1
|
Lamb DC, Goldstone JV, Zhao B, Lei L, Mullins JGL, Allen MJ, Kelly SL, Stegeman JJ. Characterization of a Virally Encoded Flavodoxin That Can Drive Bacterial Cytochrome P450 Monooxygenase Activity. Biomolecules 2022; 12:1107. [PMID: 36009001 PMCID: PMC9405906 DOI: 10.3390/biom12081107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Flavodoxins are small electron transport proteins that are involved in a myriad of photosynthetic and non-photosynthetic metabolic pathways in Bacteria (including cyanobacteria), Archaea and some algae. The sequenced genome of 0305φ8-36, a large bacteriophage that infects the soil bacterium Bacillus thuringiensis, was predicted to encode a putative flavodoxin redox protein. Here we confirm that 0305φ8-36 phage encodes a FMN-containing flavodoxin polypeptide and we report the expression, purification and enzymatic characterization of the recombinant protein. Purified 0305φ8-36 flavodoxin has near-identical spectral properties to control, purified Escherichia coli flavodoxin. Using in vitro assays we show that 0305φ8-36 flavodoxin can be reconstituted with E. coli flavodoxin reductase and support regio- and stereospecific cytochrome P450 CYP170A1 allyl-oxidation of epi-isozizaene to the sesquiterpene antibiotic product albaflavenone, found in the soil bacterium Streptomyces coelicolor. In vivo, 0305φ8-36 flavodoxin is predicted to mediate the 2-electron reduction of the β subunit of phage-encoded ribonucleotide reductase to catalyse the conversion of ribonucleotides to deoxyribonucleotides during viral replication. Our results demonstrate that this phage flavodoxin has the potential to manipulate and drive bacterial P450 cellular metabolism, which may affect both the host biological fitness and the communal microbiome. Such a scenario may also be applicable in other viral-host symbiotic/parasitic relationships.
Collapse
Affiliation(s)
- David C. Lamb
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea SA2 8PP, UK
| | - Jared V. Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543-1050, USA
| | - Bin Zhao
- Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, NB21, Cleveland, OH 44195, USA
| | - Li Lei
- Department of Biochemistry, Vanderbilt University Medical School, Vanderbilt University, Nashville, TN 37232-0146, USA
| | | | - Michael J. Allen
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Steven L. Kelly
- Faculty of Medicine, Health and Life Sciences, Swansea University, Swansea SA2 8PP, UK
| | - John J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543-1050, USA
| |
Collapse
|
2
|
Price CL, Warrilow AGS, Rolley NJ, Parker JE, Thoss V, Kelly DE, Corcionivoschi N, Kelly SL. Cytochrome P450 168A1 from Pseudomonas aeruginosa is involved in the hydroxylation of biologically relevant fatty acids. PLoS One 2022; 17:e0265227. [PMID: 35312722 PMCID: PMC8936499 DOI: 10.1371/journal.pone.0265227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/24/2022] [Indexed: 11/26/2022] Open
Abstract
The cytochrome P450 CYP168A1 from Pseudomonas aeruginosa was cloned and expressed in Escherichia coli followed by purification and characterization of function. CYP168A1 is a fatty acid hydroxylase that hydroxylates saturated fatty acids, including myristic (0.30 min-1), palmitic (1.61 min-1) and stearic acids (1.24 min-1), at both the ω-1- and ω-2-positions. However, CYP168A1 only hydroxylates unsaturated fatty acids, including palmitoleic (0.38 min-1), oleic (1.28 min-1) and linoleic acids (0.35 min-1), at the ω-1-position. CYP168A1 exhibited a catalytic preference for palmitic, oleic and stearic acids as substrates in keeping with the phosphatidylcholine-rich environment deep in the lung that is colonized by P. aeruginosa.
Collapse
Affiliation(s)
- Claire L. Price
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| | - Andrew G. S. Warrilow
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| | - Nicola J. Rolley
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| | - Josie E. Parker
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| | - Vera Thoss
- Plant Chemistry Group, School of Chemistry, Bangor University, Bangor, Gwynedd, Wales, United Kingdom
| | - Diane E. Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| | - Nicolae Corcionivoschi
- Agri-Food and Biosciences Institute, Veterinary Science Division, Bacteriology Branch, Stoney Road, Stormont, Belfast, Northern Ireland, United Kingdom
- Faculty of Bioengineering of Animal Resources, Banat University of Agricultural Sciences and Veterinary Medicine, King Michael I of Romania, Timisoara, Romania
| | - Steven L. Kelly
- Centre for Cytochrome P450 Biodiversity, Institute of Life Science, Swansea University Medical School, Swansea University, Swansea, Wales, United Kingdom
| |
Collapse
|
3
|
Eggers J, Strittmatter CS, Küsters K, Biller E, Steinbüchel A. Biotin Synthesis in Ralstonia eutropha H16 Utilizes Pimeloyl Coenzyme A and Can Be Regulated by the Amount of Acceptor Protein. Appl Environ Microbiol 2020; 86:e01512-20. [PMID: 32680858 PMCID: PMC7480372 DOI: 10.1128/aem.01512-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 11/20/2022] Open
Abstract
The biotin metabolism of the Gram-negative facultative chemolithoautotrophic bacterium Ralstonia eutropha (syn. Cupriavidus necator), which is used for biopolymer production in industry, was investigated. A biotin auxotroph mutant lacking bioF was generated, and biotin depletion in the cells and the minimal biotin demand of a biotin-auxotrophic R. eutropha strain were determined. Three consecutive cultivations in biotin-free medium were necessary to prevent growth of the auxotrophic mutant, and 40 ng/ml biotin was sufficient to promote cell growth. Nevertheless, 200 ng/ml biotin was necessary to ensure growth comparable to that of the wild type, which is similar to the demand of biotin-auxotrophic mutants among other prokaryotic and eukaryotic microbes. A phenotypic complementation of the R. eutropha ΔbioF mutant was only achieved by homologous expression of bioF of R. eutropha or heterologous expression of bioF of Bacillus subtilis but not by bioF of Escherichia coli Together with the results from bioinformatic analysis of BioFs, this leads to the assumption that the intermediate of biotin synthesis in R. eutropha is pimeloyl-CoA instead of pimeloyl-acyl carrier protein (ACP) like in the Gram-positive B. subtilis Internal biotin content was enhanced by homologous expression of accB, whereas homologous expression of accB and accC2 in combination led to decreased biotin concentrations in the cells. Although a DNA-binding domain of the regulator protein BirA is missing, biotin synthesis seemed to be influenced by the amount of acceptor protein present.IMPORTANCERalstonia eutropha is applied in industry for the production of biopolymers and serves as a research platform for the production of diverse fine chemicals. Due to its ability to grow on hydrogen and carbon dioxide as the sole carbon and energy source, R. eutropha is often utilized for metabolic engineering to convert inexpensive resources into value-added products. The understanding of the metabolic pathways in this bacterium is mandatory for further bioengineering of the strain and for the development of new strategies for biotechnological production.
Collapse
Affiliation(s)
- Jessica Eggers
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Carl Simon Strittmatter
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Kira Küsters
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Emre Biller
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Ang SS, Salleh AB, Chor LT, Normi YM, Tejo BA, Rahman MBA, Fatima MA. Biochemical Characterization of the Cytochrome P450 CYP107CB2 from Bacillus lehensis G1. Protein J 2018; 37:180-193. [PMID: 29508210 DOI: 10.1007/s10930-018-9764-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The bioconversion of vitamin D3 catalyzed by cytochrome P450 (CYP) requires 25-hydroxylation and subsequent 1α-hydroxylation to produce the hormonal activated 1α,25-dihydroxyvitamin D3. Vitamin D3 25-hydroxylase catalyses the first step in the vitamin D3 biosynthetic pathway, essential in the de novo activation of vitamin D3. A CYP known as CYP107CB2 has been identified as a novel vitamin D hydroxylase in Bacillus lehensis G1. In order to deepen the understanding of this bacterial origin CYP107CB2, its detailed biological functions as well as biochemical characteristics were defined. CYP107CB2 was characterized through the absorption spectral analysis and accordingly, the enzyme was assayed for vitamin D3 hydroxylation activity. CYP-ligand characterization and catalysis optimization were conducted to increase the turnover of hydroxylated products in an NADPH-regenerating system. Results revealed that the over-expressed CYP107CB2 protein was dominantly cytosolic and the purified fraction showed a protein band at approximately 62 kDa on SDS-PAGE, indicative of CYP107CB2. Spectral analysis indicated that CYP107CB2 protein was properly folded and it was in the active form to catalyze vitamin D3 reaction at C25. HPLC and MS analysis from a reconstituted enzymatic reaction confirmed the hydroxylated products were 25-hydroxyitamin D3 and 1α,25-dihydroxyvitamin D3 when the substrates vitamin D3 and 1α-hydroxyvitamin D3 were used. Biochemical characterization shows that CYP107CB2 performed hydroxylation activity at 25 °C in pH 8 and successfully increased the production of 1α,25-dihydroxyvitamin D3 up to four fold. These findings show that CYP107CB2 has a biologically relevant vitamin D3 25-hydroxylase activity and further suggest the contribution of CYP family to the metabolism of vitamin D3.
Collapse
Affiliation(s)
- Swi See Ang
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
- Laboratory of Enzyme Technology, Institute of Bioscience, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia.
- Laboratory of Enzyme Technology, Institute of Bioscience, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia.
| | - Leow Thean Chor
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
- Laboratory of Enzyme Technology, Institute of Bioscience, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
| | - Yahaya M Normi
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
| | - Bimo Ario Tejo
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
| | - Mohd Basyaruddin Abdul Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia UPM, 43400, Serdang, Selangor, Malaysia
| | - Mariam-Aisha Fatima
- Faculty of Health and Life Sciences, Management and Science University, 40100, Shah Alam, Selangor, Malaysia
| |
Collapse
|
5
|
Mak PJ, Denisov IG. Spectroscopic studies of the cytochrome P450 reaction mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:178-204. [PMID: 28668640 PMCID: PMC5709052 DOI: 10.1016/j.bbapap.2017.06.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
The cytochrome P450 monooxygenases (P450s) are thiolate heme proteins that can, often under physiological conditions, catalyze many distinct oxidative transformations on a wide variety of molecules, including relatively simple alkanes or fatty acids, as well as more complex compounds such as steroids and exogenous pollutants. They perform such impressive chemistry utilizing a sophisticated catalytic cycle that involves a series of consecutive chemical transformations of heme prosthetic group. Each of these steps provides a unique spectral signature that reflects changes in oxidation or spin states, deformation of the porphyrin ring or alteration of dioxygen moieties. For a long time, the focus of cytochrome P450 research was to understand the underlying reaction mechanism of each enzymatic step, with the biggest challenge being identification and characterization of the powerful oxidizing intermediates. Spectroscopic methods, such as electronic absorption (UV-Vis), electron paramagnetic resonance (EPR), nuclear magnetic resonance (NMR), electron nuclear double resonance (ENDOR), Mössbauer, X-ray absorption (XAS), and resonance Raman (rR), have been useful tools in providing multifaceted and detailed mechanistic insights into the biophysics and biochemistry of these fascinating enzymes. The combination of spectroscopic techniques with novel approaches, such as cryoreduction and Nanodisc technology, allowed for generation, trapping and characterizing long sought transient intermediates, a task that has been difficult to achieve using other methods. Results obtained from the UV-Vis, rR and EPR spectroscopies are the main focus of this review, while the remaining spectroscopic techniques are briefly summarized. This article is part of a Special Issue entitled: Cytochrome P450 biodiversity and biotechnology, edited by Erika Plettner, Gianfranco Gilardi, Luet Wong, Vlada Urlacher, Jared Goldstone.
Collapse
Affiliation(s)
- Piotr J Mak
- Department of Chemistry, Saint Louis University, St. Louis, MO, United States.
| | - Ilia G Denisov
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
6
|
Manandhar M, Cronan JE. Pimelic acid, the first precursor of the Bacillus subtilis biotin synthesis pathway, exists as the free acid and is assembled by fatty acid synthesis. Mol Microbiol 2017; 104:595-607. [PMID: 28196402 PMCID: PMC5426962 DOI: 10.1111/mmi.13648] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biotin synthetic pathways are readily separated into two stages, synthesis of the seven carbon α, ω-dicarboxylic acid pimelate moiety and assembly of the fused heterocyclic rings. The biotin pathway genes responsible for pimelate moiety synthesis vary widely among bacteria whereas the ring synthesis genes are highly conserved. Bacillus subtilis seems to have redundant genes, bioI and bioW, for generation of the pimelate intermediate. Largely consistent with previous genetic studies it was found that deletion of bioW caused a biotin auxotrophic phenotype whereas deletion of bioI did not. BioW is a pimeloyl-CoA synthetase that converts pimelic acid to pimeloyl-CoA. The essentiality of BioW for biotin synthesis indicates that the free form of pimelic acid is an intermediate in biotin synthesis although this is not the case in E. coli. Since the origin of pimelic acid in Bacillus subtilis is unknown, 13 C-NMR studies were carried out to decipher the pathway for its generation. The data provided evidence for the role of free pimelate in biotin synthesis and the involvement of fatty acid synthesis in pimelate production. Cerulenin, an inhibitor of the key fatty acid elongation enzyme, FabF, markedly decreased biotin production by B. subtilis resting cells whereas a strain having a cerulenin-resistant FabF mutant produced more biotin. In addition, supplementation with pimelic acid fully restored biotin production in cerulenin-treated cells. These results indicate that pimelic acid originating from fatty acid synthesis pathway is a bona fide precursor of biotin in B. subtilis.
Collapse
Affiliation(s)
- Miglena Manandhar
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
7
|
Chenge JT, Duyet LV, Swami S, McLean KJ, Kavanagh ME, Coyne AG, Rigby SEJ, Cheesman MR, Girvan HM, Levy CW, Rupp B, von Kries JP, Abell C, Leys D, Munro AW. Structural Characterization and Ligand/Inhibitor Identification Provide Functional Insights into the Mycobacterium tuberculosis Cytochrome P450 CYP126A1. J Biol Chem 2016; 292:1310-1329. [PMID: 27932461 PMCID: PMC5270475 DOI: 10.1074/jbc.m116.748822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 12/02/2016] [Indexed: 12/12/2022] Open
Abstract
The Mycobacterium tuberculosis H37Rv genome encodes 20 cytochromes P450, including P450s crucial to infection and bacterial viability. Many M. tuberculosis P450s remain uncharacterized, suggesting that their further analysis may provide new insights into M. tuberculosis metabolic processes and new targets for drug discovery. CYP126A1 is representative of a P450 family widely distributed in mycobacteria and other bacteria. Here we explore the biochemical and structural properties of CYP126A1, including its interactions with new chemical ligands. A survey of azole antifungal drugs showed that CYP126A1 is inhibited strongly by azoles containing an imidazole ring but not by those tested containing a triazole ring. To further explore the molecular preferences of CYP126A1 and search for probes of enzyme function, we conducted a high throughput screen. Compounds containing three or more ring structures dominated the screening hits, including nitroaromatic compounds that induce substrate-like shifts in the heme spectrum of CYP126A1. Spectroelectrochemical measurements revealed a 155-mV increase in heme iron potential when bound to one of the newly identified nitroaromatic drugs. CYP126A1 dimers were observed in crystal structures of ligand-free CYP126A1 and for CYP126A1 bound to compounds discovered in the screen. However, ketoconazole binds in an orientation that disrupts the BC-loop regions at the P450 dimer interface and results in a CYP126A1 monomeric crystal form. Structural data also reveal that nitroaromatic ligands "moonlight" as substrates by displacing the CYP126A1 distal water but inhibit enzyme activity. The relatively polar active site of CYP126A1 distinguishes it from its most closely related sterol-binding P450s in M. tuberculosis, suggesting that further investigations will reveal its diverse substrate selectivity.
Collapse
Affiliation(s)
- Jude T Chenge
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Le Van Duyet
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Shalini Swami
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Kirsty J McLean
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Madeline E Kavanagh
- the Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Anthony G Coyne
- the Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Stephen E J Rigby
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Myles R Cheesman
- the School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom, and
| | - Hazel M Girvan
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Colin W Levy
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Bernd Rupp
- the Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Jens P von Kries
- the Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125 Berlin, Germany
| | - Chris Abell
- the Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - David Leys
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Andrew W Munro
- From the Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom,
| |
Collapse
|
8
|
Peters-Wendisch P, Götker S, Heider S, Komati Reddy G, Nguyen A, Stansen K, Wendisch V. Engineering biotin prototrophic Corynebacterium glutamicum strains for amino acid, diamine and carotenoid production. J Biotechnol 2014; 192 Pt B:346-54. [DOI: 10.1016/j.jbiotec.2014.01.023] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 12/21/2013] [Accepted: 01/03/2014] [Indexed: 11/17/2022]
|
9
|
Khatri Y, Hannemann F, Girhard M, Kappl R, Hutter M, Urlacher VB, Bernhardt R. A natural heme-signature variant of CYP267A1 fromSorangium cellulosumSo ce56 executes diverse ω-hydroxylation. FEBS J 2014; 282:74-88. [DOI: 10.1111/febs.13104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/04/2023]
Affiliation(s)
- Yogan Khatri
- Department of Biochemistry; Saarland University; Saarbrücken Germany
| | - Frank Hannemann
- Department of Biochemistry; Saarland University; Saarbrücken Germany
| | - Marco Girhard
- Institute of Biochemistry; Heinrich-Heine-Universität Düsseldorf; Germany
| | - Reinhard Kappl
- Department of Biophysics; Saarland University; Homburg Germany
| | - Michael Hutter
- Center for Bioinformatics; Saarland University; Saarbrücken Germany
| | - Vlada B. Urlacher
- Institute of Biochemistry; Heinrich-Heine-Universität Düsseldorf; Germany
| | - Rita Bernhardt
- Department of Biochemistry; Saarland University; Saarbrücken Germany
| |
Collapse
|
10
|
Bhattarai S, Liou K, Oh TJ. Hydroxylation of long chain fatty acids by CYP147F1, a new cytochrome P450 subfamily protein from Streptomyces peucetius. Arch Biochem Biophys 2013; 539:63-9. [DOI: 10.1016/j.abb.2013.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
|
11
|
Belda E, Sekowska A, Le Fèvre F, Morgat A, Mornico D, Ouzounis C, Vallenet D, Médigue C, Danchin A. An updated metabolic view of the Bacillus subtilis 168 genome. Microbiology (Reading) 2013; 159:757-770. [DOI: 10.1099/mic.0.064691-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Eugeni Belda
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | | | - François Le Fèvre
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Anne Morgat
- Swiss Institute of Bioinformatics, CMU, 1 Michel-Servet, CH-1211 Genève 4, Switzerland
| | - Damien Mornico
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Christos Ouzounis
- Department of Biochemistry, Li KaShing Faculty of Medicine, The University of Hong Kong, 21, Sassoon Road, Hong Kong SAR, China
- Institute of Applied Biosciences, Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece
| | - David Vallenet
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Claudine Médigue
- UEVE, Université d'Evry, boulevard François Mitterrand, 91025 Evry, France
- CNRS-UMR 8030, 2 rue Gaston Crémieux, 91057 Evry, France
- CEA, Institut de Génomique, Génoscope Laboratoire d’Analyse Bioinformatique en Génomique et Métabolisme, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Antoine Danchin
- Department of Biochemistry, Li KaShing Faculty of Medicine, The University of Hong Kong, 21, Sassoon Road, Hong Kong SAR, China
- AMAbiotics SAS, Bldg G1, 2 rue Gaston Crémieux, 91000 Evry, France
| |
Collapse
|
12
|
Cronan JE, Lin S. Synthesis of the α,ω-dicarboxylic acid precursor of biotin by the canonical fatty acid biosynthetic pathway. Curr Opin Chem Biol 2011; 15:407-13. [PMID: 21435937 PMCID: PMC3110577 DOI: 10.1016/j.cbpa.2011.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/01/2011] [Accepted: 03/02/2011] [Indexed: 11/18/2022]
Abstract
Biotin synthesis requires the C7 α,ω-dicarboxylic acid, pimelic acid. Although pimelic acid was known to be primarily synthesized by a head to tail incorporation of acetate units, the synthetic mechanism was unknown. It has recently been demonstrated that in most bacteria the biotin pimelate moiety is synthesized by a modified fatty acid synthetic pathway in which the biotin synthetic intermediates are O-methyl esters disguised to resemble the canonical intermediates of the fatty acid synthetic pathway. Upon completion of the pimelate moiety, the methyl ester is cleaved. A very restricted set of bacteria have a different pathway in which the pimelate moiety is formed by cleavage of fatty acid synthetic intermediates by BioI, a member of the cytochrome P450 family.
Collapse
Affiliation(s)
- John E Cronan
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA.
| | | |
Collapse
|
13
|
Khatri Y, Hannemann F, Perlova O, Müller R, Bernhardt R. Investigation of cytochromes P450 in myxobacteria: Excavation of cytochromes P450 from the genome ofSorangium cellulosumSo ce56. FEBS Lett 2011; 585:1506-13. [DOI: 10.1016/j.febslet.2011.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
|
14
|
Luthra A, Denisov IG, Sligar SG. Spectroscopic features of cytochrome P450 reaction intermediates. Arch Biochem Biophys 2010; 507:26-35. [PMID: 21167809 DOI: 10.1016/j.abb.2010.12.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/06/2010] [Accepted: 12/07/2010] [Indexed: 11/24/2022]
Abstract
Cytochromes P450 constitute a broad class of heme monooxygenase enzymes with more than 11,500 isozymes which have been identified in organisms from all biological kingdoms [1]. These enzymes are responsible for catalyzing dozens chemical oxidative transformations such as hydroxylation, epoxidation, N-demethylation, etc., with very broad range of substrates [2,3]. Historically these enzymes received their name from 'pigment 450' due to the unusual position of the Soret band in UV-vis absorption spectra of the reduced CO-saturated state [4,5]. Despite detailed biochemical characterization of many isozymes, as well as later discoveries of other 'P450-like heme enzymes' such as nitric oxide synthase and chloroperoxidase, the phenomenological term 'cytochrome P450' is still commonly used as indicating an essential spectroscopic feature of the functionally active protein which is now known to be due to the presence of a thiolate ligand to the heme iron [6]. Heme proteins with an imidazole ligand such as myoglobin and hemoglobin as well as an inactive form of P450 are characterized by Soret maxima at 420nm [7]. This historical perspective highlights the importance of spectroscopic methods for biochemical studies in general, and especially for heme enzymes, where the presence of the heme iron and porphyrin macrocycle provides rich variety of specific spectroscopic markers available for monitoring chemical transformations and transitions between active intermediates of catalytic cycle.
Collapse
Affiliation(s)
- Abhinav Luthra
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
15
|
The CYPome of Sorangium cellulosum So ce56 and Identification of CYP109D1 as a New Fatty Acid Hydroxylase. ACTA ACUST UNITED AC 2010; 17:1295-305. [DOI: 10.1016/j.chembiol.2010.10.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 09/13/2010] [Accepted: 10/08/2010] [Indexed: 01/22/2023]
|
16
|
Abstract
The cytochromes P450 (P450s) are a superfamily of oxidative haemoproteins that are capable of catalysing a vast range of oxidative transformations, including the oxidation of unactivated alkanes, often with high stereo- and regio-selectivity. Fatty acid hydroxylation by P450s is widespread across both bacteria and higher organisms, with the sites of oxidation and specificity of oxidation varying from system to system. Several key examples are discussed in the present article, with the focus on P450(BioI) (CYP107H1), a biosynthetic P450 found in the biotin operon of Bacillus subtilis. The biosynthetic function of P450(BioI) is the formation of pimelic acid, a biotin precursor, via a multiple-step oxidative cleavage of long-chain fatty acids. P450(BioI) is a member of an important subgroup of P450s that accept their substrates not free in solution, but rather presented by a separate carrier protein. Structural characterization of the P450(BioI)-ACP (acyl-carrier protein) complex has recently been performed, which has revealed the basis for the oxidation of the centre of the fatty acid chain. The P450(BioI)-ACP structure is the first such P450-carrier protein complex to be characterized structurally, with important implications for other biosynthetically intriguing P450-carrier protein complexes.
Collapse
|
17
|
Rabe KS, Erkelenz M, Kiko K, Niemeyer CM. Peroxidase activity of bacterial cytochrome P450 enzymes: Modulation by fatty acids and organic solvents. Biotechnol J 2010; 5:891-9. [DOI: 10.1002/biot.201000028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Spectroscopic studies of the oxidation of ferric CYP153A6 by peracids: Insights into P450 higher oxidation states. Arch Biochem Biophys 2009; 493:184-91. [PMID: 19879854 DOI: 10.1016/j.abb.2009.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/25/2009] [Accepted: 10/27/2009] [Indexed: 11/21/2022]
Abstract
Our previous rapid-scanning stopped-flow studies of the reaction of substrate-free cytochrome P450cam with peracids [T. Spolitak, J.H. Dawson, D.P. Ballou, J. Biol. Chem. 280 (2005) 20300-20309; J. Inorg. Biochem. 100 (2006) 2034-2044; J. Biol. Inorg. Chem. 13 (2008) 599-611] spectrally characterized compound I (ferryl iron plus a porphyrin pi-cation radical (Fe(IV)O/Por(.+))), Cpd ES, and Cpd II (Fe(IV)O/Tyr() or Fe(IV)O). We now report that reactions of CYP153A6 with peracids yield all these intermediates, with kinetic profiles allowing better resolution of all forms at pH 8.0 compared to similar reactions with WT P450cam. Properties of the reactions of these higher oxidation state intermediates were determined in double-mixing experiments in which intermediates are pre-formed and ascorbate is then added. Reactions of heptane-bound CYP153A6 (pH 7.4) with mCPBA resulted in conversion of P450 to the low-spin ferric form, presumably as heptanol was formed, suggesting that CYP 153A6 is a potential biocatalyst that can use peracids with no added NAD(P)H or reducing systems for bioremediation and other industrial applications.
Collapse
|
19
|
Roh C, Choi KY, Pandey BP, Kim BG. Hydroxylation of daidzein by CYP107H1 from Bacillus subtilis 168. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/j.molcatb.2008.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Electrochemistry of cytochrome P450 enzyme on nanoparticle-containing membrane-coated electrode and its applications for drug sensing. Anal Biochem 2008; 375:209-16. [DOI: 10.1016/j.ab.2007.12.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/03/2007] [Accepted: 12/03/2007] [Indexed: 11/21/2022]
|
21
|
Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci U S A 2007; 104:16822-7. [PMID: 17940033 DOI: 10.1073/pnas.0705110104] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Widespread contamination of land and groundwater has resulted from the use, manufacture, and storage of the military explosive hexa-hydro-1,3,5-trinitro-1,3,5-triazine (RDX). This contamination has led to a requirement for a sustainable, low-cost method to remediate this problem. Here, we present the characterization of an unusual microbial P450 system able to degrade RDX, consisting of flavodoxin reductase XplB and fused flavodoxin-cytochrome P450 XplA. The affinity of XplA for the xenobiotic compound RDX is high (K(d) = 58 muM) and comparable with the K(m) of other P450s toward their natural substrates (ranging from 1 to 500 muM). The maximum turnover (k(cat)) is 4.44 per s, only 10-fold less than the fastest self-sufficient P450 reported, BM3. Interestingly, the presence of oxygen determines the final products of RDX degradation, demonstrating that the degradation chemistry is flexible, but both pathways result in ring cleavage and release of nitrite. Carbon monoxide inhibition is weak and yet the nitroaromatic explosive 2,4,6-trinitrotoluene (TNT) is a potent inhibitor. To test the efficacy of this system for the remediation of groundwater, transgenic Arabidopsis plants expressing both xplA and xplB were generated. They are able to remove saturating levels of RDX from liquid culture and soil leachate at rates significantly faster than those of untransformed plants and xplA-only transgenic lines, demonstrating the applicability of this system for the phytoremediation of RDX-contaminated sites.
Collapse
|
22
|
Bonifacio A, Groenhof AR, Keizers PHJ, de Graaf C, Commandeur JNM, Vermeulen NPE, Ehlers AW, Lammertsma K, Gooijer C, van der Zwan G. Altered spin state equilibrium in the T309V mutant of cytochrome P450 2D6: a spectroscopic and computational study. J Biol Inorg Chem 2007; 12:645-54. [PMID: 17318599 PMCID: PMC1915625 DOI: 10.1007/s00775-007-0210-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 01/23/2007] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 2D6 (CYP2D6) is one of the most important cytochromes P450 in humans. Resonance Raman data from the T309V mutant of CYP2D6 show that the substitution of the conserved I-helix threonine situated in the enzyme's active site perturbs the heme spin equilibrium in favor of the six-coordinated low-spin species. A mechanistic hypothesis is introduced to explain the experimental observations, and its compatibility with the available structural and spectroscopic data is tested using quantum-mechanical density functional theory calculations on active-site models for both the CYP2D6 wild type and the T309V mutant.
Collapse
Affiliation(s)
- Alois Bonifacio
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - André R. Groenhof
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Peter H. J. Keizers
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Chris de Graaf
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Jan N. M. Commandeur
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Nico P. E. Vermeulen
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Andreas W. Ehlers
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Koop Lammertsma
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Cees Gooijer
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Gert van der Zwan
- Department of Chemistry and Pharmaceutical Sciences, Sections of Analytical Chemistry and Applied Spectroscopy (ACAS), Organic and Inorganic Chemistry and Molecular Toxicology, Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
23
|
Munro AW, Girvan HM, McLean KJ. Variations on a (t)heme—novel mechanisms, redox partners and catalytic functions in the cytochrome P450 superfamily. Nat Prod Rep 2007; 24:585-609. [PMID: 17534532 DOI: 10.1039/b604190f] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Andrew W Munro
- Faculty of Life Sciences, Manchester Interdisciplinary Biocentre, University of Manchester, 131 Princess Street, Manchester, M1 7DN, UK.
| | | | | |
Collapse
|
24
|
Webb ME, Marquet A, Mendel RR, Rébeillé F, Smith AG. Elucidating biosynthetic pathways for vitamins and cofactors. Nat Prod Rep 2007; 24:988-1008. [PMID: 17898894 DOI: 10.1039/b703105j] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The elucidation of the pathways to the water-soluble vitamins and cofactors has provided many biochemical and chemical challenges. This is a reflection both of their complex chemical nature, and the fact that they are often made in small amounts, making detection of the enzyme activities and intermediates difficult. Here we present an orthogonal review of how these challenges have been overcome using a combination of methods, which are often ingenious. We make particular reference to some recent developments in the study of biotin, pantothenate, folate, pyridoxol, cobalamin, thiamine, riboflavin and molybdopterin biosynthesis.
Collapse
Affiliation(s)
- Michael E Webb
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK.
| | | | | | | | | |
Collapse
|
25
|
Funhoff EG, Bauer U, García-Rubio I, Witholt B, van Beilen JB. CYP153A6, a soluble P450 oxygenase catalyzing terminal-alkane hydroxylation. J Bacteriol 2006; 188:5220-7. [PMID: 16816194 PMCID: PMC1539980 DOI: 10.1128/jb.00286-06] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 05/08/2006] [Indexed: 11/20/2022] Open
Abstract
The first and key step in alkane metabolism is the terminal hydroxylation of alkanes to 1-alkanols, a reaction catalyzed by a family of integral-membrane diiron enzymes related to Pseudomonas putida GPo1 AlkB, by a diverse group of methane, propane, and butane monooxygenases and by some membrane-bound cytochrome P450s. Recently, a family of cytoplasmic P450 enzymes was identified in prokaryotes that allow their host to grow on aliphatic alkanes. One member of this family, CYP153A6 from Mycobacterium sp. HXN-1500, hydroxylates medium-chain-length alkanes (C6 to C11) to 1-alkanols with a maximal turnover number of 70 min(-1) and has a regiospecificity of > or =95% for the terminal carbon atom position. Spectroscopic binding studies showed that C6-to-C11 aliphatic alkanes bind in the active site with Kd values varying from approximately 20 nM to 3.7 microM. Longer alkanes bind more strongly than shorter alkanes, while the introduction of sterically hindering groups reduces the affinity. This suggests that the substrate-binding pocket is shaped such that linear alkanes are preferred. Electron paramagnetic resonance spectroscopy in the presence of the substrate showed the formation of an enzyme-substrate complex, which confirmed the binding of substrates observed in optical titrations. To rationalize the experimental observations on a molecular scale, homology modeling of CYP153A6 and docking of substrates were used to provide the first insight into structural features required for terminal alkane hydroxylation.
Collapse
Affiliation(s)
- Enrico G Funhoff
- Institute of Biotechnology, Swiss Federal Institute of Technology Zürich, Wolfgang-Pauli-Strasse 16, CH-8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
26
|
McLean KJ, Warman AJ, Seward HE, Marshall KR, Girvan HM, Cheesman MR, Waterman MR, Munro AW. Biophysical Characterization of the Sterol Demethylase P450 from Mycobacterium tuberculosis, Its Cognate Ferredoxin, and Their Interactions. Biochemistry 2006; 45:8427-43. [PMID: 16819841 DOI: 10.1021/bi0601609] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis encodes a P450 of the sterol demethylase family (CYP51) chromosomally located adjacent to a ferredoxin (Fdx). CYP51 and Fdx were purified to homogeneity and characterized. Spectroscopic analyses were consistent with cysteinate- and aqua-ligated heme iron in CYP51. An epsilon419 of 134 mM(-1) cm(-1) was determined for oxidized CYP51. Analysis of interactions of 1-, 2-, and 4-phenylimidazoles with CYP51 showed that the 1- and 4-forms were heme iron-coordinating inhibitors, while 2-phenylimidazole induced a substrate-like optical shift. The 2-phenyimidazole-bound CYP51 demonstrated unusual decreases in high-spin heme iron content at elevated temperatures and an almost complete absence of high-spin heme iron by low-temperature EPR. These data suggest thermally induced alterations in CYP51 active site structure and/or binding modes for the small ligand. Reduction of CYP51 in the presence of carbon monoxide leads to formation of an Fe(II)-CO complex with a Soret absorption maximum at 448.5 nm, which collapses (at 0.246 min(-1) at pH 7.0) forming a species with a Soret maximum at 421.5 nm (the inactive P420 form). The rate of P420 formation is accelerated at lower pH, consistent with protonation of the cysteinate (Cys 394) to a thiol underlying the P450-P420 transition. The P450 form is stabilized by estriol, which induces a type I spectral shift on binding CYP51 (Kd = 21.7 microM). Nonstandard spectral changes occur on CYP51 reduction (using either dithionite or natural redox partners), including a blue-shifted Soret band and development of a strong feature at approximately 558.5 nm, suggestive of cysteine thiol ligation. Thus, ligand-free ferrous CYP51 is prone to thiolate ligand protonation even in the absence of carbon monoxide. Analysis of reoxidized CYP51 demonstrates that the enzyme re-forms P450, indicating that Cys 394 thiol is readily deprotonated to thiolate in the ferric form. Spectroscopic analysis of Fdx by EPR (resonance at g = 2.03) and magnetic CD (intensity for oxidized and reduced forms and signal intensity dependence on field strength and temperature) demonstrated that Fdx binds a [3Fe-4S] iron-sulfur cluster. Potentiometric studies show that the midpoint potential for ligand-free CYP51 is -375 mV, increasing to -225 mV in the estriol-bound form. The Fdx potential is -31 mV. Fdx forms a productive electron transfer complex with CYP51 and reduces it at a rate of 3.0 min(-1) in the ligand-free form and 4.3 min(-1) in the estriol-bound form, despite a thermodynamic barrier. Steady-state analysis of a M. tuberculosis class I redox system comprising flavoprotein reductase A (FprA), Fdx, and estriol-bound CYP51 indicates heme iron reduction as a rate-limiting step.
Collapse
Affiliation(s)
- Kirsty J McLean
- Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical Sciences, University of Manchester, Jackson's Mill, P.O. Box 88, Sackville Street, Manchester M60 1QD, UK
| | | | | | | | | | | | | | | |
Collapse
|
27
|
McLean KJ, Sabri M, Marshall KR, Lawson RJ, Lewis DG, Clift D, Balding PR, Dunford AJ, Warman AJ, McVey JP, Quinn AM, Sutcliffe MJ, Scrutton NS, Munro AW. Biodiversity of cytochrome P450 redox systems. Biochem Soc Trans 2005; 33:796-801. [PMID: 16042601 DOI: 10.1042/bst0330796] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
P450s (cytochrome P450 mono-oxygenases) are a superfamily of haem-containing mono-oxygenase enzymes that participate in a wide range of biochemical pathways in different organisms from all of the domains of life. To facilitate their activity, P450s require sequential delivery of two electrons passed from one or more redox partner enzymes. Although the P450 enzymes themselves show remarkable similarity in overall structure, it is increasingly apparent that there is enormous diversity in the redox partner systems that drive the P450 enzymes. This paper examines some of the recent advances in our understanding of the biodiversity of the P450 redox apparatus, with a particular emphasis on the redox systems in the pathogen Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- K J McLean
- Department of Biochemistry, University of Leicester, The Henry Wellcome Building, Lancaster Road, Leicester LE1 9HN, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chen CH, Cheng JC, Cho YC, Hsu WH. A gene cluster for the fatty acid catabolism from Pseudonocardia autotrophica BCRC12444. Biochem Biophys Res Commun 2005; 329:863-8. [PMID: 15752735 DOI: 10.1016/j.bbrc.2005.02.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Indexed: 10/25/2022]
Abstract
Genes involved in fatty acid degradation (fad) were isolated from Pseudonocardia autotrophica BBRC12444. Six open reading frames and a bi-directional promoter region were identified by DNA sequence analyses and primer extension. The fad gene cluster included five ORFs, designated fadA, fadB, fadR, fadC, and fadD. Base on their amino acid sequence identity, the gene products were identified as acyl-CoA ligase (FadA), enoyl-CoA hydratase (FadB), transcriptional regulator (FadR), cytochrome P450 monooxygenase (FadC), and ferredoxin (FadD). Regulatory protein, FadR, could bind to an operator sequence located in the divergent promoter region between fadR and fadC genes, implicating the control of fatty acid degradation. The real-time quantitative PCR assays revealed that the expression of the fadA, fadB, fadR, and fadC genes was induced by long chain fatty acids and repressed by glucose. All results demonstrated that the fad gene cluster participated in the pathway of the fatty acid catabolism. This is the first bacterial fad gene cluster to be reported.
Collapse
Affiliation(s)
- Chao-Hsien Chen
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan
| | | | | | | |
Collapse
|
29
|
Sielaff B, Andreesen JR. Kinetic and binding studies with purified recombinant proteins ferredoxin reductase, ferredoxin and cytochrome P450 comprising the morpholine mono-oxygenase from Mycobacterium sp. strain HE5. FEBS J 2005; 272:1148-59. [PMID: 15720389 DOI: 10.1111/j.1742-4658.2005.04550.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The P450mor system from Mycobacterium sp. strain HE5, supposed to catalyse the hydroxylation of different N-heterocycles, is composed of three components: ferredoxin reductase (FdRmor), Fe3S4 ferredoxin (Fdmor) and cytochrome P450 (P450mor). In this study, we purified Fdmor and P450mor as recombinant proteins as well as FdRmor, which has been isolated previously. Kinetic investigations of the redox couple FdRmor/Fdmor revealed a 30-fold preference for the NADH-dependent reduction of nitroblue tetrazolium (NBT) and an absolute requirement for Fdmor in this reaction, compared with the NADH-dependent reduction of cytochrome c. The quite low Km (5.3 +/- 0.3 nm) of FdRmor for Fdmor, measured with NBT as the electron acceptor, indicated high specificity. The addition of sequences providing His-tags to the N- or C-terminus of Fdmor did not significantly alter kinetic parameters, but led to competitive background activities of these fusion proteins. Production of P450mor as an N-terminal His-tag fusion protein enabled the purification of this protein in its spectral active form, which has previously not been possible for wild-type P450mor. The proposed substrates morpholine, piperidine or pyrrolidine failed to produce substrate-binding spectra of P450mor under any conditions. Pyridine, metyrapone and different azole compounds generated type II binding spectra and the Kd values determined for these substances suggested that P450mor might have a preference for more bulky and/or hydrophobic molecules. The purified recombinant proteins FdRmor, Fdmor and P450mor were used to reconstitute the homologous P450-containing mono-oxygenase, which was shown to convert morpholine.
Collapse
Affiliation(s)
- Bernhard Sielaff
- Institut für Mikrobiologie, Martin-Luther-Universität Halle, Germany
| | | |
Collapse
|
30
|
Lawson RJ, Leys D, Sutcliffe MJ, Kemp CA, Cheesman MR, Smith SJ, Clarkson J, Smith WE, Haq I, Perkins JB, Munro AW. Thermodynamic and biophysical characterization of cytochrome P450 BioI from Bacillus subtilis. Biochemistry 2004; 43:12410-26. [PMID: 15449931 DOI: 10.1021/bi049132l] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cytochrome P450 BioI (CYP107H1) from Bacillus subtilis is involved in the early stages of biotin synthesis. Previous studies have indicated that BioI can hydroxylate fatty acids and may also perform an acyl bond cleavage reaction [Green, A. J., Rivers, S. L., Cheesman, M., Reid, G. A., Quaroni, L. G., Macdonald, I. D. G., Chapman, S. K., and Munro, A. W. (2001) J. Biol. Inorg. Chem. 6, 523-533. Stok, J. E., and De Voss, J. J. (2000) Arch. Biochem. Biophys. 384, 351-360]. Here we show novel binding features of P450 BioI--specifically that it binds steroids (including testosterone and progesterone) and polycyclic azole drugs with similar affinity to that for fatty acids (K(d) values in the range 0.1-160 microM). Sigmoidal binding curves for titration of BioI with azole drugs suggests a cooperative process in this case. BioI as isolated from Escherichia coli is in a mixed heme iron spin state. Alteration of the pH of the buffer system affects the heme iron spin-state equilibrium (higher pH increasing the low-spin content). Steroids containing a carbonyl group at the C(3) position induce a shift in heme iron spin-state equilibrium toward the low-spin form, whereas fatty acids produce a shift toward the high-spin form. Electron paramagnetic resonance (EPR) studies confirm the heme iron spin-state perturbation inferred from optical titrations with steroids and fatty acids. Potentiometric studies demonstrate that the heme iron reduction potential becomes progressively more positive as the proportion of high-spin heme iron increases (potential for low-spin BioI = -330 +/- 1 mV; for BioI as purified from E. coli (mixed-spin) = 228 +/- 2 mV; for palmitoleic acid-bound BioI = -199 +/- 2 mV). Extraction of bound substrate-like molecule from purified BioI indicates palmitic acid to be bound. Differential scanning calorimetry studies indicate that the BioI protein structure is stabilized by binding of steroids and bulky azole drugs, a result confirmed by resonance Raman studies and by analysis of disruption of BioI secondary and tertiary structure by the chaotrope guanidinium chloride. Molecular modeling of the BioI structure indicates that a disulfide bond is present between Cys250 and Cys275. Calorimetry shows that structural stability of the protein was altered by addition of the reductant dithiothreitol, suggesting that the disulfide is important to integrity of BioI structure.
Collapse
|
31
|
Gustafsson MCU, Roitel O, Marshall KR, Noble MA, Chapman SK, Pessegueiro A, Fulco AJ, Cheesman MR, von Wachenfeldt C, Munro AW. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Biochemistry 2004; 43:5474-87. [PMID: 15122913 DOI: 10.1021/bi035904m] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cyp102A2 and cyp102A3 genes encoding the two Bacillus subtilis homologues (CYP102A2 and CYP102A3) of flavocytochrome P450 BM3 (CYP102A1) from Bacillus megaterium have been cloned, expressed in Escherichia coli, purified, and characterized spectroscopically and enzymologically. Both enzymes contain heme, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) cofactors and bind a variety of fatty acid molecules, as demonstrated by conversion of the low-spin resting form of the heme iron to the high-spin form induced by substrate-binding. CYP102A2 and CYP102A3 catalyze the fatty acid-dependent oxidation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) and reduction of artificial electron acceptors at high rates. Binding of carbon monoxide to the reduced forms of both enzymes results in the shift of the heme Soret band to 450 nm, confirming the P450 nature of the enzymes. Reverse-phase high-performance liquid chromatography (HPLC) of products from the reaction of the enzymes with myristic acid demonstrates that both catalyze the subterminal hydroxylation of this substrate, though with different regioselectivity and catalytic rate. Both P450s 102A2 and 102A3 show kinetic and binding preferences for long-chain unsaturated and branched-chain fatty acids over saturated fatty acids, indicating that the former two molecule types may be the true substrates. P450s 102A2 and 102A3 exhibit differing substrate selectivity profiles from each other and from P450 BM3, indicating that they may fulfill subtly different cellular roles. Titration curves for binding and turnover kinetics of several fatty acid substrates with P450s 102A2 and 102A3 are better described by sigmoidal (rather than hyperbolic) functions, suggesting binding of more than one molecule of substrate to the P450s, or possibly cooperativity in substrate binding. Comparison of the amino acid sequences of the three flavocytochromes shows that several important amino acids in P450 BM3 are not conserved in the B. subtilis homologues, pointing to differences in the binding modes for the substrates that may explain the unusual sigmoidal kinetic and titration properties.
Collapse
Affiliation(s)
- Mattias C U Gustafsson
- Department of Cell and Organism Biology, Lund University, Sölvegatan 35, SE-223, 62 Lund, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lawson RJ, von Wachenfeldt C, Haq I, Perkins J, Munro AW. Expression and Characterization of the Two Flavodoxin Proteins of Bacillus subtilis, YkuN and YkuP: Biophysical Properties and Interactions with Cytochrome P450 BioI. Biochemistry 2004; 43:12390-409. [PMID: 15449930 DOI: 10.1021/bi049131t] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The two flavodoxins (YkuN and YkuP) from Bacillus subtilis have been cloned, overexpressed in Escherichia coli and purified. DNA sequencing, mass spectrometry, and flavin-binding properties showed that both YkuN and YkuP were typical short-chain flavodoxins (158 and 151 amino acids, respectively) and that an error in the published B. subtilis genome sequence had resulted in an altered reading frame and misassignment of YkuP as a long-chain flavodoxin. YkuN and YkuP were expressed in their blue (neutral semiquinone) forms and reoxidized to the quinone form during purification. Potentiometry confirmed the strong stabilization of the semiquinone form by both YkuN and YkuP (midpoint reduction potential for oxidized/semiquinone couple = -105 mV/-105 mV) with respect to the hydroquinone (midpoint reduction potential for semiquinone/hydroquinone couple = -382 mV/-377 mV). Apoflavodoxin forms were generated by trichloroacetic acid treatment. Circular dichroism studies indicated that flavin mononucleotide (FMN) binding led to considerable structural rearrangement for YkuP but not for YkuN. Both apoflavodoxins bound FMN but not riboflavin avidly, as expected for short-chain flavodoxins. Structural stability studies with the chaotrope guanidinium chloride revealed that there is moderate destabilization of secondary and tertiary structure on FMN removal from YkuN, but that YkuP apoflavodoxin has similar (or slightly higher) stability compared to the holoprotein. Differential scanning calorimetry reveals further differences in structural stability. YkuP has a lower melting temperature than YkuN, and its endotherm is composed of a single transition, while that for YkuN is biphasic. Optical and fluorimetric titrations with oxidized flavodoxins revealed strong affinity (K(d) values consistently <5 microM) for their potential redox partner P450 BioI, YkuN showing tighter binding. Stopped-flow reduction studies indicated that the maximal electron-transfer rate (k(red)) to fatty acid-bound P450 BioI occurs from YkuN and YkuP at approximately 2.5 s(-1), considerably faster than from E. coli flavodoxin. Steady-state turnover with YkuN or YkuP, fatty acid-bound P450 BioI, and E. coli NADPH-flavodoxin reductase indicated that both flavodoxins supported lipid hydroxylation by P450 BioI with turnover rates of up to approximately 100 min(-1) with lauric acid as substrate. Interprotein electron transfer is a likely rate-limiting step. YkuN and YkuP supported monohydroxylation of lauric acid and myristic acid, but secondary oxygenation of the primary product was observed with both palmitic acid and palmitoleic acid as substrates.
Collapse
|
33
|
Seo D, Kamino K, Inoue K, Sakurai H. Purification and characterization of ferredoxin-NADP+ reductase encoded by Bacillus subtilis yumC. Arch Microbiol 2004; 182:80-9. [PMID: 15252706 DOI: 10.1007/s00203-004-0701-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2004] [Revised: 06/16/2004] [Accepted: 06/21/2004] [Indexed: 11/26/2022]
Abstract
From Bacillus subtilis cell extracts, ferredoxin-NADP+ reductase (FNR) was purified to homogeneity and found to be the yumC gene product by N-terminal amino acid sequencing. YumC is a approximately 94-kDa homodimeric protein with one molecule of non-covalently bound FAD per subunit. In a diaphorase assay with 2,6-dichlorophenol-indophenol as electron acceptor, the affinity for NADPH was much higher than that for NADH, with Km values of 0.57 microM vs >200 microM. Kcat values of YumC with NADPH were 22.7 s(-1) and 35.4 s(-1) in diaphorase and in a ferredoxin-dependent NADPH-cytochrome c reduction assay, respectively. The cell extracts contained another diaphorase-active enzyme, the yfkO gene product, but its affinity for ferredoxin was very low. The deduced YumC amino acid sequence has high identity to that of the recently identified Chlorobium tepidum FNR. A genomic database search indicated that there are more than 20 genes encoding proteins that share a high level of amino acid sequence identity with YumC and which have been annotated variously as NADH oxidase, thioredoxin reductase, thioredoxin reductase-like protein, etc. These genes are found notably in gram-positive bacteria, except Clostridia, and less frequently in archaea and proteobacteria. We propose that YumC and C. tepidum FNR constitute a new group of FNR that should be added to the already established plant-type, bacteria-type, and mitochondria-type FNR groups.
Collapse
Affiliation(s)
- Daisuke Seo
- Department of Biology, School of Education, Waseda University, 1-6-1 Nishiwaseda, Shinjuku, 169-8050, Tokyo, Japan.
| | | | | | | |
Collapse
|
34
|
Abstract
Cytochrome p450(BioI)(CYP107H1) is believed to supply pimelic acid equivalents for biotin biosynthesis in Bacillus subtilis: we report here that the mechanistic pathway adopted by this multifunctional p450 for the in-chain cleavage of fatty acids is via consecutive formation of alcohol and threo-diol intermediates, with the likely absolute configuration of the intermediates also reported.
Collapse
Affiliation(s)
- Max J Cryle
- Department of Chemistry, University of Queensland, St. Lucia, Brisbane, Australia 4072
| | | |
Collapse
|
35
|
Cryle MJ, Matovic NJ, De Voss JJ. Products of cytochrome P450(BioI) (CYP107H1)-catalyzed oxidation of fatty acids. Org Lett 2003; 5:3341-4. [PMID: 12943422 DOI: 10.1021/ol035254e] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[reaction: see text] Oxidation of tetradecanoic and hexadecanoic acids by cytochrome P450(BioI) (CYP107H1) produces mainly the 11-, 12-, and 13-hydroxy C(14) fatty acids and the 11- to 15-hydroxy C(16) fatty acids, respectively. In contrast to previous reports, terminal hydroxylation is not observed. The enantiospecificity of fatty acid hydroxylation by P450(BioI) was also determined, and the enzyme was shown to be moderately selective for production of the (R)-alcohols.
Collapse
Affiliation(s)
- Max J Cryle
- Department of Chemistry, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | | | | |
Collapse
|
36
|
Hlavica P, Schulze J, Lewis DFV. Functional interaction of cytochrome P450 with its redox partners: a critical assessment and update of the topology of predicted contact regions. J Inorg Biochem 2003; 96:279-97. [PMID: 12888264 DOI: 10.1016/s0162-0134(03)00152-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The problem of donor-acceptor recognition has been the most important and intriguing one in the area of P450 research. The present review outlines the topological background of electron-transfer complex formation, showing that the progress in collaborative investigations, combining physical techniques with chemical-modification and immunolocalization studies as well as site-directed mutagenesis experiments, has increasingly enabled the substantiation of hypothetical work resulting from homology modelling of P450s. Circumstantial analysis reveals the contact regions for redox proteins to cluster on the proximal face of P450s, constituting parts of the highly conserved, heme-binding core fold. However, more variable structural components located in the periphery of the hemoprotein molecules also participate in donor docking. The cross-reactivity of electron carriers, purified from pro- and eukaryotic sources, with a diversity of P450 species points at a possible evolutionary conservation of common anchoring domains. While electrostatic mechanisms appear to dominate orientation toward each other of the redox partners to generate pre-collisional encounter complexes, hydrophobic forces are likely to foster electron transfer events by through-bonding or pi-stacking interactions. Moreover, electron-tunneling pathways seem to be operative as well. The availability of new P450 crystal structures together with improved validation strategies will undoubtedly permit the production of increasingly satisfactory three-dimensional donor-acceptor models serving to better understand the molecular principles governing functional association of the redox proteins.
Collapse
Affiliation(s)
- P Hlavica
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Nussbaumstrasse 26, D-80336, Munich, Germany.
| | | | | |
Collapse
|
37
|
Streit WR, Entcheva P. Biotin in microbes, the genes involved in its biosynthesis, its biochemical role and perspectives for biotechnological production. Appl Microbiol Biotechnol 2003; 61:21-31. [PMID: 12658511 DOI: 10.1007/s00253-002-1186-2] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2002] [Revised: 10/31/2002] [Accepted: 10/31/2002] [Indexed: 11/30/2022]
Abstract
Biotin (vitamin H) is one of the most fascinating cofactors involved in central pathways in pro- and eukaryotic cell metabolism. Since its original discovery in 1901, research has led to the discovery of the complete biotin biosynthesis pathways in many different microbes and much work has been done on the highly intriguing and complex biochemistry of biotin biosynthesis. While humans and animals require several hundred micrograms of biotin per day, most microbes, plants and fungi appear to be able to synthesize the cofactor themselves. Biotin is added to many food, feed and cosmetic products, creating a world market of 10-30 t/year. However, the majority of the biotin sold is synthesized in a chemical process. Since the chemical synthesis is linked with a high environmental burden, much effort has been put into the development of biotin-overproducing microbes. A summary of biotin biosynthesis and its biological role is presented; and current strategies for the improvement of microbial biotin production using modern biotechnological techniques are discussed.
Collapse
Affiliation(s)
- W R Streit
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany.
| | | |
Collapse
|
38
|
Green AJ, Munro AW, Cheesman MR, Reid GA, von Wachenfeldt C, Chapman SK. Expression, purification and characterisation of a Bacillus subtilis ferredoxin: a potential electron transfer donor to cytochrome P450 BioI. J Inorg Biochem 2003; 93:92-9. [PMID: 12538057 DOI: 10.1016/s0162-0134(02)00456-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fer gene from Bacillus subtilis has been subcloned and overexpressed in Escherichia coli and the protein (Fer) purified to homogeneity. N-Terminal sequencing and mass spectrometry indicate that the initiator methionine is removed from the protein and that the molecular mass is 8732 Da consistent with that deduced from the gene sequence. Amino-acid sequence comparisons indicate that Fer is a ferredoxin containing a 4Fe-4S cluster. The electron paramagnetic resonance spectrum of the reduced form of Fer is typical for a [4Fe-4S](+) cluster showing rhombic signals with g values of 2.07, 1.93 and 1.88. Reduced Fer also gives rise to a magnetic circular dichroism spectrum typical of a [4Fe-4S](+) cluster. Potentiometric titrations indicate that Fer has a reduction potential of -385+/-10 mV for the [4Fe-4S](+)-[4Fe-4S](2+) redox couple, well within the normal range expected for such a ferredoxin. A proposed physiological role for Fer is as an electron donor to cytochrome P450 BioI. Studies on Fer binding to P450 BioI give rise to a K(d) value of 0.87+/-0.10 microM. Anaerobic experiments using CO-saturated buffer indicate that Fer is indeed capable of transferring electrons to this cytochrome P450 albeit at a fairly low rate.
Collapse
Affiliation(s)
- Amanda J Green
- Department of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, UK
| | | | | | | | | | | |
Collapse
|
39
|
McLean KJ, Cheesman MR, Rivers SL, Richmond A, Leys D, Chapman SK, Reid GA, Price NC, Kelly SM, Clarkson J, Smith WE, Munro AW. Expression, purification and spectroscopic characterization of the cytochrome P450 CYP121 from Mycobacterium tuberculosis. J Inorg Biochem 2002; 91:527-41. [PMID: 12237220 DOI: 10.1016/s0162-0134(02)00479-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The CYP121 gene from the pathogenic bacterium Mycobacterium tuberculosis has been cloned and expressed in Escherichia coli, and the protein purified to homogeneity by ion exchange and hydrophobic interaction chromatography. The CYP121 gene encodes a cytochrome P450 enzyme (CYP121) that displays typical electronic absorption features for a member of this superfamily of hemoproteins (major Soret absorption band at 416.5 nm with alpha and beta bands at 565 and 538 nm, respectively, in the oxidized form) and which binds carbon monoxide to give the characteristic Soret band shift to 448 nm. Resonance Raman, EPR and MCD spectra show the protein to be predominantly low-spin and to have a typical cysteinate- and water-ligated b-type heme iron. CD spectra in the far UV region describe a mainly alpha helical conformation, but the visible CD spectrum shows a band of positive sign in the Soret region, distinct from spectra for other P450s recognized thus far. CYP121 binds very tightly to a range of azole antifungal drugs (e.g. clotrimazole, miconazole), suggesting that it may represent a novel target for these antibiotics in the M. tuberculosis pathogen.
Collapse
Affiliation(s)
- Kirsty J McLean
- Department of Biochemistry, The Adrian Building, University of Leicester, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tomczyk NH, Nettleship JE, Baxter RL, Crichton HJ, Webster SP, Campopiano DJ. Purification and characterisation of the BIOH protein from the biotin biosynthetic pathway. FEBS Lett 2002; 513:299-304. [PMID: 11904168 DOI: 10.1016/s0014-5793(02)02342-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Conversion of pimeloyl-coenzyme A (CoA) to biotin in Escherichia coli requires at least four enzymes encoded by genes in the bio operon. One gene, bioH, which is not present in the bioABFCD operon, is required for the synthesis of pimeloyl-CoA but its exact role in formation of this intermediate is unknown. To investigate this further, we have overexpressed and purified the bioH gene products from both E. coli (BIOH EC) and Neisseria meningitis (BIOH NM) in E. coli. When purified BIOH was incubated with excess CoA and analysed by electrospray mass spectrometry a species of mass corresponding to a BIOH:CoA complex was observed. Mutation of a conserved serine residue to alanine (BIOH EC S82A) did not prevent CoA binding. This is the first report of the purification of BIOH and the observation of a small molecule bound to the protein provides clues to its role in pimeloyl-CoA synthesis.
Collapse
Affiliation(s)
- Nicholas H Tomczyk
- Department of Chemistry, Joseph Black Building, University of Edinburgh, West Mains Road, EH9 3JJ, Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
41
|
|