1
|
Jang M, Yang J, Jeon DH, Seung SH, Lee G. Potential of human dental pulp stem cell-derived conditioned medium for amelo-/odontoblastic differentiation of HERS/ERM cells. Biochem Biophys Res Commun 2025; 752:151490. [PMID: 39955953 DOI: 10.1016/j.bbrc.2025.151490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/18/2025]
Abstract
HERS/ERM cells constitute the only dental epithelial population that can be isolated from adult human teeth. Although HERS/ERM cells are the most studied dental epithelial cell source, information on their differentiation is lacking: these cells have a long induction period and low mineralization without coculture with dental mesenchymal stem cells. To characterize and develop an effective method for differentiating dental epithelial cells, we observed the epithelial‒mesenchymal interaction effects of deciduous dental pulp stem cell (dDPSC)-derived conditioned media (CM) during HERS/ERM cell differentiation. The collected CM was freeze-dried (DCM) and applied at high concentrations to determine the optimal concentration. The DCM-20 %, DCM-40 %, DCM-60 %, and DCM-80 % (v/v) groups presented an increased growth pattern. On day 2, increased expression of AMELX was detected in the DCM-60 % and DCM-80 % groups. ENAM expression was increased in the DCM-80 % group on day 2 and in the DCM-treated groups on day 4. In the DCM-80 % group, DSPP expression was significantly increased. In the DCM-60 % and DCM-80 % groups, high DSPP expression was detected. The ENAM expression in the DCM-80 % group was higher than that in the other groups. Mineralized nodules were detected on day 8 in the DCM-40 %, DCM-60 %, and DCM-80 % groups. The amount of calcium deposits increased with increasing DCM concentration. Our data indicated that dDPSC-CM has significant potential to induce ameloblastic and odontoblastic differentiation in HERS/ERM cells. The paracrine factors of dDPSC-CM could induce ameloblast differentiation without direct cell-to-cell interactions. These findings emphasize the potential of dDPSC-CM in the differentiation of HERS/ERM cells in vitro.
Collapse
Affiliation(s)
- Mi Jang
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, South Korea.
| | - Jihye Yang
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, South Korea.
| | - Dae-Hyun Jeon
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, South Korea.
| | - Sang Heon Seung
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, South Korea.
| | - Gene Lee
- Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University, Seoul, 03080, South Korea.
| |
Collapse
|
2
|
Wang S, Kuai Y, Lin S, Li L, Gu Q, Zhang X, Li X, He Y, Chen S, Xia X, Ruan Z, Lin C, Ding Y, Zhang Q, Qi C, Li J, He X, Pathak JL, Zhou W, Liu S, Wang L, Zheng L. NF-κB Activator 1 downregulation in macrophages activates STAT3 to promote adenoma-adenocarcinoma transition and immunosuppression in colorectal cancer. BMC Med 2023; 21:115. [PMID: 36978108 PMCID: PMC10053426 DOI: 10.1186/s12916-023-02791-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/16/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Adenoma-adenocarcinoma transition is a key feature of colorectal cancer (CRC) occurrence and is closely regulated by tumor-associated macrophages (TAMs) and CD8+ T cells. Here, we investigated the effect of the NF-κB activator 1 (Act1) downregulation of macrophages in the adenoma-adenocarcinoma transition. METHODS This study used spontaneous adenoma-developing ApcMin/+, macrophage-specific Act1-knockdown (anti-Act1), and ApcMin/+; anti-Act1 (AA) mice. Histological analysis was performed on CRC tissues of patients and mice. CRC patients' data retrieved from the TCGA dataset were analyzed. Primary cell isolation, co-culture system, RNA-seq, and fluorescence-activated cell sorting (FACS) were used. RESULTS By TCGA and TISIDB analysis, the downregulation of Act1 expression in tumor tissues of CRC patients negatively correlated with accumulated CD68+ macrophages in the tumor. Relative expression of EMT markers in the tumor enriched ACT1lowCD68+ macrophages of CRC patients. AA mice showed adenoma-adenocarcinoma transition, TAMs recruitment, and CD8+ T cell infiltration in the tumor. Macrophages depletion in AA mice reversed adenocarcinoma, reduced tumor amounts, and suppressed CD8+ T cell infiltration. Besides, macrophage depletion or anti-CD8a effectively inhibited metastatic nodules in the lung metastasis mouse model of anti-Act1 mice. CRC cells induced activation of IL-6/STAT3 and IFN-γ/NF-κB signaling and the expressions of CXCL9/10, IL-6, and PD-L1 in anti-Act1 macrophages. Anti-Act1 macrophages facilitated epithelial-mesenchymal-transition and CRC cells' migration via CXCL9/10-CXCR3-axis. Furthermore, anti-Act1 macrophages promoted exhaustive PD1+ Tim3+ CD8+ T cell formation. Anti-PD-L1 treatment repressed adenoma-adenocarcinoma transition in AA mice. Silencing STAT3 in anti-Act1 macrophages reduced CXCL9/10 and PD-L1 expression and correspondingly inhibited epithelial-mesenchymal-transition and CRC cells' migration. CONCLUSIONS Act1 downregulation in macrophages activates STAT3 that promotes adenoma-adenocarcinoma transition via CXCL9/10-CXCR3-axis in CRC cells and PD-1/PD-L1-axis in CD8+ T cells.
Collapse
Affiliation(s)
- Shunyi Wang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong P. R. China
| | - Yihe Kuai
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong P. R. China
| | - Simin Lin
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Li Li
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong P. R. China
| | - Quliang Gu
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong P. R. China
| | - Xiaohan Zhang
- Hospital of Guangdong Provincial Hospital of Traditional Chinese Medicine, Zhuhai, 519015 China
| | - Xiaoming Li
- Department of Pathology, People’s Hospital of Shenzhen Bao an District, Shenzhen, 518101 China
| | - Yajun He
- Department of Pathology, People’s Hospital of Shenzhen Bao an District, Shenzhen, 518101 China
| | - Sishuo Chen
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong P. R. China
| | - Xiaoru Xia
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong P. R. China
| | - Zhang Ruan
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong P. R. China
| | - Caixia Lin
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong P. R. China
| | - Yi Ding
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong P. R. China
| | - Qianqian Zhang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong P. R. China
| | - Cuiling Qi
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong P. R. China
| | - Jiangchao Li
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong P. R. China
| | - Xiaodong He
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong P. R. China
| | - Janak L. Pathak
- Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong 510182 Guangzhou, China
| | - Weijie Zhou
- Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, First Clinical Medical School, Southern Medical University, Guangzhou, 510515 P. R. China
| | - Side Liu
- Department of Gastroenterology, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong China
| | - Lijing Wang
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong P. R. China
| | - Lingyun Zheng
- School of Life Science and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006 Guangdong P. R. China
| |
Collapse
|
3
|
Guo R, Yu J. Multipotency and Immunomodulatory Benefits of Stem Cells From Human Exfoliated Deciduous Teeth. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.805875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stem cells derived from human exfoliated deciduous teeth (SHEDs) are considered a promising cell population for cell-based or cell-free therapy and tissue engineering because of their proliferative, multipotency and immunomodulator. Based on recent studies, we find that SHEDs show the superior ability of nerve regeneration in addition to the potential of osteogenesis, odontogenesis owing to their derivation from the neural crest. Besides, much evidence suggests that SHEDs have a paracrine effect and can function as immunomodulatory regents attributing to their capability of secreting cytokines and extracellular vesicles. Here, we review the characteristic of SHEDs, their multipotency to regenerate damaged tissues, specifically concentrating on bones or nerves, following the paracrine activity or immunomodulatory benefits of their potential for clinical application in regenerative medicine.
Collapse
|
4
|
Differentiation and Establishment of Dental Epithelial-Like Stem Cells Derived from Human ESCs and iPSCs. Int J Mol Sci 2020; 21:ijms21124384. [PMID: 32575634 PMCID: PMC7352334 DOI: 10.3390/ijms21124384] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Tooth development and regeneration occur through reciprocal interactions between epithelial and ectodermal mesenchymal stem cells. However, the current studies on tooth development are limited, since epithelial stem cells are relatively difficult to obtain and maintain. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) may be alternative options for epithelial cell sources. To differentiate hESCs/hiPSCs into dental epithelial-like stem cells, this study investigated the hypothesis that direct interactions between pluripotent stem cells, such as hESCs or hiPSCs, and Hertwig's epithelial root sheath/epithelial rests of Malassez (HERS/ERM) cell line may induce epithelial differentiation. Epithelial-like stem cells derived from hES (EPI-ES) and hiPSC (EPI-iPSC) had morphological and immunophenotypic characteristics of HERS/ERM cells, as well as similar gene expression. To overcome a rare population and insufficient expansion of primary cells, EPI-iPSC was immortalized with the SV40 large T antigen. The immortalized EPI-iPSC cell line had a normal karyotype, and a short tandem repeat (STR) analysis verified that it was derived from hiPSCs. The EPI-iPSC cell line co-cultured with dental pulp stem cells displayed increased amelogenic and odontogenic gene expression, exhibited higher dentin sialoprotein (DSPP) protein expression, and promoted mineralized nodule formation. These results indicated that the direct co-culture of hESCs/hiPSCs with HERS/ERM successfully established dental epithelial-like stem cells. Moreover, this differentiation protocol could help with understanding the functional roles of cell-to-cell communication and tissue engineering of teeth.
Collapse
|
5
|
Chen J, Ji T, Wu D, Jiang S, Zhao J, Lin H, Cai X. Human mesenchymal stem cells promote tumor growth via MAPK pathway and metastasis by epithelial mesenchymal transition and integrin α5 in hepatocellular carcinoma. Cell Death Dis 2019; 10:425. [PMID: 31142737 PMCID: PMC6541606 DOI: 10.1038/s41419-019-1622-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/14/2019] [Accepted: 04/29/2019] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) appear to be a potential vehicle for anticancer drugs due to their excellent tumor tropism ability. However, the interactions between MSCs and hepatocellular carcinoma (HCC) are quite controversial and the underlying mechanisms are ambiguous. In this study, an investigation was conducted into the effect of human MSCs (hMSCs) on tumor proliferation and metastasis both in xenograft and orthotopic models. It was discovered that hMSCs could promote tumor growth though activating mitogen-activated protein kinase (MAPK) signaling pathway and promote metastasis by epithelial mesenchymal transition (EMT) in vivo. To test whether hMSCs could induce immunosuppressive effects, the expression of the Natural killer (NK) cell marker CD56 was measured by immunohistochemical staining and the expression of interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were measured by qRT-PCR. It was found out that CD56 expression significantly decreased, while TNF-α and IL-6 expression increased in the hMSCs-treated tissues. Mechanistically, RNA sequencing was performed, which led to a discovery that integrin α5 (ITGA5) was over-expressed in hMSCs-treated HCC. ITGA5 siRNAs blocked the hMSCs-induced migration and invasion of HCC, while over-expression of ITGA5 promoted the migration and invasion ability in HCC-hMSCs, indicating that the expression of ITGA5 is associated with hMSCs-induced tumor metastasis. These findings suggest that hMSCs may play a vital role in HCC proliferation and metastasis and could be identified as a putative therapeutic target in HCC.
Collapse
Affiliation(s)
- Jiang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Tong Ji
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Di Wu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Shi Jiang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Jie Zhao
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China.
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 310016, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Davis EM. A Review of the Epithelial Cell Rests of Malassez on the Bicentennial of Their Description. J Vet Dent 2018. [DOI: 10.1177/0898756418811957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epithelial cell rests of Malassez (ERM) were first described in 1817, yet their significance has remained an enigma for more than 200 years. Given their embryological origins and persistence in adult periodontal tissue, recent research has investigated whether the ERM could be useful as stem cells to regenerate tissues lost as a consequence of periodontitis. The objective of this review is to describe results of studies that have vigorously investigated the functional capabilities of ERM, particularly with regard to periodontal ligament homeostasis and prevention of dentoalveolar ankylosis. The significance of the ERM relative to evolution of the dental attachment apparatus will be examined. The current status of use of ERM as stem cells for dental tissue engineering and in other applications will be reviewed.
Collapse
Affiliation(s)
- Eric M. Davis
- Animal Dental Specialists of Upstate New York, Fayetteville, NY, USA
| |
Collapse
|
7
|
Jia L, Gu W, Zhang Y, Ji Y, Liang J, Wen Y, Xu X. The Crosstalk between HDPSCs and HUCMSCs on Proliferation and Osteogenic Genes Expression in Coculture System. Int J Med Sci 2017; 14:1118-1129. [PMID: 29104466 PMCID: PMC5666543 DOI: 10.7150/ijms.19814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022] Open
Abstract
Objectives: The present study established a non-contact coculture system in vitro, aiming to investigate the crosstalk between human dental pulp stem cells (hDPSCs) and human umbilical cord mesenchymal stem cells (hUCMSCs) on proliferation activity and osteogenic genes expression through paracrine. Materials and methods: The stemness of hDPSCs and hUCMSCs were identified by flow cytometric analysis and multipotential differentiation assays. With the help of transwell inserts, the non-contact coculture system in vitro was established between hDPSCs and hUCMSCs. EdU labeling analysis and Western Blot were used to detect the proliferation activity. The mRNA and protein levels of osteogenic genes were evaluated by RT-PCR and Western Blot. The expression of elements in Akt/mTOR signaling pathway were detected by Western Blot. Results: Both hDPSCs and hUCMSCs were positive to MSCs specific surface markers and had multi-differentiation potential. The proportion of EdU-positive cells increased and the expression of CDK6 and CYCLIN A were up-regulated in cocultured hDPSCs. Both prior coculture and persistent coculture improved mRNA and protein levels of osteogenic genes in hDPSCs. While in cocultured hUCMSCs, no statistical differences were observed on proliferation and osteogenesis. The phosphorylation of Akt and mTOR was up-regulated in cocultured hDPSCs. Conclusions: The crosstalk between hDPSCs and hUCMSCs in coculture system increased the proliferation activity and enhanced osteogenic genes expression in hDPSCs. Akt/mTOR signaling pathway might take part in the enhancing effects in both cell proliferation and gene expression.
Collapse
Affiliation(s)
- Linglu Jia
- School of Stomatology, Shandong University, Jinan, China.,Shandong provincial key laboratory of oral tissue regeneration, Jinan, China
| | - Weiting Gu
- Qilu hospital of Shandong University, Jinan, China
| | - Yunpeng Zhang
- School of Stomatology, Shandong University, Jinan, China.,Shandong provincial key laboratory of oral tissue regeneration, Jinan, China
| | - Yawen Ji
- School of Stomatology, Shandong University, Jinan, China.,Shandong provincial key laboratory of oral tissue regeneration, Jinan, China
| | - Jin Liang
- School of Stomatology, Shandong University, Jinan, China.,Shandong provincial key laboratory of oral tissue regeneration, Jinan, China
| | - Yong Wen
- School of Stomatology, Shandong University, Jinan, China.,Shandong provincial key laboratory of oral tissue regeneration, Jinan, China
| | - Xin Xu
- School of Stomatology, Shandong University, Jinan, China.,Shandong provincial key laboratory of oral tissue regeneration, Jinan, China
| |
Collapse
|