1
|
Watanabe M, Sekino Y, Kuramochi K, Furuyama Y. Bacillus xiamenensis Inhibits the Growth of Moraxella osloensis by Producing Indole-3-Carboxaldehyde. Microbiologyopen 2024; 13:e70009. [PMID: 39535470 PMCID: PMC11558204 DOI: 10.1002/mbo3.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Moraxella osloensis, a gram-negative rod-shaped bacterium found on human skin, produces 4-methyl-3-hexenoic acid, contributing to clothing and body malodor. M. osloensis is resistant to UV light, drying, and antimicrobials, making its eradication challenging. As the skin is low in nutrients, commensal bacteria compete for resources and use diverse strategies to inhibit their competitors. Therefore, skin-derived bacteria that exhibited growth-inhibitory activity against M. osloensis were searched. Screening skin-derived bacteria using a coculture halo assay revealed that Bacillus xiamenensis formed an inhibition zone with M. osloensis. Coculture plates were extracted with ethyl acetate and fractionated using a silica gel column and preparative thin-layer chromatography to isolate the active compound from the B. xiamenensis metabolites. Nuclear magnetic resonance spectroscopy identified the active compound as indole-3-carboxaldehyde, which has low toxicity in humans. At soluble concentrations, indole-3-carboxaldehyde does not inhibit the growth of other bacteria, such as Staphylococcus aureus, Escherichia coli, and Bacillus subtilis, suggesting M. osloensis is highly sensitive to indole-3-carboxaldehyde. These findings highlight B. xiamenensis as a promising candidate for the development of a skin probiotic to promote skin health and combat malodor-causing bacteria.
Collapse
Affiliation(s)
- Masahiro Watanabe
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNoda‐shiChibaJapan
| | - Yuika Sekino
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNoda‐shiChibaJapan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNoda‐shiChibaJapan
| | - Yuuki Furuyama
- Department of Applied Biological Science, Faculty of Science and TechnologyTokyo University of ScienceNoda‐shiChibaJapan
| |
Collapse
|
2
|
Samylina OS, Kosyakova AI, Krylov AA, Sorokin DY, Pimenov NV. Salinity-induced succession of phototrophic communities in a southwestern Siberian soda lake during the solar activity cycle. Heliyon 2024; 10:e26120. [PMID: 38404883 PMCID: PMC10884861 DOI: 10.1016/j.heliyon.2024.e26120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/09/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024] Open
Abstract
A variety of lakes located in the dry steppe area of southwestern Siberia are exposed to rapid climatic changes, including intra-century cycles with alternating dry and wet phases driven by solar activity. As a result, the salt lakes of that region experience significant fluctuations in water level and salinity, which have an essential impact on the indigenous microbial communities. But there are few microbiological studies that have analyzed this impact, despite its importance for understanding the functioning of regional water ecosystems. This work is a retrospective study aimed at analyzing how solar activity-related changes in hydrological regime affect phototrophic microbial communities using the example of the shallow soda lake Tanatar VI, located in the Kulunda steppe (Altai Region, Russia, southwestern Siberia). The main approach used in this study was the comparison of hydrochemical and microscopic data obtained during annual field work with satellite and solar activity data for the 12-year observation period (2011-2022). The occurrence of 33 morphotypes of cyanobacteria, two key morphotypes of chlorophytes, and four morphotypes of anoxygenic phototrophic bacteria was analyzed due to their easily recognizable morphology. During the study period, the lake surface changed threefold and the salinity changed by more than an order of magnitude, which strongly correlated with the phases of the solar activity cycles. The periods of high (2011-2014; 100-250 g/L), medium (2015-2016; 60 g/L), extremely low (2017-2020; 13-16 g/L), and low (2021-2022; 23-34 g/L) salinity with unique biodiversity of phototrophic communities were distinguished. This study shows that solar activity cycles determine the dynamics of the total salinity of a southwestern Siberian soda lake, which in turn determines the communities and microorganisms that will occur in the lake, ultimately leading to cyclical changes in alternative states of the ecosystem (dynamic stability).
Collapse
Affiliation(s)
- Olga S. Samylina
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7-2, Moscow, 117312, Russia
| | - Anastasia I. Kosyakova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7-2, Moscow, 117312, Russia
- Faculty of Soil Science, Moscow State University, GSP-1, 1-12 Leninskie Gory, Moscow 119991, Russia
| | - Artem A. Krylov
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovskiy Prospekt, 36, 117997 Moscow, Russia
| | - Dimitry Yu. Sorokin
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7-2, Moscow, 117312, Russia
- Department of Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Nikolay V. Pimenov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, 60 let Oktjabrja pr-t, 7-2, Moscow, 117312, Russia
| |
Collapse
|
3
|
Mapping Archaeal Diversity in Soda Lakes by Coupling 16S rRNA PCR-DGGE Analysis with Remote Sensing and GIS Technology. FERMENTATION 2022. [DOI: 10.3390/fermentation8080365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The haloarchaeal diversity of four hypersaline alkaline lakes from the Wadi El-Natrun depression (Northern Egypt) was investigated using culture-independent polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of 16S rRNA gene phylotypes, which was combined with remote sensing and geographic information system (GIS) data to highlight the distribution pattern of the microbial diversity in water and sediment samples. The majority of archaeal sequences identified in all four lakes belonged to the phyla Euryarchaeota and Crenarchaeota. Sediment samples from Beida Lake and water samples from El-Hamra Lake showed the highest levels of archaeal diversity. Sequence similarities ≥ 95% were found between six of the acquired clones and uncultured Halorhabdus, Euryarchaeota, and archaeon clones. In addition, two clones shared a high level of sequence similarity (97%) with unclassified archaea, while other nine clones exhibited 96% to 99% sequence similarity with uncultured archaeon clones, and only one clone showed 97% identity with an uncultured Crenarchaeota. Likewise, 7 DGGE bands presented a sequence similarity of 90 to 98% to Halogranum sp., Halalkalicoccus tibetensis, Halalkalicoccus jeotgali, uncultured Halorubrum, Halobacteriaceae sp., or uncultured haloarchaeon. In conclusion, while the variety of alkaliphilic haloarchaea in the examined soda lakes was restricted, the possibility of uncovering novel species for biotechnological applications from these extreme habitats remains promising.
Collapse
|
4
|
Phenotypic characteristics, phylogenetic analysis and characterization of alkaline proteases of marine bacteria Geomicrobium halophilum, Oceanobacillus oncorhynchi, and Oceanobacillus khimchii. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01095-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
5
|
Luo J, Zhang Z, Hou Y, Diao F, Hao B, Bao Z, Wang L, Guo W. Exploring Microbial Resource of Different Rhizocompartments of Dominant Plants Along the Salinity Gradient Around the Hypersaline Lake Ejinur. Front Microbiol 2021; 12:698479. [PMID: 34322109 PMCID: PMC8312270 DOI: 10.3389/fmicb.2021.698479] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2021] [Indexed: 12/24/2022] Open
Abstract
Lake littoral zones can also be regarded as another extremely hypersaline environment due to hypersaline properties of salt lakes. In this study, high-throughput sequencing technique was used to analyze bacteria and fungi from different rhizocompartments (rhizosphere and endosphere) of four dominant plants along the salinity gradient in the littoral zones of Ejinur Salt Lake. The study found that microbial α-diversity did not increase with the decrease of salinity, indicating that salinity was not the main factor on the effect of microbial diversity. Distance-based redundancy analysis and regression analysis were used to further reveal the relationship between microorganisms from different rhizocompartments and plant species and soil physicochemical properties. Bacteria and fungi in the rhizosphere and endosphere were the most significantly affected by SO4 2-, SOC, HCO3 -, and SOC, respectively. Correlation network analysis revealed the potential role of microorganisms in different root compartments on the regulation of salt stress through synergistic and antagonistic interactions. LEfSe analysis further indicated that dominant microbial taxa in different rhizocompartments had a positive response to plants, such as Marinobacter, Palleronia, Arthrobacter, and Penicillium. This study was of great significance and practical value for understanding salt environments around salt lakes to excavate the potential microbial resources.
Collapse
Affiliation(s)
- Junqing Luo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Yazhou Hou
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Fengwei Diao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhihua Bao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Lixin Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Collaborative Innovation Center for Grassland Ecological Security, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| |
Collapse
|
6
|
Diversity of actinobacteria in sediments of Qaidam Lake and Qinghai Lake, China. Arch Microbiol 2021; 203:2875-2885. [PMID: 33751173 DOI: 10.1007/s00203-021-02277-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/27/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Using 16S rRNA gene analysis and high-throughput, the diversity and community structure of actinobacteria in the sediments of Qaidam Lake and Qinghai Lake with different salinity and alkalinity in Qinghai-Xizang Plateau were studied, and the differences of actinobacteria community structure and their relationship with environmental factors were discussed. A total of 77 genera belonging to actinobacteria were found in the samples, of which 31 genera were found in the sediment samples of Qaidam Lake with 19 genera being dominant genera, such as Actinomycetes, Corynebacterium, Morella, Bifidobacterium, and 69 genera were found in the sediment samples of Qinghai Lake with 17 genera becoming dominant, such as Ilumattalaer, Actinotalea, Aquihaans and so on. The correlation analysis of environmental factors and community showed that the community structure of the two salt lakes was mainly affected by total salinity, total organic carbon) (TOC) and CO32-, among which TOC was the most influential factor. The functional differences of metabolic pathway enrichment analysis (KEGG) showed that there was a high abundance of metabolic-related functions in the two salt lakes. There were significant differences in the biosynthesis of energy metabolism and other secondary metabolites between the two salt lakes, which may be the main reason for the difference of actinomycete community. The results show that the actinobacteria diversity was rich in the plateau salt lakes, and affected by a variety of physicochemical factors. In addition, there were a large number of unculturable actinobacteria in the sediment, which provides a theoretical basis for the excavation and utilization of actinobacteria resources in salt lakes.
Collapse
|
7
|
Yang J, Jiang H, Sun X, Huang J, Han M, Wang B. Distinct co-occurrence patterns of prokaryotic community between the waters and sediments in lakes with different salinity. FEMS Microbiol Ecol 2020; 97:5989694. [PMID: 33206972 DOI: 10.1093/femsec/fiaa234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/16/2020] [Indexed: 11/13/2022] Open
Abstract
Temporal variations and co-occurrence patterns of the prokaryotic community in saline lakes remain elusive. In this study, we investigated the temporal variations of the prokaryotic community in six lakes with different salinity by using Illumina sequencing. The results showed that prokaryotic community compositions exhibited temporal variations in all studied lakes, which may be partially caused by temporal fluctuations of environmental variables (e.g. salinity, temperature, total nitrogen). Salinity fluctuations exhibited stronger influences on temporal variations of prokaryotic community composition in the lakes with low salinity than in those with high salinity. Stochastic factors (i.e. neutral processes) also contributed to temporal variations of prokaryotic community composition, and their contributions decreased with increasing salinity in the studied saline lakes. Network analysis showed that prokaryotic co-occurrence networks of the studied lakes exhibited non-random topology. Salinity affected the phylogenetic composition of nodes in the studied networks. The topological features (e.g. average connectivity and modularity) of the studied networks significantly differed between lake waters and sediments. Collectively, these results expand our knowledge of the mechanisms underlying prokaryotic community assembly and co-occurrence relationships in saline lakes with different salinity.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.,Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiaoxi Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Mingxian Han
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
8
|
Li Y, Chen J, Wang Y, Ma D, Rui W. The effects of the recombinant YeaZ of Vibrio harveyi on the resuscitation and growth of soil bacteria in extreme soil environment. PeerJ 2020; 8:e10342. [PMID: 33391864 PMCID: PMC7759134 DOI: 10.7717/peerj.10342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022] Open
Abstract
Numerous bacteria entered the viable but non-culturable state due to the stresses of dry and salt in soils. YeaZ of Gram-negative bacteria is a resuscitation promoting factor (Rpf) homologous protein could resuscitate bacteria of natural environment in VBNC state. To investigate the promoting effect of YeaZ on the isolation of viable but non-culturable (VBNC) bacteria from soil samples in extreme environments, the recombinant YeaZ of Vibrio harveyi was prepared and added to the soil samples from volcanic soil and saline soil in Northwest China. The study has shown that YeaZ can promote the recovery and growth of soil microorganisms, and the number of cultivable bacteria in volcanic and saline soil has increased from 0.17 × 103 and 2.03 × 103 cfu⋅ml−1 to 1.00 × 103 and 5.55 × 103 cfu⋅ml−1, respectively. The 16S rDNA gene sequencing and phylogenetic analysis showed that YeaZ played an essential role in the increase of composition and diversity of bacteria. A total of 13 bacterial strains were isolated from the volcanic soil samples, which belong to phyla Actinobacteria, Firmicutes and Gamma-proteobacteria. Four species, including Ornithinimicrobium kibberense, Agrococcus citreus, Stenotrophomonas rhizophila and Pseudomonas zhaodongensis were found in the control group, while Micrococcus antarcticus, Kocuria rose, Salinibacterium xinjiangense, Planococcus antarcticus, Ornithinimicrobium kibberense and Pseudomonas zhaodongensis were isolated from the treatment groups (addition of YeaZ). Twenty-one strains were isolated from the saline soil samples, including eight species from the control group and thirteen species from the treatment groups, among which nine species were only found, including Bacillus oceanisediminis, Brevibacillus brevis, Paenibacillus xylanilyticus, Microbacterium maritypicum, B. subtilis, B. alcalophilus, B. niabensis, Oceanimonas doudoroffii and Zobellella taiwanensis. The results suggest that addition of YeaZ to soil samples can promote the recovery of VBNC. This method has the implications for the discovery of VBNC bacteria that have potential environmental functions.
Collapse
Affiliation(s)
- Yanlin Li
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China.,Chongqing Key Laboratory of Environmental Materials & Remediation Technologies/College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Yonggang Wang
- School of life science and engineering, Lanzhou University of Technology, Lanzhou, China
| | - Dan Ma
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Wenhong Rui
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|
9
|
Zavarzina DG, Zhilina TN, Kostrikina NA, Toshchakov SV, Kublanov IV. Isachenkonia alkalipeptolytica gen. nov. sp. nov., a new anaerobic, alkaliphilic proteolytic bacterium capable of reducing Fe(III) and sulfur. Int J Syst Evol Microbiol 2020; 70:4730-4738. [PMID: 32697189 DOI: 10.1099/ijsem.0.004341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An obligately alkaliphilic, anaerobic, proteolytic bacterium was isolated from a sample of Tanatar III soda lake sediment (Altai region, Russia) and designated as strain Z-1701T. Cells of strain Z-1701T were short, straight, motile Gram-stain-positive rods. Growth of Z-1701T obligately depended on the presence of sodium carbonate. Strain Z-1701T could utilize various peptides mixtures, such as beef and yeast extracts, peptone, soytone, trypticase and tryptone, as well as such proteins as albumin, gelatin and sodium caseinate. It was able to grow oligotrophically with 0.02 g l-1 yeast extract as the sole energy and carbon source. Carbohydrates did not support the growth of strain Z-1701T. The main products released during the growth of strain Z-1701T on tryptone were formate, acetate and ammonium. Strain Z-1701T was able to reduce ferrihydrite, Fe(III)-EDTA, anthraquinone-2,6-disulfonate and elemental sulfur, using proteinaceous substrates as electron donors. In all cases the presence of the electron acceptor in the medium stimulated growth. The main cellular fatty acids were iso-C15 : 0, iso-C15 : 0 aldehyde, iso-C15 : 1 ω6, C16 : 0, iso-C17 : 0 aldehyde, C16 : 0 aldehyde and C14 : 0. The DNA G+C content of the isolate was 43.9 mol%. Phylogenetic analysis based on the concatenated alignment of 120 protein-marker sequences revealed that strain Z-1701T falls into a cluster with the genus Tindallia, family Clostridiaceae. 16S rRNA gene sequence identity between strain Z-1701T and Tindallia species were 88.3-89.75 %. On the basis of its phenotypic characteristics and phylogenetic position, the novel isolate is considered to be a representative of a novel genus and species for which the name Isachenkonia alkalipeptolytica gen. nov., sp. nov. is proposed, with Z-1701T (=JCM 32929Т=DSM 109060Т=VKM B-3261Т) as its type strain.
Collapse
Affiliation(s)
- Daria G Zavarzina
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60-let Oktyabrya prospect 7/2, 117312, Moscow, Russia
| | - Tatyana N Zhilina
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60-let Oktyabrya prospect 7/2, 117312, Moscow, Russia
| | - Nadegda A Kostrikina
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60-let Oktyabrya prospect 7/2, 117312, Moscow, Russia
| | - Stepan V Toshchakov
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60-let Oktyabrya prospect 7/2, 117312, Moscow, Russia
| | - Ilya V Kublanov
- Winogradsky Institute of Microbiology of Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 60-let Oktyabrya prospect 7/2, 117312, Moscow, Russia
| |
Collapse
|
10
|
Yang J, Jiang H, Liu W, Huang L, Huang J, Wang B, Dong H, Chu RK, Tolic N. Potential utilization of terrestrially derived dissolved organic matter by aquatic microbial communities in saline lakes. ISME JOURNAL 2020; 14:2313-2324. [PMID: 32483305 PMCID: PMC7608266 DOI: 10.1038/s41396-020-0689-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/15/2020] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
Lakes receive large amounts of terrestrially derived dissolved organic matter (tDOM). However, little is known about how aquatic microbial communities interact with tDOM in lakes. Here, by performing microcosm experiments we investigated how microbial community responded to tDOM influx in six Tibetan lakes of different salinities (ranging from 1 to 358 g/l). In response to tDOM addition, microbial biomass increased while dissolved organic carbon (DOC) decreased. The amount of DOC decrease did not show any significant correlation with salinity. However, salinity influenced tDOM transformation, i.e., microbial communities from higher salinity lakes exhibited a stronger ability to utilize tDOM of high carbon numbers than those from lower salinity. Abundant taxa and copiotrophs were actively involved in tDOM transformation, suggesting their vital roles in lacustrine carbon cycle. Network analysis indicated that 66 operational taxonomic units (OTUs, affiliated with Alphaproteobacteria, Actinobacteria, Bacteroidia, Bacilli, Gammaproteobacteria, Halobacteria, Planctomycetacia, Rhodothermia, and Verrucomicrobiae) were associated with degradation of CHO compounds, while four bacterial OTUs (affiliated with Actinobacteria, Alphaproteobacteria, Bacteroidia and Gammaproteobacteria) were highly associated with the degradation of CHOS compounds. Network analysis further revealed that tDOM transformation may be a synergestic process, involving cooperation among multiple species. In summary, our study provides new insights into a microbial role in transforming tDOM in saline lakes and has important implications for understanding the carbon cycle in aquatic environments.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China. .,Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China.
| | - Wen Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Jianrong Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Beichen Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074, Wuhan, China
| | - Hailiang Dong
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 100083, Beijing, China. .,Department of Geology and Environmental Earth Science, Miami University, Oxford, OH, 45056, USA.
| | - Rosalie K Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Nikola Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
11
|
de Alvarenga LV, Lucius S, Vaz MGMV, Araújo WL, Hagemann M. The novel strain Desmonostoc salinum CCM-UFV059 shows higher salt and desiccation resistance compared to the model strain Nostoc sp. PCC7120. JOURNAL OF PHYCOLOGY 2020; 56:496-506. [PMID: 31925964 DOI: 10.1111/jpy.12968] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
Desmonostoc salinum CCM-UFV059 (Desmonostoc) is a novel cyanobacterial strain of the order Nostocales isolated from a saline-alkaline lake. The acclimation towards salt and desiccation stress of Desmonostoc was compared to the related and well-characterized model strain Nostoc sp. PCC7120 (Nostoc). Salt-stressed cells of Desmonostoc maintained low cellular Na+ concentrations and accumulated high amounts of compatible solutes, mainly sucrose and to a lower extent trehalose. These features permitted Desmonostoc to grow and maintain photosynthesis at 2-fold higher salinities than Nostoc. Moreover, Desmonostoc also induced sucrose over-accumulation under desiccation, which allowed this strain to recover from this stress in contrast to Nostoc. Additional mechanisms such as the presence of highly unsaturated lipids in the membrane and an efficient ion transport system could also explain, at least partially, how Desmonostoc is able to acclimate to high salinities and to resist longer desiccation periods. Collectively, our results provide first insights into the physiological and metabolic adaptations explaining the remarkable high salt and desiccation tolerance, which qualify Desmonostoc as an attractive model for further analysis of stress acclimation among heterocystous N2 -fixing cyanobacteria.
Collapse
Affiliation(s)
- Luna Viggiano de Alvarenga
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Universität Rostock, A.-Einstein-Str. 3, Rostock, D-18059, Germany
| | - Stefan Lucius
- Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Universität Rostock, A.-Einstein-Str. 3, Rostock, D-18059, Germany
| | - Marcelo Gomes Marçal Vieira Vaz
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Martin Hagemann
- Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Universität Rostock, A.-Einstein-Str. 3, Rostock, D-18059, Germany
| |
Collapse
|
12
|
Yue L, Kong W, Ji M, Liu J, Morgan-Kiss RM. Community response of microbial primary producers to salinity is primarily driven by nutrients in lakes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 696:134001. [PMID: 31454602 DOI: 10.1016/j.scitotenv.2019.134001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/16/2019] [Accepted: 08/18/2019] [Indexed: 06/10/2023]
Abstract
Higher microbial diversity was frequently observed in saline than fresh waters, but the underlying mechanisms remains unknown, particularly in microbial primary producers (MPP). MPP abundance and activity are notably constrained by high salinity, but facilitated by high nutrients. It remains to be ascertained whether and how nutrients regulate the salinity constraints on MPP abundance and community structure. Here we investigated the impact of nutrients on salinity constraints on MPP abundance and diversity in undisturbed lakes with a wide salinity range on the Tibetan Plateau. MPP community was explored using quantitative PCR, terminal restriction fragment length polymorphism and sequencing of cloning libraries targeting form IC cbbL gene. The MPP community structure was sorted by salinity into freshwater (salinity<1‰), saline (1‰ < salinity<29‰) and hypersaline (salinity>29‰) lakes. Furthermore, while MPP abundance, diversity and richness were significantly constrained with increasing salinity, these constraints were mitigated by enhancing total organic carbon (TOC) and total nitrogen (TN) contents in freshwater and saline lakes. In contrast, the MPP diversity increased significantly with the salinity in hypersaline lakes, due to the mitigation of enhancing TOC and TN contents and salt-tolerant MPP taxa. The mitigating effect of nutrients was more pronounced in saline than in freshwater and hypersaline lakes. The MPP compositions varied along salinity, with Betaproteobacteria dominating both the freshwater and saline lakes and Gammaproteobacteria dominating the hypersaline lakes. We concluded that high nutrients could mitigate the salinity constraining effects on MPP abundance, community richness and diversity. Our findings offer a novel insight into the salinity effects on primary producers and highlight the interactive effects of salinity and nutrients on MPP in lakes. These findings can be used as a baseline to illuminate the effects of increased anthropogenic activities altering nutrient dynamics on the global hydrological cycle and the subsequent responses thereof by MPP communities.
Collapse
Affiliation(s)
- Linyan Yue
- Key Laboratory of Alpine Ecology (LAE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Weidong Kong
- Key Laboratory of Alpine Ecology (LAE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101, China.
| | - Mukan Ji
- Key Laboratory of Alpine Ecology (LAE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences (CAS), Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinbo Liu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | | |
Collapse
|
13
|
Vavourakis CD, Mehrshad M, Balkema C, van Hall R, Andrei AŞ, Ghai R, Sorokin DY, Muyzer G. Metagenomes and metatranscriptomes shed new light on the microbial-mediated sulfur cycle in a Siberian soda lake. BMC Biol 2019; 17:69. [PMID: 31438955 PMCID: PMC6704655 DOI: 10.1186/s12915-019-0688-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 08/09/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The planetary sulfur cycle is a complex web of chemical reactions that can be microbial-mediated or can occur spontaneously in the environment, depending on the temperature and pH. Inorganic sulfur compounds can serve as energy sources for specialized prokaryotes and are important substrates for microbial growth in general. Here, we investigate dissimilatory sulfur cycling in the brine and sediments of a southwestern Siberian soda lake characterized by an extremely high pH and salinity, combining meta-omics analyses of its uniquely adapted highly diverse prokaryote communities with biogeochemical profiling to identify key microbial players and expand our understanding of sulfur cycling under haloalkaline conditions. RESULTS Peak microbial activity was found in the top 4 cm of the sediments, a layer with a steep drop in oxygen concentration and redox potential. The majority of sulfur was present as sulfate or iron sulfide. Thiosulfate was readily oxidized by microbes in the presence of oxygen, but oxidation was partially inhibited by light. We obtained 1032 metagenome-assembled genomes, including novel population genomes of characterized colorless sulfur-oxidizing bacteria (SOB), anoxygenic purple sulfur bacteria, heterotrophic SOB, and highly active lithoautotrophic sulfate reducers. Surprisingly, we discovered the potential for nitrogen fixation in a new genus of colorless SOB, carbon fixation in a new species of phototrophic Gemmatimonadetes, and elemental sulfur/sulfite reduction in the "Candidatus Woesearchaeota." Polysulfide/thiosulfate and tetrathionate reductases were actively transcribed by various (facultative) anaerobes. CONCLUSIONS The recovery of over 200 genomes that encoded enzymes capable of catalyzing key reactions in the inorganic sulfur cycle indicates complete cycling between sulfate and sulfide at moderately hypersaline and extreme alkaline conditions. Our results suggest that more taxonomic groups are involved in sulfur dissimilation than previously assumed.
Collapse
Affiliation(s)
- Charlotte D Vavourakis
- Microbial Systems Ecology, Department of Freshwater and Marine Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, the Netherlands
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Cherel Balkema
- Microbial Systems Ecology, Department of Freshwater and Marine Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, the Netherlands
| | - Rutger van Hall
- Department of Ecosystem & Landscape Dynamics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic
| | - Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russian Federation
- Department of Biotechnology, Environmental Biotechnology, Delft University of Technology, Delft, the Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, the Netherlands.
| |
Collapse
|
14
|
Gomri MA, El Moulouk Khaldi T, Kharroub K. Analysis of the diversity of aerobic, thermophilic endospore-forming bacteria in two Algerian hot springs using cultural and non-cultural methods. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1401-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
15
|
Vavourakis CD, Andrei AS, Mehrshad M, Ghai R, Sorokin DY, Muyzer G. A metagenomics roadmap to the uncultured genome diversity in hypersaline soda lake sediments. MICROBIOME 2018; 6:168. [PMID: 30231921 PMCID: PMC6146748 DOI: 10.1186/s40168-018-0548-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 09/03/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND Hypersaline soda lakes are characterized by extreme high soluble carbonate alkalinity. Despite the high pH and salt content, highly diverse microbial communities are known to be present in soda lake brines but the microbiome of soda lake sediments received much less attention of microbiologists. Here, we performed metagenomic sequencing on soda lake sediments to give the first extensive overview of the taxonomic diversity found in these complex, extreme environments and to gain novel physiological insights into the most abundant, uncultured prokaryote lineages. RESULTS We sequenced five metagenomes obtained from four surface sediments of Siberian soda lakes with a pH 10 and a salt content between 70 and 400 g L-1. The recovered 16S rRNA gene sequences were mostly from Bacteria, even in the salt-saturated lakes. Most OTUs were assigned to uncultured families. We reconstructed 871 metagenome-assembled genomes (MAGs) spanning more than 45 phyla and discovered the first extremophilic members of the Candidate Phyla Radiation (CPR). Five new species of CPR were among the most dominant community members. Novel dominant lineages were found within previously well-characterized functional groups involved in carbon, sulfur, and nitrogen cycling. Moreover, key enzymes of the Wood-Ljungdahl pathway were encoded within at least four bacterial phyla never previously associated with this ancient anaerobic pathway for carbon fixation and dissimilation, including the Actinobacteria. CONCLUSIONS Our first sequencing effort of hypersaline soda lake sediment metagenomes led to two important advances. First, we showed the existence and obtained the first genomes of haloalkaliphilic members of the CPR and several hundred other novel prokaryote lineages. The soda lake CPR is a functionally diverse group, but the most abundant organisms in this study are likely fermenters with a possible role in primary carbon degradation. Second, we found evidence for the presence of the Wood-Ljungdahl pathway in many more taxonomic groups than those encompassing known homo-acetogens, sulfate-reducers, and methanogens. Since only few environmental metagenomics studies have targeted sediment microbial communities and never to this extent, we expect that our findings are relevant not only for the understanding of haloalkaline environments but can also be used to set targets for future studies on marine and freshwater sediments.
Collapse
Affiliation(s)
- Charlotte D. Vavourakis
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Postbus 94248, 1090 GE Amsterdam, the Netherlands
| | - Adrian-Stefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sadkach 7, 370 05 Ceske Budejovice, Czech Republic
| | - Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, 60 let Oktyabrya pr-t, 7, bld. 2, Moscow, Russian Federation 117312
- Environmental Biotechnology, Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, the Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, Faculty of Science, University of Amsterdam, Postbus 94248, 1090 GE Amsterdam, the Netherlands
| |
Collapse
|
16
|
Li Y, Kong Y, Teng D, Zhang X, He X, Zhang Y, Lv G. Rhizobacterial communities of five co-occurring desert halophytes. PeerJ 2018; 6:e5508. [PMID: 30186688 PMCID: PMC6119601 DOI: 10.7717/peerj.5508] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 08/02/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Recently, researches have begun to investigate the microbial communities associated with halophytes. Both rhizobacterial community composition and the environmental drivers of community assembly have been addressed. However, few studies have explored the structure of rhizobacterial communities associated with halophytic plants that are co-occurring in arid, salinized areas. METHODS Five halophytes were selected for study: these co-occurred in saline soils in the Ebinur Lake Nature Reserve, located at the western margin of the Gurbantunggut Desert of Northwestern China. Halophyte-associated bacterial communities were sampled, and the bacterial 16S rDNA V3-V4 region amplified and sequenced using the Illumina Miseq platform. The bacterial community diversity and structure were compared between the rhizosphere and bulk soils, as well as among the rhizosphere samples. The effects of plant species identity and soil properties on the bacterial communities were also analyzed. RESULTS Significant differences were observed between the rhizosphere and bulk soil bacterial communities. Diversity was higher in the rhizosphere than in the bulk soils. Abundant taxonomic groups (from phylum to genus) in the rhizosphere were much more diverse than in bulk soils. Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Planctomycetes were the most abundant phyla in the rhizosphere, while Proteobacteria and Firmicutes were common in bulk soils. Overall, the bacterial community composition were not significantly differentiated between the bulk soils of the five plants, but community diversity and structure differed significantly in the rhizosphere. The diversity of Halostachys caspica, Halocnemum strobilaceum and Kalidium foliatum associated bacterial communities was lower than that of Limonium gmelinii and Lycium ruthenicum communities. Furthermore, the composition of the bacterial communities of Halostachys caspica and Halocnemum strobilaceum was very different from those of Limonium gmelinii and Lycium ruthenicum. The diversity and community structure were influenced by soil EC, pH and nutrient content (TOC, SOM, TON and AP); of these, the effects of EC on bacterial community composition were less important than those of soil nutrients. DISCUSSION Halophytic plant species played an important role in shaping associated rhizosphere bacterial communities. When salinity levels were constant, soil nutrients emerged as key factors structuring bacterial communities, while EC played only a minor role. Pairwise differences among the rhizobacterial communities associated with different plant species were not significant, despite some evidence of differentiation. Further studies involving more halophyte species, and individuals per species, are necessary to elucidate plant species identity effects on the rhizosphere for co-occurring halophytes.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang, China
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
- Ecology Post-doctoral Research Station, Xinjiang University, Urumqi, Xinjiang, China
| | - Yan Kong
- School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, China
- SJTU-Yale Joint Center for Biostistics, Shanghai Jiaotong University, Shanghai, China
| | - Dexiong Teng
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
| | - Xueni Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang, China
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
| | - Xuemin He
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang, China
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
| | - Yang Zhang
- College of Resource and Environment Sciences, Xinjiang University, Urumqi, Xinjiang, China
| | - Guanghui Lv
- Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, Xinjiang, China
- Institute of Arid Ecology and Environment, Xinjiang University, Urumqi, Xinjiang, China
| |
Collapse
|
17
|
Namsaraev ZB. Microbial Communities of the Central Asian Lakes as Indicators of Climatic and Ecological Changes in the Region. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718040148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
18
|
Iwaoka C, Imada S, Taniguchi T, Du S, Yamanaka N, Tateno R. The Impacts of Soil Fertility and Salinity on Soil Nitrogen Dynamics Mediated by the Soil Microbial Community Beneath the Halophytic Shrub Tamarisk. MICROBIAL ECOLOGY 2018; 75:985-996. [PMID: 29032430 DOI: 10.1007/s00248-017-1090-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 10/09/2017] [Indexed: 06/07/2023]
Abstract
Nitrogen (N) is one of the most common limiting nutrients for primary production in terrestrial ecosystems. Soil microbes transform organic N into inorganic N, which is available to plants, but soil microbe activity in drylands is sometimes critically suppressed by environmental factors, such as low soil substrate availability or high salinity. Tamarisk (Tamarix spp.) is a halophytic shrub species that is widely distributed in the drylands of China; it produces litter enriched in nutrients and salts that are thought to increase soil fertility and salinity under its crown. To elucidate the effects of tamarisks on the soil microbial community, and thus N dynamics, by creating "islands of fertility" and "islands of salinity," we collected soil samples from under tamarisk crowns and adjacent barren areas at three habitats in the summer and fall. We analyzed soil physicochemical properties, inorganic N dynamics, and prokaryotic community abundance and composition. In soils sampled beneath tamarisks, the N mineralization rate was significantly higher, and the prokaryotic community structure was significantly different, from soils sampled in barren areas, irrespective of site and season. Tamarisks provided suitable nutrient conditions for one of the important decomposers in the area, Verrucomicrobia, by creating "islands of fertility," but provided unsuitable salinity conditions for other important decomposers, Flavobacteria, Gammaproteobacteria, and Deltaproteobacteria, by mitigating salt accumulation. However, the quantity of these decomposers tended to be higher beneath tamarisks, because they were relatively unaffected by the small salinity gradient created by the tamarisks, which may explain the higher N mineralization rate beneath tamarisks.
Collapse
Affiliation(s)
- Chikae Iwaoka
- Graduate School of Agriculture, Kyoto University, Oiwake, Kitashirakawa, Sakyo, Kyoto, 606-8502, Japan.
| | - Shogo Imada
- Field Science Education and Research Center, Kyoto University, Kyoto, 606-8502, Japan
- Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho, Kamikita, Aomori, 039-3212, Japan
| | - Takeshi Taniguchi
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan
| | - Sheng Du
- State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences, Yangling, Shaanxi, 712100, China
| | - Norikazu Yamanaka
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan
| | - Ryunosuke Tateno
- Field Science Education and Research Center, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
19
|
Effect of salinity on diazotrophic activity and microbial composition of phototrophic communities from Bitter-1 soda lake (Kulunda Steppe, Russia). Extremophiles 2018; 22:651-663. [DOI: 10.1007/s00792-018-1026-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 04/06/2018] [Indexed: 11/25/2022]
|
20
|
Edwardson CF, Hollibaugh JT. Composition and Activity of Microbial Communities along the Redox Gradient of an Alkaline, Hypersaline, Lake. Front Microbiol 2018; 9:14. [PMID: 29445359 PMCID: PMC5797777 DOI: 10.3389/fmicb.2018.00014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/05/2018] [Indexed: 11/21/2022] Open
Abstract
We compared the composition of microbial communities obtained by sequencing 16S rRNA gene amplicons with taxonomy derived from metatranscriptomes from the same samples. Samples were collected from alkaline, hypersaline Mono Lake, California, USA at five depths that captured the major redox zones of the lake during the onset of meromixis. The prokaryotic community was dominated by bacteria from the phyla Proteobacteria, Firmicutes, and Bacteroidetes, while the picoeukaryotic chlorophyte Picocystis dominated the eukaryotes. Most (80%) of the abundant (>1% relative abundance) OTUs recovered as amplicons of 16S rRNA genes have been reported in previous surveys, indicating that Mono Lake's microbial community has remained stable over 12 years that have included periods of regular, annual overturn interspersed by episodes of prolonged meromixis that result in extremely reducing conditions in bottom water. Metatranscriptomic sequences binned predominately to the Gammaproteobacteria genera Thioalkalivibrio (4–13%) and Thioalkalimicrobium (0–14%); and to the Firmicutes genera Dethiobacter (0–5%) and Clostridium (1–4%), which were also abundant in the 16S rRNA gene amplicon libraries. This study provides insight into the taxonomic affiliations of transcriptionally active communities of the lake's water column under different redox conditions.
Collapse
Affiliation(s)
- Christian F Edwardson
- Department of Marine Sciences, University of Georgia, Athens, GA, United States.,Department of Microbiology, University of Georgia, Athens, GA, United States
| | - James T Hollibaugh
- Department of Marine Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
21
|
Bhatt HB, Gohel SD, Singh SP. Phylogeny, novel bacterial lineage and enzymatic potential of haloalkaliphilic bacteria from the saline coastal desert of Little Rann of Kutch, Gujarat, India. 3 Biotech 2018; 8:53. [PMID: 29354364 DOI: 10.1007/s13205-017-1075-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/26/2017] [Indexed: 12/28/2022] Open
Abstract
This report describes cultivation-dependent diversity, phylogeny and enzymatic potential of the haloalkaliphilic bacteria isolated from the unvegetated desert soil of yet unexplored, saline desert of Little Rann of Kutch (LRK), India. The LRK is a unique ecosystem displaying a combination of Dry Rann and Wet Rann. A total of 25 bacteria were isolated and characterized on the basis of colony morphology, biochemical profile, sugar utilization, secretion of the extracellular enzymes and antibiotic sensitivity. Further, the identification and phylogenetic relatedness of 23 bacteria were established by the analysis of 16S rRNA gene sequences. The phylogenetic analysis indicated that the isolates belong to the phylum Firmicutes, comprising low G + C, Gram-positive bacteria, with different genera: Bacillus (~ 39%), Staphylococcus (~ 30%), Halobacillus (~ 13%), Virgibacillus (~ 13%), Oceanobacillus (~ 4%). Majority of the bacterial isolates produced proteases (30% isolates) followed by cellulases (24% isolates), CMCases (24% isolates) and amylases (20% isolates). Halobacillus, Virgibacillus and Bacillus predominantly produced hydrolases, while many produced multiple enzymes at high salinity and alkaline pH. Highest antibiotic resistance was observed against Ampicillin and Penicillin (32%) followed by Cefaclor (20%); Colistin, Cefoperazone and Cefotaxime (16%); Cefuroxime (12%); Gentamycin and Cefixime (8%); Erythromycin, Cefadroxil, Azithromycin, Co-trimoxazole, Amoxycillin, Norfloxacin, Cefpodoxime, Amikacin and Augmentin (4%). KJ1-10-99 and KJ1-10-93 representing < 97% of 16S rRNA gene sequence similarity belong to a novel lineage within the family Bacillaceae. Comparison of the phenogram and phylogram revealed the contradiction of the phenogram pattern and the phylogenetic placement of the isolates. The isolates belonging to same species have shown considerable phenotypic variation. The study on the cultivable haloalkaliphilic bacteria of an unexplored enigmatic niche reflects ecological and biotechnological significance.
Collapse
Affiliation(s)
- Hitarth B Bhatt
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, Gujarat 360005 India
| | - Sangeeta D Gohel
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, Gujarat 360005 India
| | - Satya P Singh
- UGC-CAS Department of Biosciences, Saurashtra University, Rajkot, Gujarat 360005 India
| |
Collapse
|
22
|
Mora-Ruiz MDR, Cifuentes A, Font-Verdera F, Pérez-Fernández C, Farias ME, González B, Orfila A, Rosselló-Móra R. Biogeographical patterns of bacterial and archaeal communities from distant hypersaline environments. Syst Appl Microbiol 2017; 41:139-150. [PMID: 29352612 DOI: 10.1016/j.syapm.2017.10.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/22/2017] [Accepted: 10/23/2017] [Indexed: 01/21/2023]
Abstract
Microorganisms are globally distributed but new evidence shows that the microbial structure of their communities can vary due to geographical location and environmental parameters. In this study, 50 samples including brines and sediments from Europe, Spanish-Atlantic and South America were analysed by applying the operational phylogenetic unit (OPU) approach in order to understand whether microbial community structures in hypersaline environments exhibited biogeographical patterns. The fine-tuned identification of approximately 1000 OPUs (almost equivalent to "species") using multivariate analysis revealed regionally distinct taxa compositions. This segregation was more diffuse at the genus level and pointed to a phylogenetic and metabolic redundancy at the higher taxa level, where their different species acquired distinct advantages related to the regional physicochemical idiosyncrasies. The presence of previously undescribed groups was also shown in these environments, such as Parcubacteria, or members of Nanohaloarchaeota in anaerobic hypersaline sediments. Finally, an important OPU overlap was observed between anoxic sediments and their overlaying brines, indicating versatile metabolism for the pelagic organisms.
Collapse
Affiliation(s)
- M Del R Mora-Ruiz
- Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Spain.
| | - A Cifuentes
- Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Spain
| | - F Font-Verdera
- Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Spain
| | - C Pérez-Fernández
- Environmental Microbiology Laboratory, Puerto Rico University, Rio Piedras campus, Puerto Rico
| | - M E Farias
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas (LIMLA), Planta Piloto de Procesos Industriales Microbiológicos (PROIMI), CCT, CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | - B González
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez - Center of Applied Ecology and Sustainability, Santiago, Chile
| | - A Orfila
- Marine Technology and Operational Oceanography Department, IMEDEA (CSIC-UIB), Esporles, Spain
| | - R Rosselló-Móra
- Department of Ecology and Marine Resources, Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), Spain
| |
Collapse
|
23
|
Salinity shapes microbial diversity and community structure in surface sediments of the Qinghai-Tibetan Lakes. Sci Rep 2016; 6:25078. [PMID: 27113678 PMCID: PMC4844989 DOI: 10.1038/srep25078] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/11/2016] [Indexed: 12/03/2022] Open
Abstract
Investigating microbial response to environmental variables is of great importance for understanding of microbial acclimatization and evolution in natural environments. However, little is known about how microbial communities responded to environmental factors (e.g. salinity, geographic distance) in lake surface sediments of the Qinghai-Tibetan Plateau (QTP). In this study, microbial diversity and community structure in the surface sediments of nine lakes on the QTP were investigated by using the Illumina Miseq sequencing technique and the resulting microbial data were statistically analyzed in combination with environmental variables. The results showed total microbial community of the studied lakes was significantly correlated (r = 0.631, P < 0.001) with lake salinity instead of geographic distance. This suggests that lake salinity is more important than geographic distance in shaping the microbial diversity and community structure in the studied samples. In addition, the abundant and rare taxa (OTUs with relative abundance higher than 1% and lower than 0.01% within one sample, respectively) were significantly (P < 0.05) correlated (r = 0.427 and 0.783, respectively) with salinity, suggesting rare taxa might be more sensitive to salinity than their abundant counterparts, thus cautions should be taken in future when evaluating microbial response (abundant vs. rare sub-communities) to environmental conditions.
Collapse
|
24
|
Vavourakis CD, Ghai R, Rodriguez-Valera F, Sorokin DY, Tringe SG, Hugenholtz P, Muyzer G. Metagenomic Insights into the Uncultured Diversity and Physiology of Microbes in Four Hypersaline Soda Lake Brines. Front Microbiol 2016; 7:211. [PMID: 26941731 PMCID: PMC4766312 DOI: 10.3389/fmicb.2016.00211] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 02/08/2016] [Indexed: 11/13/2022] Open
Abstract
Soda lakes are salt lakes with a naturally alkaline pH due to evaporative concentration of sodium carbonates in the absence of major divalent cations. Hypersaline soda brines harbor microbial communities with a high species- and strain-level archaeal diversity and a large proportion of still uncultured poly-extremophiles compared to neutral brines of similar salinities. We present the first "metagenomic snapshots" of microbial communities thriving in the brines of four shallow soda lakes from the Kulunda Steppe (Altai, Russia) covering a salinity range from 170 to 400 g/L. Both amplicon sequencing of 16S rRNA fragments and direct metagenomic sequencing showed that the top-level taxa abundance was linked to the ambient salinity: Bacteroidetes, Alpha-, and Gamma-proteobacteria were dominant below a salinity of 250 g/L, Euryarchaeota at higher salinities. Within these taxa, amplicon sequences related to Halorubrum, Natrinema, Gracilimonas, purple non-sulfur bacteria (Rhizobiales, Rhodobacter, and Rhodobaca) and chemolithotrophic sulfur oxidizers (Thioalkalivibrio) were highly abundant. Twenty-four draft population genomes from novel members and ecotypes within the Nanohaloarchaea, Halobacteria, and Bacteroidetes were reconstructed to explore their metabolic features, environmental abundance and strategies for osmotic adaptation. The Halobacteria- and Bacteroidetes-related draft genomes belong to putative aerobic heterotrophs, likely with the capacity to ferment sugars in the absence of oxygen. Members from both taxonomic groups are likely involved in primary organic carbon degradation, since some of the reconstructed genomes encode the ability to hydrolyze recalcitrant substrates, such as cellulose and chitin. Putative sodium-pumping rhodopsins were found in both a Flavobacteriaceae- and a Chitinophagaceae-related draft genome. The predicted proteomes of both the latter and a Rhodothermaceae-related draft genome were indicative of a "salt-in" strategy of osmotic adaptation. The primary catabolic and respiratory pathways shared among all available reference genomes of Nanohaloarchaea and our novel genome reconstructions remain incomplete, but point to a primarily fermentative lifestyle. Encoded xenorhodopsins found in most drafts suggest that light plays an important role in the ecology of Nanohaloarchaea. Putative encoded halolysins and laccase-like oxidases might indicate the potential for extracellular degradation of proteins and peptides, and phenolic or aromatic compounds.
Collapse
Affiliation(s)
- Charlotte D. Vavourakis
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| | - Rohit Ghai
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel HernándezSan Juan de Alicante, Spain
- Department of Aquatic Microbial Ecology, Biology Centre of the Czech Academy of Sciences, Institute of HydrobiologyČeské Budějovice, Czech Republic
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel HernándezSan Juan de Alicante, Spain
| | - Dimitry Y. Sorokin
- Research Centre of Biotechnology, Winogradsky Institute of Microbiology, Russian Academy of SciencesMoscow, Russia
- Department of Biotechnology, Delft University of TechnologyDelft, Netherlands
| | | | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences and Institute for Molecular Bioscience, The University of QueenslandBrisbane, QLD, Australia
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
25
|
Zhong ZP, Liu Y, Miao LL, Wang F, Chu LM, Wang JL, Liu ZP. Prokaryotic Community Structure Driven by Salinity and Ionic Concentrations in Plateau Lakes of the Tibetan Plateau. Appl Environ Microbiol 2016; 82:1846-1858. [PMID: 26746713 PMCID: PMC4784034 DOI: 10.1128/aem.03332-15] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 12/31/2015] [Indexed: 02/06/2023] Open
Abstract
The prokaryotic community composition and diversity and the distribution patterns at various taxonomic levels across gradients of salinity and physiochemical properties in the surface waters of seven plateau lakes in the Qaidam Basin, Tibetan Plateau, were evaluated using Illumina MiSeq sequencing. These lakes included Lakes Keluke (salinity, <1 g/liter), Qing (salinity, 5.5 to 6.6 g/liter), Tuosu (salinity, 24 to 35 g/liter), Dasugan (salinity, 30 to 33 g/liter), Gahai (salinity, 92 to 96 g/liter), Xiaochaidan (salinity, 94 to 99 g/liter), and Gasikule (salinity, 317 to 344 g/liter). The communities were dominated by Bacteria in lakes with salinities of <100 g/liter and by Archaea in Lake Gasikule. The clades At12OctB3 and Salinibacter, previously reported only in hypersaline environments, were found in a hyposaline lake (salinity, 5.5 to 6.6 g/liter) at an abundance of ∼1.0%, indicating their ecological plasticity. Salinity and the concentrations of the chemical ions whose concentrations covary with salinity (Mg(2+), K(+), Cl(-), Na(+), SO4 (2-), and Ca(2+)) were found to be the primary environmental factors that directly or indirectly determined the composition and diversity at the level of individual clades as well as entire prokaryotic communities. The distribution patterns of two phyla, five classes, five orders, five families, and three genera were well predicted by salinity. The variation of the prokaryotic community structure also significantly correlated with the dissolved oxygen concentration, pH, the total nitrogen concentration, and the PO4 (3-) concentration. Such correlations varied depending on the taxonomic level, demonstrating the importance of comprehensive correlation analyses at various taxonomic levels in evaluating the effects of environmental variable factors on prokaryotic community structures. Our findings clarify the distribution patterns of the prokaryotic community composition in plateau lakes at the levels of individual clades as well as whole communities along gradients of salinity and ionic concentrations.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ying Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Li-Li Miao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Fang Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, People's Republic of China
| | - Li-Min Chu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, People's Republic of China
| | - Jia-Li Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, People's Republic of China
- Institute of Shandong River Wetlands, Laiwu, People's Republic of China
| | - Zhi-Pei Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
26
|
Abdallah MB, Karray F, Mhiri N, Mei N, Quéméneur M, Cayol JL, Erauso G, Tholozan JL, Alazard D, Sayadi S. Prokaryotic diversity in a Tunisian hypersaline lake, Chott El Jerid. Extremophiles 2016; 20:125-38. [PMID: 26724953 DOI: 10.1007/s00792-015-0805-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/06/2015] [Indexed: 11/30/2022]
Abstract
Prokaryotic diversity was investigated in a Tunisian salt lake, Chott El Jerid, by quantitative real-time PCR, denaturing gradient gel electrophoresis (DGGE) fingerprinting methods targeting the 16S rRNA gene and culture-dependent methods. Two different samples S1-10 and S2-10 were taken from under the salt crust of Chott El Jerid in the dry season. DGGE analysis revealed that bacterial sequences were related to Firmicutes, Proteobacteria, unclassified bacteria, and Deinococcus-Thermus phyla. Anaerobic fermentative and sulfate-reducing bacteria were also detected in this ecosystem. Within the domain archaea, all sequences were affiliated to Euryarchaeota phylum. Quantitative real-time PCR showed that 16S rRNA gene copy numbers of bacteria was 5 × 10(6) DNA copies g(-1) whereas archaea varied between 5 × 10(5) and 10(6) DNA copies g(-1) in these samples. Eight anaerobic halophilic fermentative bacterial strains were isolated and affiliated with the species Halanaerobium alcaliphilum, Halanaerobium saccharolyticum, and Sporohalobacter salinus. These data showed an abundant and diverse microbial community detected in the hypersaline thalassohaline environment of Chott El Jerid.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Route Sidi Mansour, km 6, BP 1177, 3018, Sfax, Tunisia.,IRD, University of Aix-Marseille, University of Toulon, CNRS, MIO, UM 110, 13288, Marseille Cedex 09, France
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Route Sidi Mansour, km 6, BP 1177, 3018, Sfax, Tunisia. .,Laboratoire Mixte International « Contaminants et Ecosystèmes Marins Sud Méditerranéens » (LMI COSYS-Med), Sfax, Tunisia.
| | - Najla Mhiri
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Route Sidi Mansour, km 6, BP 1177, 3018, Sfax, Tunisia.,Laboratoire Mixte International « Contaminants et Ecosystèmes Marins Sud Méditerranéens » (LMI COSYS-Med), Sfax, Tunisia
| | - Nan Mei
- IRD, University of Aix-Marseille, University of Toulon, CNRS, MIO, UM 110, 13288, Marseille Cedex 09, France
| | - Marianne Quéméneur
- IRD, University of Aix-Marseille, University of Toulon, CNRS, MIO, UM 110, 13288, Marseille Cedex 09, France
| | - Jean-Luc Cayol
- IRD, University of Aix-Marseille, University of Toulon, CNRS, MIO, UM 110, 13288, Marseille Cedex 09, France
| | - Gaël Erauso
- IRD, University of Aix-Marseille, University of Toulon, CNRS, MIO, UM 110, 13288, Marseille Cedex 09, France.,Laboratoire Mixte International « Contaminants et Ecosystèmes Marins Sud Méditerranéens » (LMI COSYS-Med), Sfax, Tunisia
| | - Jean-Luc Tholozan
- IRD, University of Aix-Marseille, University of Toulon, CNRS, MIO, UM 110, 13288, Marseille Cedex 09, France
| | - Didier Alazard
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Route Sidi Mansour, km 6, BP 1177, 3018, Sfax, Tunisia.,IRD, University of Aix-Marseille, University of Toulon, CNRS, MIO, UM 110, 13288, Marseille Cedex 09, France
| | - Sami Sayadi
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Route Sidi Mansour, km 6, BP 1177, 3018, Sfax, Tunisia.,Laboratoire Mixte International « Contaminants et Ecosystèmes Marins Sud Méditerranéens » (LMI COSYS-Med), Sfax, Tunisia
| |
Collapse
|
27
|
Aguirre-Garrido JF, Ramírez-Saad HC, Toro N, Martínez-Abarca F. Bacterial Diversity in the Soda Saline Crater Lake from Isabel Island, Mexico. MICROBIAL ECOLOGY 2016; 71:68-77. [PMID: 26391805 DOI: 10.1007/s00248-015-0676-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
Isabel Lake is a moderate saline soda crater lake located in Isabel Island in the eastern tropical Pacific coast of Mexico. Lake is mainly formed by rainfall and is strongly affected by evaporation and high input of nutrients derived from excretions of a large bird community inhabiting the island. So far, only the island macrobiota has been studied. The knowledge of the prokaryotic biota inhabiting the upper layers of this meromictic lake can give clues for the maintenance of this ecosystem. We assessed the diversity and composition of prokaryotic community in sediments and water of the lake by DGGE profiling, 16S rRNA gene amplicon pyrosequencing, and cultivation techniques. The bacterial community is largely dominated by halophilic and halotolerant microorganisms. Alpha diversity estimations reveal higher value in sediments than in water (P > 0.005). The lake water is dominated by γ-Proteobacteria belonging to four main families where Halomonadaceae presents the highest abundance. Aerobic, phototrophic, and halotolerant prokaryotes such as Cyanobacteria GPIIa, Halomonas, Alcanivorax, Idiomarina, and Cyclobacterium genera are commonly found. However, in sediment samples, Formosa, Muricauda, and Salegentibacter genera corresponding to Flavobacteriaceae family accounted for 15-20 % of the diversity. Heterotrophs like those involved in sulfur cycle, Desulfotignum, Desulfuromonas, Desulfofustis, and Desulfopila, appear to play an important role in sediments. Finally, a collection of aerobic halophilic bacterial isolates was created from these samples; members of the genus Halomonas were predominantly isolated from lake water. This study contributes to state the bacterial diversity present in this particular soda saline crater lake.
Collapse
Affiliation(s)
- José Félix Aguirre-Garrido
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008, Granada, Spain
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calz. del Hueso 1110, CP 14310, DF México, Mexico
| | - Hugo César Ramírez-Saad
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana, Unidad Xochimilco, Calz. del Hueso 1110, CP 14310, DF México, Mexico
| | - Nicolás Toro
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008, Granada, Spain
| | - Francisco Martínez-Abarca
- Grupo de Ecología Genética, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, 18008, Granada, Spain.
| |
Collapse
|
28
|
Santini TC, Kerr JL, Warren LA. Microbially-driven strategies for bioremediation of bauxite residue. JOURNAL OF HAZARDOUS MATERIALS 2015; 293:131-157. [PMID: 25867516 DOI: 10.1016/j.jhazmat.2015.03.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/12/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
Globally, 3 Gt of bauxite residue is currently in storage, with an additional 120 Mt generated every year. Bauxite residue is an alkaline, saline, sodic, massive, and fine grained material with little organic carbon or plant nutrients. To date, remediation of bauxite residue has focused on the use of chemical and physical amendments to address high pH, high salinity, and poor drainage and aeration. No studies to date have evaluated the potential for microbial communities to contribute to remediation as part of a combined approach integrating chemical, physical, and biological amendments. This review considers natural alkaline, saline environments that present similar challenges for microbial survival and evaluates candidate microorganisms that are both adapted for survival in these environments and have the capacity to carry out beneficial metabolisms in bauxite residue. Fermentation, sulfur oxidation, and extracellular polymeric substance production emerge as promising pathways for bioremediation whether employed individually or in combination. A combination of bioaugmentation (addition of inocula from other alkaline, saline environments) and biostimulation (addition of nutrients to promote microbial growth and activity) of the native community in bauxite residue is recommended as the approach most likely to be successful in promoting bioremediation of bauxite residue.
Collapse
Affiliation(s)
- Talitha C Santini
- Centre for Mined Land Rehabilitation, Sir James Foots Building, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Geography, Planning, and Environmental Management, Steele Building, The University of Queensland, St. Lucia, QLD 4072, Australia; School of Earth and Environment, The University of Western Australia, 35 Stirling Hwy Crawley, WA 6009, Australia.
| | - Janice L Kerr
- Centre for Mined Land Rehabilitation, Sir James Foots Building, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Lesley A Warren
- School of Geography and Earth Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
29
|
Nolla-Ardèvol V, Strous M, Tegetmeyer HE. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome. Front Microbiol 2015; 6:597. [PMID: 26157422 PMCID: PMC4475827 DOI: 10.3389/fmicb.2015.00597] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/31/2015] [Indexed: 12/02/2022] Open
Abstract
A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na(+)). Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g Spirulina L(-1) day(-1) organic loading rate (OLR) were identified as the optimal operational parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the "ML635J-40 aquatic group" while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus.
Collapse
Affiliation(s)
- Vímac Nolla-Ardèvol
- Institute for Genome Research and Systems Biology, Center for Biotechnology, University of BielefeldBielefeld, Germany
| | - Marc Strous
- Institute for Genome Research and Systems Biology, Center for Biotechnology, University of BielefeldBielefeld, Germany
- Department of Geoscience, University of CalgaryCalgary, AB, Canada
- Microbial Fitness Group, Max Planck Institute for Marine MicrobiologyBremen, Germany
| | - Halina E. Tegetmeyer
- Institute for Genome Research and Systems Biology, Center for Biotechnology, University of BielefeldBielefeld, Germany
- Microbial Fitness Group, Max Planck Institute for Marine MicrobiologyBremen, Germany
- HGF-MPG Group for Deep Sea Ecology and Technology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine ResearchBremerhaven, Germany
| |
Collapse
|
30
|
Sorokin DY, Chernyh NA, Poroshina MN. Desulfonatronobacter acetoxydans sp. nov.,: a first acetate-oxidizing, extremely salt-tolerant alkaliphilic SRB from a hypersaline soda lake. Extremophiles 2015; 19:899-907. [PMID: 26085472 PMCID: PMC4546703 DOI: 10.1007/s00792-015-0765-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/26/2015] [Indexed: 11/27/2022]
Abstract
Recent intensive microbiological investigation of sulfidogenesis in soda lakes did not result in isolation of any pure cultures of sulfate-reducing bacteria (SRB) able to directly oxidize acetate. The sulfate-dependent acetate oxidation at haloalkaline conditions has, so far, been only shown in two syntrophic associations of novel Syntrophobacteraceae members and haloalkaliphilic hydrogenotrophic SRB. In the course of investigation of one of them, obtained from a hypersaline soda lake in South-Western Siberia, a minor component was observed showing a close relation to Desulfonatronobacter acidivorans--a "complete oxidizing" SRB from soda lakes. This organism became dominant in a secondary enrichment with propionate as e-donor and sulfate as e-acceptor. A pure culture, strain APT3, was identified as a novel member of the family Desulfobacteraceae. It is an extremely salt-tolerant alkaliphile, growing with butyrate at salinity up to 4 M total Na(+) with a pH optimum at 9.5. It can grow with sulfate as e-acceptor with C3-C9 VFA and also with some alcohols. The most interesting property of strain APT3 is its ability to grow with acetate as e-donor, although not with sulfate, but with sulfite or thiosulfate as e-acceptors. The new isolate is proposed as a new species Desulfonatronobacter acetoxydans.
Collapse
Affiliation(s)
- D Y Sorokin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811, Moscow, Russia,
| | | | | |
Collapse
|
31
|
Sorokin DY, Banciu HL, Muyzer G. Functional microbiology of soda lakes. Curr Opin Microbiol 2015; 25:88-96. [PMID: 26025021 DOI: 10.1016/j.mib.2015.05.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
Soda lakes represent unique permanently haloalkaline system. Despite the harsh conditions, they are inhabited by abundant, mostly prokaryotic, microbial communities. This review summarizes results of studies of main functional groups of the soda lake prokaryotes responsible for carbon, nitrogen and sulfur cycling, including oxygenic and anoxygenic phototrophs, aerobic chemolithotrophs, fermenting and respiring anaerobes. The main conclusion from this work is that the soda lakes are very different from other high-salt systems in respect to microbial richness and activity. The reason for this difference is determined by the major physico-chemical features of two dominant salts - NaCl in neutral saline systems and sodium carbonates in soda lakes, that are influencing the amount of energy required for osmotic adaptation.
Collapse
Affiliation(s)
- Dimitry Y Sorokin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow, Russia; Department of Biotechnology, Delft University of Technology, Delft, The Netherlands.
| | - Horia L Banciu
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babeş-Bolyai University, Cluj-Napoca, Romania; Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, Cluj-Napoca, Romania
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Banciu HL, Muntyan MS. Adaptive strategies in the double-extremophilic prokaryotes inhabiting soda lakes. Curr Opin Microbiol 2015; 25:73-9. [PMID: 26025020 DOI: 10.1016/j.mib.2015.05.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/27/2015] [Accepted: 05/01/2015] [Indexed: 10/23/2022]
Abstract
Haloalkaliphiles are double extremophilic organisms thriving both at high salinity and alkaline pH. Although numerous haloalkaliphilic representatives have been identified among Archaea and Bacteria over the past 15 years, the adaptations underlying their prosperity at haloalkaline conditions are scarcely known. A multi-level adaptive strategy was proposed to occur in haloalkaliphilic organisms isolated from saline alkaline and soda environments including adjustments in the cell wall structure, plasma membrane lipid composition, membrane transport systems, bioenergetics, and osmoregulation. Isolation of chemolithoautotrophic sulfur-oxidizing γ-Proteobacteria from soda lakes allowed the elucidation of the structural and physiological differences between haloalkaliphilic (prefer NaCl) and natronophilic (prefer NaHCO3/Na2CO3, i.e. soda) microbes.
Collapse
Affiliation(s)
- Horia Leonard Banciu
- Institute for Interdisciplinary Research in Bio-Nano-Sciences, Molecular Biology Center, Babeş-Bolyai University, 400271 Cluj-Napoca, Romania; Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai University, 400006 Cluj-Napoca, Romania.
| | - Maria S Muntyan
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow 119991, Russia
| |
Collapse
|
33
|
Tourova TP, Grechnikova MA, Kuznetsov BB, Sorokin DY. Phylogenetic diversity of bacteria in soda lake stratified sediments. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714060186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Häusler S, Weber M, Siebert C, Holtappels M, Noriega-Ortega BE, De Beer D, Ionescu D. Sulfate reduction and sulfide oxidation in extremely steep salinity gradients formed by freshwater springs emerging into the Dead Sea. FEMS Microbiol Ecol 2014; 90:956-69. [DOI: 10.1111/1574-6941.12449] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/09/2014] [Accepted: 10/19/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Stefan Häusler
- Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Miriam Weber
- Max Planck Institute for Marine Microbiology; Bremen Germany
- Elba Field Station; HYDRA Institute for Marine Sciences; Elba Italy
| | - Christian Siebert
- Department of Catchment Hydrology; Helmholtz-Center for Environmental Research-UFZ; Halle/Saale Germany
| | | | | | - Dirk De Beer
- Max Planck Institute for Marine Microbiology; Bremen Germany
| | - Danny Ionescu
- Max Planck Institute for Marine Microbiology; Bremen Germany
- Leibniz Institute for Freshwater Ecology and Inland Fisheries; IGB, Dep 3, Experimental Limnology; Stechlin Germany
| |
Collapse
|
35
|
Wang G, Huang X, Ng TB, Lin J, Ye XY. High phylogenetic diversity of glycosyl hydrolase family 10 and 11 xylanases in the sediment of Lake Dabusu in China. PLoS One 2014; 9:e112798. [PMID: 25392912 PMCID: PMC4231106 DOI: 10.1371/journal.pone.0112798] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 10/15/2014] [Indexed: 11/19/2022] Open
Abstract
Soda lakes are one of the most stable naturally occurring alkaline and saline environments, which harbor abundant microorganisms with diverse functions. In this study, culture-independent molecular methods were used to explore the genetic diversity of glycoside hydrolase (GH) family 10 and GH11 xylanases in Lake Dabusu, a soda lake with a pH value of 10.2 and salinity of 10.1%. A total of 671 xylanase gene fragments were obtained, representing 78 distinct GH10 and 28 GH11 gene fragments respectively, with most of them having low homology with known sequences. Phylogenetic analysis revealed that the GH10 xylanase sequences mainly belonged to Bacteroidetes, Proteobacteria, Actinobacteria, Firmicutes and Verrucomicrobia, while the GH11 sequences mainly consisted of Actinobacteria, Firmicutes and Fungi. A full-length GH10 xylanase gene (xynAS10-66) was directly cloned and expressed in Escherichia coli, and the recombinant enzymes showed high activity at alkaline pH. These results suggest that xylanase gene diversity within Lake Dabusu is high and that most of the identified genes might be novel, indicating great potential for applications in industry and agriculture.
Collapse
Affiliation(s)
- Guozeng Wang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, P.R. China
- National Engineering Laboratory for High-efficiency Enzyme Expression, Fuzhou 350002, P. R. China
| | - Xiaoyun Huang
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, P.R. China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Juan Lin
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, P.R. China
- National Engineering Laboratory for High-efficiency Enzyme Expression, Fuzhou 350002, P. R. China
- * E-mail: (JL); (XYY)
| | - Xiu Yun Ye
- College of Biological Science and Technology, Fuzhou University, Fuzhou 350108, P.R. China
- National Engineering Laboratory for High-efficiency Enzyme Expression, Fuzhou 350002, P. R. China
- * E-mail: (JL); (XYY)
| |
Collapse
|
36
|
Zhao B, Yan Y, Chen S. How could haloalkaliphilic microorganisms contribute to biotechnology? Can J Microbiol 2014; 60:717-27. [DOI: 10.1139/cjm-2014-0233] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Haloalkaliphiles are microorganisms requiring Na+concentrations of at least 0.5 mol·L–1and an alkaline pH of 9 for optimal growth. Their unique features enable them to make significant contributions to a wide array of biotechnological applications. Organic compatible solutes produced by haloalkaliphiles, such as ectoine and glycine betaine, are correlated with osmoadaptation and may serve as stabilizers of intracellular proteins, salt antagonists, osmoprotectants, and dermatological moisturizers. Haloalkaliphiles are an important source of secondary metabolites like rhodopsin, polyhydroxyalkanoates, and exopolysaccharides that play essential roles in biogeocycling organic compounds. These microorganisms also can secrete unique exoenzymes, including proteases, amylases, and cellulases, that are highly active and stable in extreme haloalkaline conditions and can be used for the production of laundry detergent. Furthermore, the unique metabolic pathways of haloalkaliphiles can be applied in the biodegradation and (or) biotransformation of a broad range of toxic industrial pollutants and heavy metals, in wastewater treatment, and in the biofuel industry.
Collapse
Affiliation(s)
- Baisuo Zhao
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China
| | - Yanchun Yan
- Graduate School, Chinese Academy of Agricultural Sciences, Beijing 100081, People’s Republic of China
| | - Shulin Chen
- Biological Systems Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
37
|
Tourova TP, Slobodova NV, Bumazhkin BK, Sukhacheva MV, Sorokin DY. Diversity of diazotrophs in the sediments of saline and soda lakes analyzed with the use of the nifH gene as a molecular marker. Microbiology (Reading) 2014. [DOI: 10.1134/s002626171404016x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
38
|
Sorokin DY, Berben T, Melton ED, Overmars L, Vavourakis CD, Muyzer G. Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 2014; 18:791-809. [PMID: 25156418 PMCID: PMC4158274 DOI: 10.1007/s00792-014-0670-9] [Citation(s) in RCA: 169] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 06/26/2014] [Indexed: 01/26/2023]
Abstract
Soda lakes contain high concentrations of sodium carbonates resulting in a stable elevated pH, which provide a unique habitat to a rich diversity of haloalkaliphilic bacteria and archaea. Both cultivation-dependent and -independent methods have aided the identification of key processes and genes in the microbially mediated carbon, nitrogen, and sulfur biogeochemical cycles in soda lakes. In order to survive in this extreme environment, haloalkaliphiles have developed various bioenergetic and structural adaptations to maintain pH homeostasis and intracellular osmotic pressure. The cultivation of a handful of strains has led to the isolation of a number of extremozymes, which allow the cell to perform enzymatic reactions at these extreme conditions. These enzymes potentially contribute to biotechnological applications. In addition, microbial species active in the sulfur cycle can be used for sulfur remediation purposes. Future research should combine both innovative culture methods and state-of-the-art 'meta-omic' techniques to gain a comprehensive understanding of the microbes that flourish in these extreme environments and the processes they mediate. Coupling the biogeochemical C, N, and S cycles and identifying where each process takes place on a spatial and temporal scale could unravel the interspecies relationships and thereby reveal more about the ecosystem dynamics of these enigmatic extreme environments.
Collapse
Affiliation(s)
- Dimitry Y. Sorokin
- Winogradsky Institute of Microbiology, RAS, Moscow, Russia
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands
| | - Tom Berben
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Emily Denise Melton
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Lex Overmars
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte D. Vavourakis
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerard Muyzer
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Andreote APD, Vaz MGMV, Genuário DB, Barbiero L, Rezende-Filho AT, Fiore MF. Nonheterocytous cyanobacteria from Brazilian saline-alkaline lakes. JOURNAL OF PHYCOLOGY 2014; 50:675-684. [PMID: 26988451 DOI: 10.1111/jpy.12192] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 03/10/2014] [Indexed: 06/05/2023]
Abstract
Saline-alkaline lakes are extreme environments that limit the establishment and development of life. The Nhecolândia, a subregion of the Pantanal wetland in Brazil, is characterized by the existence of ~500 saline-alkaline lakes, which support an underexplored and rich diversity of microorganisms. In this study, unicellular and homocytous cyanobacteria from five saline-alkaline lakes were accessed by culture-dependent approaches. Morphological evaluation and analyses of near complete sequences (~1400 nt) of the 16S rRNA genes were applied for phylogenetic and taxonomic placement. This polyphasic approach allowed for the determination of the taxonomic position of the isolated strains into the following genera: Cyanobacterium, Geminocystis, Phormidium, Leptolyngbya, Limnothrix, and Nodosilinea. In addition, fourteen Pseudanabaenales and Oscillatoriales representatives of putative novel taxa were found. These sequences fell into five new clades that could correspond to new generic units of the Pseudanabaenaceae and Phormidiaceae families.
Collapse
Affiliation(s)
- Ana Paula Dini Andreote
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, 13400-970, São Paulo, Brazil
| | - Marcelo Gomes Marçal Vieira Vaz
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, 13400-970, São Paulo, Brazil
| | - Diego Bonaldo Genuário
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, 13400-970, São Paulo, Brazil
| | - Laurent Barbiero
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, 13400-970, São Paulo, Brazil
- IRD, CNRS, UPS, OMP, Géoscience Environnement Toulouse, 19 Av. Edouard Belin, Toulouse, F-31400, France
| | - Ary Tavares Rezende-Filho
- Department of Geography, Federal University of Mato Grosso do Sul, Rod. MS 134, Km 3, Nova Andradina, 79750-000, Mato Grosso do Sul, Brazil
| | - Marli Fátima Fiore
- Center for Nuclear Energy in Agriculture, University of São Paulo, Avenida Centenário 303, Piracicaba, 13400-970, São Paulo, Brazil
| |
Collapse
|
40
|
Soil microbial responses to increased moisture and organic resources along a salinity gradient in a polar desert. Appl Environ Microbiol 2014; 80:3034-43. [PMID: 24610850 DOI: 10.1128/aem.03414-13] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Microbial communities in extreme environments often have low diversity and specialized physiologies suggesting a limited resistance to change. The McMurdo Dry Valleys (MDV) are a microbially dominated, extreme ecosystem currently undergoing climate change-induced disturbances, including the melting of massive buried ice, cutting through of permafrost by streams, and warming events. These processes are increasing moisture across the landscape, altering conditions for soil communities by mobilizing nutrients and salts and stimulating autotrophic carbon inputs to soils. The goal of this study was to determine the effects of resource addition (water/organic matter) on the composition and function of microbial communities in the MDV along a natural salinity gradient representing an additional gradient of stress in an already extreme environment. Soil respiration and the activity of carbon-acquiring extracellular enzymes increased significantly (P < 0.05) with the addition of resources at the low- and moderate-salinity sites but not the high-salinity site. The bacterial community composition was altered, with an increase in Proteobacteria and Firmicutes with water and organic matter additions at the low- and moderate-salinity sites and a near dominance of Firmicutes at the high-salinity site. Principal coordinate analyses of all samples using a phylogenetically informed distance matrix (UniFrac) demonstrated discrete clustering among sites (analysis of similarity [ANOSIM], P < 0.05 and R > 0.40) and among most treatments within sites. The results from this experimental work suggest that microbial communities in this environment will undergo rapid change in response to the altered resources resulting from climate change impacts occurring in this region.
Collapse
|
41
|
Poser A, Lohmayer R, Vogt C, Knoeller K, Planer-Friedrich B, Sorokin D, Richnow HH, Finster K. Disproportionation of elemental sulfur by haloalkaliphilic bacteria from soda lakes. Extremophiles 2013; 17:1003-12. [PMID: 24030483 DOI: 10.1007/s00792-013-0582-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 08/26/2013] [Indexed: 11/25/2022]
Abstract
Microbial disproportionation of elemental sulfur to sulfide and sulfate is a poorly characterized part of the anoxic sulfur cycle. So far, only a few bacterial strains have been described that can couple this reaction to cell growth. Continuous removal of the produced sulfide, for instance by oxidation and/or precipitation with metal ions such as iron, is essential to keep the reaction exergonic. Hitherto, the process has exclusively been reported for neutrophilic anaerobic bacteria. Here, we report for the first time disproportionation of elemental sulfur by three pure cultures of haloalkaliphilic bacteria isolated from soda lakes: the Deltaproteobacteria Desulfurivibrio alkaliphilus and Desulfurivibrio sp. AMeS2, and a member of the Clostridia, Dethiobacter alkaliphilus. All cultures grew in saline media at pH 10 by sulfur disproportionation in the absence of metals as sulfide scavengers. Our data indicate that polysulfides are the dominant sulfur species under highly alkaline conditions and that they might be disproportionated. Furthermore, we report the first organism (Dt. alkaliphilus) from the class Clostridia that is able to grow by sulfur disproportionation.
Collapse
Affiliation(s)
- Alexander Poser
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang L, Gao G, Tang X, Shao K, Bayartu S, Dai J. Bacterial community changes along a salinity gradient in a Chinese wetland. Can J Microbiol 2013; 59:611-9. [PMID: 24011344 DOI: 10.1139/cjm-2013-0212] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We analyzed the composition and diversity of a bacterial community to determine its response to increasing salinity in the Xiangsi Lake wetland in the arid region of northwest China. We studied 12 sites, ranging from freshwater to saltwater habitats, using polymerase chain reaction (PCR)-based terminal restriction fragment length polymorphism (T-RFLP) and sequencing of the 16S rRNA genes of 5 selected samples. Cluster analysis and phylogenetic analysis revealed that the bacterial community changed significantly in response to increased salinity within the small-scale wetland (50.8 km(2)). Detailed analysis showed that (i) Betaproteobacteria can maintain balanced growth over a salinity range (from 0.34 to 6.86 g/L) through intergenus changes in community structure, followed by a sharp decrease in relative abundance (from 62.2% to 16.0%) when salinity reaches 26.18 g/L; (ii) salt-sensitive and halophobic taxa were progressively replaced by halotolerant and halophilic taxa with increasing salinity; (iii) bacterial diversity was lowest at intermediate salinity levels (6.86 g/L); and (iv) an increasing percentage of unclassified bacterial taxa were found with increasing salinity. This study has implications to improve understanding of bacterial community response to water salinization.
Collapse
Affiliation(s)
- Lei Zhang
- a State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, People's Republic of China
| | | | | | | | | | | |
Collapse
|
43
|
Schmalenberger A, O'Sullivan O, Gahan J, Cotter PD, Courtney R. Bacterial communities established in bauxite residues with different restoration histories. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:7110-7119. [PMID: 23745718 DOI: 10.1021/es401124w] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Bauxite residue is the alkaline byproduct generated when alumina is extracted from bauxite ores and is commonly deposited in impoundments. These sites represent hostile environments with increased salinity and alkalinity and little prospect of revegetation when left untreated. This study reports the establishment of bacterial communities in bauxite residues with and without restoration amendments (compost and gypsum addition, revegetation) in samples taken in 2009 and 2011 from 0 to 10 cm depth. DNA fingerprint analysis of bacterial communities based on 16S rRNA gene fragments revealed a significant separation of the untreated site and the amended sites in both sampling years. 16S amplicon analysis (454 FLX pyrosequencing) revealed significantly lower alpha diversities in the unamended in comparison to the amended sites and hierarchical clustering separated the unamended site from the amended sites. The taxonomic analysis revealed that the restoration resulted in the accumulation of bacterial populations typical for soils including Acidobacteriaceae, Nitrosomonadaceae, and Caulobacteraceae. In contrast, the unamended site was dominated by taxonomic groups including Beijerinckiaceae, Xanthomonadaceae, Acetobacteraceae, and Chitinophagaceae, repeatedly associated with alkaline salt lakes and sediments. While bacterial communities developed in the initially sterile bauxite residue, only the restoration treatments created diverse soil-like bacterial communities alongside diverse vegetation on the surface.
Collapse
|
44
|
Planktonic bacterial community composition of an extremely shallow soda pond during a phytoplankton bloom revealed by cultivation and molecular cloning. Extremophiles 2013; 17:575-84. [DOI: 10.1007/s00792-013-0540-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/11/2013] [Indexed: 10/26/2022]
|
45
|
Shen M, Jun Kang Y, Li Wang H, Sheng Zhang X, Xin Zhao Q. Effect of plant growth-promoting rhizobacteria (PGPRs) on plant growth, yield, and quality of tomato (Lycopersicon esculentum Mill.) under simulated seawater irrigation. J GEN APPL MICROBIOL 2013; 58:253-62. [PMID: 22990485 DOI: 10.2323/jgam.58.253] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
To determine the effects of three PGPRs on plant growth, yield, and quality of tomato under simulated seawater irrigation, a two consecutive seasons' field experiment was conducted in Yancheng Teachers University plot from April to June and August to October, 2011. The results showed that Erwinia persicinus RA2 containing ACC deaminase exhibited the best ability compared with Bacillus pumilus WP8 and Pseudomonas putida RBP1 which had no ACC deaminase activity to enhance marketable yields of fresh and dried fruits in tomato under simulated seawater irrigation especially under HS condition. B. pumilus WP8 had significant effects on improving tomato fruit quality under the conditions of irrigating with 1.0% NaCl solution (MS) and with 2.0% NaCl solution (HS). Na(+) contents were generally accumulated much more in tomato plant mid-shoot leaves than in fruits whatever the salt concentration. More sodium accumulation in leaves of E. persicinus RA2 and B. pumilus WP8 treatments under HS condition were found than in control. E. persicinus RA2 and B. pumilus WP8 can promote tomato growth, improve fruit quality more firmly than P. putida RBP1 during two consecutive seasons. Our study suggested that E. persicinus RA2 and B. pumilus WP8 are considered to be promising PGPR strains which are suited for application in salt marsh planting, ACC deaminase activity was not unique index on screening for PGPRs with the aim of salt stress tolerance, and plant growth promoting activities may be relevant to different growth indices and different stress conditions.
Collapse
Affiliation(s)
- Min Shen
- Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Yancheng, Jiangsu 224002, China
| | | | | | | | | |
Collapse
|
46
|
Microbial population index and community structure in saline-alkaline soil using gene targeted metagenomics. Microbiol Res 2012; 168:165-73. [PMID: 23083746 DOI: 10.1016/j.micres.2012.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/20/2012] [Accepted: 09/17/2012] [Indexed: 12/22/2022]
Abstract
Population indices of bacteria and archaea were investigated from saline-alkaline soil and a possible microbe-environment pattern was established using gene targeted metagenomics. Clone libraries were constructed using 16S rRNA and functional gene(s) involved in carbon fixation (cbbL), nitrogen fixation (nifH), ammonia oxidation (amoA) and sulfur metabolism (apsA). Molecular phylogeny revealed the dominance of Actinobacteria, Firmicutes and Proteobacteria along with archaeal members of Halobacteraceae. The library consisted of novel bacterial (20%) and archaeal (38%) genera showing ≤95% similarity to previously retrieved sequences. Phylogenetic analysis indicated ability of inhabitant to survive in stress condition. The 16S rRNA gene libraries contained novel gene sequences and were distantly homologous with cultured bacteria. Functional gene libraries were found unique and most of the clones were distantly related to Proteobacteria, while clones of nifH gene library also showed homology with Cyanobacteria and Firmicutes. Quantitative real-time PCR exhibited that bacterial abundance was two orders of magnitude higher than archaeal. The gene(s) quantification indicated the size of the functional guilds harboring relevant key genes. The study provides insights on microbial ecology and different metabolic interactions occurring in saline-alkaline soil, possessing phylogenetically diverse groups of bacteria and archaea, which may be explored further for gene cataloging and metabolic profiling.
Collapse
|
47
|
Moraxella species are primarily responsible for generating malodor in laundry. Appl Environ Microbiol 2012; 78:3317-24. [PMID: 22367080 DOI: 10.1128/aem.07816-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many people in Japan often detect an unpleasant odor generated from laundry that is hung to dry indoors or when using their already-dried laundry. Such an odor is often described as a "wet-and-dirty-dustcloth-like malodor" or an "acidic or sweaty odor." In this study, we isolated the major microorganisms associated with such a malodor, the major component of which has been identified as 4-methyl-3-hexenoic acid (4M3H). The isolates were identified as Moraxella osloensis by morphological observation and biochemical and phylogenetic tree analyses. M. osloensis has the potential to generate 4M3H in laundry. The bacterium is known to cause opportunistic infections but has never been known to generate a malodor in clothes. We found that M. osloensis exists at a high frequency in various living environments, particularly in laundry in Japan. The bacterium showed a high tolerance to desiccation and UV light irradiation, providing one of the possible reasons why they survive in laundry during and even after drying.
Collapse
|
48
|
Severin I, Confurius-Guns V, Stal LJ. Effect of salinity on nitrogenase activity and composition of the active diazotrophic community in intertidal microbial mats. Arch Microbiol 2012; 194:483-91. [PMID: 22228487 PMCID: PMC3354318 DOI: 10.1007/s00203-011-0787-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 12/09/2011] [Accepted: 12/16/2011] [Indexed: 01/05/2023]
Abstract
Microbial mats are often found in intertidal areas experiencing a large range of salinities. This study investigated the effect of changing salinities on nitrogenase activity and on the composition of the active diazotrophic community (nifH transcript libraries) of three types of microbial mats situated along a littoral gradient. All three mat types exhibited highest nitrogenase activity at salinities close to ambient seawater or lower. The response to lower or higher salinity was strongest in mats higher up in the littoral zone. Changes in nitrogenase activity as the result of exposure to different salinities were accompanied by changes in the active diazotrophic community. The two stations higher up in the littoral zone showed nifH expression by Cyanobacteria (Oscillatoriales and Chroococcales) and Proteobacteria (Gammaproteobacteria and Deltaproteobacteria). At these stations, a decrease in the relative contribution of Cyanobacteria to the nifH transcript libraries was observed at increasing salinity coinciding with a decrease in nitrogenase activity. The station at the low water mark showed low cyanobacterial contribution to nifH transcript libraries at all salinities but an increase in deltaproteobacterial nifH transcripts under hypersaline conditions. In conclusion, increased salinities caused decreased nitrogenase activity and were accompanied by a lower proportion of cyanobacterial nifH transcripts.
Collapse
Affiliation(s)
- Ina Severin
- Department of Marine Microbiology, Royal Netherlands Institute of Sea Research (NIOZ), PO Box 140, 4400 AC Yerseke, The Netherlands.
| | | | | |
Collapse
|
49
|
Wang J, Yang D, Zhang Y, Shen J, van der Gast C, Hahn MW, Wu Q. Do patterns of bacterial diversity along salinity gradients differ from those observed for macroorganisms? PLoS One 2011; 6:e27597. [PMID: 22125616 PMCID: PMC3220692 DOI: 10.1371/journal.pone.0027597] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 10/20/2011] [Indexed: 11/18/2022] Open
Abstract
It is widely accepted that biodiversity is lower in more extreme environments. In this study, we sought to determine whether this trend, well documented for macroorganisms, also holds at the microbial level for bacteria. We used denaturing gradient gel electrophoresis (DGGE) with phylum-specific primers to quantify the taxon richness (i.e., the DGGE band numbers) of the bacterioplankton communities of 32 pristine Tibetan lakes that represent a broad salinity range (freshwater to hypersaline). For the lakes investigated, salinity was found to be the environmental variable with the strongest influence on the bacterial community composition. We found that the bacterial taxon richness in freshwater habitats increased with increasing salinity up to a value of 1‰. In saline systems (systems with >1‰ salinity), the expected decrease of taxon richness along a gradient of further increasing salinity was not observed. These patterns were consistently observed for two sets of samples taken in two different years. A comparison of 16S rRNA gene clone libraries revealed that the bacterial community of the lake with the highest salinity was characterized by a higher recent accelerated diversification than the community of a freshwater lake, whereas the phylogenetic diversity in the hypersaline lake was lower than that in the freshwater lake. These results suggest that different evolutionary forces may act on bacterial populations in freshwater and hypersaline lakes on the Tibetan Plateau, potentially resulting in different community structures and diversity patterns.
Collapse
Affiliation(s)
- Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Dongmei Yang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Yong Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- Life Sciences College, Anhui Normal University, Wuhu, China
| | - Ji Shen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Christopher van der Gast
- National Environment Research Council (NERC) Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Martin W. Hahn
- Institute for Limnology, Austrian Academy of Sciences, Mondsee, Austria
| | - Qinglong Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
- * E-mail:
| |
Collapse
|
50
|
Sorokin DY, Tourova TP, Kolganova TV, Detkova EN, Galinski EA, Muyzer G. Culturable diversity of lithotrophic haloalkaliphilic sulfate-reducing bacteria in soda lakes and the description of Desulfonatronum thioautotrophicum sp. nov., Desulfonatronum thiosulfatophilum sp. nov., Desulfonatronovibrio thiodismutans sp. nov., and Desulfonatronovibrio magnus sp. nov. Extremophiles 2011; 15:391-401. [PMID: 21479878 PMCID: PMC3084936 DOI: 10.1007/s00792-011-0370-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/23/2011] [Indexed: 11/30/2022]
Abstract
Soda lake sediments usually contain high concentrations of sulfide indicating active sulfate reduction. Monitoring of sulfate-reducing bacteria (SRB) in soda lakes demonstrated a dominance of two groups of culturable SRB belonging to the order Desulfovibrionales specialized in utilization of inorganic electron donors, such as formate, H2 and thiosulfate. The most interesting physiological trait of the novel haloalkaliphilic SRB isolates was their ability to grow lithotrophically by dismutation of thiosulfate and sulfite. All isolates were obligately alkaliphilic with a pH optimum at 9.5–10 and moderately salt tolerant. Among the fifteen newly isolated strains, four belonged to the genus Desulfonatronum and the others to the genus Desulfonatronovibrio. None of the isolates were closely related to previously described species of these genera. On the basis of phylogenetic, genotypic and phenotypic characterization of the novel soda lake SRB isolates, two novel species each in the genera Desulfonatronum and Desulfonatronovibrio are proposed.
Collapse
Affiliation(s)
- D Y Sorokin
- Winogradsky Institute of Microbiology, Russian Academy of Sciences, Prospect 60-let Octyabrya 7/2, 117811, Moscow, Russia.
| | | | | | | | | | | |
Collapse
|