1
|
Jeon HH, Huang X, Rojas Cortez L, Sripinun P, Lee JM, Hong JJ, Graves DT. Inflammation and mechanical force-induced bone remodeling. Periodontol 2000 2024. [PMID: 39740162 DOI: 10.1111/prd.12619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 09/25/2024] [Accepted: 10/27/2024] [Indexed: 01/02/2025]
Abstract
Periodontitis arises from imbalanced host-microbe interactions, leading to dysbiosis and destructive inflammation. The host's innate and adaptive immune responses produce pro-inflammatory mediators that stimulate destructive events, which cause loss of alveolar bone and connective tissue attachment. There is no consensus on the factors that lead to a conversion from gingivitis to periodontitis, but one possibility is the proximity of the inflammation to the bone, which promotes bone resorption and inhibits subsequent bone formation during coupled bone formation. Conversely, orthodontic tooth movement is triggered by the mechanical force applied to the tooth, resulting in bone resorption on the compression side and new bone formation on the tension side. However, the environment around orthodontic brackets readily retains dental plaque and may contribute to inflammation and bone remodeling. The immune, epithelial, stromal, endothelial and bone cells of the host play an important role in setting the stage for bone remodeling that occurs in both periodontitis and orthodontic tooth movement. Recent advancements in single-cell RNA sequencing have provided new insights into the roles and interactions of different cell types in response to challenges. In this review, we meticulously examine the functions of key cell types such as keratinocytes, leukocytes, stromal cells, osteocytes, osteoblasts, and osteoclasts involved in inflammation- and mechanical force-driven bone remodeling. Moreover, we explore the combined effects of these two conditions: mechanical force-induced bone remodeling combined with periodontal disease (chronic inflammation) and periodontally accelerated osteogenic orthodontics (acute transient inflammation). This comprehensive review enhances our understanding of inflammation- and mechanical force-induced bone remodeling.
Collapse
Affiliation(s)
- Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xin Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leticia Rojas Cortez
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Puttipong Sripinun
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University, Muang, Chiang Mai, Thailand
| | - Jung-Me Lee
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York, USA
| | - Julie J Hong
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Yan S, Lu Y, An C, Hu W, Chen Y, Li Z, Wei W, Chen Z, Zeng X, Xu W, Lv Z, Pan F, Gao W, Wu Y. Biomechanical research using advanced micro-nano devices: In-Vitro cell Characterization focus. J Adv Res 2024:S2090-1232(24)00602-7. [PMID: 39701378 DOI: 10.1016/j.jare.2024.12.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/16/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Cells in the body reside in a dynamic microenvironment subjected to various physical stimuli, where mechanical stimulation plays a crucial role in regulating cellular physiological behaviors and functions. AIM OF REVIEW Investigating the mechanisms and interactions of mechanical transmission is essential for understanding the physiological and functional interplay between cells and physical stimuli. Therefore, establishing an in vitro biomechanical stimulation cell culture system holds significant importance for research related to cellular biomechanics. KEY SCIENTIFIC CONCEPTS OF REVIEW In this review, we primarily focused on various biomechanically relevant cell culture systems and highlighted the advancements and prospects in their preparation processes. Firstly, we discussed the types and characteristics of biomechanics present in the microenvironment within the human body. Subsequently, we introduced the research progress, working principles, preparation processes, potential advantages, applications, and challenges of various biomechanically relevant in vitro cell culture systems. Additionally, we summarized and categorized currently commercialized biomechanically relevant cell culture systems, offering a comprehensive reference for researchers in related fields.
Collapse
Affiliation(s)
- Shiqiang Yan
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China; Center of Cancer Immunology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Jinzhou Medical University, Jinzhou 121001, Liaoning, China; Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Changming An
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Wanglai Hu
- Translational Research Institute, People's Hospital of Zhengzhou University, Academy of Medical Science, Henan International Joint Laboratory of Non-coding RNA and Metabolism in Cancer, Zhengzhou University, Zhengzhou 450003, Henan, China
| | - Yaofeng Chen
- Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen 518055, Guangdong, China
| | - Ziwen Li
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Wenbo Wei
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
| | - Zongzheng Chen
- The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, Guangdong, China
| | - Xianhai Zeng
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China
| | - Wei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, Shandong, China
| | - Zhenghua Lv
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan 250022, Shandong, China.
| | - Fan Pan
- Center of Cancer Immunology, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Wei Gao
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China.
| | - Yongyan Wu
- Shenzhen Institute of Otolaryngology & Key Laboratory of Otolaryngology, Longgang Otolaryngology Hospital, Shenzhen 518172, Guangdong, China; Shenzhen University General Hospital & Shenzhen University Clinical Medical Academy, Shenzhen University, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
3
|
Pakpahan ND, Kyawsoewin M, Manokawinchoke J, Termkwancharoen C, Egusa H, Limraksasin P, Osathanon T. Effects of mechanical loading on matrix homeostasis and differentiation potential of periodontal ligament cells: A scoping review. J Periodontal Res 2024; 59:877-906. [PMID: 38736036 DOI: 10.1111/jre.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Various mechanical loadings, including mechanical stress, orthodontics forces, and masticatory force, affect the functions of periodontal ligament cells. Regulation of periodontal tissue destruction, formation, and differentiation functions are crucial processes for periodontal regeneration therapy. Numerous studies have reported that different types of mechanical loading play a role in maintaining periodontal tissue matrix homeostasis, and osteogenic differentiation of the periodontal ligament cells. This scoping review aims to evaluate the studies regarding the effects of various mechanical loadings on the secretion of extracellular matrix (ECM) components, regulation of the balance between formation and destruction of periodontal tissue matrix, osteogenic differentiation, and multiple differentiation functions of the periodontal ligament. An electronic search for this review has been conducted on two databases; MEDLINE via PubMed and SCOPUS. Study selection criteria included original research written in English that reported the effects of different mechanical loadings on matrix homeostasis and differentiation potential of periodontal ligament cells. The final 204 articles were mainly included in the present scoping review. Mechanical forces of the appropriate magnitude, duration, and pattern have a positive influence on the secretion of ECM components such as collagen, as well as regulate the secretion of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Additionally, these forces regulate a balance between osteoblastic and osteoclast differentiation. Conversely, incorrect mechanical loadings can lead to abnormal formation and destruction of both soft and hard tissue. This review provides additional insight into how mechanical loadings impact ECM homeostasis and multiple differentiation functions of periodontal ligament cells (PDLCs), thus making it valuable for regenerative periodontal treatment. In combination with advancing technologies, the utilization of ECM components, application of different aspects of mechanical force, and differentiation potential of PDLCs could bring potential benefits to future periodontal regeneration therapy.
Collapse
Affiliation(s)
- Novena Dameria Pakpahan
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Maythwe Kyawsoewin
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeeranan Manokawinchoke
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chutimon Termkwancharoen
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Phoonsuk Limraksasin
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Pakpahan ND, Kyawsoewin M, Manokawinchoke J, Namangkalakul W, Termkwancharoen C, Egusa H, Limraksasin P, Osathanon T. Intermittent compressive force regulates matrix metalloproteinases and tissue inhibitors of metalloproteinases expression in human periodontal ligament cells. Arch Oral Biol 2024; 165:106011. [PMID: 38815450 DOI: 10.1016/j.archoralbio.2024.106011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
OBJECTIVE This study aims to evaluate the effects of intermittent compressive force (ICF) on the expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) by human periodontal ligament cells (hPDLCs). DESIGN hPDLCs were subjected to ICF with a magnitude of 1.5 g/cm2 and loaded for 24 h. mRNA and protein expression of several MMPs and TIMPs were assessed using RT-PCR and ELISA analyses. An inhibitor of TGF-β (SB431542) was used to assess a possible role of TGF-β in the expression of MMPs and TIMPs under ICF. RESULTS mRNA and protein analyses showed that ICF significantly induced expression of TIMP1 and TIMP3, but decreased expression of MMP1. Incubation with the TGF-β inhibitor and applied to ICF showed a downregulation of TIMP3, but expression of MMP1 was not affected. CONCLUSION ICF is likely to affect ECM homeostasis by hPDLCs by regulating the expression of MMP1 and TIMPs. Moreover, TGF-β1 regulated expression of TIMP3. These findings suggest ICF may decrease the degradation of ECM and may thus be essential for maintaining PDL homeostasis.
Collapse
Affiliation(s)
- Novena Dameria Pakpahan
- Oral Biology Graduate Program, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Maythwe Kyawsoewin
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeeranan Manokawinchoke
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Worachat Namangkalakul
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chutimon Termkwancharoen
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Phoonsuk Limraksasin
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Moghadam A, Moghadam N, Doremami V, Pishghadam S, Mafi A. A New Experimental Technique for Complete Extraction of Mandibular First Molar Teeth in Rats. J Vet Dent 2024; 41:288-292. [PMID: 37259559 DOI: 10.1177/08987564231177576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Intact extraction of the mandibular first molar tooth is an interesting model for studies of alveolar bone healing. The aim of this study was to describe a new experimental technique for extraction of rat mandibular first molar teeth with crown and all 4 roots intact using controlled forces applied to the teeth. One hundred and twenty female Sprague-Dawley rats were used from a center for experimental animal research. Animals underwent general anesthesia and were then placed in a special dental unit (designed by Moghadam) for the extraction of rat teeth. After syndesmotomy, luxation of the tooth began with a tipping movement in the buccal direction with a very low range of motion for 1 s. A tipping movement in the lingual direction was then used to continue luxation. After a maximum of 10 repetitions, the tooth was left alone for 30 s. After 3-4 stages of this cycle, the tooth loosened. To complete the luxation, the same forces were applied in the buccal and lingual directions with larger amplitude for 3 s. After this step, the tooth was loose enough to be easily extracted. The alveolus was then sutured closed. The results showed no hemorrhage or fracture of crowns and mesial or distal roots, and only 8% of the buccal and lingual roots fractured. The technique designed and used in this study was shown to be an effective model for complete molar tooth extraction in the rat. This technique could also be used in the treatment of other rodents.
Collapse
Affiliation(s)
- Abbas Moghadam
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Neuroscience Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Niloofar Moghadam
- Faulty of Dentistry, Qom University of Medical Sciences, Qom, Iran
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Vahid Doremami
- Faulty of Dentistry, Qom University of Medical Sciences, Qom, Iran
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Saeede Pishghadam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Afsaneh Mafi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Neuroscience Research Center, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
6
|
Gonçalves A, Mathelié-Guinlet Q, Ramires F, Monteiro F, Carvalho Ó, Silva FS, Resende AD, Pinho T. Biological alterations associated with the orthodontic treatment with conventional appliances and aligners: A systematic review of clinical and preclinical evidence. Heliyon 2024; 10:e32873. [PMID: 39021939 PMCID: PMC11253224 DOI: 10.1016/j.heliyon.2024.e32873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Background&objectives Mechanical forces applied during an orthodontic tooth movement (OTM) propel several biochemical and molecular responses in the periodontal ligament and alveolar bone. Here, we compile the existing clinical and preclinical evidence on these biological changes, aiming to provide a comprehensive discussion on the influence of the mechanical parameters of the OTM in the biological profile of the periodontium. Material and methods This systematic integrative review was conducted according to PICOS strategy and PRISMA guidelines. A bibliographic search was performed in three electronic databases (PubMed, Scopus, and Web of Science) to find research articles published until 2023 and written in English. This search resulted in a total of 2279 publications, which were independently assessed by two evaluators using appropriate tools. Results Forty-six studies were selected for this review. These revealed that compression, and stretching of the periodontal ligament fibers and cells are observed in the initial phase of the OTM. Specifically, on the tension side, high levels of IL-1β, OPG, and TIMPs are identified. On the compression side, an increase of RANKL, RANK, and MMPs levels predominate. Conclusion This paper describes the release profile of common biomarkers according to the orthodontic protocol, suggesting the most appropriate parameters to keep the teeth and their supporting structures healthy. Overall, this manuscript provides a better understanding of the OTM-associated biological phenomena, also highlighting the importance of early evaluation of oral health, and thus it contributes as a fundamental basis for the development of more effective and safe orthodontic treatments with conventional appliances and aligners.
Collapse
Affiliation(s)
- Aline Gonçalves
- UNIPRO – Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra, Portugal
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
| | - Quitterie Mathelié-Guinlet
- UNIPRO – Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra, Portugal
| | - Fátima Ramires
- UNIPRO – Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra, Portugal
| | - Francisca Monteiro
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Óscar Carvalho
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| | - Filipe S. Silva
- Center for MicroElectroMechanical Systems (CMEMS), University of Minho, Campus Azurém, 4800-058, Guimarães, Portugal
- LABBELS – Associate Laboratory, Braga, Guimarães, Portugal
| | - Albina D. Resende
- UNIPRO – Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra, Portugal
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, University Institute of Health Sciences - CESPU, 4585-116 Gandra, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS - CESPU), 4585-116 Gandra, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, 4450-208 Matosinhos, Portugal
| | - Teresa Pinho
- UNIPRO – Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), CESPU, 4585-116, Gandra, Portugal
| |
Collapse
|
7
|
Welte-Jzyk C, Plümer V, Schumann S, Pautz A, Erbe C. Effect of the antirheumatic medication methotrexate (MTX) on biomechanical compressed human periodontal ligament fibroblasts (hPDLFs). BMC Oral Health 2024; 24:329. [PMID: 38475789 DOI: 10.1186/s12903-024-04092-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The aim of this study was to investigate the in vitro effect of the antirheumatic drug methotrexate (MTX) on biomechanically compressed human periodontal ligament fibroblasts (hPDLFs), focusing on the expression of interleukin 6 (IL-6), as its upregulation is relevant to orthodontic tooth movement. METHODS Human PDLFs were subjected to pressure and simultaneously treated with MTX. Cell proliferation, viability and morphology were studied, as was the gene and protein expression of IL-6. RESULTS Compared with that in untreated fibroblasts, IL-6 mRNA expression in mechanically compressed ligament fibroblasts was increased (two to sixfold; ****p < 0.0001). Under compression, hPDLFs exhibited a significantly more expanded shape with an increase of cell extensions. MTX with and without pressure did not affect IL-6 mRNA expression or the morphology of hPDLFs. CONCLUSION MTX has no effect on IL-6 expression in compressed ligament fibroblasts.
Collapse
Affiliation(s)
- Claudia Welte-Jzyk
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany.
| | - Vera Plümer
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, 55128, Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131, Mainz, Germany
| | - Christina Erbe
- Department of Orthodontics, University Medical Center of the Johannes Gutenberg-University, 55131, Mainz, Germany
| |
Collapse
|
8
|
Gujar AN, Shivamurthy PG. Effect of 125 Hz and 150 Hz vibrational frequency electric toothbrushes on the rate of orthodontic tooth movement and prostaglandin E2 levels. Korean J Orthod 2023; 53:307-316. [PMID: 37746776 PMCID: PMC10547591 DOI: 10.4041/kjod23.076] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/03/2023] [Accepted: 08/13/2023] [Indexed: 09/26/2023] Open
Abstract
Objective To evaluate the effects of an electric toothbrush with vibrational frequencies of 125 Hz and 150 Hz on the orthodontic tooth movement (OTM) rate and the production of prostaglandin E2 (PGE2). Methods Out of thirty patients (aged 18-25 years; 16 females and 14 males), ten patients each formed Group A and B, who used electric toothbrushes with 125 Hz and 150 Hz vibrations, respectively. The remaining ten patients (Group C) served as the control group and did not use electric toothbrushes. The rate of OTM and levels of PGE2 using microcapillary pipettes were calculated before the start of retraction (T0), on the 30th day (T1), on the 60th day (T2), and on the 90th day (T3) from the start of retraction in all the groups. Results There was a statistically significant difference in the mean OTM values and PGE2 levels in all three groups at different time intervals, with the maximum difference seen in Group B compared to Group A and least in Group C at T1, T2 and T3. Conclusions The rate of OTM and levels of PGE2 were highest in patients who used an electric toothbrush with 150 Hz mechanical vibration compared to those who used an electric toothbrush with 125 Hz mechanical vibration and least in patients who did not use an electric toothbrush. Mechanical vibration led to an increase in the PGE2 levels and accelerated the OTM.
Collapse
Affiliation(s)
- Anadha N. Gujar
- Department of Orthodontics, Sri Rajiv Gandhi College of Dental Sciences and Hospital, Bangalore, India
| | | |
Collapse
|
9
|
Sinai Khandeparker RV, Kamat RD, Shetye OA, Mandrekar P, Desai SK, Dhupar V. The Palatal Elevation Technique (PET) for Intra-alveolar Extraction of Grossly Decayed Maxillary Third Molars. Cureus 2023; 15:e46127. [PMID: 37900467 PMCID: PMC10612431 DOI: 10.7759/cureus.46127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Intra-alveolar extraction of maxillary third molars always poses a challenge to dental practitioners owing to limited accessibility and minimal space for dental forceps application. Dental elevators facilitate the extraction of such teeth. In the traditional technique as described in the literature, the elevator is always introduced from the mesiobuccal aspect of the tooth to engage the space between the interdental bone and the offending tooth to use it as a fulcrum. However, certain situations prevent proper application of the elevator from the buccal aspect of the offending tooth to bring about luxation. One such situation is a grossly decayed third molar tooth, especially from the mesiobuccal aspect with destruction of the tooth substance extending below the cementoenamel junction. Another such situation is observed in patients presenting with thick and inextensible cheeks but a good interincisal opening. In either situation, it becomes very challenging to achieve a good purchase for luxation of the offending third molar. The authors have therefore described a modified technique of tooth elevation, the palatal elevation technique (PET), using the palatal bone instead of the buccal bone as the fulcrum which was observed to be effective in such situations. In the authors' view, PET is simple and quick and can effectively be employed as an alternative to the traditional technique of tooth elevation in all cases that require an intra-alveolar extraction of maxillary third molars.
Collapse
Affiliation(s)
| | - Rahul D Kamat
- Oral and Maxillofacial Surgery, Goa Dental College and Hospital, Bambolim, IND
| | - Omkar A Shetye
- Oral and Maxillofacial Surgery, Goa Dental College and Hospital, Bambolim, IND
| | - Pooja Mandrekar
- Oral and Maxillofacial Surgery, Goa Dental College and Hospital, Bambolim, IND
| | - Sayali K Desai
- Oral and Maxillofacial Surgery, Goa Dental College and Hospital, Bambolim, IND
| | - Vikas Dhupar
- Oral and Maxillofacial Surgery, Goa Dental College and Hospital, Bambolim, IND
| |
Collapse
|
10
|
He W, Fu Y, Yao S, Huang L. Programmed cell death of periodontal ligament cells. J Cell Physiol 2023; 238:1768-1787. [PMID: 37566596 DOI: 10.1002/jcp.31091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 08/13/2023]
Abstract
The periodontal ligament is a crucial tissue that provides support to the periodontium. Situated between the alveolar bone and the tooth root, it consists primarily of fibroblasts, cementoblasts, osteoblasts, osteoclasts, periodontal ligament stem cells (PDLSCs), and epithelial cell rests of Malassez. Fibroblasts, cementoblasts, osteoblasts, and osteoclasts are functionally differentiated cells, whereas PDLSCs are undifferentiated mesenchymal stem cells. The dynamic development of these cells is intricately linked to periodontal changes and homeostasis. Notably, the regulation of programmed cell death facilitates the clearance of necrotic tissue and plays a pivotal role in immune response. However, it also potentially contributes to the loss of periodontal supporting tissues and root resorption. These findings have significant implications for understanding the occurrence and progression of periodontitis, as well as the mechanisms underlying orthodontic root resorption. Further, the regulation of periodontal ligament cell (PDLC) death is influenced by both systemic and local factors. This comprehensive review focuses on recent studies reporting the mechanisms of PDLC death and related factors.
Collapse
Affiliation(s)
- Wei He
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yu Fu
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Song Yao
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lan Huang
- Department of Orthodontics, College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
11
|
Peng L, Wu F, Cao M, Li M, Cui J, Liu L, Zhao Y, Yang J. Effects of different physical factors on osteogenic differentiation. Biochimie 2023; 207:62-74. [PMID: 36336107 DOI: 10.1016/j.biochi.2022.10.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/11/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
Osteoblasts are essential for bone formation and can perceive external mechanical stimuli, which are translated into biochemical responses that ultimately alter cell phenotypes and respond to environmental stimuli, described as mechanical transduction. These cells actively participate in osteogenesis and the formation and mineralisation of the extracellular bone matrix. This review summarises the basic physiological and biological mechanisms of five different physical stimuli, i.e. light, electricity, magnetism, force and sound, to induce osteogenesis; further, it summarises the effects of changing culture conditions on the morphology, structure and function of osteoblasts. These findings may provide a theoretical basis for further studies on bone physiology and pathology at the cytological level and will be useful in the clinical application of bone formation and bone regeneration technology.
Collapse
Affiliation(s)
- Li Peng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Fanzi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Mengjiao Cao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Mengxin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Jingyao Cui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Lijia Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Cariology and Endodontics West China Hospital of Stomatology, Sichuan University, China.
| |
Collapse
|
12
|
Alghamdi B, Jeon HH, Ni J, Qiu D, Liu A, Hong JJ, Ali M, Wang A, Troka M, Graves DT. Osteoimmunology in Periodontitis and Orthodontic Tooth Movement. Curr Osteoporos Rep 2023; 21:128-146. [PMID: 36862360 PMCID: PMC10696608 DOI: 10.1007/s11914-023-00774-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 03/03/2023]
Abstract
PURPOSE OF REVIEW To review the role of the immune cells and their interaction with cells found in gingiva, periodontal ligament, and bone that leads to net bone loss in periodontitis or bone remodeling in orthodontic tooth movement. RECENT FINDINGS Periodontal disease is one of the most common oral diseases causing inflammation in the soft and hard tissues of the periodontium and is initiated by bacteria that induce a host response. Although the innate and adaptive immune response function cooperatively to prevent bacterial dissemination, they also play a major role in gingival inflammation and destruction of the connective tissue, periodontal ligament, and alveolar bone characteristic of periodontitis. The inflammatory response is triggered by bacteria or their products that bind to pattern recognition receptors that induce transcription factor activity to stimulate cytokine and chemokine expression. Epithelial, fibroblast/stromal, and resident leukocytes play a key role in initiating the host response and contribute to periodontal disease. Single-cell RNA-seq (scRNA-seq) experiments have added new insight into the roles of various cell types in the response to bacterial challenge. This response is modified by systemic conditions such as diabetes and smoking. In contrast to periodontitis, orthodontic tooth movement (OTM) is a sterile inflammatory response induced by mechanical force. Orthodontic force application stimulates acute inflammatory responses in the periodontal ligament and alveolar bone stimulated by cytokines and chemokines that produce bone resorption on the compression side. On the tension side, orthodontic forces induce the production of osteogenic factors, stimulating new bone formation. A number of different cell types, cytokines, and signaling/pathways are involved in this complex process. Inflammatory and mechanical force-induced bone remodeling involves bone resorption and bone formation. The interaction of leukocytes with host stromal cells and osteoblastic cells plays a key role in both initiating the inflammatory events as well as inducing a cellular cascade that results in remodeling in orthodontic tooth movement or in tissue destruction in periodontitis.
Collapse
Affiliation(s)
- Bushra Alghamdi
- Department of Endodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
- Department of Restorative Dental Sciences, College of Dentistry, Taibah University, Medina, 42353, Kingdom of Saudi Arabia
| | - Hyeran Helen Jeon
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jia Ni
- Department of Periodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Dongxu Qiu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssia Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Julie J Hong
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Mamoon Ali
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Albert Wang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Michael Troka
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, PA, 19104, Philadelphia, USA.
| |
Collapse
|
13
|
Döding A, Hüfner M, Nachtsheim F, Iffarth V, Bölter A, Bastian A, Symmank J, Andreas N, Schädel P, Thürmer M, Becker K, Wolf M, Jacobs C, Kamradt T, Koeberle A, Werz O, Sigusch B, Schulze-Späte U. Mediterranean diet component oleic acid increases protective lipid mediators and improves trabecular bone in a Porphyromonas gingivalis inoculation model. J Clin Periodontol 2023; 50:380-395. [PMID: 36384158 DOI: 10.1111/jcpe.13751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
AIM Therapeutic modulation of bacterial-induced inflammatory host response is being investigated in gingival inflammation and periodontal disease pathology. Therefore, dietary intake of the monounsaturated fatty acid (FA) oleic acid (OA (C18:1)), which is the main component of Mediterranean-style diets, and saturated FA palmitic acid (PA (C16:0)), which is a component of Western-style diets, was investigated for their modifying potential in an oral inoculation model of Porphyromonas gingivalis. MATERIALS AND METHODS Normal-weight C57BL/6-mice received OA- or PA-enriched diets (PA-ED, OA-ED, PA/OA-ED) or normal standard diet for 16 weeks and were inoculated with P. gingivalis/placebo (n = 12/group). Gingival inflammation, alveolar bone structure, circulating lipid mediators, and in vitro cellular response were determined. RESULTS FA treatment of P. gingivalis-lipopolysaccharide-incubated gingival fibroblasts (GFbs) modified inflammatory activation, which only PA exacerbated with concomitant TNF-α stimulation. Mice exhibited no signs of acute inflammation in gingiva or serum and no inoculation- or nutrition-associated changes of the crestal alveolar bone. However, following P. gingivalis inoculation, OA-ED improved oral trabecular bone micro-architecture and enhanced circulating pro-resolving mediators resolvin D4 (RvD4) and 4-hydroxydocosahexaenoic acid (4-HDHA), whereas PA-ED did not. In vitro experiments demonstrated significantly improved differentiation in RvD4- and 4-HDHA-treated primary osteoblast cultures and reduced the expression of osteoclastogenic factors in GF. Further, P. gingivalis infection of OA-ED animals led to a serum composition that suppressed osteoclastic differentiation in vitro. CONCLUSIONS Our results underline the preventive impact of Mediterranean-style OA-EDs by indicating their pro-resolving nature beyond anti-inflammatory properties.
Collapse
Affiliation(s)
- Annika Döding
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Mira Hüfner
- Department of Orthodontics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Franziska Nachtsheim
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Viktoria Iffarth
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Anna Bölter
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Asisa Bastian
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - Judit Symmank
- Department of Orthodontics, University Hospital Jena, Jena, Germany
| | | | - Patrick Schädel
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Maria Thürmer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Kathrin Becker
- Department of Orthodontics, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Michael Wolf
- Department of Orthodontics, University Hospital RWTH Aachen, Aachen, Germany
| | - Collin Jacobs
- Department of Orthodontics, University Hospital Jena, Jena, Germany
| | | | - Andreas Koeberle
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany.,Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Oliver Werz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich-Schiller-University Jena, Jena, Germany
| | - Bernd Sigusch
- Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| | - Ulrike Schulze-Späte
- Section of Geriodontics, Department of Conservative Dentistry and Periodontology, Center of Dental Medicine, University Hospital Jena, Jena, Germany
| |
Collapse
|
14
|
Onal S, Alkaisi MM, Nock V. Microdevice-based mechanical compression on living cells. iScience 2022; 25:105518. [PMID: 36444299 PMCID: PMC9699986 DOI: 10.1016/j.isci.2022.105518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Compressive stress enables the investigation of a range of cellular processes in which forces play an important role, such as cell growth, differentiation, migration, and invasion. Such solid stress can be introduced externally to study cell response and to mechanically induce changes in cell morphology and behavior by static or dynamic compression. Microfluidics is a useful tool for this, allowing one to mimic in vivo microenvironments in on-chip culture systems where force application can be controlled spatially and temporally. Here, we review the mechanical compression applications on cells with a broad focus on studies using microtechnologies and microdevices to apply cell compression, in comparison to off-chip bulk systems. Due to their unique features, microfluidic systems developed to apply compressive forces on single cells, in 2D and 3D culture models, and compression in cancer microenvironments are emphasized. Research efforts in this field can help the development of mechanoceuticals in the future.
Collapse
Affiliation(s)
- Sevgi Onal
- Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Maan M. Alkaisi
- Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
| | - Volker Nock
- Electrical and Computer Engineering, University of Canterbury, Christchurch 8041, New Zealand
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
15
|
Roato I, Masante B, Putame G, Massai D, Mussano F. Challenges of Periodontal Tissue Engineering: Increasing Biomimicry through 3D Printing and Controlled Dynamic Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213878. [PMID: 36364654 PMCID: PMC9655809 DOI: 10.3390/nano12213878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 05/14/2023]
Abstract
In recent years, tissue engineering studies have proposed several approaches to regenerate periodontium based on the use of three-dimensional (3D) tissue scaffolds alone or in association with periodontal ligament stem cells (PDLSCs). The rapid evolution of bioprinting has sped up classic regenerative medicine, making the fabrication of multilayered scaffolds-which are essential in targeting the periodontal ligament (PDL)-conceivable. Physiological mechanical loading is fundamental to generate this complex anatomical structure ex vivo. Indeed, loading induces the correct orientation of the fibers forming the PDL and maintains tissue homeostasis, whereas overloading or a failure to adapt to mechanical load can be at least in part responsible for a wrong tissue regeneration using PDLSCs. This review provides a brief overview of the most recent achievements in periodontal tissue engineering, with a particular focus on the use of PDLSCs, which are the best choice for regenerating PDL as well as alveolar bone and cementum. Different scaffolds associated with various manufacturing methods and data derived from the application of different mechanical loading protocols have been analyzed, demonstrating that periodontal tissue engineering represents a proof of concept with high potential for innovative therapies in the near future.
Collapse
Affiliation(s)
- Ilaria Roato
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-3528
| | - Beatrice Masante
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- PolitoBIOMed Lab and Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 10129 Turin, Italy
| | - Giovanni Putame
- PolitoBIOMed Lab and Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 10129 Turin, Italy
| | - Diana Massai
- PolitoBIOMed Lab and Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 10129 Turin, Italy
| | - Federico Mussano
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
16
|
M1 Polarized Macrophages Persist in Skin of Post-Bariatric Patients after 2 Years. Aesthetic Plast Surg 2022; 46:287-296. [PMID: 34750657 DOI: 10.1007/s00266-021-02649-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/23/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Obesity is considered a condition of systemic chronic inflammation. Under this condition, adipose tissue macrophages switch from an M2 (anti-inflammatory) activation pattern to an M1 (proinflammatory) activation pattern. OBJECTIVE The study aimed to verify the profile of skin macrophage activation after bariatric surgery as well as the role of MMP-1 in extracellular tissue remodeling. METHODS This is a prospective, controlled and comparative study with 20 individuals split into two groups according to their skin condition: post-bariatric and eutrophic patients. Histological and morphometric analyses based on hematoxylin-eosin, picrosirius red (collagen), orcein (elastic fiber systems), and alcian blue (mast cells)-stained sections and immunohistochemical analysis (CD68, iNOS, and mannose receptor) for macrophages and metalloproteinase-1 were performed. RESULTS Post-bariatric skin showed an increase in inflammation, angiogenesis, CD68, M1 macrophages (P< 0.001), and mast cells (P< 0.01); a decrease in M2 macrophages (P< 0.01); and a significant decrease in the collagen fiber network (P< 0.001). MMP-1 was increased in the papillary dermis of post-bariatric skin and decreased in the epidermis compared to eutrophic skin (P< 0.05). CONCLUSION This study shows that post-bariatric skin maintains inflammatory characteristics for two years. Mast cells and M1 macrophages maintain and enhance the remodeling of the dermal extracellular matrix initiated during obesity in part due to the presence of MMP-1 in the papillary dermis. EBM LEVEL IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
17
|
Hsu LF, Chang BE, Tseng KJ, Liao CC, Tsai SC, Hsiao HY, Lin SC, Liao PW, Chen YJ, Jane Yao CC. Orthodontic force regulates metalloproteinase-3 promoter in osteoblasts and transgenic mouse models. J Dent Sci 2022; 17:331-337. [PMID: 35028055 PMCID: PMC8740386 DOI: 10.1016/j.jds.2021.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/20/2021] [Indexed: 11/25/2022] Open
Abstract
Background/purpose Previously we demonstrated up-regulation of matrix metalloproteinase-3 (MMP-3) in human osteoblasts under compression and in bony specimens of experimental orthodontic tooth movement (OTM). Here, we studied the temporal characteristics of compression stimulation in human and mouse osteoblast cell lines, and generated a transgenic mouse model for assessing the MMP-3 expression during OTM. Materials and methods We investigated MMP-3 expressions in human and murine osteoblasts through RT-PCR and luciferase assay, after compressive force loading. Inhibitors were added to identify the possible mechanisms for signal transduction. A human MMP-3 promoter was isolated, cloned and transfected to generate a transgenic mouse with a green fluorescent protein reporter. OTM was then initiated to observe the location and time course of transcriptional regulation of MMP-3 signals. Results We found changes in the transcription of MMP-3 in response to mechanical force applied to both human and mouse osteoblast cell lines, suggesting that the response is positive across species. Cloned human MMP-3 promoter may cause the response of luciferase to 1% compression. Moreover, p38 inhibitor exerted a down-regulatory effect on MMP-3 promoter expression, although the inhibitory effect didn't reach a significant level. In the transgenic mouse OTM model, we again found increased expression of MMP-3 in response to mechanical force loading around the periodontal ligament. Conclusion Mechanical force can stimulate MMP-3 expression, possibly through the p38 MAPK pathway, with its strongest signal occurring at 24 h. The mechanical responsiveness in MMP-3 promoter regions can be observed in both humans and rodents in vitro and in vivo.
Collapse
Affiliation(s)
- Li-Fang Hsu
- Department of Dentistry, National Taiwan University Hospital, Hsin-Chu Branch, Hsin-Chu, Taiwan.,Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Bei-En Chang
- Graduate Institute of Oral Biology, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-Jung Tseng
- Graduate Institute of Oral Biology, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Ching Liao
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Shu-Chun Tsai
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Hsuan-Yi Hsiao
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Sheng-Chin Lin
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Pei-Wen Liao
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan
| | - Yi-Jane Chen
- School of Dentistry, National Taiwan University, Taipei, Taiwan.,Division of Orthodontics and Dentofacial Orthopedics, Dental Department, National Taiwan University Hospital, Taipei, Taiwan
| | - Chung-Chen Jane Yao
- Graduate Institute of Clinical Dentistry, School of Dentistry, National Taiwan University, Taipei, Taiwan.,Division of Orthodontics and Dentofacial Orthopedics, Dental Department, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
18
|
Behm C, Nemec M, Weissinger F, Rausch MA, Andrukhov O, Jonke E. MMPs and TIMPs Expression Levels in the Periodontal Ligament during Orthodontic Tooth Movement: A Systematic Review of In Vitro and In Vivo Studies. Int J Mol Sci 2021; 22:6967. [PMID: 34203475 PMCID: PMC8268288 DOI: 10.3390/ijms22136967] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022] Open
Abstract
Background: During orthodontic tooth movement (OTM), applied orthodontic forces cause an extensive remodeling of the extracellular matrix (ECM) in the periodontal ligament (PDL). This is mainly orchestrated by different types of matrix metalloproteinases (MMPs) and their tissue inhibitors of matrix metalloproteinases (TIMPs), which are both secreted by periodontal ligament (PDL) fibroblasts. Multiple in vitro and in vivo studies already investigated the influence of applied orthodontic forces on the expression of MMPs and TIMPs. The aim of this systematic review was to explore the expression levels of MMPs and TIMPs during OTM and the influence of specific orthodontic force-related parameters. Methods: Electronic article search was performed on PubMed and Web of Science until 31 January 2021. Screenings of titles, abstracts and full texts were performed according to PRISMA, whereas eligibility criteria were defined for in vitro and in vivo studies, respectively, according to the PICO schema. Risk of bias assessment for in vitro studies was verified by specific methodological and reporting criteria. For in vivo studies, risk of bias assessment was adapted from the Joanna Briggs Institute Critical Appraisal Checklist for analytical cross-sectional study. Results: Electronic article search identified 3266 records, from which 28 in vitro and 12 in vivo studies were included. The studies showed that orthodontic forces mainly caused increased MMPs and TIMPs expression levels, whereas the exact effect may depend on various intervention and sample parameters and subject characteristics. Conclusion: This systematic review revealed that orthodontic forces induce a significant effect on MMPs and TIMPs in the PDL. This connection may contribute to the controlled depletion and formation of the PDLs' ECM at the compression and tension site, respectively, and finally to the highly regulated OTM.
Collapse
Affiliation(s)
- Christian Behm
- Clinical Division of Orthodontics, University Clinic of Dentistry, Sensengasse 2A, 1090 Vienna, Austria; (C.B.); (M.N.); (M.A.R.); (E.J.)
- Competence Centre for Periodontal Research, University Clinic of Dentistry, Sensengasse 2A, 1090 Vienna, Austria;
| | - Michael Nemec
- Clinical Division of Orthodontics, University Clinic of Dentistry, Sensengasse 2A, 1090 Vienna, Austria; (C.B.); (M.N.); (M.A.R.); (E.J.)
| | - Fabian Weissinger
- Competence Centre for Periodontal Research, University Clinic of Dentistry, Sensengasse 2A, 1090 Vienna, Austria;
| | - Marco Aoqi Rausch
- Clinical Division of Orthodontics, University Clinic of Dentistry, Sensengasse 2A, 1090 Vienna, Austria; (C.B.); (M.N.); (M.A.R.); (E.J.)
- Competence Centre for Periodontal Research, University Clinic of Dentistry, Sensengasse 2A, 1090 Vienna, Austria;
| | - Oleh Andrukhov
- Competence Centre for Periodontal Research, University Clinic of Dentistry, Sensengasse 2A, 1090 Vienna, Austria;
| | - Erwin Jonke
- Clinical Division of Orthodontics, University Clinic of Dentistry, Sensengasse 2A, 1090 Vienna, Austria; (C.B.); (M.N.); (M.A.R.); (E.J.)
| |
Collapse
|
19
|
Impact of Leptin on Periodontal Ligament Fibroblasts during Mechanical Strain. Int J Mol Sci 2021; 22:ijms22136847. [PMID: 34202165 PMCID: PMC8268745 DOI: 10.3390/ijms22136847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 01/20/2023] Open
Abstract
Orthodontic treatment to correct dental malocclusions leads to the formation of pressure zones in the periodontal ligament resulting in a sterile inflammatory reaction, which is mediated by periodontal ligament fibroblasts (PDLF). Leptin levels are elevated in obesity and chronic inflammatory responses. In view of the increasing number of orthodontic patients with these conditions, insights into effects on orthodontic treatment are of distinct clinical relevance. A possible influence of leptin on the expression profile of PDLF during simulated orthodontic mechanical strain, however, has not yet been investigated. In this study, PDLF were exposed to mechanical strain with or without different leptin concentrations. The gene and protein expression of proinflammatory and bone-remodelling factors were analysed with RT-qPCR, Western-blot and ELISA. The functional analysis of PDLF-induced osteoclastogenesis was analysed by TRAP (tartrate-resistant acid phosphatase) staining in coculture with human macrophages. Pressure-induced increase of proinflammatory factors was additionally elevated with leptin treatment. PDLF significantly increased RANKL (receptor activator of NF-kB ligand) expression after compression, while osteoprotegerin was downregulated. An additional leptin effect was demonstrated for RANKL as well as for subsequent osteoclastogenesis in coculture after TRAP staining. Our results suggest that increased leptin concentrations, as present in obese patients, may influence orthodontic tooth movement. In particular, the increased expression of proinflammatory factors and RANKL as well as increased osteoclastogenesis can be assumed to accelerate bone resorption and thus the velocity of orthodontic tooth movement in the orthodontic treatment of obese patients.
Collapse
|
20
|
Yu H, Zhong H, Li N, Chen K, Chen J, Sun J, Xu L, Wang J, Zhang M, Liu X, Deng L, Huang P, Huang S, Shen X, Zhong Y. Osteopontin activates retinal microglia causing retinal ganglion cells loss via p38 MAPK signaling pathway in glaucoma. FASEB J 2021; 35:e21405. [PMID: 33559950 DOI: 10.1096/fj.202002218r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/30/2020] [Accepted: 01/15/2021] [Indexed: 02/07/2023]
Abstract
Microglia activation and release of pro-inflammatory cytokines have been closely linked to glaucoma. However, the mechanisms that initiate these pathways remain unclear. Here, we investigated the role of a pro-inflammatory cytokine--osteopontin (OPN), in retinal microglia activation process along with the underlying mechanisms in glaucoma. A rat chronic ocular hypertension (COH) model was established presenting an increase in retinal OPN level and activation of microglia. Primary microglia cells were isolated and cultured under a pressure culture system showing heightened expressions of microglia-derived OPN with changes in inflammatory factors (TNF-α, IL-1β, and IL-6). OPN and OPN neutralizing antibody (Anti-OPN) interventions were both applied systems for comparison, and cross-referenced with OPN knockdown in vitro. JAK/STAT, NF-κB, ERK1/2, and p38 MAPK, recognized as the primary signaling pathways related to microglia activation, were then screened on whether they can facilitate OPN to act on microglia and their impact on specific inhibitors. Thereafter, retrograde labeling of retinal ganglion cells (RGCs) and flash visual evoked potentials (F-VEP) were used to investigate neuron protection in context of each blockade. Results suggest that OPN is able to enhance the proliferation and activation of retinal microglia in experimental glaucoma which may play a role in the glaucomatous optic neuropathy, and contribute to the eventual RGCs loss and vision function impairment. Such effect may be mediated through the regulation of p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Huan Yu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Huimin Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Na Li
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Kaizhe Chen
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Junjue Chen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Jun Sun
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Lili Xu
- Department of Emergency, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Jing Wang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Mingui Zhang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Xiaohong Liu
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Lianfu Deng
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Ping Huang
- Shanghai Key Laboratory for Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Shouyue Huang
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Xi Shen
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
| | - Yisheng Zhong
- Department of Ophthalmology, Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Shanghai, China
- Department of Ophthalmology, Zhoushan Branch of Ruijin Hospital Affiliated Medical School, Shanghai Jiaotong University, Zhoushan, China
| |
Collapse
|
21
|
Behm C, Nemec M, Blufstein A, Schubert M, Rausch-Fan X, Andrukhov O, Jonke E. Interleukin-1β Induced Matrix Metalloproteinase Expression in Human Periodontal Ligament-Derived Mesenchymal Stromal Cells under In Vitro Simulated Static Orthodontic Forces. Int J Mol Sci 2021; 22:1027. [PMID: 33498591 PMCID: PMC7864333 DOI: 10.3390/ijms22031027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022] Open
Abstract
The periodontal ligament (PDL) responds to applied orthodontic forces by extracellular matrix (ECM) remodeling, in which human periodontal ligament-derived mesenchymal stromal cells (hPDL-MSCs) are largely involved by producing matrix metalloproteinases (MMPs) and their local inhibitors (TIMPs). Apart from orthodontic forces, the synthesis of MMPs and TIMPs is influenced by the aseptic inflammation occurring during orthodontic treatment. Interleukin (IL)-1β is one of the most abundant inflammatory mediators in this process and crucially affects the expression of MMPs and TIMPs in the presence of cyclic low-magnitude orthodontic tensile forces. In this study we aimed to investigate, for the first time, how IL-1β induced expression of MMPs, TIMPs and how IL-1β in hPDL-MSCs was changed after applying in vitro low-magnitude orthodontic tensile strains in a static application mode. Hence, primary hPDL-MSCs were stimulated with IL-1β in combination with static tensile strains (STS) with 6% elongation. After 6- and 24 h, MMP-1, MMP-2, TIMP-1 and IL-1β expression levels were measured. STS alone had no influence on the basal expression of investigated target genes, whereas IL-1β caused increased expression of these genes. In combination, they increased the gene and protein expression of MMP-1 and the gene expression of MMP-2 after 24 h. After 6 h, STS reduced IL-1β-induced MMP-1 synthesis and MMP-2 gene expression. IL-1β-induced TIMP-1 gene expression was decreased by STS after 6- and 24-h. At both time points, the IL-1β-induced gene expression of IL-1β was increased. Additionally, this study showed that fetal bovine serum (FBS) caused an overall suppression of IL-1β-induced expression of MMP-1, MMP-2 and TIMP-1. Further, it caused lower or opposite effects of STS on IL-1β-induced expression. These observations suggest that low-magnitude orthodontic tensile strains may favor a more inflammatory and destructive response of hPDL-MSCs when using a static application form and that this response is highly influenced by the presence of FBS in vitro.
Collapse
Affiliation(s)
- Christian Behm
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (M.N.); (E.J.)
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (M.S.)
| | - Michael Nemec
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (M.N.); (E.J.)
| | - Alice Blufstein
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (M.S.)
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Maria Schubert
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (M.S.)
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria;
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (A.B.); (M.S.)
| | - Erwin Jonke
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, 1090 Vienna, Austria; (C.B.); (M.N.); (E.J.)
| |
Collapse
|
22
|
Azraq I, Craveiro RB, Niederau C, Brockhaus J, Bastian A, Knaup I, Neuss S, Wolf M. Gene expression and phosphorylation of ERK and AKT are regulated depending on mechanical force and cell confluence in murine cementoblasts. Ann Anat 2021; 234:151668. [PMID: 33400981 DOI: 10.1016/j.aanat.2020.151668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 01/26/2023]
Abstract
Cementoblasts, located on the tooth root surface covered with cementum, are considered to have tooth protecting abilities. They prevent tissue damage and secure teeth anchorage inside the periodontal ligament during mechanical stress. However, the involvement of cementoblasts in mechanical compression induced periodontal remodeling needs to be identified and better understood. Here, we investigated the effect of static compressive stimulation, simulating the compression side of orthodontic force and cell confluence on a murine cementoblast cell line (OC/CM). The influence of cell confluence in cementoblast cells was analyzed by MTS assay and immunostaining. Furthermore, mRNA and protein expression were investigated by real-time RT-PCR and western blotting at different confluence grades and after mechanical stimulation. We observed that cementoblast cell proliferation increases with increasing confluence grades, while cell viability decreases in parallel. Gene expression of remodeling markers is regulated by compressive force. In addition, cementoblast confluence plays a crucial role in this regulation. Confluent cementoblasts show a significantly higher basal expression of Bsp, Osterix, Alpl, Vegfa, Mmp9, Tlr2 and Tlr4 compared to sub-confluent cells. After compressive force of 48 h at 60% confluence, an upregulation of Bsp, Osterix, Alpl, Vegf and Mmp9 is observed. In contrast, at high confluence, all analyzed genes were downregulated through mechanical stress. We also proved a regulation of ERK, phospho-ERK and phospho-AKT dependent on compressive force. In summary, our findings provide evidence that cementoblast physiology and metabolism is highly regulated in a cell confluence-dependent manner and by mechanical stimulation.
Collapse
Affiliation(s)
- Irma Azraq
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Rogerio B Craveiro
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany.
| | - Christian Niederau
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Julia Brockhaus
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Asisa Bastian
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Isabel Knaup
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| | - Sabine Neuss
- Helmholtz Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Aachen, Germany; Institute of Pathology, RWTH Aachen University, Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, University of Aachen, Germany
| |
Collapse
|
23
|
Proff P, Schröder A, Seyler L, Wolf F, Korkmaz Y, Bäuerle T, Gölz L, Kirschneck C. Local Vascularization during Orthodontic Tooth Movement in a Split Mouth Rat Model-A MRI Study. Biomedicines 2020; 8:biomedicines8120632. [PMID: 33352746 PMCID: PMC7766506 DOI: 10.3390/biomedicines8120632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/27/2022] Open
Abstract
Orthodontic tooth movement to therapeutically align malpositioned teeth is supposed to impact blood flow in the surrounding tissues. Here, we evaluated actual vascularization in the tension area of the periodontal ligament during experimental tooth movement in rats (N = 8) with magnetic resonance imaging (MRI). We inserted an elastic band between the left upper first and the second rat molar; the right side was not treated and served as control. After four days of tooth movement, we recorded T1-weighted morphologic and dynamic-contrast-enhanced MRI sequences with an animal-specific 7 Tesla MRI to assess of local vascularization. Furthermore, we quantified osteoclasts and monocytes in the periodontal ligament, which are crucial for orthodontic tooth movement, root resorptions as undesirable side effects, as well as the extent of tooth movement using paraffine histology and micro-CT analysis. Data were tested for normal distribution with Shapiro–Wilk tests followed by either a two-tailed paired t-test or a Wilcoxon matched-pairs signed rank test. Significant orthodontic tooth movement was induced within the four days of treatment, as evidenced by increased osteoclast and monocyte activity in the periodontal ligament as well as by µCT analysis. Contrast enhancement was increased at the orthodontically-treated side distally of the moved upper first left molar, indicating increased vascularization at the tension side of the periodontal ligament. Accordingly, we detected reduced time-to-peak and washout rates. Our study using MRI to directly assess local vascularization thus seems to confirm the hypothesis that perfusion is enhanced in tension zones of the periodontal ligament during orthodontic tooth movement.
Collapse
Affiliation(s)
- Peter Proff
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (A.S.); (F.W.); (C.K.)
- Correspondence: ; Tel.: +49-941-944-6093
| | - Agnes Schröder
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (A.S.); (F.W.); (C.K.)
| | - Lisa Seyler
- Department of Radiology, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.S.); (T.B.)
| | - Franziska Wolf
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (A.S.); (F.W.); (C.K.)
| | - Yüksel Korkmaz
- Department of Periodontology and Operative Dentistry, University of Mainz, 55131 Mainz, Germany;
| | - Tobias Bäuerle
- Department of Radiology, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany; (L.S.); (T.B.)
| | - Lina Gölz
- Department of Orthodontics, University Clinic, Friedrich-Alexander-University Erlangen-Nuremberg, 91054 Erlangen, Germany;
| | - Christian Kirschneck
- Department of Orthodontics, University Hospital Regensburg, 93053 Regensburg, Germany; (A.S.); (F.W.); (C.K.)
| |
Collapse
|
24
|
Nazet U, Schröder A, Spanier G, Wolf M, Proff P, Kirschneck C. Simplified method for applying static isotropic tensile strain in cell culture experiments with identification of valid RT-qPCR reference genes for PDL fibroblasts. Eur J Orthod 2020; 42:359-370. [PMID: 31352484 DOI: 10.1093/ejo/cjz052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND/OBJECTIVE Periodontal ligament fibroblasts (PDLF) play an important mediating role in orthodontic tooth movement expressing various cytokines, when exposed to compressive or tensile strain. Here, we present a simplified and easy-to-handle, but reliable and valid method for simulating static isotropic tensile strain in vitro using spherical silicone cap stamps. Furthermore, we identify appropriate reference genes for data normalization in real-time quantitative polymerase chain reaction (RT-qPCR) experiments on PDLF subjected to tensile strain. MATERIALS AND METHODS PDLF were cultivated on flexible bioflex membranes and exposed to static isotropic tensile strain of different magnitudes and timeframes. We determined cell number, cytotoxicity, and relative expression of proinflammatory genes cyclooxygenase-2 (COX-2) and interleukin-6 (IL-6). For normalization of RT-qPCR data, we tested the stability and validity of nine candidate reference genes with four mathematical algorithms (geNorm, NormFinder, comparative ΔCq, and BestKeeper) and ranked them based on their calculated expression stability. RESULTS We observed no decrease in cell number or cytotoxic effect at any of the applied magnitudes and timeframes of tensile strain. At 16 per cent and 35 per cent tensile strain for 48 hours, we detected a significant increase in COX-2 and decrease in IL-6 gene expression. Highest stability was found for TBP (TATA-box-binding protein) and PPIB (peptidylprolyl isomerase A) in reference gene validation. According to the geNorm algorithm, both genes in conjunction are sufficient for normalization. In contrast to all other candidate genes tested, gene expression normalization of target gene COX-2 to reference genes EEF1A1, RPL22, and RNA18S5 indicated no significant upregulation of COX-2 expression. CONCLUSIONS A strain magnitude of 16 per cent for 48 hours elicited the most distinct cellular response by PDLF subjected to static tensile isotropic strain by the presented method. TBP and PPIB in conjunction proved to be the most appropriate reference genes to normalize target gene expression in RT-qPCR studies on PDLF subjected to tensile strain.
Collapse
Affiliation(s)
- Ute Nazet
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | - Gerrit Spanier
- Department of Maxillo-Facial Surgery, University Medical Centre of Regensburg, Germany
| | - Michael Wolf
- Department of Orthodontics, RWTH Aachen, Germany
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Germany
| | | |
Collapse
|
25
|
Li T, Yan Z, He S, Zhou C, Wang H, Yin X, Zou S, Duan P. Intermittent parathyroid hormone improves orthodontic retention via insulin-like growth factor-1. Oral Dis 2020; 27:290-300. [PMID: 32608117 DOI: 10.1111/odi.13519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/06/2020] [Accepted: 06/18/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVES This study aimed to investigate the effects of intermittent parathyroid hormone (iPTH) on the stability of orthodontic retention and to explore the possible regulatory role of insulin-like growth factor-1 (IGF-1) in this process. METHODS Forty-eight 6-week-old male Wistar rats were adopted in this study. An orthodontic relapsing model was established to investigate the effects of iPTH on orthodontic retention. In vitro, an immortalized mouse cementoblast cell line OCCM-30 was detected by flow cytometry to study the effects of iPTH on cell proliferation and apoptosis. By application of a specific IGF-1 receptor inhibitor, the role of IGF-1 was also explored. RESULTS In vivo study found that daily injection of PTH significantly reduced the relapsing distance. Histological staining and ELISA assay showed faster periodontal regeneration during retention period in PTH group with increased RANKL/OPG ratio and greater amount of OCN, ALP, and IGF-1 in gingival cervical fluid (GCF). Cell experiment revealed that iPTH promoted proliferation and suppressed apoptosis of cementoblast. IGF-1 receptor inhibitor significantly restrained the anabolic effect of iPTH on OCCM-30 cells. CONCLUSIONS These findings suggest that iPTH could improve the stability of tooth movement by promoting periodontal regeneration. IGF-1 is essential in mediating the anabolic effects of iPTH.
Collapse
Affiliation(s)
- Tiancheng Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ziqi Yan
- Department of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Shushu He
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Pediatric Dentistry, School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Han Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xing Yin
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peipei Duan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases &, Department of Orthodontics, West China School & Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Effects of sodium chloride on the gene expression profile of periodontal ligament fibroblasts during tensile strain. J Orofac Orthop 2020; 81:360-370. [PMID: 32632652 PMCID: PMC8494687 DOI: 10.1007/s00056-020-00232-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 12/19/2022]
Abstract
Purpose During orthodontic tooth movement, pressure and tension zones develop in the periodontal ligament, and periodontal ligament fibroblasts (PDLF) become exposed to mechanical strain. Enhanced salt (NaCl) concentrations are known to modulate responses of PDLF and immune cells to different stimuli like mechanical strain. Here, we investigated the impact of tensile strain on the gene expression profile of PDLF under normal (NS) and high salt (HS) conditions. Methods After preincubation under NS or HS (+40 mM NaCl in medium) conditions for 24 h, PDLF were stretched 16% for 48 h using custom-made spherical cap silicone stamps using an established and published setup. After determination of cell number and cytotoxicity, we analyzed expression of genes involved in extracellular matrix reorganization, angiogenesis, bone remodeling, and inflammation by quantitative real-time polymerase chain reaction (RT-qPCR). Results Tensile strain did not affect the expression of genes involved in angiogenesis or extracellular matrix reorganization by PDLF, which however modulate inflammatory responses and bone remodeling in reaction to 16% static tensile strain. Salt (NaCl) treatment triggered enhanced extracellular matrix formation, expression of cyclooxygenase 2 and bone metabolism in PDLF during tensile strain. Conclusions Salt (NaCl) consumption may influence orthodontic tooth movement and periodontal bone loss via modulation of extracellular matrix and bone metabolism. Excessive salt intake during orthodontic therapy may cause adverse effects regarding periodontal inflammation and bone resorption.
Collapse
|
27
|
YASHIMA Y, KAKU M, YAMAMOTO T, IZUMINO J, KAGAWA H, IKEDA K, SHIMOE S, TANIMOTO K. Effect of continuous compressive force on the expression of RANKL, OPG, and VEGF in osteocytes. Biomed Res 2020; 41:91-99. [DOI: 10.2220/biomedres.41.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yuka YASHIMA
- Department of Orthodontics, Applied Life Sciences, Hiroshima University Institute of Biomedical & Health Sciences
| | - Masato KAKU
- Department of Anatomy and Functional Restorations, Division of Oral Health Sciences, Hiroshima University Graduate School of Biomedical Sciences
| | - Taeko YAMAMOTO
- Department of Orthodontics, Applied Life Sciences, Hiroshima University Institute of Biomedical & Health Sciences
| | - Jin IZUMINO
- Department of Orthodontics, Applied Life Sciences, Hiroshima University Institute of Biomedical & Health Sciences
| | - Haruka KAGAWA
- Department of Orthodontics, Applied Life Sciences, Hiroshima University Institute of Biomedical & Health Sciences
| | - Kazutaka IKEDA
- Department of Orthodontics, Applied Life Sciences, Hiroshima University Institute of Biomedical & Health Sciences
| | - Saiji SHIMOE
- Department of Anatomy and Functional Restorations, Division of Oral Health Sciences, Hiroshima University Graduate School of Biomedical Sciences
| | - Kotaro TANIMOTO
- Department of Orthodontics, Applied Life Sciences, Hiroshima University Institute of Biomedical & Health Sciences
| |
Collapse
|
28
|
Wang L, You X, Lotinun S, Zhang L, Wu N, Zou W. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat Commun 2020; 11:282. [PMID: 31941964 PMCID: PMC6962448 DOI: 10.1038/s41467-019-14146-6] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/09/2019] [Indexed: 12/15/2022] Open
Abstract
Wolff’s law and the Utah Paradigm of skeletal physiology state that bone architecture adapts to mechanical loads. These models predict the existence of a mechanostat that links strain induced by mechanical forces to skeletal remodeling. However, how the mechanostat influences bone remodeling remains elusive. Here, we find that Piezo1 deficiency in osteoblastic cells leads to loss of bone mass and spontaneous fractures with increased bone resorption. Furthermore, Piezo1-deficient mice are resistant to further bone loss and bone resorption induced by hind limb unloading, demonstrating that PIEZO1 can affect osteoblast-osteoclast crosstalk in response to mechanical forces. At the mechanistic level, in response to mechanical loads, PIEZO1 in osteoblastic cells controls the YAP-dependent expression of type II and IX collagens. In turn, these collagen isoforms regulate osteoclast differentiation. Taken together, our data identify PIEZO1 as the major skeletal mechanosensor that tunes bone homeostasis. Mechanical forces induce bone remodeling, but how bone cells sense mechanical signaling is unclear. Here, the authors show that loss of the mechanotransduction channel Piezo1 in osteoblastic cells impairs osteoclast activity via YAP signaling and collagen expression, leading to reduced bone mass and spontaneous fractures.
Collapse
Affiliation(s)
- Lijun Wang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiuling You
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sutada Lotinun
- Department of Physiology and Skeletal Disorders Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Lingli Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Nan Wu
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China. .,Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
29
|
Genetic polymorphisms influence gene expression of human periodontal ligament fibroblasts in the early phases of orthodontic tooth movement. Odontology 2019; 108:493-502. [PMID: 31741103 DOI: 10.1007/s10266-019-00475-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 10/31/2019] [Indexed: 11/27/2022]
Abstract
Genetic polymorphisms could be involved in the individual rate of OTM (orthodontic tooth movement) corresponding to the clinical phenomenon of "slow movers" and "fast movers". This study evaluated, if genetic polymorphisms in RANK, RANKL, OPG, COX2 and IL6 are associated with the expression of RANKL, OPG, COX2 and IL6 by human periodontal ligament (hPDL) fibroblasts during OTM. Primary hPDL fibroblasts from periodontal connective tissue of teeth extracted from 57 human subjects for medical reasons were collected, isolated, cultivated and characterized. To simulate orthodontic forces in PDL pressure areas, a physiological compressive force of 2 g/cm2 was applied to the hPDL fibroblasts under cell culture conditions at 70% confluency for 48 h, using a glass disc. Thereafter we analysed relative expression of RANKL, OPG, COX2 and IL6 by RT-qPCR. We also performed genotyping analysis of seven genetic polymorphisms in RANK, RANKL, OPG, COX2 and IL6. Relative gene expression was compared among the genotypes. The genotype TT in polymorphism rs9594738 (RANKL) had a higher RANKL expression in the recessive model (p = 0.021; TT vs. CT + CC). For polymorphism rs9594738 (RANKL), in the recessive model, TT was associated with a higher RANKL/OPG expression ratio (p = 0.013; TT vs. CT + CC). In the dominant model, GG genotype in rs5275 (COX2) was associated with a lower gene expression of COX2 (p = 0.04; GG vs. AA + AG). Genetic polymorphisms in genes associated with OTM affect the relative force-induced upregulation of these genes in hPDL fibroblasts.
Collapse
|
30
|
Janjic Rankovic M, Docheva D, Wichelhaus A, Baumert U. Effect of static compressive force on in vitro cultured PDL fibroblasts: monitoring of viability and gene expression over 6 days. Clin Oral Investig 2019; 24:2497-2511. [PMID: 31728735 DOI: 10.1007/s00784-019-03113-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim was to investigate the impact of static compressive force (CF) application on human PDL-derived fibroblasts (HPDF) in vitro for up to 6 days on the expression of specific genes and to monitor cell growth and cell viability. MATERIALS AND METHODS CF of 2 g/cm2 was applied on HPDFs for 1-6 days. On each day, gene expression (cFOS, HB-GAM, COX2, IL6, TNFα, RUNX2, and P2RX2) and secretion (TNFα, PGE2) were determined by RT-qPCR and ELISA, respectively. Cell growth and cell viability were monitored daily. RESULTS In comparison with controls, significant upregulation of cFOS in compressed HPDFs was observed. HB-GAM showed no changes in expression, except on day 5 (P < 0.001). IL6 expression was significantly upregulated from day 2-5, reaching the maximum on day 3 (P < 0.001). TNFα expression was upregulated on all but day 2. COX2 showed upregulation, reaching the plateau from day 3 (P < 0.001) until day 4 (P < 0.001), and returning to the initial state till day 6. P2RX7 was downregulated on days 2 and 4 to 6 (P < 0.001). RUNX2 was downregulated on days 2 and 5 (both P < 0.001). Cells in both groups were proliferating, and no negative effect on cell viability was observed. CONCLUSION Results suggest high molecular activity up to 6 days, therefore introducing further need for in vitro studies with a longer duration that would explain other genes and metabolites involved in orthodontic tooth movement (OTM). CLINICAL RELEVANCE Extension of an established in vitro force application system for prolonged force application (6 days) simulating the initial phase of OTM.
Collapse
Affiliation(s)
- Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany.
| |
Collapse
|
31
|
The role of mechanotransduction versus hypoxia during simulated orthodontic compressive strain-an in vitro study of human periodontal ligament fibroblasts. Int J Oral Sci 2019; 11:33. [PMID: 31685804 PMCID: PMC6828658 DOI: 10.1038/s41368-019-0066-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/03/2019] [Accepted: 08/18/2019] [Indexed: 12/20/2022] Open
Abstract
During orthodontic tooth movement (OTM) mechanical forces trigger pseudo-inflammatory, osteoclastogenic and remodelling processes in the periodontal ligament (PDL) that are mediated by PDL fibroblasts via the expression of various signalling molecules. Thus far, it is unknown whether these processes are mainly induced by mechanical cellular deformation (mechanotransduction) or by concomitant hypoxic conditions via the compression of periodontal blood vessels. Human primary PDL fibroblasts were randomly seeded in conventional six-well cell culture plates with O2-impermeable polystyrene membranes and in special plates with gas-permeable membranes (Lumox®, Sarstedt), enabling the experimental separation of mechanotransducive and hypoxic effects that occur concomitantly during OTM. To simulate physiological orthodontic compressive forces, PDL fibroblasts were stimulated mechanically at 2 g·cm−2 for 48 h after 24 h of pre-incubation. We quantified the cell viability by MTT assay, gene expression by quantitative real-time polymerase chain reaction (RT-qPCR) and protein expression by western blot/enzyme-linked immunosorbent assays (ELISA). In addition, PDL-fibroblast-mediated osteoclastogenesis (TRAP+ cells) was measured in a 72-h coculture with RAW264.7 cells. The expression of HIF-1α, COX-2, PGE2, VEGF, COL1A2, collagen and ALPL, and the RANKL/OPG ratios at the mRNA/protein levels during PDL-fibroblast-mediated osteoclastogenesis were significantly elevated by mechanical loading irrespective of the oxygen supply, whereas hypoxic conditions had no significant additional effects. The cellular–molecular mediation of OTM by PDL fibroblasts via the expression of various signalling molecules is expected to be predominantly controlled by the application of force (mechanotransduction), whereas hypoxic effects seem to play only a minor role. In the context of OTM, the hypoxic marker HIF-1α does not appear to be primarily stabilized by a reduced O2 supply but is rather stabilised mechanically.
Collapse
|
32
|
Benjakul S, Jitpukdeebodintra S, Leethanakul C. Effects of low magnitude high frequency mechanical vibration combined with compressive force on human periodontal ligament cells in vitro. Eur J Orthod 2019; 40:356-363. [PMID: 29016746 DOI: 10.1093/ejo/cjx062] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objective Vibration can be used to accelerate tooth movement, though the exact mechanisms remain unclear. This study aimed to investigate the effects of low magnitude high frequency (LMHF) vibration combined with compressive force on periodontal ligament (PDL) cells in vitro. Materials and methods Human PDL cells were isolated from extracted premolar teeth of four individuals. To determine the optimal frequency for later used in combination with compressive force, three cycles of low-magnitude (0.3 g) vibrations at various frequencies (30, 60, or 90 Hz) were applied to PDL cells for 20 min every 24 h. To investigate the effects of vibration combined with compressive force, PDL cells were subjected to three cycles of optimal vibration frequency (V) or 1.5 g/cm2 compressive force for 48 h (C) or vibration combined with compressive force (VC). Cell viability was assessed using MTT assay. PGE2, soluble RANKL (sRANKL), and OPG production were quantified by ELISA. RANKL, OPG, and Runx2 expression were determined using real-time PCR. Results Cell viability was decreased in groups C and VC. PGE2 and RANKL, but not OPG, were increased in groups V, C, and VC, thus increasing the RANKL/OPG ratio. The highest level was observed in group VC. sRANKL was increased in groups V, C, and VC; however, no significant different between the experimental groups. Runx2 expression was reduced in groups C and VC. Conclusions Vibration increased PGE2, RANKL, and sRANKL, but not OPG and Runx2. Vibration had the additive effects on PGE2 and RANKL, but not sRANKL in compressed PDL cells.
Collapse
Affiliation(s)
- Sutiwa Benjakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suwanna Jitpukdeebodintra
- Department of Oral Biology, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Chidchanok Leethanakul
- Orthodontic Section, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
33
|
Wu Y, Zhuang J, Zhao D, Xu C. Interaction between caspase-3 and caspase-5 in the stretch-induced programmed cell death in the human periodontal ligament cells. J Cell Physiol 2019; 234:13571-13581. [PMID: 30604868 DOI: 10.1002/jcp.28035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Abstract
In our previous studies, programmed cell death (PCD) was induced in human periodontal ligament (PDL) cells, through activation of caspase-3 and upregulation of CASP5 gene (encoding caspase-5 protein), in response to mechanical stretch loading. The aim of this study is to explore the relationship between the inflammatory caspase, caspase-5, and the apoptotic executioner protein, caspase-3, in human PDL cells. Here, we found that cyclic stretching upregulated the activity and the protein expression level of caspase-3 and -5 and the addition of the caspase-3 inhibitor or caspase-5 inhibitor significantly inhibited the stretch-induced PCD. Meanwhile, the inhibition of caspase-5 inhibited the activation of caspase-3 and vice versa. The result of coimmunoprecipitation also demonstrated that the expression of caspase-3 was immunoprecipitated with caspase-5. Thus, our study revealed that the in vitro application of cyclic stretching induced PCD by activation of caspase-3 and -5 in human PDL cells, and these two caspases could interact with each other after mechanical stretch loading. The study may facilitate further studies on the mechanism of stretch-induced PCD and help us understand the force-related periodontal homeostasis and remodeling better.
Collapse
Affiliation(s)
- Yaqin Wu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Jiabao Zhuang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Dan Zhao
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center for Oral Diseases, Shanghai, China
| |
Collapse
|
34
|
Expression of biological mediators during orthodontic tooth movement: A systematic review. Arch Oral Biol 2018; 95:170-186. [PMID: 30130671 DOI: 10.1016/j.archoralbio.2018.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/09/2022]
Abstract
OBJECTIVES The aim of the present systematic review was to offer a timeline of the events taking place during orthodontic tooth movement(OTM). MATERIALS AND METHODS Electronic databases PubMed, Web of Science and EMBASE were searched up to November 2017. All studies describing the expression of signaling proteins in the periodontal ligament(PDL) of teeth subjected to OTM or describing the expression of signaling proteins in human cells of the periodontal structures subjected to static mechanical loading were considered eligible for inclusion for respectively the in-vivo or the in-vitro part. Risk of bias assessment was conducted according to the validated SYRCLE's RoB tool for animal studies and guideline for assessing quality of in-vitro studies for in-vitro studies. RESULTS We retrieved 7583 articles in the initial electronic search, from which 79 and 51 were finally analyzed. From the 139 protein investigated, only the inflammatory proteins interleukin(IL)-1β, cyclooxygenase(COX)-2 and prostaglandin(PG)-E2, osteoblast markers osteocalcin and runt-related transcription factor(RUNX)2, receptor activator of nuclear factor kappa-B ligand(RANKL) and osteoprotegerin(OPG) and extracellular signal-regulated kinases(ERK)1/2 are investigated in 10 or more studies. CONCLUSION The investigated proteins were presented in a theoretical model of OTM. We can conclude that the cell activation and differentiation and recruitment of osteoclasts is mediated by osteocytes, osteoblasts and PDL cells, but that the osteogenic differentiation is only seen in stem cell present in the PDL. In addition, the recently discovered Ephrin/Ephs seem to play an role parallel with the thoroughly investigated RANKL/OPG system in mediating bone resorption during OTM.
Collapse
|
35
|
Expression kinetics of human periodontal ligament fibroblasts in the early phases of orthodontic tooth movement. J Orofac Orthop 2018; 79:337-351. [PMID: 30019109 DOI: 10.1007/s00056-018-0145-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/13/2018] [Indexed: 11/27/2022]
Abstract
PURPOSE Human periodontal ligament (hPDL) fibroblasts play a crucial mediating role in orthodontic tooth movement (OTM). In this study, we investigated the expression kinetics of genes associated with OTM in its early phase to obtain better insight into the timing and regulation of molecular and cellular signalling and transformation processes occurring in compressive areas of the periodontal ligament during OTM. METHODS Adherent hPDL fibroblasts were stimulated with physiological orthodontic compressive forces of 2 g/cm2 for 24, 48, 72, and 96 h under cell culture conditions. At each time point, we quantified relative gene expression of genes involved in bone remodelling (ALPL), inflammation (COX2, IL-6), extracellular matrix reorganization (COL1A2, P4HA1, FN1, MMP8) and angiogenesis (VEGF-A) by means of RT-qPCR as well as protein expression of osteoclastogenesis-regulating RANK-L and OPG relative to pressure-untreated controls incubated for corresponding time periods. In addition, coculture experiments with osteoclast precursor cells were performed to determine the extent of hPDL-fibroblast-mediated osteoclastogenesis (TRAP staining). RESULTS As primary response to compressive forces within 24 h, we observed an induction of genes associated with angiogenesis, inflammation, osteoblastogenesis, and the remodelling of the extracellular matrix, with RANK-L expression at first slightly inhibited and only increased after 48 h. Major hPDL-mediated osteoclastogenesis was observed after 72 h with minor, non-RANK-L-dependent osteoclastogenesis occurring as early as 24 h after compressive force application. CONCLUSIONS hPDL fibroblasts seem to play a major mediating role in the early phase of OTM with a differentiated, time-dependent regulation and expression pattern of cytokines and other mediators.
Collapse
|
36
|
Mamoun J. Dry Socket Etiology, Diagnosis, and Clinical Treatment Techniques. J Korean Assoc Oral Maxillofac Surg 2018; 44:52-58. [PMID: 29732309 PMCID: PMC5932271 DOI: 10.5125/jkaoms.2018.44.2.52] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/28/2017] [Accepted: 06/10/2017] [Indexed: 01/30/2023] Open
Abstract
Dry socket, also termed fibrinolytic osteitis or alveolar osteitis, is a complication of tooth exodontia. A dry socket lesion is a post-extraction socket that exhibits exposed bone that is not covered by a blood clot or healing epithelium and exists inside or around the perimeter of the socket or alveolus for days after the extraction procedure. This article describes dry socket lesions; reviews the basic clinical techniques of treating different manifestations of dry socket lesions; and shows how microscope level loupe magnification of 6× to 8× or greater, combined with co-axial illumination or a dental operating microscope, facilitate more precise treatment of dry socket lesions. The author examines the scientific validity of the proposed causes of dry socket lesions (such as bacteria, inflammation, fibrinolysis, or traumatic extractions) and the scientific validity of different terminologies used to describe dry socket lesions. This article also presents an alternative model of what causes dry socket lesions, based on evidence from dental literature. Although the clinical techniques for treating dry socket lesions seem empirically correct, more evidence is required to determine the causes of dry socket lesions.
Collapse
|
37
|
Kirschneck C, Batschkus S, Proff P, Köstler J, Spanier G, Schröder A. Valid gene expression normalization by RT-qPCR in studies on hPDL fibroblasts with focus on orthodontic tooth movement and periodontitis. Sci Rep 2017; 7:14751. [PMID: 29116140 PMCID: PMC5677027 DOI: 10.1038/s41598-017-15281-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/24/2017] [Indexed: 01/07/2023] Open
Abstract
Meaningful, reliable and valid mRNA expression analyses by real-time quantitative PCR (RT-qPCR) can only be achieved, if suitable reference genes are chosen for normalization and if appropriate RT-qPCR quality standards are met. Human periodontal ligament (hPDL) fibroblasts play a major mediating role in orthodontic tooth movement and periodontitis. Despite corresponding in-vitro gene expression studies being a focus of interest for many years, no information is available for hPDL fibroblasts on suitable reference genes, which are generally used in RT-qPCR experiments to normalize variability between samples. The aim of this study was to identify and validate suitable reference genes for normalization in untreated hPDL fibroblasts as well as experiments on orthodontic tooth movement or periodontitis (Aggregatibacter actinomycetemcomitans). We investigated the suitability of 13 candidate reference genes using four different algorithms (geNorm, NormFinder, comparative ΔCq and BestKeeper) and ranked them according to their expression stability. Overall PPIB (peptidylprolyl isomerase A), TBP (TATA-box-binding protein) and RPL22 (ribosomal protein 22) were found to be most stably expressed with two genes in conjunction sufficient for reliable normalization. This study provides an accurate tool for quantitative gene expression analysis in hPDL fibroblasts according to the MIQE guidelines and shows that reference gene reliability is treatment-specific.
Collapse
Affiliation(s)
- Christian Kirschneck
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, D-93053, Germany.
| | - Sarah Batschkus
- Department of Orthodontics, University of Goettingen, Goettingen, D-37075, Germany
| | - Peter Proff
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| | - Josef Köstler
- Institute of Microbiology and Hygiene, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| | - Gerrit Spanier
- Department of Cranial and Maxillo-Facial Surgery, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| | - Agnes Schröder
- Department of Orthodontics, University Medical Centre of Regensburg, Regensburg, D-93053, Germany
| |
Collapse
|
38
|
Matsuda Y, Minagawa T, Okui T, Yamazaki K. Resveratrol suppresses the alveolar bone resorption induced by artificial trauma from occlusion in mice. Oral Dis 2017; 24:412-421. [PMID: 28944599 DOI: 10.1111/odi.12785] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Besides inflammatory bone loss, trauma from occlusion (TO)-induced alveolar bone loss increases the risk of future tooth loss. We have shown that resveratrol, a polyphenol, possesses anti-inflammatory characteristics and a suppressive effect on osteoclastogenesis. Therefore, we investigated the effects of resveratrol on TO-induced bone loss in mice. MATERIAL AND METHODS Trauma from occlusion was induced by overlaying composite resin onto the maxillary first molar of C57BL/6 mice. TO-induced mice were administered either resveratrol or vehicle for 15 days from 5 days before TO induction. The mice administered vehicle only served as controls. The effect of resveratrol on bone resorption was assessed histologically. Gene expression in gingival and periodontal ligament tissues was analyzed. In vitro effect of resveratrol on the differentiation of RAW 264.7 cells and bone marrow-derived macrophages into osteoclastic cells was analyzed. RESULTS Resveratrol administration significantly decreased the bone loss and suppressed the elevated expression of osteoclastogenesis-related gene in periodontal ligament tissue by TO. Resveratrol treatment also suppressed the differentiation of both RAW 264.7 cells and bone marrow-derived macrophages into osteoclastic cells. CONCLUSION Resveratrol administration suppressed the TO-induced alveolar bone loss by suppressing osteoclast differentiation, suggesting that resveratrol is effective in preventing both inflammation and mechanical stress-induced alveolar bone resorption.
Collapse
Affiliation(s)
- Y Matsuda
- Research Unit for Oral-Systemic Connection, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - T Minagawa
- Research Unit for Oral-Systemic Connection, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - T Okui
- Research Unit for Oral-Systemic Connection, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - K Yamazaki
- Research Unit for Oral-Systemic Connection, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
39
|
Intermittent compressive stress regulates Notch target gene expression via transforming growth factor-β signaling in murine pre-osteoblast cell line. Arch Oral Biol 2017; 82:47-54. [DOI: 10.1016/j.archoralbio.2017.05.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/08/2017] [Accepted: 05/29/2017] [Indexed: 02/07/2023]
|
40
|
Mamoun J. Use of elevator instruments when luxating and extracting teeth in dentistry: clinical techniques. J Korean Assoc Oral Maxillofac Surg 2017; 43:204-211. [PMID: 28770164 PMCID: PMC5529197 DOI: 10.5125/jkaoms.2017.43.3.204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/21/2016] [Indexed: 11/24/2022] Open
Abstract
In dentistry, elevator instruments are used to luxate teeth, and this technique imparts forces to tooth particles that sever the periodontal ligament around tooth roots inside the socket and expand alveolar bone around tooth particles. These effects can result in extraction of the tooth particles or facilitate systematic forceps extraction of the tooth particles. This article presents basic oral surgery techniques for applying elevators to luxate teeth. Determination of the optimal luxation technique requires understanding of the functions of the straight elevator and the Cryer elevator, the concept of purchase points, how the design elements of elevator working ends and tips influence the functionality of an elevator, application of forces to tooth particles, sectioning teeth at furcations, and bone removal to facilitate luxation. The effectiveness of tooth particle luxation is influenced by elevator tip shape and size, the magnitude and the vectors of forces applied to the tooth particle by the tip, and sectioning and bone removal within the operating field. Controlled extraction procedures are facilitated by a dental operating microscope or the magnification of binocular surgical loupes telescopes, combined with co-axial illumination.
Collapse
|
41
|
Jacobs C, Schramm S, Dirks I, Walter C, Pabst A, Meila D, Jacobs C, Wehrbein H. Mechanical loading increases pro-inflammatory effects of nitrogen-containing bisphosphonate in human periodontal fibroblasts. Clin Oral Investig 2017; 22:901-907. [PMID: 28688092 DOI: 10.1007/s00784-017-2168-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/26/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVES There is increasing evidence that inflammation and biomechanical loading can influence the effects of bisphosphonates (BP). The aim of this study was to investigate the influence of tensile strain application combined with IL-1ß and clodronate or zoledronate on human periodontal ligament fibroblasts (HPdLF) in vitro. MATERIALS AND METHODS HPdLF were cultured with 10 nM IL-1ß and 5 μM clodronate or zoledronate for 48 h. Cells were applied to cyclic tensile strain (CTS; 3% elongation) for 12 h in vitro. Cell number was analyzed directly after CTS by MTT assay. Gene expression of receptor activator of cyclooxygenase-2 (COX-2) was investigated using real-time PCR. MMP-8, TIMP-1, and PGE2 were measured by ELISA. Statistics were performed with SPSS (ANOVA, p < 0.05). RESULTS Zoledronate reduced the cell number of HPdLF (60.3 vs. 100%), which was significant when combined with IL-1ß. Combined with 3% CTS, this effect was voided and cell number increased over the level of the control cells. IL-1ß led to a 10-fold increase of COX-2 gene expression. Combined with CTS and zoledronate, this increase was enhanced to a gene expression 70-fold that of control cells with related PGE2 synthesis. Clodronate neither reduce the cell number nor enhanced the COX-2 gene expression. CTS increased MMP-8 protein synthesis. Combined with BP, this increase was voided. TIMP-1 protein synthesis was increased at all conditions under CTS. CONCLUSIONS Mechanical loading might activate cell metabolism and abolish BP- and inflammation-induced reduction of viability. Combination of mechanical loading, inflammation, and nitrogen-containing bisphosphonates can cause pro-inflammatory effects. CLINICAL RELEVANCE Periodontal inflammation should be treated initially before BP intake to prevent decreased cell viability of the periodontium and increased inflammation, which might be enhanced by the addition of mastication forces.
Collapse
Affiliation(s)
- Collin Jacobs
- Department of Orthodontics, Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany.
| | - Sabrina Schramm
- Department of Orthodontics, Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Isabelle Dirks
- Department of Orthodontics, Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Christian Walter
- Department of Oral and Maxillofacial Surgery, Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Andreas Pabst
- Department of Oral and Maxillofacial Surgery, Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany
| | - Dan Meila
- Department of Radiology, MH-Hannover, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Cornelius Jacobs
- Department of Traumatology, Medical Center, University of Bonn, Sigmund-Freud-Str. 25, Bonn, Germany
| | - Heinrich Wehrbein
- Department of Orthodontics, Medical Center, Johannes Gutenberg University Mainz, Augustusplatz 2, 55131, Mainz, Germany
| |
Collapse
|
42
|
Oishi S, Shimizu Y, Hosomichi J, Kuma Y, Maeda H, Nagai H, Usumi-Fujita R, Kaneko S, Shibutani N, Suzuki JI, Yoshida KI, Ono T. Intermittent Hypoxia Influences Alveolar Bone Proper Microstructure via Hypoxia-Inducible Factor and VEGF Expression in Periodontal Ligaments of Growing Rats. Front Physiol 2016; 7:416. [PMID: 27695422 PMCID: PMC5025444 DOI: 10.3389/fphys.2016.00416] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Intermittent hypoxia (IH) recapitulates morphological changes in the maxillofacial bones in children with obstructive sleep apnea (OSA). Recently, we found that IH increased bone mineral density (BMD) in the inter-radicular alveolar bone (reflecting enhanced osteogenesis) in the mandibular first molar (M1) region in the growing rats, but the underlying mechanism remains unknown. In this study, we focused on the hypoxia-inducible factor (HIF) pathway to assess the effect of IH by testing the null hypothesis of no significant differences in the mRNA-expression levels of relevant factors associated with the HIF pathway, between control rats and growing rats with IH. To test the null hypothesis, we investigated how IH enhances mandibular osteogenesis in the alveolar bone proper with respect to HIF-1α and vascular endothelial growth factor (VEGF) in periodontal ligament (PDL) tissues. Seven-week-old male Sprague-Dawley rats were exposed to IH for 3 weeks. The microstructure and BMD in the alveolar bone proper of the distal root of the mandibular M1 were evaluated using micro-computed tomography (micro-CT). Expression of HIF-1α and VEGF mRNA in PDL tissues were measured, whereas osteogenesis was evaluated by measuring mRNA levels for alkaline phosphatase (ALP) and bone morphogenetic protein-2 (BMP-2). The null hypothesis was rejected: we found an increase in the expression of all of these markers after IH exposure. The results provided the first indication that IH enhanced osteogenesis of the mandibular M1 region in association with PDL angiogenesis during growth via HIF-1α in an animal model.
Collapse
Affiliation(s)
- Shuji Oishi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| | - Yasuhiro Shimizu
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| | - Jun Hosomichi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| | - Yoichiro Kuma
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| | - Hideyuki Maeda
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University Tokyo, Japan
| | - Hisashi Nagai
- Department of Legal Medicine (Forensic Medicine), Keio University School of Medicine Tokyo, Japan
| | - Risa Usumi-Fujita
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| | - Sawa Kaneko
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| | - Naoki Shibutani
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| | - Jun-Ichi Suzuki
- Department of Advanced Clinical Science and Therapeutics, The University of Tokyo Tokyo, Japan
| | - Ken-Ichi Yoshida
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University Tokyo, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University Tokyo, Japan
| |
Collapse
|
43
|
Otero L, García DA, Wilches-Buitrago L. Expression and Presence of OPG and RANKL mRNA and Protein in Human Periodontal Ligament with Orthodontic Force. GENE REGULATION AND SYSTEMS BIOLOGY 2016; 10:15-20. [PMID: 26823650 PMCID: PMC4727488 DOI: 10.4137/grsb.s35368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/08/2015] [Accepted: 11/08/2015] [Indexed: 12/04/2022]
Abstract
OBJECTIVE The objective of this study is to investigate the expression and concentration of ligand receptor activator of NFkB (RANKL) and osteoprotegerin (OPG) in human periodontal ligament (hPDL) with orthodontic forces of different magnitudes. METHODS Right premolars in 32 patients were loaded with 4oz or 7oz of orthodontic force for 7 days. Left first premolars were not loaded. After 7 days, premolars were extracted for treatment as indicated. OPG and RANKL mRNA expressions were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR), and ELISA was used to assess OPG and RANKL protein concentration in compression and tension sides of PDL. Data were subjected to analysis of variance and Tukey tests. RESULTS There was statistically significant difference in RANKL concentration on comparing control teeth with tension and compression sides of the experimental teeth (P < 0.0001). The expression of mRNA RANKL was increased in the tension and compression sides with 4oz (P < 0.0001). OPG did not show statistically significant association with any group. Changes in RANKL/OPG protein ratio in experimental and control groups showed statistically significant difference (P < 0.0001). CONCLUSIONS RANKL protein levels are elevated in hPDL loaded with orthodontic forces, suggesting that RANKL protein contributes to bone modeling in response to the initial placement of orthodontic force.
Collapse
Affiliation(s)
- Liliana Otero
- Director, Dental Center Research, Pontificia Universidad Javeriana, Bogotá, Colombia.; Professor, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | | |
Collapse
|