the active site from O2 attack.
Collapse
Affiliation(s)
- Noor Dina Muhd Noor
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Tai H, Higuchi Y, Hirota S. Comprehensive reaction mechanisms at and near the Ni-Fe active sites of [NiFe] hydrogenases. Dalton Trans 2018. [PMID: 29532823 DOI: 10.1039/c7dt04910b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
[NiFe] hydrogenase (H2ase) catalyzes the oxidation of dihydrogen to two protons and two electrons and/or its reverse reaction. For this simple reaction, the enzyme has developed a sophisticated but intricate mechanism with heterolytic cleavage of dihydrogen (or a combination of a hydride and a proton), where its Ni-Fe active site exhibits various redox states. Recently, thermodynamic parameters of the acid-base equilibrium for activation-inactivation, a new intermediate in the catalytic reaction, and new crystal structures of [NiFe] H2ases have been reported, providing significant insights into the activation-inactivation and catalytic reaction mechanisms of [NiFe] H2ases. This Perspective provides an overview of the reaction mechanisms of [NiFe] H2ases based on these new findings.
Collapse
Affiliation(s)
- Hulin Tai
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara 630-0192, Japan.
| | | | | |
Collapse
|
21
|
Beaton SE, Evans RM, Finney AJ, Lamont CM, Armstrong FA, Sargent F, Carr SB. The structure of hydrogenase-2 from Escherichia coli: implications for H 2-driven proton pumping. Biochem J 2018; 475:1353-1370. [PMID: 29555844 PMCID: PMC5902676 DOI: 10.1042/bcj20180053] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/12/2018] [Accepted: 03/16/2018] [Indexed: 01/19/2023]
Abstract
Under anaerobic conditions, Escherichia coli is able to metabolize molecular hydrogen via the action of several [NiFe]-hydrogenase enzymes. Hydrogenase-2, which is typically present in cells at low levels during anaerobic respiration, is a periplasmic-facing membrane-bound complex that functions as a proton pump to convert energy from hydrogen (H2) oxidation into a proton gradient; consequently, its structure is of great interest. Empirically, the complex consists of a tightly bound core catalytic module, comprising large (HybC) and small (HybO) subunits, which is attached to an Fe-S protein (HybA) and an integral membrane protein (HybB). To date, efforts to gain a more detailed picture have been thwarted by low native expression levels of Hydrogenase-2 and the labile interaction between HybOC and HybA/HybB subunits. In the present paper, we describe a new overexpression system that has facilitated the determination of high-resolution crystal structures of HybOC and, hence, a prediction of the quaternary structure of the HybOCAB complex.
Collapse
Affiliation(s)
- Stephen E Beaton
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K
| | - Rhiannon M Evans
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K
| | - Alexander J Finney
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Ciaran M Lamont
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K
| | - Fraser A Armstrong
- Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford OX1 3QR, U.K.
| | - Frank Sargent
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, U.K.
| | - Stephen B Carr
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Oxford, Didcot OX11 0FA, U.K.
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
| |
Collapse
|
22
|
Song LC, Gao XY, Liu WB, Zhang HT, Cao M. Synthesis, Characterization, and Reactions of Functionalized Nickel–Iron Dithiolates Related to the Active Site of [NiFe]-Hydrogenases. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
23
|
Maiti BK, Almeida RM, Moura I, Moura JJ. Rubredoxins derivatives: Simple sulphur-rich coordination metal sites and its relevance for biology and chemistry. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Georgopoulou AN, Al-Ameed K, Boudalis AK, Anagnostopoulos DF, Psycharis V, McGrady JE, Sanakis Y, Raptopoulou CP. Site preferences in hetero-metallic [Fe 9-xNi x] clusters: a combined crystallographic, spectroscopic and theoretical analysis. Dalton Trans 2017; 46:12835-12844. [PMID: 28920627 DOI: 10.1039/c7dt02930f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of mixtures of Fe(O2CMe)2·2H2O and Ni(O2CMe)2·4H2O of various compositions with di-2-pyridyl ketone (py2CO, dpk) in MeCN under an inert atmosphere afforded a family of hetero-metallic enneanuclear clusters with general formula [Fe9-xNix(μ4-OH)2(O2CMe)8(py2CO2)4] (2, x = 1.00; 3: x = 6.02; 4, x = 7.46; 5, x = 7.81). Clusters 2-5 are isomorphous to the homo-metallic [Fe9] cluster (1) previously reported by some of us, and also isostructural to the known homo-metallic [Ni9] cluster. All four clusters contain a central MII ion in an unusual 8-coordinate site and eight peripheral MII ions in distorted octahedral environments. The distribution of FeII and NiII ions over these two distinct coordination sites in 2-5 can be established through a combination of X-ray fluorescence and Mössbauer spectroscopies, which show that FeII preferentially occupies the unique 8-coordinate metal site while NiII accumulates in the octahedral holes. Density functional theory indicates that the distribution of ions across the two sites arises not from any intrinsic preference of the FeII ions for the 8-coordinate sites, but rather because of the large ligand field stabilization energy available to NiII in octahedral coordination.
Collapse
Affiliation(s)
- Anastasia N Georgopoulou
- Institute of Nanoscience and Nanotechnology, NCSR "Demokritos", 15310 Aghia Paraskevi, Athens, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Quantum chemical approaches to [NiFe] hydrogenase. Essays Biochem 2017; 61:293-303. [PMID: 28487405 DOI: 10.1042/ebc20160079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 11/17/2022]
Abstract
The mechanism by which [NiFe] hydrogenase catalyses the oxidation of molecular hydrogen is a significant yet challenging topic in bioinorganic chemistry. With far-reaching applications in renewable energy and carbon mitigation, significant effort has been invested in the study of these complexes. In particular, computational approaches offer a unique perspective on how this enzyme functions at an electronic and atomistic level. In this article, we discuss state-of-the art quantum chemical methods and how they have helped deepen our comprehension of [NiFe] hydrogenase. We outline the key strategies that can be used to compute the (i) geometry, (ii) electronic structure, (iii) thermodynamics and (iv) kinetic properties associated with the enzymatic activity of [NiFe] hydrogenase and other bioinorganic complexes.
Collapse
|
26
|
Song LC, Lu Y, Zhu L, Li QL. Dithiolato- and Diselenolato-Bridged Nickel–Iron Biomimetics for the Active Site of [NiFe]Hydrogenases. Organometallics 2017. [DOI: 10.1021/acs.organomet.6b00942] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Li-Cheng Song
- Department
of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, People’s Republic of China
| | - Yu Lu
- Department
of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, People’s Republic of China
| | - Liang Zhu
- Department
of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, People’s Republic of China
| | - Qian-Li Li
- Department
of Chemistry, State Key Laboratory of Elemento-Organic
Chemistry and ‡Collaborative Innovation Center of Chemical Science and Engineering
(Tianjin), Nankai University, Tianjin 300071, People’s Republic of China
| |
Collapse
|
27
|
Song LC, Han XF, Chen W, Li JP, Wang XY. Dithiolato- and halogenido-bridged nickel–iron complexes related to the active site of [NiFe]-H2ases: preparation, structures, and electrocatalytic H2 production. Dalton Trans 2017; 46:10003-10013. [DOI: 10.1039/c7dt02203d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new series of [NiFe]-H2ase mimics (5a,b–7a,b) has been prepared and structurally characterized; particularly, they have been found to be pre-catalysts for H2 production from Cl2CHCO2H under CV conditions.
Collapse
Affiliation(s)
- Li-Cheng Song
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xiao-Feng Han
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Wei Chen
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Jia-Peng Li
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| | - Xu-Yong Wang
- Department of Chemistry
- State Key Laboratory of Elemento-Organic Chemistry
- College of Chemistry
- Nankai University
- Tianjin 300071
| |
Collapse
|
28
|
Breglia R, Ruiz-Rodriguez MA, Vitriolo A, Gonzàlez-Laredo RF, De Gioia L, Greco C, Bruschi M. Theoretical insights into [NiFe]-hydrogenases oxidation resulting in a slowly reactivating inactive state. J Biol Inorg Chem 2016; 22:137-151. [DOI: 10.1007/s00775-016-1416-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/09/2016] [Indexed: 11/28/2022]
|
29
|
Greene BL, Vansuch GE, Wu CH, Adams MWW, Dyer RB. Glutamate Gated Proton-Coupled Electron Transfer Activity of a [NiFe]-Hydrogenase. J Am Chem Soc 2016; 138:13013-13021. [DOI: 10.1021/jacs.6b07789] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Brandon L. Greene
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| | - Gregory E. Vansuch
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| | - Chang-Hao Wu
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Michael W. W. Adams
- Department
of Biochemistry, University of Georgia, Athens, Georgia 30602, United States
| | - R. Brian Dyer
- Chemistry
Department, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
30
|
Ogata H, Lubitz W, Higuchi Y. Structure and function of [NiFe] hydrogenases. J Biochem 2016; 160:251-258. [PMID: 27493211 DOI: 10.1093/jb/mvw048] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/06/2016] [Indexed: 12/22/2022] Open
Abstract
Hydrogenases catalyze the reversible conversion of molecular hydrogen to protons and electrons via a heterolytic splitting mechanism. The active sites of [NiFe] hydrogenases comprise a dinuclear Ni-Fe center carrying CO and CN- ligands. The catalytic activity of the standard (O2-sensitive) [NiFe] hydrogenases vanishes under aerobic conditions. The O2-tolerant [NiFe] hydrogenases can sustain H2 oxidation activity under atmospheric conditions. These hydrogenases have very similar active site structures that change the ligand sphere during the activation/catalytic process. An important structural difference between these hydrogenases has been found for the proximal iron-sulphur cluster located in the vicinity of the active site. This unprecedented [4Fe-3S]-6Cys cluster can supply two electrons, which lead to rapid recovery of the O2 inactivation, to the [NiFe] active site.
Collapse
Affiliation(s)
- Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, Mülheim an der Ruhr 45470, Germany
| | - Yoshiki Higuchi
- Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297, Japan .,RIKEN SPring-8 Center, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148, Japan.,CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
31
|
Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods. J Biol Inorg Chem 2016; 21:383-94. [DOI: 10.1007/s00775-016-1348-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
|
32
|
Krypton Derivatization of an O
2
‐Tolerant Membrane‐Bound [NiFe] Hydrogenase Reveals a Hydrophobic Tunnel Network for Gas Transport. Angew Chem Int Ed Engl 2016; 55:5586-90. [DOI: 10.1002/anie.201508976] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/17/2015] [Indexed: 01/29/2023]
|
33
|
Kalms J, Schmidt A, Frielingsdorf S, van der Linden P, von Stetten D, Lenz O, Carpentier P, Scheerer P. Ein Netzwerk aus hydrophoben Tunneln zum Transport gasförmiger Reaktanten in einer O
2
‐toleranten, membrangebundenen [NiFe]‐ Hydrogenase, aufgedeckt durch Derivatisierung mit Krypton. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201508976] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jacqueline Kalms
- Institut für Medizinische Physik und Biophysik (CC2) Group Protein X-ray Crystallography and Signal Transduction Charité – Universitätsmedizin Berlin Charitéplatz 1 10117 Berlin Deutschland
| | - Andrea Schmidt
- Institut für Medizinische Physik und Biophysik (CC2) Group Protein X-ray Crystallography and Signal Transduction Charité – Universitätsmedizin Berlin Charitéplatz 1 10117 Berlin Deutschland
| | - Stefan Frielingsdorf
- Institut für Chemie, Sekr. PC14 Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Peter van der Linden
- ESRF – European Synchrotron Radiation Facility 71 Avenue des Martyrs Grenoble Cedex 9 38043 Frankreich
| | - David von Stetten
- ESRF – European Synchrotron Radiation Facility 71 Avenue des Martyrs Grenoble Cedex 9 38043 Frankreich
| | - Oliver Lenz
- Institut für Chemie, Sekr. PC14 Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Deutschland
| | - Philippe Carpentier
- ESRF – European Synchrotron Radiation Facility 71 Avenue des Martyrs Grenoble Cedex 9 38043 Frankreich
| | - Patrick Scheerer
- Institut für Medizinische Physik und Biophysik (CC2) Group Protein X-ray Crystallography and Signal Transduction Charité – Universitätsmedizin Berlin Charitéplatz 1 10117 Berlin Deutschland
| |
Collapse
|
34
|
Abstract
A dinuclear synthetic model of the [NiFeSe] hydrogenase active site and a structural, spectroscopic and electrochemical analysis of this complex is reported. [NiFe(‘S2Se2’)(CO)3] (H2‘S2Se2’=1,2-bis(2-thiabutyl-3,3-dimethyl-4-selenol)benzene) has been synthesized by reacting the nickel selenolate complex [Ni(‘S2Se2’)] with [Fe(CO)3bda] (bda=benzylideneacetone). X-ray crystal structure analysis confirms that [NiFe(‘S2Se2’)(CO)3] mimics the key structural features of the enzyme active site, including a doubly bridged heterobimetallic nickel and iron center with a selenolate terminally coordinated to the nickel center. Comparison of [NiFe(‘S2Se2’)(CO)3] with the previously reported thiolate analogue [NiFe(‘S4’)(CO)3] (H2‘S4’=H2xbsms=1,2-bis(4-mercapto-3,3-dimethyl-2-thiabutyl)benzene) showed that the selenolate groups in [NiFe(‘S2Se2’)(CO)3] give lower carbonyl stretching frequencies in the IR spectrum. Electrochemical studies of [NiFe(‘S2Se2’)(CO)3] and [NiFe(‘S4’)(CO)3] demonstrated that both complexes do not operate as homogenous H2 evolution catalysts, but are precursors to a solid deposit on an electrode surface for H2 evolution catalysis in organic and aqueous solution.
Collapse
Affiliation(s)
- Claire Wombwell
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK) E-mail: Homepage: http://www-reisner.ch.cam.ac.uk/
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of CambridgeLensfield Road, Cambridge CB2 1EW (UK) E-mail: Homepage: http://www-reisner.ch.cam.ac.uk/
| |
Collapse
|
35
|
Oteri F, Baaden M, Lojou E, Sacquin-Mora S. Multiscale Simulations Give Insight into the Hydrogen In and Out Pathways of [NiFe]-Hydrogenases from Aquifex aeolicus and Desulfovibrio fructosovorans. J Phys Chem B 2014; 118:13800-11. [DOI: 10.1021/jp5089965] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesco Oteri
- Laboratoire
de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Marc Baaden
- Laboratoire
de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| | - Elisabeth Lojou
- Bioénergétique
et Ingénierie des Protéines, Institut de Microbiologie
de la Méditerranée, CNRS, Aix Marseille University, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex, France
| | - Sophie Sacquin-Mora
- Laboratoire
de Biochimie Théorique, CNRS UPR9080, Institut de Biologie Physico-Chimique, 13 rue Pierre et Marie Curie, 75005 Paris, France
| |
Collapse
|
36
|
Smith DMA, Raugei S, Squier TC. Modulation of active site electronic structure by the protein matrix to control [NiFe] hydrogenase reactivity. Phys Chem Chem Phys 2014; 16:24026-33. [PMID: 25285653 DOI: 10.1039/c4cp03518f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Control of the reactivity of the nickel center of the [NiFe] hydrogenase and other metalloproteins commonly involves outer coordination sphere ligands that act to modify the geometry and physical properties of the active site metal centers. We carried out a combined set of classical molecular dynamics and quantum/classical mechanics calculations to provide quantitative estimates of how dynamic fluctuations of the active site within the protein matrix modulate the electronic structure at the catalytic center. Specifically we focused on the dynamics of the inner and outer coordination spheres of the cysteinate-bound Ni-Fe cluster in the catalytically active Ni-C state. There are correlated movements of the cysteinate ligands and the surrounding hydrogen-bonding network, which modulate the electron affinity at the active site and the proton affinity of a terminal cysteinate. On the basis of these findings, we hypothesize a coupling between protein dynamics and electron and proton transfer reactions critical to dihydrogen production.
Collapse
Affiliation(s)
- Dayle M A Smith
- Pacific Northwest National Laboratory, P.O. Box 999, MSIN J4-33, Richland, Washington 99352, USA.
| | | | | |
Collapse
|
37
|
Abdullatypov AV, Zorin NA, Tsygankov AA. Interaction of HydSL hydrogenase from the purple sulfur bacterium Thiocapsa roseopersicina BBS with methyl viologen and positively charged polypeptides. BIOCHEMISTRY (MOSCOW) 2014; 79:805-11. [DOI: 10.1134/s0006297914080082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Song LC, Sun XJ, Jia GJ, Wang MM, Song HB. Synthesis, structural characterization, and electrochemical properties of (diphosphine)Ni-bridged butterfly Fe2E2 (E = S, Se, Te) cluster complexes related to [NiFe]-hydrogenases. J Organomet Chem 2014. [DOI: 10.1016/j.jorganchem.2014.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
The F420-Reducing [NiFe]-Hydrogenase Complex from Methanothermobacter marburgensis, the First X-ray Structure of a Group 3 Family Member. J Mol Biol 2014; 426:2813-26. [DOI: 10.1016/j.jmb.2014.05.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/02/2014] [Accepted: 05/23/2014] [Indexed: 11/21/2022]
|
40
|
Ogo S. H2and O2Activation-A Remarkable Insight into Hydrogenase. CHEM REC 2014; 14:397-409. [DOI: 10.1002/tcr.201402010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Seiji Ogo
- International Institute for Carbon-Neutral Energy Research (WPI-I2CNER); Kyushu University; 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- Department of Chemistry and Biochemistry; Graduate School of Engineering; Kyushu University; 744 Moto-oka, Nishi-ku Fukuoka 819-0395 Japan
- Core Research for Evolutional Science and Technology (CREST); Japan Science and Technology Agency (JST); Kawaguchi Center Building; 4-1-8 Honcho Kawaguchi-shi Saitama 332-0012 Japan
| |
Collapse
|
41
|
Frielingsdorf S, Fritsch J, Schmidt A, Hammer M, Löwenstein J, Siebert E, Pelmenschikov V, Jaenicke T, Kalms J, Rippers Y, Lendzian F, Zebger I, Teutloff C, Kaupp M, Bittl R, Hildebrandt P, Friedrich B, Lenz O, Scheerer P. Reversible [4Fe-3S] cluster morphing in an O2-tolerant [NiFe] hydrogenase. Nat Chem Biol 2014; 10:378-85. [DOI: 10.1038/nchembio.1500] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/13/2014] [Indexed: 12/27/2022]
|
42
|
Affiliation(s)
- Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Hideaki Ogata
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Edward Reijerse
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
43
|
Boer JL, Mulrooney SB, Hausinger RP. Nickel-dependent metalloenzymes. Arch Biochem Biophys 2014; 544:142-52. [PMID: 24036122 PMCID: PMC3946514 DOI: 10.1016/j.abb.2013.09.002] [Citation(s) in RCA: 217] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 08/31/2013] [Accepted: 09/03/2013] [Indexed: 11/29/2022]
Abstract
This review describes the functions, structures, and mechanisms of nine nickel-containing enzymes: glyoxalase I, acireductone dioxygenase, urease, superoxide dismutase, [NiFe]-hydrogenase, carbon monoxide dehydrogenase, acetyl-coenzyme A synthase/decarbonylase, methyl-coenzyme M reductase, and lactate racemase. These enzymes catalyze their various chemistries by using metallocenters of diverse structures, including mononuclear nickel, dinuclear nickel, nickel-iron heterodinuclear sites, more complex nickel-containing clusters, and nickel-tetrapyrroles. Selected other enzymes are active with nickel, but the physiological relevance of this metal specificity is unclear. Additional nickel-containing proteins of undefined function have been identified.
Collapse
Affiliation(s)
- Jodi L Boer
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Scott B Mulrooney
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA; Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
44
|
Ohki Y. Synthetic Analogues of the Active Sites of Nitrogenase and [NiFe] Hydrogenase. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2014. [DOI: 10.1246/bcsj.20130207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yasuhiro Ohki
- Department of Chemistry, Graduate School of Science, Nagoya University
| |
Collapse
|
45
|
Engineering Hydrogenases for H2 Production: Bolts and Goals. MICROBIAL BIOENERGY: HYDROGEN PRODUCTION 2014. [DOI: 10.1007/978-94-017-8554-9_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
46
|
Wombwell C, Reisner E. Synthesis, structure and reactivity of Ni site models of [NiFeSe] hydrogenases. Dalton Trans 2014; 43:4483-93. [DOI: 10.1039/c3dt52967c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A series of structural models of the Ni centre in [NiFeSe] hydrogenases display reactivity relevant to the enzyme.
Collapse
Affiliation(s)
- Claire Wombwell
- Christian Doppler Laboratory for Sustainable SynGas Chemistry
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW, UK
| | - Erwin Reisner
- Christian Doppler Laboratory for Sustainable SynGas Chemistry
- Department of Chemistry
- University of Cambridge
- Cambridge CB2 1EW, UK
| |
Collapse
|
47
|
Kothari A, Vaughn M, Garcia-Pichel F. Comparative genomic analyses of the cyanobacterium, Lyngbya aestuarii BL J, a powerful hydrogen producer. Front Microbiol 2013; 4:363. [PMID: 24376438 PMCID: PMC3858816 DOI: 10.3389/fmicb.2013.00363] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/15/2013] [Indexed: 11/13/2022] Open
Abstract
The filamentous, non-heterocystous cyanobacterium Lyngbya aestuarii is an important contributor to marine intertidal microbial mats system worldwide. The recent isolate L. aestuarii BL J, is an unusually powerful hydrogen producer. Here we report a morphological, ultrastructural, and genomic characterization of this strain to set the basis for future systems studies and applications of this organism. The filaments contain circa 17 μm wide trichomes, composed of stacked disk-like short cells (2 μm long), encased in a prominent, laminated exopolysaccharide sheath. Cellular division occurs by transversal centripetal growth of cross-walls, where several rounds of division proceed simultaneously. Filament division occurs by cell self-immolation of one or groups of cells (necridial cells) at the breakage point. Short, sheath-less, motile filaments (hormogonia) are also formed. Morphologically and phylogenetically L. aestuarii belongs to a clade of important cyanobacteria that include members of the marine Trichodesmiun and Hydrocoleum genera, as well as terrestrial Microcoleus vaginatus strains, and alkalyphilic strains of Arthrospira. A draft genome of strain BL J was compared to those of other cyanobacteria in order to ascertain some of its ecological constraints and biotechnological potential. The genome had an average GC content of 41.1%. Of the 6.87 Mb sequenced, 6.44 Mb was present as large contigs (>10,000 bp). It contained 6515 putative protein-encoding genes, of which, 43% encode proteins of known functional role, 26% corresponded to proteins with domain or family assignments, 19.6% encode conserved hypothetical proteins, and 11.3% encode apparently unique hypothetical proteins. The strain's genome reveals its adaptations to a life of exposure to intense solar radiation and desiccation. It likely employs the storage compounds, glycogen, and cyanophycin but no polyhydroxyalkanoates, and can produce the osmolytes, trehalose, and glycine betaine. According to its genome, BL J strain also has the potential to produce a plethora of products of biotechnological interest such as Curacin A, Barbamide, Hemolysin-type calcium-binding toxin, the suncreens scytonemin, and mycosporines, as well as heptadecane and pentadecane alkanes. With respect to hydrogen production, initial comparisons of the genetic architecture and sequence of relevant genes and loci, and a comparative model of protein structure of the NiFe bidirectional hydrogenase, did not reveal conspicuous differences that could explain its unusual hydrogen producing capacity.
Collapse
Affiliation(s)
- Ankita Kothari
- School of Life Sciences, Arizona State University Tempe, AZ, USA
| | - Michael Vaughn
- Department of Chemistry and Biochemistry, Arizona State University Tempe, AZ, USA
| | | |
Collapse
|
48
|
Richau KH, Kudahettige RL, Pujic P, Kudahettige NP, Sellstedt A. Structural and gene expression analyses of uptake hydrogenases and other proteins involved in nitrogenase protection in Frankia. J Biosci 2013; 38:703-12. [DOI: 10.1007/s12038-013-9372-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- K H Richau
- Department of Plant Physiology, UPSC, Umea University, S-90187 Umea, Sweden
| | | | | | | | | |
Collapse
|
49
|
Abstract
Despite its reactivity and hence toxicity to living cells, sulfite is readily converted by various microorganisms using distinct assimilatory and dissimilatory metabolic routes. In respiratory pathways, sulfite either serves as a primary electron donor or terminal electron acceptor (yielding sulfate or sulfide, respectively), and its conversion drives electron transport chains that are coupled to chemiosmotic ATP synthesis. Notably, such processes are also seen to play a general role in sulfite detoxification, which is assumed to have an evolutionary ancient origin. The diversity of sulfite conversion is reflected by the fact that the range of microbial sulfite-converting enzymes displays different cofactors such as siroheme, heme c, or molybdopterin. This chapter aims to summarize the current knowledge of microbial sulfite metabolism and focuses on sulfite catabolism. The structure and function of sulfite-converting enzymes and the emerging picture of the modular architecture of the corresponding respiratory/detoxifying electron transport chains is emphasized.
Collapse
Affiliation(s)
- Jörg Simon
- Department of Biology, Microbial Energy Conversion and Biotechnology, Technische Universität Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany.
| | | |
Collapse
|
50
|
Raleiras P, Kellers P, Lindblad P, Styring S, Magnuson A. Isolation and characterization of the small subunit of the uptake hydrogenase from the cyanobacterium Nostoc punctiforme. J Biol Chem 2013; 288:18345-52. [PMID: 23649626 DOI: 10.1074/jbc.m113.468587] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In nitrogen-fixing cyanobacteria, hydrogen evolution is associated with hydrogenases and nitrogenase, making these enzymes interesting targets for genetic engineering aimed at increased hydrogen production. Nostoc punctiforme ATCC 29133 is a filamentous cyanobacterium that expresses the uptake hydrogenase HupSL in heterocysts under nitrogen-fixing conditions. Little is known about the structural and biophysical properties of HupSL. The small subunit, HupS, has been postulated to contain three iron-sulfur clusters, but the details regarding their nature have been unclear due to unusual cluster binding motifs in the amino acid sequence. We now report the cloning and heterologous expression of Nostoc punctiforme HupS as a fusion protein, f-HupS. We have characterized the anaerobically purified protein by UV-visible and EPR spectroscopies. Our results show that f-HupS contains three iron-sulfur clusters. UV-visible absorption of f-HupS has bands ∼340 and 420 nm, typical for iron-sulfur clusters. The EPR spectrum of the oxidized f-HupS shows a narrow g = 2.023 resonance, characteristic of a low-spin (S = ½) [3Fe-4S] cluster. The reduced f-HupS presents complex EPR spectra with overlapping resonances centered on g = 1.94, g = 1.91, and g = 1.88, typical of low-spin (S = ½) [4Fe-4S] clusters. Analysis of the spectroscopic data allowed us to distinguish between two species attributable to two distinct [4Fe-4S] clusters, in addition to the [3Fe-4S] cluster. This indicates that f-HupS binds [4Fe-4S] clusters despite the presence of unusual coordinating amino acids. Furthermore, our expression and purification of what seems to be an intact HupS protein allows future studies on the significance of ligand nature on redox properties of the iron-sulfur clusters of HupS.
Collapse
Affiliation(s)
- Patrícia Raleiras
- Department of Chemistry, Ångström Laboratory, Uppsala University, SE-75120 Uppsala, Sweden
| | | | | | | | | |
Collapse
|